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Abstract

For AI agents to be helpful to humans, they should be able to follow natural lan-
guage instructions to complete everyday cooperative tasks in human environments.
However, real human instructions inherently possess ambiguity, because the human
speakers assume sufficient prior knowledge about their hidden goals and intentions.
Standard language grounding and planning methods fail to address such ambiguities
because they do not model human internal goals as additional partially observable
factors in the environment. We propose a new framework, Follow Instructions with
Social and Embodied Reasoning (FISER), aiming for better natural language in-
struction following in collaborative embodied tasks. Our framework makes explicit
inferences about human goals and intentions as intermediate reasoning steps. We
implement a set of Transformer-based models and evaluate them over a challenging
benchmark, HandMeThat. We empirically demonstrate that using social reasoning
to explicitly infer human intentions before making action plans surpasses purely
end-to-end approaches. We also compare our implementation with strong baselines,
including Chain of Thought prompting on the largest available pre-trained language
models, and find that FISER provides better performance on the embodied social
reasoning tasks under investigation, reaching the state-of-the-art on HandMeThat.

1 Introduction

Building AI assistants that can interact with people in a shared environment and follow their instruc-
tions would unlock assistive robotics and free up domestic labor. Toward this broad goal, we need to
address the problem of “translating” realistic natural language instructions into actions executable
by robots. The conventional way that people formulate this problem is grounded language learning,
which aims at mapping abstract natural language phrases to concretely executable actions. However,
these approaches miss an important component of many human-robot collaborative tasks, which
is that the language humans tend to use in everyday scenarios is inherently ambiguous. Human
speakers assume that listeners possess prior knowledge, leading them to omit certain information for
efficiency [1, 2, 3, 4, 5]. Resolving this ambiguity depends on leveraging other sources of information
(e.g., human internal goals and historical actions) that are partially observable to the robot.

Consider the example shown in Fig. 1, where a human is tidying up a room. In the middle of her
actions, she asks a robot for help, saying “Could you pass that from the sofa?” This instruction does
not appear to be solvable without further information about the person’s underlying intention. While
such internal mental states are not directly observed, agents can infer them from human’s past actions.
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Figure 1: An example scenario where the human’s natural language instruction (“Could you pass that
from the sofa?”) is inherently ambiguous. Standard language grounding and planning methods fail to
resolve ambiguity. We propose FISER, which explicitly reasons about human’s internal intentions
as intermediate steps. The robot disamiguates the instruction into a concrete robot-understandable
task in the social reasoning phase (Phase 1), and then accomplishes the grounded planning in the
embodied reasoning phase (Phase 2). We further propose an optional enhancement to Phase 1 by
explicitly recognizing the human’s overall plan, and then infer what the human want the robot to do.

Specifically, if the robot can observe that in previous steps, the human put several books into a box
one by one, it can infer that she intends to use that box to store all the books. Based on this guess, the
robot can check if there are any remaining books on the sofa and then hand them to the person.

Generally speaking, the ambiguity in the instruction mainly arises from two aspects. First, the human
assumes sufficient prior knowledge about her hidden intentions [4, 5], which is based on the common
sense knowledge that people tend to group similar items together when tidying up, and the observation
that the human is gathering books. Second, people make trade-offs between accuracy and efficiency
of communication [1, 2, 3]. This leads to the challenge of building AI agents that can follow efficient,
ambiguous speech that people naturally adopt when giving directions.

We consider the case where there’s a human and a robot collaborating in a shared environment. The
human is working on some tasks, and specifies a sub-task for the robot to help with by giving a
natural language instruction. Past methods (e.g., language grounding) attempt to directly complete
the specified command from the given instructions, since the human only acts as a disembodied
issuer of instructions and is not another active agent in their environments. The human, as another
partially observable factor in the environment, has been overlooked. In this paper, we present a new
framework, Follow Instructions with Social and Embodied Reasoning (FISER), which suggests that
we should introduce the human’s intention as explicit variables for the model to draw inferences
about. By leveraging this structure, our framework opts to decompose the problem into two parts –
social reasoning and embodied reasoning. Specifically, social reasoning is aimed at predicting
the sub-task for which the human is asking for assistance, which can be inferred from the context of
both the instruction and the observed historical actions of the person in the shared environment. After
grounding the instructions into robot-understandable tasks, the robot can then do planning and interact
with the environment, in a separate embodied reasoning phase. To further enhance the model’s
ability to follow ambiguous instructions, we propose to explicitly add an extra plan recognition
stage, where a set of logical predicates is used to help with inferring the human’s overall plan. We
implement a Transformer-based model trained in a supervised learning manner to predict specified
sub-tasks (and the human’s underlying plan) at intermediate layers. This step-by-step approach
distinctly differs from the more commonly employed end-to-end methods in previous works.

Overall, the key insight of our method is that separating social and embodied reasoning by explicitly
modeling the human’s intentions can significantly improve performance when following ambiguous
natural language instructions. To test this hypothesis, we evaluate our models on a challenging
benchmark, HandMeThat (HMT) [6], which involves ambiguous instruction following tasks in a
text-based household environment. HMT contains a large number of physical objects and valid
actions in each episode, as well as an enormous goal space. We find that these properties make HMT
challenging even for the largest state-of-the-art large language models (LLMs). As a competitive
baseline, we design a Chain-of-Thought (CoT) approach to prompt GPT-4 based on our framework.
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The experimental results reveal two important findings. First, models which separate social and em-
bodied reasoning using the FISER framework outperform end-to-end reasoning, in both Transformer-
based models and CoT-prompted LLMs, which indicates that explicitly doing intermediate reasoning
about human intentions is beneficial. Second, training small-scale models from scratch on this task
outperforms our most sophisticated CoT prompting methods for large pre-trained LLMs, indicating
that pretraining and domain-specific prompts are insufficient for LLMs to perform well on the chal-
lenging social and embodied reasoning tasks under investigation. We conduct a thorough analysis
over the failure modes of GPT-4 Turbo and gain insight into why state-of-the-art LLMs are not
capable of this type of social and embodied reasoning skills needed to solve the tasks.

To summarize, the contributions of this paper are to propose the FISER framework, which performs
instruction following by first using social reasoning and additional context to disambiguate what the
human is asking, before using embodied reasoning to decide what actions to take to complete the
task. We further introduce a human plan recognition stage to enhance social reasoning abilities when
tasks are particularly complex or ambiguous. We empirically demonstrate that our FISER models
show 64.5% success rate on the test set on average, achieving the state-of-the-art on HMT benchmark.
Open-source code is available at: https://github.com/Simon-Wan/FISER.

2 Related Work

Grounded language learning. In order for AI to be useful to people in our homes and natural
environments, non-experts need to be able to communicate with AI agents using natural language.
This issue has long captured the attention of researchers [7, 8], and the primary challenge involves
mapping natural language to concrete meanings within the physical environment. Several studies ex-
plore language-conditioned task completion in specific environments [9, 10, 11]. With the emergence
of LLMs, many works discussed grounding language by leveraging pre-trained LLMs [12, 13, 14].
A prominent example is SayCan [15], which proposed extracting the knowledge in LLMs by using
them to score the likelihood that a subtask available to the robot will help complete a high-level
instruction. Although the above studies may incorporate common sense reasoning about language
as well as information within the physical environment, their instructions explicitly express human
intentions. For example, the most ambiguous instruction solved by SayCan is, “I spilled my coke,
can you bring me something to clean it up?” where the ambiguity can still be easily resolved given
that the sponge is the only cleaning tool in the environment. In contrast, we address the problem
that realistic human instructions omit certain information for efficiency, making them much more
ambiguous, and necessitating inferring human intentions to fill in the gaps.

Collaborative communication. We consider the case where the human and the robot are working in
a shared environment, which is closely related to the literature on collaborative communication (e.g.
Two Body Problem [16]). CerealBar [17], DialFRED [18] and TEACh [19] introduce collaborative
tasks where the human works as a disembodied issuer of instructions, possibly responding to robot’s
questions via explicit messages. In contrast, we consider the problem in which the AI assistant needs
to consider both explicit messages in natural language and the implicit information in observed human
actions. Further, we assume that instructions are not exhaustively describing the required information,
but are generated based on a trade-off between informativeness and communication cost. To this
end, we focus on the HandMeThat [6] (HMT) benchmark, that calls for the ability to consider both
explicit and implicit messages when following ambiguous instructions. The previous state-of-the-art
work [20] on HMT performs iterated goal inference over the goal space in symbolic representation.
However, it requires hand-crafted, pre-defined structures and extensive domain knowledge, which is
not applicable in real-world scenarios.

Goal recognition. In our method, we hope to infer the human’s intentions based on the observed
historical actions, which is related to goal recognition problem [21, 22, 23, 24]. Most of the works
are based on the assumption of rationale that an agent should make (approximately) optimal decisions
towards the goals every step [4, 5]. Understanding human intentions in embodied environments has
also been studied in many works; for example in Watch-and-Help [25] the AI must infer the human’s
goal from demonstrations, but no natural language is involved. Some recent works [26, 27] leverage
LLMs to conduct goal inference based on the observed human actions or messages. In this work, we
employ a small language model trained from scratch to undertake this part of reasoning, since the aim
is not to achieve precise goal recognition but to assist with the step-by-step social reasoning process.
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Figure 2: Graph for our problem formulation and proposed method. White nodes are observable
variables, and grey nodes are unobservable. The robot is given the trajectory τt′ , a final state st′ , and
an utterance u. We propose to explicitly model human’s intentions by modeling the human’s overall
plan Gh ∈ Gh as a set of predicates pk. We further assume that human selects a subgoal p∗ that needs
help, and then specifies a robot’s task Gr, which is the underlying intention of human when saying u.

Reasoning with intermediate steps. This work is also inspired by the research that uses intermediate
steps to solve complex reasoning problems, including formal and mathematical reasoning and program
synthesis [28, 29, 30, 31, 32]. Specifically, Nye et al. shows that step-wise prediction method performs
better than directly predicting the final outputs in program synthesis when prompting LLMs. Chain-
of-Thought (CoT) [33] thoroughly explores how generating intermediate reasoning steps improves
the performances of prompting LLMs to deal with complex reasoning tasks. In this paper, we show
that social reasoning tasks benefit from the same approaches, and demonstrate that inferring human
intentions is a critical component of successful human-robot collaboration.

3 FISER: Follow Instructions with Social and Embodied Reasoning

Problem Formulation. A human-robot Markov Decision Process is described as a tuple
⟨S,Ah,r, T ,U , Rr, γ, T ⟩. s ∈ S are object-oriented states including the locations, status and type of
each object and agent. Ah,r is the joint action space with Ah,Ar being the sets of actions available
to the human and the robot, respectively. T : S ×Ah,r ×S → {0, 1} is the transition function where
T (s, ah,r, s′) = 1 if and only if taking actions ah,r at state s gives s′ as the next state. U is a set of
instructions that the human can give to the robot. Rr : S → R is a reward function for the robot, γ is
the discount factor, and T is the horizon. Throughout the paper, we consider a scenario with only
a single round of instruction following for the robot. In each episode, starting from an initial state
s0, the human begins working in the environment, and the robot is waiting. Human stops at a time
step t′ ≤ T , leading to a trajectory τt′ = (s0, a

h
0 , s1, a

h
1 , . . . , st′−1, a

h
t′−1) and a final state st′ . Then

the human produces a natural language instruction u ∈ U that asks the robot for help. Given τt′ , st′
and u, the robot needs to interact with the environment by taking a sequence of actions {art}t≥t′ to
maximize its discounted rewards

∑T
t=t′ [γ

t−t′Rr(st+1)].

3.1 Modeling the Human’s Intentions

A straightforward solution to the human-robot MDP may treat τt′ and u as additional state information.
However, in reality, τt′ , u, and Rr have important correlations: when the human is taking actions and
producing instructions, their behavior can be modeled as optimizing for an internal reward function
Rh : S → R, which is not revealed to the robot. Our insight into this broad problem class is to
leverage the causal relation between the human’s behavior and their instruction by explicitly modeling
hidden, unobserved variables representing the human’s goals and intentions. This enables making
better use of the human’s trajectory to disambiguate the instruction, by recognizing the task the
human is assigning to the robot.

We start by assuming the reward functions Rh can be parameterized by a set of possible goals Gh.
The human’s goal Gh ∈ Gh is sampled from an underlying distribution over Gh at the beginning of an
episode, and is fixed across the horizon. However, it is not revealed to the robot directly. The goal in
Gh is usually global and complex, such as “organize the bedroom.” We assume the human trajectory
τt is rational, in the sense that it was produced to maximize the reward Rh(· | Gh). Based on Gh and
the current progress τt′ , the human then selects a subgoal p∗ ∈ Gh (a part of the human’s overall
plan) for which the human would like the robot’s help, such as “having all books put in the box,”
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and then specifies a task Gr for the robot (e.g., asking the robot to hand over a specific book). The
instruction u is generated based on Gr. The relations between these variables are shown in Fig. 2.

Although we do not put specific assumptions over the structure of goals in Gh and how τt is generated,
we illustrate them with a simplified example in Fig. 2. We define P as a set of predicates where
each p ∈ P is a classifier over states (to say whether the predicate is satisfied or not). For example,
one predicate can be written as ⟨∃y, box(y),∀x, book(x) ⇒ in(x, y)⟩, which describes putting all
books in a box. Now we assume that the human goal Gh = {p1, p2, · · · , pl} is a set of predicates.
The human chooses to work on predicates one by one and has been working on all pk’s (1 ≤ k ≤ l)
before stopping at time t′, and then the subgoal p∗ is chosen from the set of remaining predicates:
p∗ ∈ {pk, . . . , pl}. Next, the human specifies a robot’s task Gr such that the robot actions will result
in a state s′ where Rh(s′ | {p∗}) > 0 (i.e., Gr is a useful step towards p∗, a remaining subgoal to
accomplish). Note that neither p∗ nor Gr is accessible to the robot, since the robot can only get access
to the natural language instruction u. For example, “could you pass that from the sofa” could be an
utterance for Gr = ⟨human-holding(book#0)⟩ and p∗ = ⟨∃y, box(y),∀x, book(x) ⇒ in(x, y)⟩.

3.2 Step-wise Reasoning over Human Intentions

Our model, FISER, builds on top of the factorized human-robot MDP formulation above. We
formulate the problem into the social and embodied reasoning phases.

Social Reasoning: Robot’s Task Recognition. The robot needs to disambiguate the natural language
instruction u into an understandable and executable task within its own goal space based on the
observation of current state st′ and the historical trajectory τt′ . Therefore, we hope to estimate a
function TR, such that TR(st′ , τt′ , u) → Gr.

Social Reasoning: Human’s Plan Recognition. We further propose a variant that explicitly estimates
the human’s underlying overall plan Gh based on τt′ and replaces that trajectory by the predicted
goal when doing instruction disambiguation. However, since recognizing the full plan is usually
intractable, we opt to also take in u and st′ , and directly predict the predicate p∗ ∈ Gh (subgoal) that
the human wants the robot to help with. Therefore, we learn two functions PR and TR, such that
PR(st′ , τt′ , u) → p∗ and TR(st′ , p∗, u) → Gr.

Embodied Reasoning: Grounded Planning. Once the robot goal Gr is obtained, the problem is
reduced to a pure grounding and planning task. We can replace the ambiguous natural language
instruction u by the accurately expressed robot goal Gr. The final grounded planning function GP
should satisfy that GP(st′ , τt′ , Gr) → {art}t≥t′ , which is basically learning a typical goal-conditioned
robot policy π(a|sy′ , τt′ , G

r)†.

Since the functions TR and PR involve natural language inputs, language models are required for
these two modules. For GP, we can either implement planning algorithms or use neural networks.

4 Transformer-based Model Architecture

We implement a Transformer-based model following our framework, illustrated in Fig. 3. We assume
all inputs are rendered in texts, and the model needs to predict action strings. Since small-scale
language models cannot process excessively long inputs, we divide the information into four parts,
including world state description (st′), human’s trajectory (τt′), language instruction (u), and the
model’s past outputs.

World state description. We consider an object-centric representation for the world state. Specifi-
cally, the world state is described as a sequence of object tokens. For each object in the world, we
fuse the information of its category (object type and genre), attributes (e.g., size, color, is-open), and
spatial relation (inside or on top of another object) into one single embedding, which we called as an
object token. The human and the robot are also treated as two special “objects”.

Human’s trajectory. A straightforward way to represent human’s trajectory is to directly use a
paragraph of texts to describe action sequence, e.g., “the human picks up book#1 from the table”. To
better align it with the world state, we replace the embeddings for object names (“book#1”) by the
object tokens that we obtained in the world state description.

†τt′ should be p∗ instead if the PR stage is included.
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Figure 3: The Transformer-based model has four parts of inputs, which are passed separately into
different Transformer Encoder Layers, and interact with each other through a Modality Interaction
module after each Transformer layer. The first 2N layers form the social reasoning phase and the last
N layers form the embodied reasoning phase. The embeddings at Layer 2N are used for recognizing
robot’s task, and the last layer embeddings are used for predicting actions.

Language instruction. The natural language instruction sentence is tokenized and then directly
turned into embeddings.

Model’s past outputs. Every time the agent takes a step, the environment returns a sentence
describing the effect of its action, i.e., the update in observations. In each episode, such sentences
for past steps are concatenated and served as an extra input, e.g., “. . . [SEP] pick up book 0 [SEP]
You pick up the book (book 0) from the table. . . ” The concatenated result is also tokenized and then
turned into embeddings. This information is necessary because the model needs to know what it has
done and whether the world state is changed.

4.1 Model Architecture Overview

The proposed model consists of 3N (N = 3) encoder layers that are used to update the representation
over all four parts of the inputs, in order to predict human intentions or robot’s actions. Specifically,
we use the embeddings at Layer 2N to predict the robot’s task Gr (social reasoning phase). Then,
we replace the instruction input for Layer 2N + 1 by the predicted Gr and then use the last layer
embeddings to predict robot’s actions. If the Human’s Plan Recognition stage is further included,
we use the embeddings at Layer N to predict the selected human subgoal p∗ and then replace the
trajectory input for Layer N + 1 by the predicted p∗.

The model is trained in either a multi-staged (MS) or an end-to-end (E2E) manner. The E2E models
are trained to directly output robot’s actions, but an auxiliary loss is applied over their intermediate
predictions of robot’s task (and human’s plan). The MS models, however, disentangle the social
reasoning (functions TR and PR) from embodied reasoning (function GP), and train them as two
separate modules. The latter module is trained with the ground-truth p∗ or Gr, but is evaluated using
the predictions from the former module.

4.2 Encoder Layers

Each encoder layer is composed of four Transformer layers and a Modality Interaction module.

Transformer Layers. We use four separate Transformer encoder-only layers to process the inputs.
We remove the positional encoding for the world state description, because we do not expect the
model to learn an ordering of objects.

Modality Interaction. In order to fuse the information from the four parts of inputs, we design a
modality interaction module (an MLP) within each layer, following the architecture proposed by
GreaseLM [34]. We reserve a special “interaction” token at the front of each part of inputs. These
tokens are expected to gather respective information in the Transformer layers and then interact with
each other through this MLP. The updated special tokens will then replace the original first token in
each part of inputs.

4.3 Prediction Layers

Now we introduce our predictors for intermediate reasoning steps and the final actions. All the
predictions are trained with cross entropy loss over corresponding supervisions.

6



Human’s Plan Recognition. We assume that there is a vocabulary of concepts that allow us to
represent human goals as first order logic predicates (e.g., ⟨∃y, box(y), ∀x, book(x) ⇒ in(x, y)⟩).
While such logical predicates could be more complex, here we assume human plans follow a simpler
form: a Q(uantifier), a S(ubjective), a V(erb), and an O(bjective) (e.g., ⟨for-all, book, inside, box⟩).
Therefore, the human’s plan recognition module of our model needs to predict a tuple of four tokens.
The prediction is conditioned on the embeddings of the four inputs. Specifically, we calculate the
log-likelihood over all tuples as follows, where the predictions of the Subjective and Objective are
conditioned on the predicted values of Quantifier and Verb:

log Pr[Q,S,V,O] ≈ log Pr[Q] + log Pr[V] + log Pr[S|Q,V] + log Pr[O|Q,V],

Robot’s Task Recognition. The main target of the entire social reasoning phase is to predict the task
assigned to the robot, such as a specific object to manipulate. Note that in this step the model needs
to specify a concrete object in the world, while the Subjective and Objective predictions in previous
plan recognition step are object types.

Action Prediction. The model needs to output the next action in each step, which we assume to be
a triple consisting of action type and one or two arguments, (e.g., move-to(sofa), put-into(book#0,
box#1)). The action type prediction is conditioned on the embeddings of the four inputs, while
the arguments are further conditioned on the predicted action type. Specifically, we calculate the
log-likelihood over all actions (no matter applicable or not).

log Pr[Action,Arg1,Arg2] ≈ log Pr[Action] + log Pr[Arg1|Action] + log Pr[Arg2|Action].
We assume the model has access to all applicable actions at each step, so we take the maximum over
all applicable triples to get the final prediction.

5 Experiments

We evaluate our framework by training a Transformer-based model from scratch for the challenging
HandMeThat benchmark [6], and then compare them with multiple competitive baselines, including
the state-of-the-art prior work on HMT, and the CoT prompting on the largest available pre-trained
language models.

5.1 HandMeThat Environment

We evaluate our models over the HandMeThat (version 2) dataset [6]. It introduces a household
ambiguous instruction following task rendered in text. HandMeThat instructions are split into four
difficulty levels, and the gaps between levels correspond to different challenges. The instruction in a
Level 1 task has no ambiguity—it is a pure planning task. A Level 2 task requires social reasoning
where a robot can successfully accomplish the task if it can also infer the goal from the human
trajectory. On Level 3, the robot needs to further consider pragmatic reasoning in language use. For
example, if there are multiple books everywhere in the room and only one coat, which is on the sofa,
and both the book and the coat are helpful to the human’s goal, the human might say “Could you
pass that from the sofa?”. Using pragmatics, we can understand the human is asking for the book,
since “from the sofa” is required to disambiguate which book the human is referring to, but if the
human wanted the coat they could simply ask for it. The final Level 4 contains tasks with inherent
ambiguities that cannot be resolved with the existing information, but can potentially be resolved
with a strong prior over what human is likely to do. For example, taking one more fruit will complete
the goal of packing picnics, but there are many kinds of fruits in the refrigerator to choose from.
From the perspective of completing the goal, any fruit will do, but human preferences may make a
difference–the human may want apples instead of bananas at this time.

We evaluate all the models on their success rates in achieving the robot’s goal. Note that the original
evaluation metric in HandMeThat additionally considers the number of robot’s steps. An agent can
trivially improve success rate with increased steps, by simply searching all objects in a brute force,
trial-and-error fashion. We believe that enumeration over objects is not realistic in the real world, so
we restrict our experiments to one trial (to be completed within 4 or 5 steps).

5.2 Model Details

Baseline models. We compare our results to human performance on the task (Human), a hand-
coded baseline (Heuristic) which has access to ground-truth symbolic state information, and a neural
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network baseline (Seq2Seq [35]) introduced in the HandMeThat paper. The existing SOTA work [20]
was implemented based on the original HandMeThat (version 1) dataset. Therefore, to faciliate
comparison with this work we additionally report the results of our FISER models over version 1 data
points that lie in the version 2 domain. Further details of this comparison are listed in Appendix A.1.

Transformer-based model. Following the proposed framework, we implement a set of Transformer-
based models. The design of model architecture is explained in Appendix 4 and illustrated in Fig. 3.
We compare the implementations with no intermediate supervision (Transformer), with Robot’s
Task Recognition only (Transformer+FISER), and with Human’s Plan Recognition in addition
(Transformer+FISER+PR). Our models are trained from scratch because existing small-scale pre-
trained models cannot handle the excessive token lengths of HandMeThat data inputs. We compare
two ways of training the Transformer-based model using FISER framework, end-to-end (E2E) or
multi-staged (MS), as explained in Appendix 4.1. This comparison aims to provide insights for
whether to block the gradient flow from embodied reasoning back to the social reasoning module. We
further report the accuracy of the intermediate prediction steps for these Transformer-based models,
including QSVO (simplified human subgoal), and Obj (concrete object to be manipulated in expert
demonstration, i.e., the robot’s task). The number of parameters in an E2E model is 5.1M; the number
of parameters in an MS model is 4.7M (3.0M for social reasoning and 1.7M for embodied reasoning).

Prompted GPT-4. We design prompting methods for GPT-4 Turbo over HMT tasks. The vanilla
implementation (GPT-4) simply provides all inputs to the model and requests it to output actions. We
first conduct prompt engineering (GPT-4+PE) to incorporate some domain-specific knowledge and
help to parse the complex inputs. Then we implement FISER framework by applying CoT prompting
to explicitly predict the same intermediate data (human’s plans and specified robot’s tasks) that we use
for Transformer-based models step-by-step, which similarly gives two models (i.e., GPT-4+FISER
and GPT-4+FISER+PR). To be more specific, in both social reasoning steps, we prompt GPT-4 to do
step-by-step reasoning except that we ask different questions. Human’s Plan Recognition asks about
the human’s higher-level goal, while Robot’s Task Recognition asks about the intended meaning
of an ambiguous instruction. We further consider providing additional assistance by filtering out a
proportion of irrelevant objects from the environment, to assess the impact of excessive item quantity
on GPT-4’s embodied reasoning. The prompts for GPT-4 Turbo are provided in Appendix B.

6 Results

We evaluate all the models over the HandMeThat (version 2) dataset in the fully observable setting.
Overall, our best-performing Transformer+FISER model achieves a 64.5% success rate on average,
achieving the state-of-the-art on the HandMeThat benchmark. The main results are presented in
Table 1. Now we discuss the following hypotheses.

H1: Explicitly modeling human intentions works better than directly predicting actions.

(a) Separating the social and embodied reasoning steps by explicitly recognizing the robot’s
task is beneficial.

For both prompted GPT-4 Turbo and Transformer-based models, explicitly predicting the robot’s task
significantly improves the success rates across all difficulty levels, which supports our hypothesis
that separating the social and embodied reasoning steps is beneficial in these complex reasoning
tasks. The comparison between two different training schemes of our Transformer-based models are
presented in Table 2. Results show that training in a multi-staged manner works better than end-to-end
in our tasks. It may imply that the low-level grounded planning (embodied reasoning) is requiring a
sufficiently different task representation from inferring human’s internal goals (social reasoning), that
allowing gradients from the embodied reasoning module to flow into the social reasoning module
actually hurts performance. It is a further support on empirical side that we should make explicit
inferences about human intentions as intermediate reasoning steps.

(b) Explicitly recognizing the human’s plan further helps with the social reasoning stage.

When we further include the Human’s Plan Recognition (PR) stage, we find that it only helps for the
most ambiguous cases (like in Level 4). For GPT-4 Turbo, adding PR is showing approximately the
same performances as normal FISER method. We attribute this to the fact that pre-trained LLMs are
not good at leveraging hierarchical predictions to improve on this task. For Transformer-based models,
introducing PR gives better performance on Level 4, but is harmful to the simplest Level 1. We
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Model Baseline Models GPT-4 Turbo Transformer-based Models
Human Heur. Seq2Seq Vanilla +PE +FISER +PR Vanilla +FISER +PR

Level 1 100.0 100.0 30.4 72.0 82.0 80.0 77.0 77.7±1.6 89.0±1.5 72.0±1.5
Level 2 80.0 64.0 28.8 16.0 25.0 36.0 34.0 55.3±0.4 74.0±0.3 74.0±0.9
Level 3 40.0 39.0 12.8 5.0 13.0 18.0 17.0 36.3±1.0 52.3±2.3 52.3±1.0
Level 4 30.0 29.0 14.8 9.0 9.0 17.0 20.0 38.3±1.4 42.7±0.2 51.0±1.2

Table 1: Success rate (%) of models over HMT in the fully observable setting. The results for
Transformer-based models are the mean and standard error values over three runs. Overall, FISER
improves the performance across all levels compared to the vanilla Transformer. GPT-4 cannot do
well even with very careful prompting.

Model Level 1 Level 2 Level 3 Level 4

E2E 77.7 (N/A, N/A) 55.3 (N/A, N/A) 36.3 (N/A, N/A) 38.3 (N/A, N/A)
E2E+FISER 74.3 (N/A, 87.8) 73.7 (N/A, 80.9) 47.3 (N/A, 73.1) 41.3 (N/A, 64.7)
E2E+FISER+PR 61.0 (73.2, 81.3) 66.7 (64.9, 81.0) 47.0 (59.0, 73.4) 42.0 (55.0, 66.5)

MS+FISER 89.0 (N/A, 93.4) 74.0 (N/A, 82.3) 52.3 (N/A, 76.5) 42.7 (N/A, 68.1)
MS+FISER+PR 72.0 (74.4, 82.4) 74.0 (71.9, 82.3) 52.3 (67.1, 75.6) 51.0 (65.3, 71.2)

Table 2: Comparison between End-to-End (E2E) and Multi-staged (MS) training of Transformer-
based models over HMT in the fully observable setting. All model are evaluated by the success
rate (%). The prediction accuracy (%) of QSVO and Obj (intermediate outputs) are presented in
parentheses. The results are the mean values over three runs. Overall, training in a multi-staged
manner works better than end-to-end in our tasks.

attribute the poor performance in Level 1 to the fact that such simple tasks do not require knowing the
humans’ high-level goal. Therefore, forcing the model to predict this information reduces the model’s
capacity to focus on planning for low-level actions. On the other hand, the improved performance
on Level 4 shows that explicit human’s plan recognition helps to better learn priors over human
intentions. Even on these intrinsically ambiguous tasks, the model can leverage the strong prior to
take helpful actions.

H2: Pre-trained LLMs, despite having access to common-sense knowledge, do not adequately
perform the complex social and embodied reasoning in this task. Incorporation of domain-
specific knowledge through CoT can help.

Results show that training much smaller, more efficient Transformer-based models from scratch
is exhibiting about 70% increased performance than prompting state-of-the-art pre-trained LLMs.
GPT-4 Turbo’s results on Level 1 show it has the capability to do some level of embodied reasoning
when given explicit tasks. However, the performance drop on subsequent levels indicates that the
required knowledge to solve HandMeThat tasks is not fully covered by common-sense knowledge
in pre-trained LLMs. With well-designed prompt engineering (PE) that contains some domain
knowledge (e.g., goal space and few-shot examples), GPT-4 Turbo improves significantly across
all difficulty levels. However, even with careful CoT prompts and few-shot examples, it is far from
small-scale Transformer models across all levels.

As a qualitative analysis, we evaluate the failure cases for FISER framework on prompting GPT-4
Turbo and training Transformer-based models. We provide the results on Level 2 over 100 data points
in Fig. 4. We define the failure modes as follows:

• Planning Failure: Hallucination (go to a place where the target object is not located at, i.e.,
fail to locate the object), missing steps, or invalid actions.

• Redundant Behavior: The model gives the human an object that is already at its target
location or even one which was just manipulated by the human.

• Incorrect Intention: For GPT-4, common-sense reasoning is performed but not aligned
with the ground-truth human intention. (As an example, it will pick up radish given that
the person was preparing soup, because "radish is a component of some soups." But this
relationship does not exist in the human’s goal space.) For Transformer, the model can reach
the object it wants, but that object is not what the human wants.
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Figure 4: Failure case analysis for FISER frame-
work on prompting versus training over 100
data points on Level 2.

Figure 5: Success rates of GPT-4 Turbo under
different settings given that different percent-
ages of irrelevant objects are filtered out from
the environment.

Here, Planning Failure corresponds to the difficulty in embodied reasoning, while Incorrect Intention
and Redundant Behavior corresponds to the challenges in social reasoning.‡ Results show that a
Transformer-based model can effectively avoid both Planning Failure and Redundant Behavior, while
recognizing the target object correctly is still a challenging issue. Note that the Planning Failure
rate of GPT-4 Turbo is around 20%, which aligns with its performance on Level 1 (80% success
rate) in Table 1, since Level 1 only incorporates challenges in embodied reasoning. We believe the
unsatisfactory performance of GPT-4 Turbo is because the prompting methods alone cannot provide
the model with the type of social and embodied reasoning needed to solve this task. The information
learned from language datasets collected online may also be significantly different from that required
for this household assistance task. Training a small-scale model, however, can solve the problem
more efficiently and reliably.

We conducted an additional experiment to see if the performance of the pre-trained LLMs could be
improved. Here we provide additional assistance by filtering out a proportion of irrelevant objects
from the environment (which assumes access to the ground-truth human goals), to assess the impact
of excessive item quantity on GPT-4’s embodied reasoning. The results are presented in Fig. 5.
Even in the case that only relevant objects are remained, GPT-4 Turbo can only achieve less than
85% success rate, which aligns with the planning failure rates in the failure case analysis above,
indicating that the LLM cannot easily resolve the difficulty in embodied reasoning. As the irrelevant
objects increase, the success rate of GPT-4 Turbo drops dramatically, showing the challenges of
social reasoning in HandMeThat tasks. To summarize, we observe that LLM’s performance relies on
a very large proportion of objects being filtered out, which provides further insight that LLMs cannot
effectively select relevant environment information and focus on relevant objects, which is required
in embodied reasoning.

7 Conclusion

We study the challenging HandMeThat benchmark, comprising ambiguous instruction following
tasks requiring sophisticated embodied and social reasoning. We find that existing approaches for
training models end-to-end, or for prompting powerful pre-trained LLMs, are both insufficient to
solve these tasks. We hypothesized that performance could be improved by building a model that
explicitly performs social reasoning to infer the human’s intentions from their prior actions in the
environment. Our results provide evidence for this hypothesis, and show that our approach, Follow
Instructions with Social and Embodied Reasoning (FISER), enhances performance over the most
competitive prompting baselines by 70%, setting the new state-of-the-art for HandMeThat.

‡A single failure case could result from multiple errors, which means it is possible that a failure case that
counts as Planning Failure could also apply to Incorrect Intention.
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A Model Implementation Details

A.1 Baseline Models

Baselines in HandMeThat HandMeThat paper provides a series of simple baselines to compare
with, including Human, Random, Heuristic, Seq2Seq, and DRRN. We use their reported results on
HandMeThat Version 2 dataset.

As introduced in the benchmark paper, the Heuristic model is an agent that heuristically repeats
the previous human actions. To be more specific, this model has access to all object states and the
underlying logic formula of the utterance. Therefore, it is only applicable in the fully-observable
setting. Upon receiving the instruction, the agent generates all possible groundings of instruction and
then compares them to the observed human trajectory. The key heuristic of this model is that: human
tends to quest for objects that are in the same categories as the previously manipulated ones. The
Heuristic model guesses the grounding of the objects in the utterance based on this heuristic.

Cao et al. [20] The previous SOTA work is trained and evaluated on Version 1 dataset. Their code
for implementing the method on HandMeThat was not released until this paper is submitted. We
directly evaluate our trained model over a subset of Version 1. The results are summarized in Table
3. Here the subset is selected in a way that the instruction type should be “bring me”, and the goal
should be included in Version 2 dataset. We argue it is a fair comparison for the following reasons:

1. They build in the goal space to their model with hand-crafted ways, while we are using a
simplified version of the goal as supervision to train the models.

2. They use rule-based information extractor to deal with long and redundant text inputs, while
we are using symbolic representation for the world state description.

3. They claim that they are doing partially observable settings, but they are actually having
full access to all the objects in the environment at least during the training phase, and didn’t
learn to navigate in the environment.

4. They only filtered a small set of goals among all 69 goal templates of Version 1 dataset. We,
however, are training on 25 different possible goal templates, and evaluate our models on
Version 1 data where the goal is seen but not the data.

Model Fully Observable

Level 1 Level 2 Level 3 Level 4

Cao et al. [20] 27.7±0.3 24.8±0.4 21.0±0.1 21.7±0.2
Transformer+FISER 89.7±0.4 63.0±0.3 28.3±2.5 40.7±1.9

Table 3: Success rate (%) of models in the fully observable setting. Cao et al. [20] is evaluating
version 1 of HandMeThat dataset, and thus we provide the results of Transformer+FISER model over
a subset of version 1 for a fair comparison.

Results show that Transformer+FISER significantly outperforms the previous SOTA across all levels
even though our model was not trained directly on the Version 1 dataset.

A.2 Transformer-based Models

The model architecture and implementation details are discussed in the main text. We will release the
codebase for our models in the future.

Hyperparameters The number of trainable parameters for an end-to-end model is 5,057,945; the
numbers of trainable parameters for social reasoning and embodied reasoning modules within a
multi-staged model are 3,020,483 and 1,701,750 respectively. We train the end-to-end model and
the embodied reasoning module for 20 epochs, and train the social reasoning module for 40 epochs.
The number of training epochs are chosen based on the average performance on validate sets. We
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choose 32 as batch size by sweeping over 32, 64, 128. We choose Adam with learning rate 1e− 4,
betas (0.9, 0.98), and epsilon 1e− 9. We choose 0, 1, 2 as the random seeds and train all the models
for three runs.

Compute Resources We use NVIDIA RTX A6000 to train our models. Each model is trained on a
single GPU. The end-to-end model and embodied reasoning module take around 8 hours for each
training epoch, while the social reasoning module takes less than our hour each epoch. Given that the
embodied reasoning module is trained for 20 epochs, it takes approximately a week to train.

A.3 Prompted GPT-4

We used GPT-4 Turbo from OpenAI API. GPT-4 is a large multimodal model that can solve difficult
problems with greater accuracy than OpenAI’s previous models. It has broader general knowledge
and advanced reasoning capabilities, which makes GPT-4 Turbo suitable for our complex task that
involves social reasoning and world assumptions. We paid to get text generation from the API.
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B GPT-4 Prompts

There are four rungs of system prompts for GPT-4, each of them building on the previous rung:
GPT-4, GPT-4+PE, GPT-4+PE+FISER, GPT-4+PE+FISER+PR. We list the prompts as follows. Each
prompt is split into multiple parts, and each part is put in one box (or two boxes across the page,
marked with <Continued>). We omit the boxes that have shown up in previous prompts. The data
point is placed at the word “Data”.

B.1 GPT-4

Part 1: Task information.

Part 2: Current data point.

You are a robot. Every time you will receive a description of the world and an instruction given by
the human in the following templates:
[World Description]:
[Human Trajectory]:
[Human Instruction]:
You are expected to generate a sequence of actions that are consistent with the human’s instruction
and the world description.
Please remember that each object has a number ID.
!!!!!THE LAST PART OF THE RESPONSE should be a sequence of actions starting with the string
"Actions:" (!!Only actions! No numbering for actions, no description, no extra words)!!!!!
The available action templates contain:
move to XXX
pick up XXX
pick up XXX from XXX
put XXX into XXX
put XXX onto XXX
take XXX from XXX
give XXX to human
open XXX
A typical answer format is as follows, where the "open" step is optional.
Actions:
move to XXX
open XXX
pick up XXX
move to human
give XXX to human

======================== Now please begin to generate the output for given scenarios
========================
[World Description]: Data
[Human Trajectory]: Data
[Human Instruction]: Data
You are expected to generate a sequence of actions that are consistent with the human’s instruction
and the world description.
Please remember that each object has a number ID.
!!!!!THE LAST PART OF THE RESPONSE should be a sequence of actions starting with the string
"Actions:" (!!Only actions! No numbering for actions, no description, no extra words)!!!!!
======================== Let’s start! ========================

B.2 GPT-4+PE

Part 1: Task information. Same as GPT-4, omitted.

Part 2: Domain specific knowledge.

Part 3: Data point example.
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Part 4: Answer example.

Part 5: Current data point. Same as GPT-4, omitted.

NOTE!!: Remember to open something like refrigerator if it is closed before pick up something.
There are some openable objects: vessel, bag, box, package, cabinet, microwave, oven, dishwasher,
refrigerator
Take an action like open refrigerator, open cabinet, open box, open bag, open vessel, open package,
open microwave, open oven, open dishwasher
=================================================================
To let you answer better, we give you the description of the goal space for the world as follows. The
human has one of the following goals:
Goal 0: boxing books up for storage
Goal description: Put all the paper products of a certain kind into a box.
Goal 1: bring in wood
Goal description: Put all the building materials of a certain kind on top of the floor.
Goal 2: clearing the table after dinner
Goal description: Put all of one certain kind of cutlery inside some bucket, put all of another kind of
cutlery into another bucket, and put all the flavorer of a certain kind into a bucket.
Goal 3: collect misplaced items
Goal description: Put all of a certain footwear, a certain decoration, and a certain paper product on
top of the table.
Goal 4: collect aluminum cans
Goal description: Put all drinks into the ashcan.
Goal 5: installing alarms
Goal description: Put an electrical device on the table, on the countertop, and on the sofa.
Goal 6: laying tile floors
Goal description: Put all of a certain building material on top of the floor.
Goal 7: loading the dishwasher
Goal description: Put all the tablewares of two certain kinds and all of a certain vessel into the sink.
Goal 8: moving boxes to storage
Goal description: Put all the boxes on top of the floor.
Goal 9: oraganizing boxes in garage
Goal description: Put all of a certain plaything into a box, put all of a certain cutlery into another box,
put all of a certain cleasing thing into a third box, and put all the boxes on top of the floor.
Goal 10: organize file cabinet
Goal description: Put all the writing tools of a certain kind on top of the table, and put all the paper
products of a certain kind into the cabinet.
Goal 11: pick up trash
Goal description: Put all of a certain paper product and all of a certain drink into the ashcan.
Goal 12: put away Christmas decorations
Goal description: Put all the decorations of three certain kinds into the cabinet.
Goal 13: put away Halloween decorations
Goal description: Put all the vegetable of a certain kind and all the illumination tools of a certain kind
into the cabinet, and put all of a certain vessels on top of the table.
Goal 14: put away toys
Goal description: Put all the playthings of a certain kind into a closed box.
Goal 15: put dishes away after cleaning
Goal description: Put all the tablewares of a certain kind into the cabinet.
Goal 16: put leftovers away
Goal description: Put all of a certain prepared food and all of a certain flavorer into the refrigerator.
Goal 17: put up Christmas decorations inside
Goal description: Put all of a certain illumination tool and all the decorations of two certain kinds on
top of the table, and put all the decorations of another certain kind on top of the sofa.
Goal 18: re-shelve library books
Goal description: Put all of a certain paper product on top of the shelf.
Goal 19: serve hors d’oeuvres
Goal description: Put all of a certain baked food, a certain vegetable, a certain prepared food, and the
trays on top of the table.
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<Continued>
Goal 20: sort books
Goal description: Put all the paper products of two certain kinds on top of the shelf.
Goal 21: store food
Goal description: Put all of a certain prepared food, a certain snacks, and two certain kinds of flavorers
into the cabinet.
Goal 22: store the groceries
Goal description: Put all of a certain fruit, a certain protein, and two certain kinds of vegetables into
the refrigerator.
Goal 23: thaw frozen food
Goal description: Put all of a certain vegetable, a certain fruit, and a certain protein into the sink.
Goal 24: throw away leftovers
Goal description: Put all the snacks of a certain kind into the ashcan.
=========================================================================

The following is an example of prompt inputs and ground truth outputs. You should generate output
in a similar way:
[World Description]:
Welcome to the world!
In the room there is the human a countertop a sofa a bed a stove a table a shelf a toilet a cabinet a
bathtub a microwave an oven a dishwasher a refrigerator a sink a pool.
Now you are standing on the floor. You are at the floor.
You see floor. On floor you can see green highchair 0 red dusty seat 0 blue dusty seat 1 blue chair
0 red dusty chair 1 green dusty chair 2 dusty bucket 0 bucket 1 dusty bucket 2 green large closed
package 2 small dusty ashcan 0 small dusty ashcan 1 large ashcan 2 xmas_stocking 0 dusty xmas_tree
0 xmas_tree 1 xmas_tree 2 shoe 0 dusty sock 0 sandal 2. In bucket 1 you can see dishtowel 1 detergent
0.
You see countertop. On countertop you can see green closed bottle 0 red closed kettle 1 red closed
dusty kettle 2 small dusty plate 0 red closed dusty briefcase 1 large dusty tray 2 xmas_stocking 2
strawberry 1 strawberry 2 carrot 1 beer 1 fish 0 fish 1 parsley 1 bread 2 cookie 0 saw 0 saw 1 hammer
0 carving_knife 0 toggled-off facsimile 0 calculator 1 mouse 0 earphone 0 pencil 1 highlighter 1 fork
1 spoon 0.
You see dusty stained sofa. On sofa you can see green closed duffel_bag 0 green basket 0 green
basket 1 red large open dusty box 0 red large closed dusty box 1 blue small closed dusty package 0
ribbon 1 dusty bow 1 document 1 dusty document 2 hardback 1 hat 0 cube 0. In box 0 you can see
document 0. In package 0 you can see dusty ribbon 0 bow 0 bracelet 2 hat 2. You see dusty bed. On
bed you can see blue basket 2 bracelet 0 dusty jewelery 0 hardback 0 dusty apparel 0 apparel 1 ball 0.
You see toggled-off stove. On stove you can see nothing.
You see dusty table. On table you can see green closed bottle 1 green closed sack 0 blue closed
briefcase 0 blue closed dusty briefcase 2 small tray 1 blue large closed dusty box 2 xmas_stocking
1 strawberry 0 banana 2 pop 0 vegetable_oil 0 vegetable_oil 1 sugar 1 cracker 0 cracker 1 bread 0
bread 1 cookie 2 salad 0 soup 0 pasta 2 carving_knife 1 scraper 0 scraper 1 screwdriver 1 toggled-off
printer 0 toggled-off printer 1 calculator 0 mouse 2 pencil 2 highlighter 0 lamp 0 lamp 1. On tray 1
you can see sandwich 1 soup 2.
You see stained shelf. On shelf you can see blue small closed dusty package 1 saw 2 hammer 1
screwdriver 0 toggled-off scanner 0 mouse 1 earphone 1 lamp 2.
You see dusty stained toilet. On toilet you can see toothpaste 1 toothpaste 2.
You see open dusty cabinet. In cabinet you can see blue closed dusty kettle 0 small dusty bowl 0 large
bowl 1 pan 2 pop 1 beer 2 juice 1 parsley 0 vegetable_oil 2 hammer 2 scraper 2 toggled-off modem 0
toggled-off modem 1 pencil 0 dishtowel 0 rag 1 soap 1 toothpaste 0 detergent 2 bracelet 1 painting 0
dusty painting 1 painting 2 book 0 book 1 notebook 0 dusty sandal 0 sandal 1 dusty hat 1 cube 1.
You see stained bathtub. In bathtub you can see makeup 1 rag 0 vacuum 0 broom 0 broom 1 shampoo
2.
You see closed toggled-off stained microwave. In microwave you can see cooked salad 1 cooked soup
1.
You see closed toggled-off dusty oven. In oven you can see cooked cracker 2 cooked cake 0.
You see closed toggled-off dishwasher. In dishwasher you can see dusty pan 0 knife 0 spoon 1.
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<Continued>
You see closed toggled-on dusty refrigerator. In refrigerator you can see large dusty mug 0 small
bowl 2 large tray 0 frozen banana 0 frozen banana 1 frozen carrot 0 frozen carrot 2 frozen beer 0
frozen juice 0 frozen fish 2 frozen sugar 0 frozen tea_bag 0 frozen tea_bag 1 frozen cookie 1 frozen
cake 2 frozen sandwich 0 frozen sandwich 2 frozen salad 2 frozen pasta 0 fork 0 knife 1. On tray 0
you can see cake 1 pasta 1.
You see toggled-off stained sink. In sink you can see dusty pan 1 makeup 0 makeup 2 rag 2 hand_towel
0 vacuum 1 scrubbrush 0.
You see stained pool. In pool you can see soap 0 detergent 1 shampoo 0 shampoo 1 dusty tile 0 tile 1.
Human is currently holding nothing. Now it is your turn to help human to achieve the goal!
[Human Trajectory]:
The human agent has taken a list of actions towards a goal, which includes:
Human moves to the cabinet.
Human opens the cabinet.
Human picks up the document 0 at the cabinet.
Human moves to the sofa.
Human opens the box 0 at the sofa.
Human puts the document 0 into the box 0.
Human stops and says,
[Human Instruction]:
’Please give me the dusty one.’

——————————–
Actions:
move to sofa
pick up document 2
move to human
give dusty document 2 to human

B.3 GPT-4+PE+FISER

Part 1: Task information. Slightly different from GPT-4+PE, marked in blue.

Part 2: Domain specific knowledge. Same as GPT-4+PE, omitted.

Part 3: Data point example. Same as GPT-4+PE, omitted.

Part 4: Answer example.

Part 5: Current data point. Slightly different from GPT-4+PE, marked in blue.

You are a robot. Every time you will receive a description of the world and an instruction given by
the human in the following templates:
[World Description]:
[Human Trajectory]:
[Human Instruction]:
You are expected to generate a sequence of actions that are consistent with the human’s instruction
and the world description.
Please remember that each object has a number ID.
Remember in the final output, the type of object should be specific!! you CAN NOT say something
like e.g., note !!!!!
Please first think step-by-step!
1. Which object do you think the human is asking for?
2. What are your actions?
Answer the above questions one by one NO MATTER YOU KNOW THE GOAL SPACE OR NOT!
!!!!!THE LAST PART OF THE RESPONSE should be a sequence of actions starting with the string
"Actions:" (!!Only actions! No numbering for actions, no description, no extra words)!!!!!
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<Continued>
The available action templates contain:
move to XXX
pick up XXX
pick up XXX from XXX
put XXX into XXX
put XXX onto XXX
take XXX from XXX
give XXX to human
open XXX
A typical answer format is as follows, where the "open" step is optional.
Actions:
move to XXX
open XXX
pick up XXX
move to human
give XXX to human

[Questions]:
1. Which object do you think the human is asking for?
The human has taken some actions related to the document, and is probably asking for another
document to put into the box. The human also requires that the object should be dusty. Note that
there is a dusty document 2 on the sofa, so the human is probably asking for document 2.
2. What are your actions?
I should navigate to the sofa and pick up the dusty document 2. Then I should give it to the human.
Actions:
move to sofa
pick up document 2
move to human
give document 2 to human

======================== Now please begin to generate the output for given scenarios
========================
[World Description]: Data
[Human Trajectory]: Data
[Human Instruction]: Data
You are expected to generate a sequence of actions that are consistent with the human’s instruction
and the world description.
Please remember that each object has a number ID.
Remember in the final output, the type of object should be specific!! you CAN NOT say something
like e.g., note !!!!!
Please first think step-by-step!
1. Which object do you think the human is asking for?
2. What are your actions?
Answer the above questions one by one NO MATTER YOU KNOW THE GOAL SPACE OR NOT!
!!!!!THE LAST PART OF THE RESPONSE should be a sequence of actions starting with the string
"Actions:" (!!Only actions! No numbering for actions, no description, no extra words)!!!!!
======================== Let’s start! ========================

B.4 GPT-4+PE+FISER+PR

Part 1: Task information. Slightly different from GPT-4+PE+FISER, marked in blue.

Part 2: Domain specific knowledge. Same as GPT-4+PE+FISER, omitted.

Part 3: Data point example. Same as GPT-4+PE+FISER, omitted.

Part 4: Answer example.

Part 5: Current data point. Slightly different from GPT-4+PE+FISER, marked in blue.
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You are a robot. Every time you will receive a description of the world and an instruction given by
the human in the following templates:
[World Description]:
[Human Trajectory]:
[Human Instruction]:
You are expected to generate a sequence of actions that are consistent with the human’s instruction
and the world description.
Please remember that each object has a number ID.
Remember in the final output, the type of object should be specific!! you CAN NOT say something
like e.g., note !!!!!
Please first think step-by-step!
1. What is human doing? (Please find the most possible goal name and goal id if you are given the
goal space, otherwise you should infer by yourself, but you STILL need output!)
2. Which object do you think the human is asking for?
3. What are your actions?
Answer the above questions one by one NO MATTER YOU KNOW THE GOAL SPACE OR NOT!
!!!!!THE LAST PART OF THE RESPONSE should be a sequence of actions starting with the string
"Actions:" (!!Only actions! No numbering for actions, no description, no extra words)!!!!!
The available action templates contain:
move to XXX
pick up XXX
pick up XXX from XXX
put XXX into XXX
put XXX onto XXX
take XXX from XXX
give XXX to human
open XXX
A typical answer format is as follows, where the "open" step is optional.
Actions:
move to XXX
open XXX
pick up XXX
move to human
give XXX to human

[Questions]:
1. What is human doing?
The human has taken some actions related to the document. By putting document 0 into box 0 on the
sofa, the human is probably organizing the documents. It aligns with Goal 0: boxing books up for
storage.
2. Which object do you think the human is asking for?
Given that the overall goal can be organizing the documents, the human is probably asking for another
document to put into the box. The human also requires that the object should be dusty. Note that
there is a dusty document 2 on the sofa, so the human is probably asking for document 2.
3. What are your actions?
I should navigate to the sofa and pick up the dusty document 2. Then I should give it to the human.
Actions:
move to sofa
pick up document 2
move to human
give document 2 to human

20



======================== Now please begin to generate the output for given scenarios
========================
[World Description]: Data
[Human Trajectory]: Data
[Human Instruction]: Data
You are expected to generate a sequence of actions that are consistent with the human’s instruction
and the world description.
Please remember that each object has a number ID.
Remember in the final output, the type of object should be specific!! you CAN NOT say something
like e.g., note !!!!!
Please first think step-by-step!
1. What is human doing? (Please find the most possible goal name and goal id if you are given the
goal space, otherwise you should infer by yourself, but you STILL need output!)
2. Which object do you think the human is asking for?
3. What are your actions?
Answer the above questions one by one NO MATTER YOU KNOW THE GOAL SPACE OR NOT!
!!!!!THE LAST PART OF THE RESPONSE should be a sequence of actions starting with the string
"Actions:" (!!Only actions! No numbering for actions, no description, no extra words)!!!!!
======================== Let’s start! ========================
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