Scaling Offline RL via
Efficient and Expressive Shortcut Models

Nicolas Espinosa-Dice Yiyi Zhang Yiding Chen
Cornell University Cornell University Cornell University
ne229Q@cornell.edu yz2364Qcornell.edu yc27730@cornell.edu

Bradley Guo Owen Oertell Gokul Swamy
Cornell University Cornell University Carnegie Mellon University
bzg4@cornell.edu 0jo2@cornell.edu gswamyQandrew.cmu.edu
Kianté Brantley Wen Sun
Harvard University Cornell University
kdbrantley@harvard.edu ws4550@cornell.edu
Abstract

Diffusion and flow models have emerged as powerful generative approaches capa-
ble of modeling diverse and multimodal behavior. However, applying these mod-
els to offline reinforcement learning (RL) remains challenging due to the iterative
nature of their noise sampling processes, making policy optimization difficult. In
this paper, we introduce Scalable Offline Reinforcement Learning (), a new
offline RL algorithm that leverages shortcut models—a novel class of generative
models—to scale both training and inference. ’s policy can capture complex
data distributions and can be trained simply and efficiently in a one-stage training
procedure. At test time, introduces both sequential and parallel inference
scaling by using the learned)-function as a verifier. We demonstrate that

achieves strong performance across a range of offline RL tasks and exhibits pos-
itive scaling behavior with increased test-time compute. We release the code at

1 Introduction

Offline reinforcement learning (RL) [Exrnst_ef-all, PO0Y, Cange et all, POT7, Cevine_ef all, PO2(] is
a paradigm for using fixed datasets of interactions to train agents without online exploration. In
this paper, we tackle the challenge of scaling offline RL, for which there are two core components:
training and inference.

In order to scale training, offline RL algorithms must be capable of handling larger, more diverse
multi-modal datasets [(ONeill_ef_all, (074, Ratailov_ef all, D024, Park_ef all, (1244, Hussing et all,
2023, Giirfler_ef all, 2073, Bu_ef-all, 2075]. While standard Gaussian-based policy classes cannot
model multi-modal data distributions, flow matching [Cipman et all, 2022, Caiefall, D077, [ATbergo
ef all, 2023] and diffusion models [Sohl-Dickstein_ef all, 20135, Ho ef all, 2020, Song et all, 2021
have emerged as powerful, highly expressive model classes capable of modeling complex data dis-
tributions. However, while generative models like diffusion and flow matching can model diverse
offline data, applying them to offline RL is challenging due to their iterative noise sampling pro-
cess, which makes policy optimization difficult, often requiring backpropagation through time or
distillation of a larger model. Ultimately, we desire a training procedure that can efficiently train an
expressive model class.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://nico-espinosadice.github.io/projects/sorl/

The second core component in scaling offline RL is inference. During inference, we desire both ef-
ficiency and precision: the agent must be able to make decisions rapidly (e.g. autonomous vehicles)
but also take precise actions (e.g. surgical robots). Inspired by the recent work in test-time scaling
of large language models [Weiefall, D073, DeepSeek-Al, 075, Guiefall, D074, Brown ef all, D074,
Muennighoff et all, 2025, Madaan_ef-all, 2023, Du et all, 2074, Din et all, PZ025], we investigate how
test-time scaling can be applied in offline RL with generative models. That is, we desire an approach
that can perform inference efficiently—avoiding the slow, many-step generation process of diffusion
models—but can also leverage additional test-time compute when available.

Unfortunately, recent work in offline RL fails to achieve both of the desiderata necessary to scale
offline RL. Distillation-based approaches to offline RL with generative models [Ding and Jin, 2023,
Chen_ef all, D073, D024, Park_ef all, DO7S5] avoid extensive backpropagation through time during
training. However, they may require more complex, two-stage training procedures (e.g. propagating
through teacher/student networks), over which error compounds. They also have limited scaling
of inference steps, thus losing expressivity when compared to multi-step generative models [Frans
ef-all, 2024]. Alternatively, diffusion-based approaches that leverage backpropagation through time
[Wang_ et all, PO?72, He efall, D073, Zhang et all, 074, Ada ef all, 2(074] may learn policies with
greater expressivity. However, diffusion models have slow inference, requiring a larger number of
steps to generate high quality outputs [Frans’efall, DO74].

At a high-level, offline RL algorithms that employ generative models struggle with the following
tradeoff. In order to achieve training efficiency, we want to avoid performing many steps of the
iterative noise sampling process during policy optimization, which often requires backpropagating
many steps through time. However, modeling complex distributions in the offline data, such as di-
verse or multi-modal data, may require a larger number of discretization steps to allow for maximum
expressivity. Finally, at inference-time, we desire the ability to both generate actions efficiently via
a few-step sampling procedure (e.g. in robot locomotion settings) and leverage additional test-time
compute when available (e.g. in robot manipulation settings).

In this paper, we tackle the question of how to achieve efficient training, while maintaining expres-
sivity, and scale with greater inference-time compute. We introduce Scalable Offline Reinforcement
Learning (): a simple, efficient one-stage training procedure for expressive policies. Our key
insight is to leverage shortcut models [Frans_efall, PDO74], a novel class of generative models, in
order to incorporate self-consistency into the training process, thus allowing the policy to generate
high quality samples under any inference budget. ’s self consistency property allows us to vary
the number of denoising steps used for the three core components in offline RL: policy optimization
(i.e. the number of backpropagation through time steps), regularization to offline data (i.e. the total
number of discretization steps), and inference (i.e. the number of inference steps). We can use fewer
steps for policy optimization, thus making training efficient, while performing inference under vary-
ing inference budgets, depending on the desired inference-time compute budget. We incorporate
shortcut models into regularized actor-critic algorithm and make the following contributions:

1. We introduce , an efficient, one-stage training procedure for expressive policies
that can perform inference under any compute budget, including one-step inference.
Despite its efficiency, ’s policy can capture complex, multi-modal data distributions.

2. Through a novel theoretical analysis of shortcut models, we prove that ’s training
objective regularizes ’s policy to the behavior of the offline data.

3. Empirically, achieves the best performance against 10 baselines on a range of
diverse tasks in offline RL.

4. At test-time, can scale with greater inference-time compute by increasing the
number of inference steps (i.e. sequential scaling) and performing best-of-N sam-
pling (i.e. parallel scaling). We show empirically that can make up for a smaller
training-time compute budget with a greater inference-time compute budget. can
also generalize to more inference steps than the number of steps optimized during training.

2 Background

Markov Decision Process. We consider an infinite-horizon Markov Decision Process (MDP) [Pt
erman, P014]), M = (X, A, P, R,~, u). X and A are the state space and action space, respectively.

P: X x A— A(X) is the transition function, R : X x A — [0,1] is the reward function, and
~v is the discount factor. 1 € A(X) is the starting state distribution. LetII = {7 : X — A(A)}
be the class of stationary policies. We define the state-action value function Q(x,a) : X x A —» R
as Q™(x,a) = B > .2, R(z;,a;) | 2; = ,a; = a]. We define the state visitation distribution
generated by a policy 7 to be d}; := (1 —7)Ez,~p Yo7 Pr](z | zo)]. In the offline RL setting,
we assume access to a fixed dataset D = {(z,a,7,2')9};¢;
(z,a,z’) ~ d™8 by some behavior policy 7.

n» such that the data was generated

,,,,,

Flow Matching. We define flow matching [Cipman et all, 20272, Ciu_ef all, P077] as follows. Let
p* € A(R?) be the target data distribution in d-dimensional Euclidean space. Let Zy ~ N(0, I) and
Z1 ~ p* be two independent random variables. We define Z; to be the linear-interpolation between
the zp and z;:

Zii=tz1+(1—1t)z, 0<t<1. (D

{Zt}te[o,1) is fully determined by the start point Z and end point z;. We use {p; }+c[0,1] to denote
the sequence of marginal distributions of z;’s, where pg = N (0, I) and p; = p*.

The drift function vi(-) : R? — R? is defined to be the solution to the following least square
regression:

1
m;n/ EEONN(O,I),Elwp* Hil — 20 — f(tfl + (1 - t)207t)|‘§:| dt. 2)
rJo
We use f* to denote the solution to the optimization problem in Equation @ and define:
ve(2) == f*(2,t), VzeRYLtelo,1].

The drift function v;(-) induces an ordinary differential equation (ODE)

%Zt = V¢ (Zt) (3)
An appealing property of Equation B is: if the initial 2o is drawn from Gaussian distribution NV (0, I),
then the marginal distribution of z;, the solution to the ODE, is exactly p;, the marginal distribution
of the linear-interpolation process [Ciwefall, P027]. In practice, one can learn a drift function o (-)
by directly optimizing Equation D, starting from zo ~ A/ (0, I), and solve the ODE: dz; = 9y (z;)dt.
The solution z7 is an approximate sample from the target distribution p*.

Shortcut Models. Flow matching typically rely on small, incremental steps, which can be compu-
tationally expensive at inference time. Shortcut models improve inference efficiency by learning to
take larger steps along the flow trajectory [Frans’ef-all, P074]. The key insight of Frans ef-all [20724]
is to condition the model not only on the timestep ¢, as in standard flow matching, but also on a step
size h. The shortcut model s(z;, t, h) predicts the normalized direction from z; towards the correct
next point z;p, such that

Zt + S(Zt7t,h)h ~ Zt+h- (4)

The objective is to learn a shortcut model sg(z:,t, h) for all combinations of z,t, h. The loss
function is given by

L35O)=E .jono.n.) “| so(zt,t,1/M) — (21 — 20) H2 + H s0(2t,t,2h) — Starget Hﬂ, (5)

z1~D,(t,h)~p(t,h

Flow Matching Self-Consistency

where Suget = So(2t,t,h)/2 + s9(2y4,,t,h)/2 and 2, = 2 + sg(2¢,1, h)h. h is sampled uni-
formly from the reciprocals of powers of 2 between 1 and M, the maximum number of discretization

steps, and ¢ is sampled uniformly between 0 and 1, so p(h,t) = Unif({2"“},£12%2 MJ) x Unif(0,1).0

The loss’s first component is standard flow matching which ensures that when h = 1/M, the smallest
step size, the model recovers the target direction z; — zg. The second component, self-consistency,
encourages the model to produce consistent behavior across step sizes. Intuitively, it ensures that
one large jump of size 2h is equivalent to two combined jumps of size h. Thus, the model learns to
take larger jumps with more efficient, fewer-step inference procedures [Fransefall, P(074]].

'Note that the interval [0, 1] is discretized into M steps.

Algorithm 1: Scalable Offline Reinforcement Learning ()

Data: Offline dataset D
while not converged do

Sample (z,a',2’,r) ~D, a® ~N(0,I), (h,t)~p(h,t) # Parallelize batch
at < (1 —t)a’ + ta' # Noise action
>
for all batch elements do
m ~ Unif{1,..., MBTT} # Choose number of inference steps
a™ ~ mp(- | ,m) # Sample action
>
for all batch elements do
st < sg(a',t,h| x) # First small step
att — at + sih # Follow ODE
Sern & sg(at* t+h h|) # Second small step
| Starget < stopgrad(sy + s¢4p | 7)/2 # Self-consistency target
>
for all batch elements do
h < 1/Mdise # Use smallest step size
| Starget < at —ad # Flow-matching target
0 < Vollse(al,t,2h |) — Strger]|> — VoQy (2, a™) # Update actor
>
for all batch elements do
m ~ Unif{1,..., MBTT} # Choose number of inference steps
al, ~mp(- | «',m) # Sample action
| ¢V, (Qg(z,a') —r — 'qug(x’,a;r,))z # Update critic

3 Scaling Offline Reinforcement Learning

At a high-level, offline RL aims to optimize a policy subject to some regularization constraint, which
we can formulate as
argmax Jp(m) — aR(m,7mp) (6)
mell S——
Policy Optimization Regularization
where Jp(7) is the expected return over offline dataset D, 7w is the offline data generating policy,
and R(m,) is a regularization term (e.g. a divergence measure between 7 and 7).

The regularization constraint can be implemented through a behavioral cloning (BC)-style loss [Wii
efall, POTY], such as in the behavior-regularized actor-critic formulation [Win“ef-all, POTY, Fujimoto
and G, PO2 1, Tarasov et all, 20234, Park et all, ').()'),j]

argmaxE, ,.p {anwrg(‘m [Q¢(m, a™) 4+ alogmy(a | x) H @)
et Q Loss BC Loss

where the ()4 function is trained via minimizing the Bellman error. In order to incorporate generative
models, the BC loss can be replaced with score matching or flow matching [[Wang et all, 2027, Park
efall, 20743]. However, the core challenge of performing offline RL with generative models is the
policy optimization component, due to the iterative nature of the noise sampling process.

3.1 Scalable Offline Reinforcement Learning ()

Motivation. In order to scale offline RL, we desire an efficiently trained expressive policy that
is scalable under any inference budget. Our key insight is that, by incorporating self-consistency
into training, can vary the number of denoising steps used during policy optimization (i.e. the

number of backpropagation through time steps), regularization to offline data (i.e. the total number
of discretization steps), and inference (i.e. the number of inference steps)—thus enabling both
efficient training of highly expressive policy classes and inference-time scaling. Unlike two-stage
methods, which take existing diffusion models and later distill one-step capabilities into them,

is a unified model in which varying-step inference is learned by a single network in one training

mn.u

Policy Class and Inference Procedure. We model our policy by the shortcut function sy, and
sample actions via the Euler method with the shortcut function sy. The full procedure is presented in
Algorithm D. Slightly overloading notation, we condition on the number of inference steps m when
generating actions from the policy (i.e. a ~ (- | ©,m)). At test-time, we sample actions using
M™ inference steps. Note that, since the inference process corresponds to solving a deterministic
ODE, which is approximated using the Euler method, we can perform backpropagation through time
on actions sampled via Algorithm [during training.

Actor Loss. We present ’s full training procedure in Algorithm 0. There are three compo-
nents to ’s training: the Q update, the regularization to offline data, and the self-consistency:
Lr(0) = Lq.(0) + Lrm(0) + Lsc(0) (®)
N—— S~—— S~——
Q Loss Flow Matching Loss Self-Consistency Loss

(1) Q Update. For the Q update, we first sample actions via the inference procedure in Algorithm
D, using a maximum of MPBTT steps (i.e. backpropagating MP®TT steps through time). The Q loss is
computed with respect to this action:

LqoL(0) = ExndEarmry(-|2) [Qg(x,a™)] ©)

Since MBTT typically is small—we experiment with MBTT = 1,2, 4, 8 —we can backpropagate the
Q loss efficiently, without needing importance weighting or classifier gradients. In other words,
even though sampling a™ ~ my may involve multi-step generations, VgLqr, is still computable.
Additionally, rather than use a fixed number of steps for sampling actions, we sample the number of
steps uniformly from the set of powers of 2 between 1 and M/BTT B

(2) Offline Data Regularization. We add a BC-style loss that serves as the regularization to offline
data, which we implement via flow matching on the offline data, using M % discretization steps. a°
represents a fully noised action (i.e. noise sampled from a Gaussian), and a' represents a real action
(i.e. actions sampled from the offline data D). The flow matching loss is thus:

. 2
Lem(0) =E, 01 00n, {H so(al,t,1/M9 | 2) — (a' —aP) } (10)
h~p(h,t) ——
Velocity Prediction Velocity Target

(3) Self-Consistency. We add a self-consistency loss to ensure that bigger jumps (e.g. the shortcut of
an m-step procedure) are consistent with smaller jumps (e.g. the shortcut of a 2m-step procedure):

2] (1)

1 Double-Step 2 Single-Steps

‘CSC(H) =K z,al~D, [H $0<at7ta 2h ‘ l) — Starget
y L e—o —— ——

aO~N(t,h)~p(t,h

where
Starget = se(a’,t, h | a:)/2+59(at+h,t +h,h | x)/2, (12)
1st Single-Step 2nd Single-Step
and
atth = at + A so(a’,t, h) (13)
2nd Step’s Action 1st Step’s Action Step Size Normm’]:;;:ion
’Note that directly regularizing to the empirical offline data, as done via flow matching in , is preferable

to regularizing with respect to a learned behavior cloning (BC) policy, as done by FQL, when the underlying
distribution class is unknown. This is because, in the nonparametric setting, the empirical distribution is a
statistically consistent estimator, and it is minimax rate-optimal under common metrics like total variation and
2-Wasserstein distance.

BTT
3In other words, we sample m ~ Unif{2k ,Lgli%f M

Algorithm 2: Action Sampling via Forward Euler Method

Input: State x, number of inference steps m
Output: Action a
a~N(0,I)
h+1/m
t<+ 0
forn € {0,...,m—1}do
a<a+h-sg(a,t,h|x)
L t+—t+h
return a

Critic Loss. We train the critic via a standard Bellman error minimization, such that
2
£0(6) = (Qo(w,0") = 7 = 1Qi* (@', a2)) (14)

where a7, ~ 7 (- | 2) and Q" is the target network [Mnihi, ZOT3, Park ef all, 2025].

3.2 Inference-Time Scaling

The loss function £, (€) includes both the flow matching error
and the self-consistency error. Intuitively, training on the flow matching error alone yields a flow
model, from which we can sample actions by numerically solving the flow ODE in Equation B with
the Euler method. Using more discretization steps M %5 in the Euler method implies a smaller step
size (i.e. hmin = 1/M disc jg small), leading to a smaller discretization error. However, the Euler
method requires @(h;iln) number of iterations, so a smaller step size hn,;y is more computationally
expensive. By incorporating the self-consistency error into the training objective, the shortcut model
approximates two iteration steps of the Euler method into a single step. By iteratively approximating
with larger step sizes, the shortcut model achieves discretization error comparable to that of the Euler
method with a small step size, while only requiring a constant computational cost.

Sequential Scaling. By training a shortcut model with self-consistency, ’s policy can perform
inference under varying inference budgets. In other words, can sample actions in Algorithm [
with a varying number of inference steps M, including one step. In order to implement sequential
scaling, we simply run the sampling procedure in Algorithm @ for a greater number of steps (i.e. a
larger M™), up to the number of discretization steps A% used during training.

Parallel Scaling. We also desire an approach to inference-time scaling that is independent of the
number of inference steps. We incorporate best-of-N sampling [Fujimoto et all, 2019, Ghasemipout
ef—all, DO, Gmef-all, 2074, Nakamofo_efall, 2074, Cightman et all, 2073, Brown ef all, P0724],
following the simple procedure: sample actions independently and use a verifier to select the best
sample. In , we use the trained () function as the verifier. We implement best-of- N sampling as
follows: given a state x, sample a1, as, . .., ay independently from the policy 7y(a |) and select
the action with the largest () value, such that

argmax Q(z,a) (15)

ac{ai,az,...,an}

4 Theoretical Analysis: Regularization To Behavior Policy

Offline RL aims to learn a policy that does not deviate too far from the offline data, in order to
avoid test-time distribution shift [Cevine ef all, PO2(]. In this section, we theoretically examine the
question:

Will learn a policy that is regularized to the behavior of the offline data?

Through a novel analysis of shortcut models, we prove that the is yes.

Table 1: ’s Overall Performance. achieves the best performance on 5 of the 8 envi-
ronments evaluated, for a total of 40 unique tasks. The performance is averaged over 8 seeds, with
standard deviations reported. The baseline results are reported from Park“ef all [Z025]’s extensive
tuning and evaluation of baselines on OGBench tasks. We present the full results in Appendix 0.

Gaussian Diffusion Flow Shortcut

Task Category BC IQL ReBRAC IDQL SRPO CAC FAWAC FBRAC IFQL FQL

0GBench antmaze-large-singletask (5 tasks) 1M1 5343 8las 21lss 1lxa 3344 641 60+ 285 7943 89 12
0GBench antmaze-giant-singletask (5 tasks) 00 4+ 26 s 0 o0 O0x0 Ozo0 0 o 4 +a 32 916 9 +6
0GBench humanoidmaze-medium-singletask (5 tasks) 2+1 33 +2 224s T40o 1x1 5348 1941 3845 60414 5845 64 14
0GBench humanoidmaze-large-singletask (5 tasks) lxo 2= 2+ 1o 0x0 O=zo0 0 o 2 +o0 112 4+ 52
0GBench antsoccer-arena-singletask (5 tasks) 10 8 +2 0 o0 1244 1x0 2+ 12 +o 16 +1 336 60 +2 69 +2
0GBench cube-single-singletask (5 tasks) 541 8+3 9li2 952 80xs 8549 8lia T9x7r 792 96 11 97 +1
0GBench cube-double-singletask (5 tasks) 241 T 12 41 1546 2x1 62 542 1543 143 2942 25 +3
0GBench scene-singletask (5 tasks) 51 2841 41 43 4643 20+1 4047 303 4545 30+3 56 +2 57 +2

In the training objective in Equation B, we include the BC-style flow matching loss Lgy and self-
consistency loss Lgc. The former ensures closeness to the offline data, while the latter allows for
fast action generation. In this section, we demonstrate that this training objective can be interpreted
as an instantiation of the constrained policy optimization in Equation B. Unlike the KL-style regu-
larization in Equation [, the Lgy + Lsc term in the objective function is a Wasserstein behavioral
regularization, similar to that of Park ef all [Z025]. We show that under proper conditions, the short-
cut model will generate a distribution close to the target in 2-Wasserstein distance (W5) in Euclidean
norm. This implies that as long as we minimize Lpy + Lsc, we ensure the policies induced by the
shortcut model will stay close to the behavior policy in Wy distance.

Following the setup of the shortcut model in Section B, we first assume the shortcut model s(-, -, -)
is trained properly (i.e. flow-matching and the self-consistency losses are minimized well). In
other words, the shortcut model for the smallest step size s(-, -, ﬁ) is close to the ground truth drift
function v, (+), and s(+, -, 2h) is consistent with s(+, -, i) on the evaluated time steps in inference.

Assumption 1 (Small Flow Matching and Self-Consistency Losses). There exist epy > 0 and

esc > 0, s.t.
s forallt =0,47,%,...., 1 — 57, we have B, p,, [|Is(zt,t, 57) — ve(2) 3] < eburs
'forallhzﬁ,%,%,...,%,andt:0,h,2h,...,1—h,wehave

2
Epmp, [Hs(zt,t, h)/2 4 s(zi4p.t, h)/2 — s(z,t, 2h)H2} < €

where z; = 2t + s(2¢,t, h)h.
Theorem 2 (Regularization To Behavior Policy). Suppose the shortcut model s(z,t,h) is
L-Lipschitz in z for all t and h, the drift function v,(z) is L,-Lipschitz in z for all t,
sup, E.,~p, [||vt\|§} < M, and L/M < 1. If Assumption W holds, then for all h =

1 2 22 19
M>M> M "2

%L €Lv
M

Discretization Error Flow Matching Error Self-Consistency Error

Wg(ﬁ(h),p*) S e (Mv +].) + €EFM + €sc 1Og2 M (16)

&=

where p") is the distribution of samples generated by the shortcut model with step size h and p* is
the data distribution.®

Discretization Error. In the upper bound, the term 816; (M, + 1) corresponds to the Euler dis-

cretization error—a well-known quantity in numerical ODE solvers—which vanishes as the num-
ber of discretization steps M — oo. This term captures the inherent error from approximating
continuous flows with finite-step shortcut models.

“For a cleaner presentation, we consider the unconditional setting and show a uniform upper bound on the
Wasserstein distance for all step size h. We defer an h-dependent upper bound to Appendix 0.

antmaze-large (5 tasks) humanoidmaze-large (5 tasks)

= =
~ 91 91 —
° 89 88 5
9 o
g =1
a <
g £
E “’E 0 1 5 5
g 1 2 4 8 él: 1 2 4 8
Inference Steps (M™) Inference Steps (M™)
antsoccer-arena (5 tasks) cube-double (5 tasks) scene-play (5 tasks)
= = =
o 64 69 71 e - 51 57 58
o 54 b 3 33
g g g
E E 17 g
[} [e] [e]
g g g
ndj 1 2 4 8 & 1 2 4 8 g 1 2 4 8
Inference Steps (M™) Inference Steps (M™) Inference Steps (M™)

Figure 1: SORL’s Sequential Scaling. For a fixed training budget, SORL generally improves perfor-
mance with greater test-time compute. We fix a training budget of discretization steps and back-
propagation steps through time (M%¢ = MPBTT = 8) and vary the inference budget via the number
of inference steps M ™. The performance is averaged over 8 seeds for each task, with 5 tasks per
environment, and standard deviations reported.

Flow Matching and Self-Consistency Errors. The terms epy and esc log, M account for the
training approximation errors: epy measures the deviation between the shortcut models predicted
velocity and the true drift under small step sizes, while esc log, M captures the cumulative consis-
tency error over varying step sizes. Notably, when both Lpy and Lgc are minimized effectively
during training, these errors become negligible. Ignoring the self-consistency loss, our result is com-
parable to the guarantees for flow models in [2074]. However, our analysis incorporates
self-consistency and validates it across all discretization levels, which is a novel contribution.

Regularization To Behavior Policy. Theorem [shows that when trained properly, the shortcut
model generates a distribution close to the target distribution in 2-Wasserstein distance for all step
sizes h. Thus, the BC-style flow matching loss Ly and self-consistency loss Lgc in the training ob-
jective (Equation B) enforce regularization to behavior policy in Wasserstein distance. Consequently,
SORL not only learns a performant policy, but also guarantees that the learned policy remains close
to the offline data distribution across varying step sizes.

5 Experiments

In this section, we evaluate the overall performance of SORL against 10 baselines across 40 tasks.
We then investigate SORL’s sequential scaling and parallel scaling trends. Furthermore, we present
additional results in Appendix O and ablation studies in Appendix B.

5.1 Experimental Setup

Environments and Tasks. We evaluate SORL on locomotion and manipulation robotics tasks in
the OGBench task suite [Park_ef all, 20744]. The experimental setup in this section follows the
setup suggested by Park_ef-all [20244, 2025]. We document the complete implementation details in
Appendix B. Following Parkef-all [2075], we use OGBench’s reward-based singletask variants
for all experiments, which are best suited for reward-maximizing RL.

Baselines. We evaluate against three Gaussian-based offline RL algorithms (BC [Pomerleari, T9KS],
IQL [Kosfrikovefall, 207T], ReBRAC [[Tarasov efall, Z(173a]), three diffusion-based algorithms (IDQL
[Hansen-Esfrinch ef all, P023], SRPO [Chen ef all, 2023], CAC [Ding and Jin, 2023]), and four flow-
based algorithms (FAWAC [Nairefall, D020, Park_ef all, PO075], FBRAC [Zhang et all, P75, Parkef all,
P025], TIFQL [Wang et all, 2027, Park_ef all, P075], FQL [Parkef-all, 2025]). For the baselines we
compare against in this paper, we report results from Park_ef all [20175], who performed an extensive
tuning and evaluation of the aforementioned baselines on OGBench tasks. We provide a thorough
discussion of the baselines in Appendix B.

scene-play (5 tasks)

< MBTT =1
S MBTT = 2
§ MBTT = 4
8 BoN

4 SORL*

[0

(a9}

1 2 4 P
Inference Steps (M)

Figure 2: SORL’s Parallel Scaling. SORL generalizes to new inference steps at test-time, beyond what
was optimized through backpropagation during training. For each fixed training budget (i.e. fixed
number of discretization steps M4 and backpropagation through time steps METT), we evaluate
with varying inference steps M™. MBTT denotes the maximum number of steps used for backprop-
agation through time in the) update. The / hatch denotes best-of-N sampling, with N = 8, where
the number of inference steps is greater than the number of backpropagation steps through time (i.e.
M™ > MPBTT) SORL* denotes the best performance achieved by SORL in Table . Results are
averaged over 8 seeds for each of the 5 tasks.

Evaluation. Following Park efall [2075], we ensure a fair comparison by using the same network
size, number of gradient steps, and discount factor for all algorithms. Furthermore, we hyperparam-
eter tune SORL with a similar training budget to the baselines: we only tune one of SORL’s training
parameters on the default task in each environment. We average over 8 seeds per task and report
standard deviations in tables. We bold values at 95% of the best performance in tables. For SORL,
we use 8 discretization steps during training (2 fewer than the baselines), since SORL requires that
discretization steps be powers of 2. We detail all other parameters in Appendix B.

5.2 Experimental Results

Q: Does SORL perform well on different environments?
Yes, SURL achieves the best performance on the majority of the diverse set of 40 tasks.

We present SORL’s overall performance across a range of environments in Table 0. Notably, SORL
achieves the best performance on 5 out of 8 environments, including substantial improvements over
the baselines on antmaze-large and antsoccer-arena. The results suggest that while distillation
approaches like FQL [Park_ef all, PO75] can achieve high performance, some tasks require greater
expressiveness or precision than can be achieved from one-step policies.

Q: For a fixed training budget, can SORL improve performance purely by test-time scaling?
Yes, SURL’s performance is improved by increasing the number of inference steps at test-time.

We investigate SORL’s sequential scaling by plotting the results of varying inference steps M™™ given
the same, fixed training budget (i.e. holding the discretization steps M %*¢ and the steps backpropa-
gated through time MPBT constant), for M™ < MBTT. We plot the results in Figure . The results
show noticeable improvement in performance as the number of inference steps increases, suggesting
that SORL scales positively with greater test-time compute.

Q: Can SORL make up for less training-time compute with greater test-time compute?

Yes, given less training compute, SORL can match optimal performance with greater test-time com-
pute.

We reduce the training budget by reducing the steps of backpropagation through time from MBTT =
8 for Table I and Figure I to MBTT = 1,2, 4 for Figure B. However, through a combination of
inference sequential and parallel scaling, we recover the performance of the optimal policy from the
best training budget (SORL*).

Q: At test-time, can generalize to inference steps beyond what it was trained on?

Yes, through sequential and parallel scaling, can use a greater number of inference steps at
test-time than the number of backpropagation steps used during training.

Given a fixed training budget (i.e. a fixed number of discretization steps M and backpropagation
steps through time MPB™T), we evaluate on an increasing number of inference steps M ™, coupled
with best-of-N sampling. The bar colors in Figure @ denote different training compute, dictated by
the number of backpropagation through time steps MBTT. We apply best-of-IN sampling on a greater
number of inference steps than were used for backpropagation through time (i.e. M™ > A/BTT),
thus testing ’s ability to generalize to inference steps beyond what it was backpropagated on.
From Figure D, can use more inference steps than the number of backpropagation steps used
during training (i.e. the number of steps used for backpropagation through time METT), up to a
performance saturation point (approximately MBTT = 4).

Although Figure D shows that best-of- /N sampling can improve performance, the gain is not theoret-
ically guaranteed. Our verifier is the learned value estimator, not a ground-truth reward, so there is
no statistical benefit to learning a verifier [Swamy et all, (0758 Empirically, however, best-of-N
effectively functions as an additional, inference-time policy-extraction step, searching over nearby
actions and selecting the one with the highest ()y—similar to Park_ef all [2024K]’s work. Thus,
the post-hoc filtering may still be empirically beneficial in regaining performance lost to imperfect
optimization.

6 Related Work

The goal of offline reinforcement learning (RL) [Cevine“ef all, P020] is to learn a policy solely
through previously collected data, without further interaction with the environment. The core idea
of much of the prior work is to maximize returns while minimizing a discrepancy measure between
the state-action distribution of the dataset and that of the learned policy. This goal has been pur-
sued through various strategies: behavioral regularization [Nairefall, 2020, Fujimoto and Gu, P07,
larasov_ef all, P07234], conservative value estimation [Kumaref-all, 2020], in-distribution maximiza-
tion [Kosfrikov_ef all, P01, Xu_ef_all, D023, Garg et all], 2023], out-of-distribution detection [[Yii
ef_all, 020, Kidambi_ef_all, 2020, An_ef all,)()’).i, Nikulin_ef all, P073], and representing policy
models using generative modeling Chen ef-all [Z021], Tanner ef all [Z021, P0272], Park ef all [2075].
Motivated by the recent success of iterative generative modeling techniques, such as denoising diffu-
sion [SohI=Dicksfein efall, POTS, Hoefall, 2020, Song et all, 021] and flow matching [Cipman et all,
2074, Esser_ef all, 2074, the use of generative models as a policy class for imitation learning and
reinforcement learning has shown promise due to its expressiveness for multimodal action distribu-
tions [Wang et all, 2077, Ren'ef all, P0744, Wiref all, 074, Blackef all, P074]. However, its iterative
noise sampling process is computationally inefficient [Ding and Jir, PZ073]. Some methods utilize
a two-stage approach: first training an iterative sampling model before then distilling it Fransef all
[2024], Hoetall [2020], Meng et al] [Z023], but this may lead to performance degradation and intro-
duce complexity from the distillation models, along with error compounding across the two-stage
procedure. Consistency models [Song and Dhariwal, P073] are another type of unified model, but
they rely on extensive bootstrapping, such as requiring a specific learning schedule during training
[Frans_ef-all, 2074]], making them difficult to train.

7 Discussion

We introduce : a simple, efficient one-stage training procedure for expressive policies in offline
RL. ’s key property is self-consistency, which enables expressive inference under any inference
budget, including one-step. Theoretically, we prove that regularizes to the behavior policy, us-
ing a novel analysis of shortcut models. Empirically, demonstrates the best performance across
a range of diverse tasks. Additionally, can be scaled at test-time, empirically demonstrating
how greater compute at inference-time can further improve performance. An avenue for future work
is to investigate how can incorporate adaptive test-time scaling [Pan_ef-all, D075, Ma ef all,
2073], such as selecting the number of inference steps based on the gradient of the Q-function.

>In other words, if the actor were already acting greedily with respect to Q, (i.e. the case of perfect
optimization), ranking additional samples by ()4 cannot raise the expected value.

10

Acknowledgments

NED is supported by the NSF Graduate Research Fellowship under Grant No. DGE-2139899. GKS
is supported by an STTR grant. KB acknowledge: This work has been made possible in part by a
gift from the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for the Study
of Natural and Artificial Intelligence. WS acknowledges funding from NSF IIS-2530143, NSF IIS-
2154711, NSF CAREER 2339395, DARPA LANCER: LeArning Network CybERagents, Infosys
Cornell Collaboration, and Sloan Research Fellowship.

References

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generaliza-
tion in offline reinforcement learning. IEEE Robotics and Automation Letters, 9(4):3116-3123,
2024.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In International Conference on Machine Learning, pages 1577-1594.
PMLR, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. m: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimiza-
tion through diffusion behavior. arXiv preprint arXiv:2310.07297, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084—15097, 2021.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. arXiv preprint arXiv:2405.19690, 2024.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

11

https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2501.12948

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pages 2052-2062. PMLR, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent 1l
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max g-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pages 3682-3691. PMLR, 2021.

Lin Gui, Cristina Gérbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

Nico Giirtler, Sebastian Blaes, Pavel Kolev, Felix Widmaier, Manuel Wiithrich, Stefan Bauer, Bern-

hard Scholkopf, and Georg Martius. Benchmarking offline reinforcement learning on real-robot
hardware. arXiv preprint arXiv:2307.15690, 2023.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion
model based constrained policy search for offline reinforcement learning. arXiv preprint
arXiv:2310.05333, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Marcel Hussing, Jorge A Mendez, Anisha Singrodia, Cassandra Kent, and Eric Eaton. Robotic
manipulation datasets for offline compositional reinforcement learning. arXiv preprint
arXiv:2307.07091, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273-1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning, 2023. URL https://arxiv.org/abs/2305.20081.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-

based offline reinforcement learning. Advances in neural information processing systems, 33:
21810-21823, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

12

https://arxiv.org/abs/2305.20081

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Igbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksan-
dra Faust. Training language models to self-correct via reinforcement learning, 2024. URL
https://arxiv.org/abs/2409.12917.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, pages 45-73. Springer, 2012.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pages 6120-6130. PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
Yandong Li, Tommi Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling for diffusion
models beyond scaling denoising steps, 2025. URL https://arxiv.org/abs/2501.09732.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14297-14306, 2023.

V Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36:62244-62269, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. arXiv preprint arXiv:2410.13816,2024.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration
by random network distillation. In International Conference on Machine Learning, pages 26228—
26244. PMLR, 2023.

13

https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2501.09732
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2501.19393

OpenAl. Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

Abby ONeill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages 6892-6903. IEEE, 2024.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
and Alane Suhr. Learning adaptive parallel reasoning with language models. arXiv preprint
arXiv:2504.15466, 2025.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024a.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline r1? arXiv preprint arXiv:2406.09329, 2024b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. arXiv preprint arXiv:2502.02538,
2025.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Tian Qin, David Alvarez-Melis, Samy Jelassi, and Eran Malach. To backtrack or not to backtrack:
When sequential search limits model reasoning. arXiv preprint arXiv:2504.07052, 2025.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching lan-
guage model agents how to self-improve, 2024. URL https://arxiv.org/abs/2407.18218.

Rafael Rafailov, Kyle Hatch, Anikait Singh, Laura Smith, Aviral Kumar, Ilya Kostrikov, Philippe
Hansen-Estruch, Victor Kolev, Philip Ball, Jiajun Wu, et al. D5rl: Diverse datasets for data-driven
deep reinforcement learning. arXiv preprint arXiv:2408.08441, 2024.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024a.

Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J Andrew Bagnell, and Sanjiban Choudhury. Hybrid
inverse reinforcement learning. arXiv preprint arXiv:2402.08848, 2024b.

Saptarshi Roy, Vansh Bansal, Purnamrita Sarkar, and Alessandro Rinaldo. 2-rectifications are
enough for straight flows: A theoretical insight into wasserstein convergence. arXiv preprint
arXiv:2410.14949, 2024.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new
methods for reinforcement and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models, 2025. URL https://arxiv.org/abs/2501.06848.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256-2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

14

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2501.06848

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In In-
ternational Conference on Learning Representations, 2021. URL https://openreview.net/
forum?7id=PxTIGI2RRHS.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen
Sun. Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint
arXiv:2210.06718, 2022.

Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J Andrew Bagnell. All
roads lead to likelihood: The value of reinforcement learning in fine-tuning. arXiv preprint
arXiv:2503.01067, 2025.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592-11620, 2023a.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. Advances in Neural Informa-
tion Processing Systems, 36:30997-31020, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, and Wen Sun. Diffusing states and
matching scores: A new framework for imitation learning. arXiv preprint arXiv:2410.13855,
2024.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129-14142, 2020.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pages 40452—40474. PMLR, 2023.

Ruoqi Zhang, Ziwei Luo, Jens Sjolund, Thomas Schon, and Per Mattsson. Entropy-regularized diffu-
sion policy with g-ensembles for offline reinforcement learning. Advances in Neural Information
Processing Systems, 37:98871-98897, 2024.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. arXiv preprint arXiv:2503.04975, 2025.

15

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

¢ Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Check-
list'"',

¢ Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper introduces in offline RL, claims efficient and expressive pol-
icy learning, and supports these with theoretical insights and empirical evaluations across
40 tasks in Section 1 to 5.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

16

Answer: [Yes]

Justification: The paper discusses how ’s best-of-N performance is tied to the accu-
racy of the learned Q-function in Section 5.4, and highlights the non-monotonic trends in
some environments in Section 5. Furthermore, we present a thorough discussion of limita-
tions in Appendix Bl.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The assumptions are stated in Assumption [l. The proof is in Appendix .
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

17

Answer: [Yes]

Justification: We thoroughly describe implementation and evaluation details in Appendix
B. Code will be released.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is included in the supplementary material. This paper uses the open-
source dataset OGBench [Park et all, 20244].

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy]) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy)) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and testing details are discussed in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error metrics are specified and reported for every empirical result.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are discussed in Appendix B.

19

9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: To the best of the authors’ knowledge, the research in this paper does not have
directly negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

20

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Answer: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper uses OGBench [Park_ef-all, P(1744], which is an open-sourced
dataset.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

21

paperswithcode.com/datasets

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: For polish of writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Extended Related Work

Offline Reinforcement Learning. The goal of offline reinforcement learning (RL) [Cevine ef-all,
20700] is to learn a policy solely through previously collected data, without further interaction with
the environment. A considerable amount of prior work has been developed, with the core idea being
to maximize returns while minimizing a discrepancy measure between the state-action distribution
of the dataset and that of the learned policy. This goal has been pursued through various strategies:
behavioral regularization [Nairefall, 2020, Fujimoto and Gu, P07, Tarasov_ef all, P0734], conser-
vative value estimation [Kumar_ef all, 2020], in-distribution maximization [Kosfrikov_ef all, P02,
Xu_ef_all, D023, Garg et all], 2023], out-of-distribution detection [Yn_ef all, 2020, Kidambi_ef all,
D20, An_ef all, 021, Nikulinef all, 2023], dual formulations of RL [Cee ef all, P21, Sikchief all,
2073], and representing policy models using generative modeling Chen ef all [2021], Tanner_ef all
[2027, 2027, Parkef-all [2075)]. After training an offline RL policy, it can be further fine-tuned with
additional online rollouts, which is referred to as offline-to-online RL, for which several techniques
have been proposed [Ceeefall, P01, Song et all, 20772, Nakamofo_ef all, 20773, Ballef-all, PO23, Yii
and Zhang, P073, Ren ef all, 2074R].

Reinforcement Learning with Generative Models. Motivated by the recent success of iterative
generative modeling techniques, such as denoising diffusion [Sohl=Dickstfein ef all, POTS, Ho ef-all,
20711, Song et all, P021]] and flow matching [Cipman et all, P074, Esser ef-all, P074], the use of gener-
ative models as a policy class for imitation learning and reinforcement learning has shown promise
due to its expressiveness for multimodal action distributions [Wang et all, 2077, Ren ef all, D(1744,
Wu“ef all, 074, Rlack“ef all, 2024]. However, its iterative noise sampling process leads to a large
time consumption and memory occupancy [Ding and Jin, PZ073]. Some methods utilize a two-stage
approach: first training an iterative sampling model before then distilling it Frans_ef-all [2024], Ho
efall [2020], Meng et all [2023], but this may lead to performance degradation and introduce com-
plexity from the distillation models, along with error compounding across the two-stage procedure.
Consistency models [Song and Dhariwal, Z023] are another type of unified model, but they rely on
extensive bootstrapping, such as requiring a specific learning schedule during training [Frans’ef all,
7024], making them difficult to train.

Inference-Time Scaling. Recent advances in large language models (LLMs) [OpenAl, 2074,
DeepSeek-Al, Z075] have demonstrated the ability to increase performance at inference time with
more compute through parallel scaling methods [Wang_ et all, 20773, Guief-all, 2074, Brown ef all,
2074, Pan_ef all, 2075], sequential scaling methods that extend the depth of reasoning by increas-
ing the chain of thought budget [Weief all, P073, Muennighott et all, 2025, Din et all, 2025], and
self-correcting methods [Madaan ef all, 2073, Qu ef all, P074, Kumar ef all, DO74].

Generative models such as diffusion and flow models inherently support inference-time sequential
scaling by varying the number of denoising steps [Sahl-Dicksfem ef all, (TS, Cipman ef all, 2074],
and recent work extends their inference-time scaling capabilities through parallel scaling methods
via reward-guided sampling [Ma“ef all, D075, Singhal et all, 2075]. However, prior reinforcement
learning methods that use generative policies lose this inherent inference-time sequential scaling
since they require the same number of denoising steps at both training and inference [Wang et all,
20727, Kang et all, 2023, [Zhang et all, 2074]. In contrast, supports both sequential and parallel
scaling at inference time, allowing for dynamic trade-offs between compute and performance, and
improved action selection via the learned () function.

Independent of generative models, prior work has proposed applying a form of best-of-/NV sampling
to actions from the behavior policy (i.e. behavioral candidates) [Chen ef all, D027, Fujimoto et all,
2019, Ghasemipour et all, ZO21, Hansen-Estruch et all, VO3, Park et all, V074h, Nakamoto et all,
p074]. Park_ef-all [2074H] proposed two methods of test-time policy improvement, by using the
gradient of the Q-function. One of Park_ef-all [Z074K]’s approaches relies on leveraging test-time
states, which ’s parallel scaling method does not require. The second approach proposed by
Park ef all [Z074H] adjusts actions using the gradient of the learned (Q-function, which is conceptually
similar to our approach of best-of-/NV sampling with the ()-function verifier. However, their method
requires an additional hyperparameter to tune the update magnitude in gradient space.

23

B Limitations

As noted in Section B, the positive trend in parallel scaling may not occur across all environments.
Our approach to parallel scaling uses the Q function as a verifier. If the learned Q function is
inaccurate or out of distribution, then additional optimization may not be beneficial [Cevine ef all,
20720]. Additionally, while is highly flexible, allowing for scaling of both training-time and
inference-time compute budgets, generally has a longer training runtime than FQL, one of the
fastest flow-based baselines [Park_ef-all, Z075], as evidenced by the runtime comparison (Figure §)
in Appendix O. We believe that trading off greater training runtime for improved performance is
desirable in offline RL, since training does not require interaction with an expert, environment, or
simulator. Finally, as noted in Park_ef all [2029], offline RL algorithms, including , lack a
principled exploration strategy that may be necessary for attaining optimal performance in online
RL.

24

C Proofs

We first present the upper bound on the Wasserstein distance with explicit dependency on h.
Theorem 3 (Restatement of Theorem B With Explicit Dependency on h). Suppose the shortcut
model s(z,t,h) is L-Lipschitz in z for all t and h, the drift function vi(z) is L,-Lipschitz in z
for all t, sup, E.,p, [Hvtﬂg} < M, and L/M < 1. If Assumption @ holds, then for all h =
1 2 22 19
M>M> M "2

A(h) ,* 1 1 1 GLU
Wa(p™", p*) SZ ((1 + Lh)» — 1) exp §Lh i (M, +1) + epns + esclogy (Mh)

where p") is the distribution of samples generated by the shortcut model with step size h and p* is
the data distribution.

C.1 Proof of Theorem2/8

This theorem formalizes the key claim: minimizing the training objective keeps the learned pol-
icy close to the behavior policy. This closeness is measured using a strong metric—Wasserstein
distance—implying the model will not “drift” far from the offline data distribution during genera-
tion. Under Lipschitz assumptions and small flow-matching/self-consistency loss (Assumption),
the shortcut model generates samples whose distribution is close to the target data distribution in
2-Wasserstein distance (W3), uniformly over all discretization step sizes h.

Proof Sketch. At a high level, our goal is to show that, starting from the same zo ~ N(0, 1),
running the sampling process of the shortcut model and running the ground truth flow ODE yield
similar output measured by square error averaged over zg ~ N (0, 1).

This argument constructs a coupling with marginal distributions (") and p* and small transport cost.
By definition, the Wasserstein distance between) and p* is also small.

Our proof follows from three steps, described below.

(1) Small Step Error. We first show that the shortcut model provides a good local approximation
to the true dynamics when trained well at the smallest step size. In other words, under small flow-
matching error and Lipschitz drift dynamics, the shortcut model has bounded error when running a
single inference step with the smallest stepsize:

Lemma 4 (Single-Step Error with Minimum Step-Size). Let hy = ﬁ be the smallest stepsize. If
e forallt =0, ho,2hg,...,1—ho, E.,wp, [[5(zt,t, ho) — ve(2)) 3] < €
* v(x) is L-Lipschitz in both t and x;
 forallt =0,hg,2hg,...,1 —ho, E.,p, [||vt(zt))||§] < M2,

then

2
E. ~p, [”Zt + S(Zt,t, ho)ho — F(Zt,t,t—F ho)”%} < hg (LUBL“hOhQ (Mfu + 1) + GFM) V)]

(2) Larger Step Error. We further demonstrate that the single inference step remains accurate
even at coarser step sizes, thanks to the self-consistency constraint:

Lemma 5 (Single-Step Error with Step Size h). Let hg = ﬁ be the smallest stepsize. If
e forall W andt = 0,121, 1-h,E [||F<2h’>(zt,t,t LRy — FOD (2 8t + 2h’)||§] <
422,

e forallt = 0,ho,2ho,...,1 — ho, E;,p, [||zt + S(Zt,t7h0)h0 - F(Zt7t,t + h())”%] <
h3e?;

s forallh andt =0,h',20',..., 1 =W, s(-,t,h’) is L-Lipschitz,

25

then for h = 2"hg, and for allt =0,h,..., 1 —h,

1
\/]E [IF3) (24,8 4+ h') = F(z,t,t + h7)|[3] < hexp (2Lh) (e + nesc) - (18)

(3) Composed Error Over Multiple Steps. Finally, even with repeated applications, the shortcut
models errors remain controlled, showing stability over long horizons. In other words, if the single
inference step error is small and s is L-Lipschitz, then the multi-step trajectory error is bounded:

Lemma 6 (Error of 1/h-Step Inference). IfE.,~p, ||zt + s(2t,t,h)h — F(z,t,t + h)|3] < h?€
forallt =0,h,2h,...,1, and s(-,t, h) is L-Lipschitz, then

€

E[I5" - z1l3) < (@ +Zmt -1) 1. (19)

Summary: Aggregation of Error Bounds. Given these insights, we finish the proof of the main
theorem by applying the lemmas in order.

Proof of Theorem B /B. Let hg = % be the smallest step size. Suppose h = 2™ hy.
By Lemma B,

2
E.onp, [||2t + 8(2:t, ho)ho — F(ze,t,t + ho)[13] < b3 (Loe™™0hg (My, + 1) + em) . (20)
By Lemma B,

1
\/E [IF") (2, t,t + h) — F(2,t,t + h)||3] < hexp (ZLh> (Lye™*"ho (M, + 1) + epm + nesc) -

(21
By Lemma B,
1 1
E [||2§’” - zl||%} <7 ((1 + Lh)% — 1) exp <2Lh> (Lyel ™ hg (M, + 1) + epm + nesc)
(22)
O

26

C.2 Proof of Lemma @
Proof Sketch. The proof’s strategy is:

1. Compare the true dynamics z; with linear approximation z; using ODE analysis.
2. Bound the deviation over time.

3. Add the flow-matching loss to account for model error.

Proof. Consider t € [t',t' + ho). Let
2 :=F (2,1 ,t)
Zt =z + Uy (Zt/)(t — t/)

By definition,
dz
ar)
dz
ditt :Ut/ (Zt/)
Then

d 5 112 _d d
a”zt - Zt||2 =2(2z — Zt’azt _ azt
=2 <Zt — Zt,vt(zt) — /Ut’(zt')>
< 20zt — Zil|2[lve(ze) — v (202

On the other hand, by chain rule:

d
Fric Zll3 = 2[|2 — Ztll2 gy llze — 22
By Equations 1 and B:

d .
g7 = zll2 <llve(ze) — v (zer)ll2

By triangle inequality:
[ve(2e) — v (20)ll2 [lve(ze) — ve(Ze)ll2 + lve(ze) — ve(ze)ll2 + llve(ze) — ve (202
Because v;(x) is L,-Lipschitz in z,
l[ve(ze) = ve(Ze)ll2 < Lollze — Ze|l2-
Because z; = zp + vy (z¢)(t — t') and v, () is L,-Lipschitz in x,

[ve(Ze) = velze)ll2 = lve(ze + v (20)(E = 1)) = ve(2er)]|2
< Lyflve (20) |2t — 1)
< Lyllve (2¢) [l 2ho-

Because v;(x) is L,-Lipschitz in ¢,
[ve(27) — ver (20)[|2 < Lo(t = t') < Lyho.
Thus
d _ _
qellet = 2l <Lollze = Zell2 + Lo(lloe (z¢) |2 + 1)ho

Ly (t—t")

Multiplying e~ on both side, we get:

_ 4/ d _ _ ¢/ _ _ 4!
e~ Lot t)aﬂzt—thgge L=t L |12 — Zello 4+ e L) Ly (JJog (2e0)||2 + 1) ho

27

(23)
(24)

(25)

(26)

27)

(28)
(29)

(30)

(3D

(32)

(33)

(34)
(35)
(36)

(37)

(38)

(39)

By rearranging:

d _ _ ’ _ _ _ ’
at (= Al) < PO Lo () 2 + Do

dt
< Lo([loe (2¢) |2 + 1)ho.
Because zp = Zy, by integrating both side over t € [t',t' + hg] , we have:
e E M0z g — Zvtnoll2 < Lo (llvw (ze)l|2 + 1)A3.
Thus
12er+ho = Zv+hollz SLu(l[vw (2712 + L)t b
Taking square and expectation on both sides, we have:
E [ll20+ho = Zeholl3] <Lt hgE [([[ve (zer) 2 + 1)%] -

Thus

VEUzeh0 = 24803 < Lue™"h3\/E [(op (z0)llz + 17
< Loe i (el (] +1)
< LyeP™on2 (M, + 1)
By definition,

126 +h0 — Zv+holl2 = Iz + v (20)ho — (20 + s(21, 1, ho)ho) 5
= Hvt’(zt’) - S(Zt”t/7 ho)”2 ho

Taking square and expectation on both sides, we have
- . 2
E [1zur+no — 20-4hol3] =h3E [lve (z0) = 5(z0r, ', ho) 3] < by

Thus

VE= (lzesmo = 2eino 3] < /By 200 — 20 mo 13+ /Esyy (170400 — 203

< LelwMopZ (M, 4 1) + hoerm
< hg (LeL“hOho (My + 1) + epm)

28

(40)
(41)

(42)

(43)

(44)

(45)
(46)

(47)

(48)
(49)

(50)

(S
(52)
(53)

C.3 Proof of Lemma B
Proof Sketch. The proof’s strategy is:

1. Define a recursive error relationship for step sizes 2¥hy.
2. Use inductive bounding and logarithmic scaling of error growth.
3. Solve the recursion to show controlled error amplification.

Proof. We define Ay to be the maximum 1-step error induced by shortcut model with step size h'.
Formally, for all ' > 0s.t. 1/h/ € Z, we define,

;= (h') A 112
An te{o’}?,l?)’(lfh,} \/E[HF (ze,t,t + R) F(zt,t,t+h)H2} (54)

Forall ’ and t € {0,2h...,1 — 2R/},

\/E [||F<2h'>(zt,t7t+ 20') — F (2, t,t + 2h’)|\§}

g\/IE [[[FC) Gz, 1,8 4+ 21) = FOO (i, 1,8+ 200)]

+ \/E [HF(h’)(zt,t,t +2h') — F(z,t,t + 2h')Hﬂ (55)

By assumption, the first term is bounded by 2h/esc. We now analyze the second term. Let 2, p/ :=
F") (2, t,t + 1), then

VE [IF®) (20, 8,6 4+ 217) — F(z,t,t 4+ 20)[3] (56)
:\/E IFW) (g, t + Wt 4+ 20) — F(zeqns, t + B, + 207)||3] (57)
g\/E I FW) (B, t + Wt 4 20) — FOD (20, t+ B+ 207)[|3] (58)
B [IF) (zrnr 4+ Wt 4 2hY) — Fz t 4 b1+ 200) 3], (59)
By triangle inequality,
||F(h/)(2t+h'at + hl7t + 2h/) - F(hl)(zt+h’7t + h/a t+ 2h/)||2 (60)
= ||(2t+h/ —+ 5(2t+h’; t —+ hl, t —+ Qh/)h/) — (Zt+h’ + S(Zt+h/, t —+ h/, t —+ 2h,)h/)”2 (61)
< Hét-i'h’ — Zt+h! H2 + n' ||S(2t+h’7t + h/7 h/) - S(Zt+h'7t + h/, h/)||2 (62)

Because s(-, t, h') is L-Lipschitz (Assumption),
L) By B 2 B e, 44 20 < (L4 LB ezl

(63)
Thus
VE [IFO) Gran £ 4 1t 27) — F®) (2 4 ¢+ 20) 3] (64)
<+ LEWEesn — zml3) (65)
=(1+ LW)\JE [|[FO) (zp, bt 4 W) = Fla, byt + W3] < (L4 LK) A (66)
By Equation B4,
VE [IF®) (e, t 4+ 1t 27) = Fzpn,t+ 6+ 200)|3] < Ape. 67)
Combine everything together,
VE [IF@) (2, 1.t + 20') — F(z,t,t + 20) 3] (68)
<2h'esc + (1 + LW)Ap + Apr = 2h esc + (2 + LA) A (69)

29

Because t’ is chosen arbitrarily, we have
Aogpr <2hesc + (2 + LA) Ay
Let b/ = 2Fhg and Ay, := Agry,,, we have:
Ajy1 < (24 Lho2F) Ay, + 2escho2".

Solving this recursion, we have:

n—1 n—1 n—1
Ap Ao [T 2+ Lho?’) + 2escho Y 28 J] 2+ Lho2?)
Jj=0 k=0 j=k+1
n—1 1 n—1 n—1 1
_ n j kon—k—1 j
=Ap2 H <1 + 2Lh021> +265Ch022 2 .H (1 + 2Lh02J)
j=0 k=0 j=k+1
n—1 n—1 n—1 1)
=Ap2" H <1+ Lh023> +2n eschoz H <1+ 2Lh023).
7=0 k=0 j=k+1

Because In(1 4) < z forall x > —1, we have

n—1
A <A02"exp Zln <1+ Lh()27>

7=0

n—1 n—1
+2"65ChOZexp > 1n<1—|— Lh02]>
j=k+1
n—1 n—1
<Ag2" exp thOZQJ +2n eschOZexp thO > 2
= j=k+1
n—1 1
:AOQn exp Lho 2" —) + 2" GSChO Zexp (2Lh02k+1(2n_k_1 — 1))

n—1

1

2
1

<A2" exp <2L 2”> + 2%escho Z exp (2Lh02”>

=2"hg exp thOQ" @ + nesc
2 ho
1 A
=hexp <2Lh> <h§ + nesc)

Because E., . p, [[|2 + (21, t, ho)ho — F(z,t,t + ho)||3] < hie?, we have Ay < hge. Thus

Ay, = AQ"hU =A,< h exp (;Lh) (6 + nesc) .

30

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

81)

(82)

C.4 Proof of Lemma
Proof Sketch. The proof’s strategy is:

1. Define the recurrence over time steps for error accumulation.
2. Use Lipschitz continuity to control error propagation.

3. Solve the recurrence analytically.

Proof.

B (1582~ zeenl] <y B [16f9) 4 58000 oot st IR

+ Bzt + s(ze, 1, W) — ze4nl3 (83)

<(1+ IR I 23] + he (84)

Because E[||2((Jh) — 20/|3] = 0, by solving the recursion,

€

E[Ia" - 03] < (a+Imt-1) (85)

31

D Full Results

Table 2: SORL’s Overall Performance By Task. We present the full results on the OGBench
tasks. (*) indicates the default task in each environment. The results are averaged over 8 seeds with
standard deviations reported. The baseline results are reported from Park_ef all [Z025]’s extensive
tuning and evaluation of baselines on OGBench tasks.

Gaussian Diffusion Flow Shortcut
Task BC IQL ReBRAC IDQL SRPO CAC FAWAC FBRAC IFQL FQL SORL
antmaze-large-navigate-singletask-task1-v0 (%) 00 4849 9110 00 0 o0 42 17 li1 70220 24:17 8018 93 2
antmaze-large-navigate-singletask-task2-v0 63 42:6 8814 14 =5 L 11 0x1 35x12 843 57 =10 79 x5
antmaze-large-navigate-singletask-task3-v0 2945 7247 5l4as 26 +8 342 49 £10 1244 83415 52417 93 43 88 110
antmaze-large-navigate-singletask-task4-v0 8x3 5l 84 +7 62 +25 4519 17 6 103 37x18 188 80 x4 91 42
antmaze-large-navigate-singletask-task5-v0 1043 54 +22 90 42 22 141 55 +6 95 76+s 38+1s 83 x4 95 +o
antmaze-giant-navigate-singletask-task1-v0 (x) +0 00 27 122 0 =0 0 +o0 0 o0 0 =0 01 0 +o0 415 12 +6
antmaze-giant-navigate-singletask-task2-v0 0 +o 141 16 +17 0 +o 0 +o 0 +o0 0 +o0 4 x7 0 +o 9 +7 0 +o
antmaze-giant-navigate-singletask-task3-v0 +0 00 34 122 0 =0 0 +o0 0 =0 0 =0 0 o0 0 o0 0+1 0 =0
antmaze-giant-navigate-singletask-task4-v0 0 +o 0 +o 512 0 +o 0 +o 0 +o0 0 +o0 9 +a 0 +o 14 223 25 +18
antmaze-giant-navigate-singletask-task5-v0 L 1927 4912 01 0 =0 0+o 0 =0 610 1320 1628 6 £15
humanoidmaze-medium-navigate-singletask-taskl-v0 (*¥) 1xo 3247 16 +o 141 0 o0 38 +19 6 +2 2548 69 419 19 212 67 44
humanoidmaze-medium-navigate-singletask-task2-v0 1o 4l o 18 16 11 141 47135 40+2 T6x10 8511 943 89 13
humanoidmaze-medium-navigate-singletask-task3-v0 6+2 2545 36413 041 241 8318 1942 2721 49 +40 T4 s1s 83 44
humanoidmaze-medium-navigate-singletask-task4-v0 0 0+1 15 +16 11 141 5 x4 11 112 141 3 a4 10
humanoidmaze-medium-navigate-singletask-task5-v0 2+ 664 24120 141 3 43 91 +5 3l+7 63+0 9812 97 42 81 +20
humanoidmaze-large-navigate-singletask-task1-v0 (*) 341 241 0 =0 0 o0 11 0 =0 01 6 +2 T x6 20 +9
humanoidmaze-large-navigate-singletask-task2-v0 0 zo0 0 zo0 0 zo0 0 +o0 0 +o0 0 +o0 0 +o0 0 0 0 +o0 0 zo0
humanoidmaze-large-navigate-singletask-task3-v0 T x3 8 a4 31 141 23 11 10+2 48 +10 11 =7 52
humanoidmaze-large-navigate-singletask-task4-v0 140 141 0 +o 0 +o 01 0 +o0 0 +o 141 243 0 +o
humanoidmaze-large-navigate-singletask-task5-v0 11 22 0 =0 0 o0 0 =0 0 =0 1+1 0 o0 13 0 =0
antsoccer-arena-navigate-singletask-task1-v0 14 5 0 +o 44 +12 241 13 2212 1T xs T7 a4 93 44
antsoccer-arena-navigate-singletask-task2-v0 17 =7 0 %1 15412 341 0 0 81 8 +2 88 =3 96 +2
antsoccer-arena-navigate-singletask-task3-v0 6 +4 0 +o 0 +o 0 +o 8 +19 1145 16 +3 61 +6 55 +6
antsoccer-arena-navigate-singletask-task4-v0 (%) 312 0 =0 0+1 0 o0 0 =0 1243 2414 39 =6 54 45
antsoccer-arena-navigate-singletask-task5-v0 2 42 0 +o 0 +o 0 +o 0 +o 9 12 15 +4 36 +9 47 19

883 8945 9512 89x7 TTx2 8lio T3 zs3
85 +s 92 +4 96 12 82x16 80430 8lio 83 i1

97 12 97 12
97 42 99 4o

cube-single-play-singletask-task1-v0
cube-single-play-singletask-task2-v0 (x)

cube-single-play-singletask-task3-v0 91 =5 93 =3 991 962 981 87 +4 82 x12 98 12 99 +1
cube-single-play-singletask-task4-v0 73 6 92 43 9344 TOx1s 912 7946 79220 94 i3 95 42
cube-single-play-singletask-task5-v0 78 +9 87 +8 906 6112 80+20 T8+10 7633 93 3 93 13

cube-double-play-singletask-taskl-v0 27 x5 45 +6 39 +10 7 +6 218 2147 47+ 3520 610 77 111

cube-double-play-singletask-task2-v0 (%) 141 T x3 16 +10 0=x0 212 21 22z12 95 36 =6 33 +8
cube-double-play-singletask-task3-v0 0 +o 441 17 48 041 341 141 4 42 8 45 22 45 12 16
cube-double-play-singletask-task4-v0 0 =0 1+ 0 =1 0 o0 01 0 =0 041 11 52 T x4
cube-double-play-singletask-task5-v0 443 4 42 141 0 +o 3 +2 241 242 1746 19 +10 141
scene-play-singletask-task1-v0 94 13 9542 100+0 9424 10041 8748 96:s 9843 100 xo0 99 11
scene-play-singletask-task2-v0 (%) 1243 50+13 33414 242 50 +a0 18 +s 4610 0o 76 +o 89 1o
scene-play-singletask-task3-v0 3247 55 +16 94 44 4+a 49416 3849 T8z Hdxw 981 97 11
scene-play-singletask-task4-v0 041 33 4 i3 0 +o 0 +o0 6 41 4 +a 0 +o 541 141
scene-play-singletask-task5-v0 0 =0 0 =0 0 =0 0 +o0 0 +o 0 +o 0 +o0 0 +o0 0 +o0 0 =0

D.1 Per-Task Results

Q: What is SORL’s overall performance on each task?
SORL achieves the best performance on the majority of the diverse set of tasks considered.

We present SORL’s overall performance for each individual task in Table . Note that the only
SORL training parameter that changes between environments is the Q-1oss coefficient, which is
common in offline RL [[farasov_ef all, PO23R, Park ef all, 20240, 2075]. The Q-loss coefficient
was tuned on the default task in each environment, and the same coefficient was used on all 5 tasks in
each environment. The experimental setup was kept consistent to ensure a fair comparison between
SORL and the baselines reported in Park ef-all [2075].

32

cube-single-play (5 tasks) cube-single-play (5 tasks)
7.32

 FOL FOL
I SORL B SORL
4.35 4.28 4.43 4.52 4.55

3.76

Epoch Time (ms)

Inference Time (ms)

METE =1 MBTT =2 MBTT — 4 MBTT =8 FQL MM =1 MM =2 MW=4 M-8

FQL

Figure 3: Runtime Comparison. We vary SORL’S training-time compute budget (i.e. the number
of backpropagation steps through time MBTT) on the left and SORL’s inference-time compute budget
(i.e. the number of inference steps M ™) on the right. The performance is averaged over 5 seeds for
each task, with 5 tasks per environment, and standard deviations reported.

D.2 Runtime Comparison

Q: How does SORL’s runtime compare to the fastest flow-based baseline, FQL?

SORL’s scalability enables training runtime to match that of FQL under low compute budgets, while
exceeding it when larger budgets are allocated. During inference, SURL maintains runtime compa-
rable to FQL.

We present a runtime comparison between SORL and FQL. FQL is one of the fastest flow-based base-
lines we consider, for both training and inference [Park et all, Z025], as FQL’s policy is a one-step
distillation model. We select cube-single-play because SORL and FQL achieve similar perfor-
mance on the environment (Table @M). The experiments were performed on a Nvidia RTX 3090 GPU.
The epoch and inference times are averaged over the first three evaluations (i.e. the first training/e-
valuation, training/evaluation at 100,000 gradient steps, and training/evaluation at 200,000 gradient
steps). For the inference-time plot, we use the maximum training-compute budget (i.e. MBTT = 8),

Figure B demonstrates SORL’s scalability during both training and inference. At training time, SORL’s
training runtime can be shortened by decreasing the number of backpropagation steps through time.
At inference time, SORL maintains similar inference times compared to FQL under varying inference-
time compute budgets.

33

E Ablation Studies

antmaze-large-navigate (5 tasks)

80
% 60
(0]
O
5 40
@ f
MM =1
20) -
Minf — JBTT
0
2 4 6 8
Backpropagation Steps Through Time (MBTT)
antsoccer-arena-navigate (5 tasks) scene-play (5 tasks)
30
60
a @ 20
o 40 ®
O O
S} S}
é é
20 M1 10 M =1
Minf — /BTT M = \BTT
0 0
2 4 6 8 2 4 6 8
Backpropagation Steps Through Time (MBTT) Backpropagation Steps Through Time (MB'T)

Figure 4: Ablation Over Backpropagation Steps Through Time, //BTT. We investigate the effect
of varying the training-time compute budget (i.e. the number of backpropagation steps through time
MPBTT), The performance is averaged over 8 seeds for each task, with 5 tasks per environment, and
standard deviations reported. We report results using one inference step (i.e. M™ = 1) and using
the same number of inference steps as backpropagation steps through time (i.e. M = MBTT),

E.1 Backpropagation Steps Through Time,)/3TT

Q: How does increasing training-time compute affect performance?

generally observes increasing performance with increased training-time compute (i.e increas-
ing M®TT), up to a performance saturation point of MPTT = 4.

One of ’s unique strengths is its scalability at both training-time and inference-time. In this
experiment, we consider the question of how much training-time compute is necessary. Based on
the results in Figure B, we see that, in general, performance improves with increased training-time
compute (i.e. with an increasing number of backpropagation steps through time, M®™T). However,
performance seems to saturate around MPBTT = 4, suggesting that greater training-time compute
may not be necessary for the environments considered.

The results suggest two key takeaways. First, backpropagation through time over more than one step
is generally necessary in to maximize performance. Insufficient training-time compute may
lead to sub-optimal results, as evidenced in Figure B and Tables MandD, where with MBTT > 4
outperforms both the baselines and the versions of with MBTT < 4. Second, the results indi-
cate that does not require backpropagation through tens or hundreds of steps—as is common
in large diffusion models [Ho ef-all, 020, Song et all, P020]—a procedure that could be computa-
tionally prohibitive.

34

antmaze-large-navigate (5 tasks)

80
60
[}
n
3 40
(6]
3
n
20 FQL
0
0 200 400 600 800 1000

Policy Network’s Hidden Layer Size

Figure 5: Ablation Over Policy Network Size. The performance is averaged over 5 seeds for each
task, with 5 tasks per environment, and standard deviations reported. We use the same training-time
and inference-time compute budgets for as we use for Tables I and O (i.e. MBTT = 8 and
M™ = 4). We train and evaluate FQL with the parameters used in the official implementation [Park
efall, 2075]. The only change to and FQL is varying the sizes of the policy network’s hidden
layers.

E.2 Policy Network Size

Q: How does the performance of vary with changing size of the policy network?
Increasing the capacity of the policy network increases the performance of and FQL similarly.

We use the same training-time and inference-time compute budgets for as we use for Tables
Mand B (i.e. MBTT = 8 and M™ = 4). We train and evaluate FQL with the parameters used in
the official implementation [Park_ef all, P075]. The only change to and FQL is varying the
sizes of the policy network’s hidden layers. We use an MLP with four hidden layers of the same
size. Since FQL uses two actor networks of the same size in the official implementation [Park_ef-all,
P075]—a flow-matching network for offline data regularization and a one-step distillation network
for the actor’s policy—we scale both networks, keeping them the same size for this ablation study.

As may be expected, increasing the capacity of the policy network increases the performance of both

and FQL, at similar rates, before plateauing at larger sizes. Notably, achieves slightly bet-
ter gains across network sizes, which may stem from the shortcut model class being more expressive
than FQL’s one-step distillation policy.

35

F Experimental and Implementation Details

In this section, we describe the setup, implementation details, and baselines used in the paper.

F.1 Experimental Setup

The experimental setup for our paper’s main results (Table 0 and) follows OGBench’s official
evaluation scheme [Park_ef all, 20744, 2075].

Environments. We now describe the environments, tasks, and offline data used in our experiments.
Our setup follows OGBench'’s official evaluation scheme [Park_ef-all, P(0744] and Parkef-all [P075],
and we restate the description of environments and tasks below.

We evaluate on 8 robotics locomotion and manipulation robotics environments in the OG-
Bench task suite (version 1.1.0) [Park_ef all, D0744], a benchmark suite designed for offline RL.
Specifically, we use the following environments:

antmaze-large-navigate-singletask-v0
antmaze-giant-navigate-singletask-v0
humanoidmaze-large-navigate-singletask-v0
humanoidmaze-giant-navigate-singletask-v0
antsoccer-arena-navigate-singletask-v0

cube-single-play-singletask-vO

cube-double-play-singletask-v0

e A Al o

scene-play-singletask-v0

The selected environments span a range of challenging control problems, covering both locomo-
tion and manipulation. The antmaze and humanoidmaze tasks involve navigating quadrupedal (8
degrees of freedom (DOF)) and humanoid (21 DOF) agents through complex mazes. antsoccer
focuses on goal-directed ball manipulation using a quadrupedal agent. The cube and scene environ-
ments center on object manipulation with a robot arm. Among these, scene tasks require sequencing
multiple subtasks (up to 8 per episode), while puzzle emphasizes generalization to combinatorial
object configurations. All environments are state-based. We follow the standard dataset protocols
(navigate for locomotion, play for manipulation), which are built from suboptimal, goal-agnostic
trajectories, and therefore pose a challenge for goal-directed policy learning. We evaluate agents us-
ing binary task success rates (i.e., goal completion percentage), which is consistent with OGBenchs
evaluation setup [Park_efall, P074a].

Tasks. We use OGBench’s reward-based singletask variants for all experiments [Park_ef all,
2074a], which are best suited for reward-maximizing RL. As described in the official implementa-
tion [Park efall, 2074:], each OGBench environment offers five unique tasks, each associated with a
specific evaluation goal, denoted by suffixes singletask-task1l through -task5. These represent
unique, fixed goals for the agent to accomplish. We utilize all five tasks for each environment. The
datasets are annotated with a semi-sparse reward, where the reward is determined by the number of
remaining subtasks at a given step for manipulation tasks, or whether the agent reaches a terminal
goal state for locomotion tasks [Park_ef all, D074a, POVS].

Evaluation. We follow OGBench’s official evaluation scheme [Park_ef all, 2074a]. We train al-
gorithms for 1,000,000 gradient steps and evaluate 50 episodes every 100,000 gradient steps. We
report the average success rates of the final three evaluations (i.e. the evaluation results at 800,000,
900,000, and 1,000,000 gradient steps). In tables, we average over 8§ seeds per task and report
standard deviations, bolding values within 95% of the best performance.

36

F.2 Implementation Details

One of the strengths of is its implementation simplicity. In order to implement , we adapt
Park_ef all [Z025]’s open-source implementations of various offline RL algorithms (FQL, IFQL, IQL,
ReBRAC), which are adapted from Park_ef-all [Z0744]’s open-source dataset and codebase. The
major changes are implementing and training the shortcut model, and removing additional training
complexity from FQL (e.g. the teacher/student networks). To ensure a fair comparison, we keep all
major shared hyperparameters the same between the baselines and (e.g. network size, number
of gradient steps, and discount factor), unless otherwise noted.

Value Network. We train two () functions and use the mean of the two in the actor update (Equa-
tion B). We use the mean of the two () functions for the critic update (Equation [d), except for
antmaze-large and antmaze-giant tasks, where we follow Park ef all [Z2075] in using the mini-
mum of the two values. The only change to the FQL baseline’s value network is adding an input that
encodes the number of inference steps used to generate the actions.

Network Architecture and Optimizer. We use a multi-layer perceptron with 4 hidden layers of
size 512 for both the value and policy networks. We apply layer normalization [Ba“ef-all, POTH] to
value networks. We use the Adam optimizer [Kingma, Z0T4], which we add gradient clipping to.

Discretization Steps. For , we use M9 = 8 discretization steps during training (2 fewer
than FQL), since Frans'ef all [Z074] suggests that discretization steps be powers of 2. By default for
the results in Tables M and &, we use METT = 8 steps of backpropagation through time and M = 4
inference steps, except for humanoidmaze-medium where we use M™™ = 2. In other experiments,
if the values of MBTT and M are changed, they are explicitly noted.

Shortcut Model. Following the official implementation of shortcut models [Frans“efall, P074],

for the self-consistency loss we sample d ~ {2% }},::g% M=1 and then sample ¢ uniformly on multiples
of d between 0 and 1 (i.e. points where the model may be queried). The model makes a prediction
for step size 2d, and its target is the concatenation of the two sequential steps of size d. For greater
stability, we construct the targets via a target network. Unlike Frans'ef-all [2(074], we do not require
special processing of the training batch into empirical and self-consistency targets, nor do we require
special weight decay. We simply use the entire batch for the critic and actor updates, including the

@ loss, self-consistency loss, and flow-matching loss.

Hyperparameters. We largely use the same hyperparameters for as those used in the FQL
baseline (Table B), except for parameters that are specific to or vary with (Table @). We hy-
perparameter tune with a similar training budget to the baselines: we only tune one of s

training parameters—Q-loss (QL) coefficient—on the default task in each environment (Ta-
ble B), over the values {10, 50, 100, 500}. We then use the same QL coefficient on all the
tasks in an environment. Varying the strength of regularization to the offline data is common in
offline RL [Tarasov_ef all, PO23H, Park ef all, P074RK, P025]. Following Parkef-all [P025]’s recom-
mendation, we normalize the Q loss.

37

Table 3: Shared Hyperparameters Between FQL Baseline and

PARAMETER VALUE

OPTIMIZER ADAM [KINGMA, P0T4]

GRADIENT STEPS 1,000,000

MINIBATCH SIZE 256

MLP DIMENSIONS [512,512,512,512]

NONLINEARITY GELU [HENDRYCKS AND GIMPET, PUTH]

TARGET NETWORK SMOOTHING COEFFICIENT 0.005

DI1SCOUNT FACTOR 7y 0.99 (DEFAULT), 0.995 (ANTMAZE-GIANT, HUMANOIDMAZE, ANTSOCCER)
DISCRETIZATION STEPS 8

TIME SAMPLING DISTRIBUTION UNIF([0,1])

CLIPPED DOUBLE Q-LEARNING FALSE (DEFAULT), TRUE (ADROIT, ANTMAZE-{LARGE, GIANT}-NAVIGATE)

Table 4: Hyperparameters for

HYPERPARAMETER VALUE
LEARNING RATE 1E-4
GRADIENT CLIPPING NORM 1
DISCRETIZATION STEPS 8

BC COEFFICIENT 10
SELF-CONSISTENCY COEFFICIENT 10
Q-Loss COEFFICIENT TABLEB

Table 5: Q-Loss Coefficient for

ENVIRONMENT Q Loss COEFFICIENT
antmaze-large-navigate-v0O (5 tasks) 500
antmaze-giant-navigate-vO (5 tasks) 500
humanoidmaze-medium-navigate-vO (5 tasks) 100
humanoidmaze-large-navigate-vO (5 tasks) 500
antsoccer-arena-navigate-v0 (5 tasks) 500
cube-single-play-v0 (5 tasks) 10
cube-double-play-v0 (5 tasks) 50
scene-play-v0 (5 tasks) 100

38

F.3 Baselines

We evaluate against three Gaussian-based offline RL algorithms (BC [Pomerleai, T988], IQL
[Kosfrikov_ef all, DOZT], ReBRAC [Marasov_ef all, P0734]), three diffusion-based algorithms (IDQL
[Hansen-Estruch ef all, P0273], SRPO [Chen ef all, 2023], CAC [Ding and Jin, 20273]), and four flow-
based algorithms (FAWAC [Nairefall, Z020], FBRAC [Zhang et all, P075], IFQL [Wang et all, P0727],
FQL [Park_ef-all, P075]). For the baselines we compare against in this paper, we report results from
Park_ef all [PZ025], who performed an extensive tuning and evaluation of the aforementioned base-
lines on OGBench tasks. We restate descriptions of the baselines here.

Gaussian-Based Policies. To evaluate standard offline reinforcement learning (RL) methods
that employ Gaussian policies, we consider three representative baselines: Behavior Cloning
(BC)[Pomerleau, T98Y], Implicit Q-Learning (IQL) [Kosfrikov_efall, 20721], and ReBRAC [Tarasov
ef-all, Z023a]. BC [Pomerlean, TY8R] serves as a simple imitation learning baseline that directly mim-
ics the demonstration data without any explicit value optimization, while IQL [Kosfrikov ef-all, P021]
represents a popular value-based approach that addresses the overestimation problem in offline RL
through implicit learning of the maximum value function. ReBRAC [[arasov_ef all, Z0234d], a more
recent method that is known to perform well on many D4RL tasks [[farasov_ef-all, P0773H], extends
the BRAC framework with regularization techniques specifically designed to constrain the learned
policy close to the behavior policy, thereby mitigating the distributional shift problem common in
offline RL settings.

Diffusion-Based Policies. To evaluate diffusion policy-based offline RL methods, we compare
to IDQL [Hansen-Esfruch ef all, 2023], SRPO [Chen_ef all, PZ023] and Consistency-AC (CAC) [I_)ing
and 1T, P073]. IDQL [Hansen-Esfruch ef all, 2073] builds on IQL by using a generalized critic and
rejection sampling from a diffusion-based behavior policy. SRPO [Chen_ef all, P073] replace the
diffusion sampling with a deterministic policy trained via score-regularized policy gradient to speed
up sampling. CAC [Ding and Jin, P0073] introduces a consistency-based actor-critic framework to
backpropagation through time with fewer steps.

Flow-Based Policies. To evaluate flow policy-based offline RL methods, we compare flow-based
variants of prior methods, including new variants introduced by Park_ef-all [2075]: FAWAC [Nair
ef all, 2020], FBRAC [Wang et all, 2022], IFQL [Hansen-Esfruchef all, 2023], and FQL [Park_ef all,
2075], as only a few previous works explicitly employ flow-based policies. FAWAC extends AWAC
by adopting a flow-based policy trained with the AWR objective and estimates Q)™ for the current
policy using fully off-policy bootstrapping. FBRAC is the flow counterpart of Diffusion-QL, based
on the naive Q-loss with backpropagation through time. IFQL is a flow-based variant of IDQL that
relies on rejection sampling. FQL distills a one-step policy from an expressive flow-matching policy
to avoid costly iterative sampling. Unlike FQL, uses a single-stage training procedure and does
not require distilling a model into a one-step policy.

39

	Introduction
	Background
	Scaling Offline Reinforcement Learning
	Scalable Offline Reinforcement Learning (SORL)
	SORL Inference-Time Scaling

	Theoretical Analysis: Regularization To Behavior Policy
	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Discussion
	Extended Related Work
	Limitations
	Proofs
	Proof of Theorem 2 / 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Full Results
	Per-Task Results
	Runtime Comparison

	Ablation Studies
	Backpropagation Steps Through Time, MBTT
	Policy Network Size

	Experimental and Implementation Details
	Experimental Setup
	SORL Implementation Details
	Baselines

