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 A B S T R A C T

With the rapid development of artificial intelligence and multimedia technology, cross-modal hashing (CMH) 
has been widely applied in multimedia retrieval, recommendation systems, and large-scale data search due 
to its efficient query processing and low storage requirements, and has become a pivotal research area in 
both academia and industry. However, existing CMH algorithms fall short in exploiting the potential inter-
modal correlations, leading to considerable semantic gaps. To overcome this issue, this paper proposes an 
innovative CMH framework called Covariance Attention Guidance Mamba Hashing (CAGMH) for Cross-Modal 
Retrieval. The framework enables deeper semantic alignment between modalities through a novel multi-
feature fusion mechanism. This mechanism narrows the semantic gap and enhances the expressive power 
of each modality. Specifically, CAGMH exploits the distributional properties of covariance to optimize hash 
code generation and combined with the Mamba strategy to further improve cross-modal retrieval robustness. 
In addition, we design a novel loss function computation strategy that combines modal correlation with 
semantic consistency to optimize the model’s convergence and generalization ability. Experiments on four 
public benchmark datasets show that CAGMH surpasses state-of-the-art CMH methods, offering improved 
accuracy and efficiency in large-scale cross-modal similarity search. The corresponding code is available at 
https://github.com/Rooike111/CAGMH.
1. Introduction

With the rapid development of multimedia technology, a large 
amount of high-dimensional data with different structures has been 
generated on the Internet (Xie et al., 2022). These data vary in their 
modalities, such as text, images and video, and are semantically related, 
driving the advancement of cross-modal retrieval (CMH) techniques. 
CMH maps data from diverse modalities into a common feature space, 
enabling similarity searches across modalities to meet user demands 
for quick information access in large-scale data environments (Xie 
et al., 2021). For example, users can search for related text using an 
image or find product images through descriptive text. In this context, 
hashing has become a key technology in cross-modal retrieval due to 
its efficiency in query processing and compact storage requirements.

Traditional CMH methods project multimodal data into a shared 
subspace for feature comparison. However, with the advent of 5G, 
the growing data dimensions and volumes have made this approach 
inefficient and costly (Zhang et al., 2024; Cheng et al., 2024). To over-
come this, deep learning has been incorporated into CMH, significantly 
improving feature learning efficiency and reducing retrieval costs.

In comparison to traditional CMH techniques, deep cross-modal 
hashing retrieval presents significant advantages. By leveraging deep 
neural networks, it automatically extracts rich and hierarchical features 
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directly from raw data, eliminating the need for manual feature engi-
neering (Chao et al., 2023). This approach generates more precise and 
semantically meaningful hash codes, which enhance retrieval accuracy. 
Deep cross-modal hashing techniques have demonstrated extensive 
applications in multimedia retrieval, recommender systems, and large-
scale data search. However, their potential extends far beyond these 
domains. Integrating cross-modal techniques with other fields, such 
as object detection and re-identification (Khan et al., 2024a, 2025, 
2024b), holds significant promise for advancing scientific research and 
fostering innovation.

CMH method transforms high-dimensional data into compact, bi-
nary representations, which are then used to compute similarity
through Hamming distance for retrieval (Irie et al., 2015; Yang et al., 
2023). These methods can be classified based on their function into 
supervised and unsupervised categories: supervised methods use labels 
to enhance model accuracy, while unsupervised methods rely on data 
topology for searching. Although supervised methods generally offer 
higher accuracy, unsupervised methods are valuable when labeled data 
is scarce.

Despite significant progress in supervised CMH, particularly after 
the introduction of Contrastive Language-Image Pre-training (CLIP), 
proposed by OpenAI in 2021 (Radford et al., 2021), several limita-
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data mining, AI training, and similar technologies. 
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Fig. 1. Our framework VS. existing frameworks, where Fig. (a) shows the traditional CMH method, while Fig. (b) presents the proxy-based CMH method. In Fig. (c), the proposed 
CAGMH framework builds on Fig. (b) by integrating a feature fusion and enhancement module, as well as an improved loss calculation method, to enhance inter-modal information 
exchange and robustness.
tions remain: (1) Data from different modalities often carries distinct 
information, leading to a ‘‘semantic gap’’ that existing models struggle 
to bridge, resulting in incomplete or inaccurate cross-modal associa-
tions. (2) Although some proxy-based CMH methods partially narrow 
the semantic gap between different modalities, the performance and 
robustness of these methods are still challenged when dealing with 
category imbalance or noise-like problems.

To address this issue, we propose a novel framework, Covariance 
Attention Guidance Mamba Hashing (CAGMH) for Cross-Modal Re-
trieval. The model framework is illustrated in Fig.  1. This framework 
not only leverages intra-modal features but also deeply explores inter-
modal connections, surpassing the traditional approach of merely shar-
ing attributes. CAGMH enhances retrieval accuracy and accelerates 
model training through a newly proposed loss function. The primary 
contributions are as follows:

• Firstly, we propose an end-to-end learning framework based on 
CLIP, named CAGMH. This framework incorporates a novel Co-
variance Attention Guidance Mamba Module, which efficiently 
mines and extracts information across both cross-modal and intra-
modal domains, thereby generating semantically aligned and ef-
ficient hash codes.

• Additionally, through a balanced approach, we enable the effi-
cient computation of hash loss within the semantic space. This 
method fully leverages the complementarity between modali-
ties, effectively addressing the issue of imbalance and optimizing 
performance across multiple dimensions.

• Finally, to evaluate the effectiveness of the proposed method, 
extensive experiments were conducted on four publicly available 
datasets designed for image–text retrieval. The experimental re-
sults confirm the efficiency of CAGMH in retrieval tasks. Our 
approach consistently achieves superior performance, as mea-
sured by the Mean Average Precision (MAP) metric, and the 
Precision–Recall curves further highlight its advantage in CMH.

The remainder of this paper is structured as follows: Section 2 
reviews representative CMH methods, unsupervised CMH methods, and 
applications of CLIP in CMH. Section 3 provides a detailed explanation 
of our proposed CAGMH method. In Section 4, we conducted extensive 
experiments from multiple perspectives to demonstrate the effective-
ness of our proposed CAGMH method. Finally, Section 5 presents 
the findings of this study and outlines potential directions for future 
research. Section 6 provides a comprehensive summary of the paper.
2 
2. Related work

As a key technology in artificial neural networks, hashing retrieval 
not only optimizes memory efficiency but also significantly improves 
retrieval speed in large-scale search tasks. Historically, hashing algo-
rithms were primarily applied in image retrieval. However, with the 
increasing demand for cross-modal retrieval, new cross-modal hash-
ing methods have been developed to address this need. These ap-
proaches map original information from different modalities into a 
shared space, subsequently distancing unrelated semantic features and 
drawing related ones closer together.

CMH methods can be classified into supervised (Wu et al., 2024) 
and unsupervised (Xie et al., 2024)approaches, Contingent on the use 
of supervised information throughout the training process. Supervised 
methods leverage labeled data to guide feature mapping across modali-
ties, thereby optimizing the accuracy of similarity searches. Conversely, 
unsupervised methods rely on automatic learning for feature mapping 
without the need for labeled data. Additionally, recent research has 
explored the enhancement of hashing retrieval tasks using pre-trained 
visual-language models such as CLIP. These models effectively integrate 
visual and textual features, providing new insights and a robust experi-
mental foundation for advancing CMH techniques. The Mamba model, 
introduced by Gu and Dao (2023) in their December 2023 publication, 
provides a novel framework that significantly influences our approach 
to CMH.

2.1. Unsupervised cross-modal hashing

Unsupervised CMH algorithms, which do not rely on labeling in-
formation, enhance flexibility by learning predefined similarity signals 
between dissimilar data, making them more compatible with real-
world retrieval scenarios. The IMH (Song et al., 2013) method studies 
both inter- and intra-modal data consistency, projects this consistency 
into Hamming space, and employs linear regression for hash function 
learning. Concurrently, deep learning-based unsupervised CMH meth-
ods have garnered significant attention in the research community. For 
example, UGACH (Zhang et al., 2018) utilizes Generative Adversarial 
Networks (GANs), where a generator produces data from one modality 
to match another modality, and a discriminator distinguishes between 
real and generated data. This method not only significantly reduces 
the semantic disparity across different modalities but also extracts 
additional semantic information. DJSRH (Su et al., 2019) explores the 
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shared semantic links between modalities by analyzing the affinity 
matrix of joint semantics, thereby addressing the challenge of limited 
annotated data and improving retrieval efficiency, which is crucial for 
handling large-scale cross-modal dataset. The UKD method (Hu et al., 
2020) applies knowledge distillation, employing the similarity matrix 
derived from the teacher network to guide the hash code learning 
process in the student network. Additionally, UCCH (Hu et al., 2022) 
incorporates contrastive learning in unsupervised CMH, emphasizing 
semantic relevance over irrelevance, which enables the model to better 
focus on relevant semantic information. Moreover, UCCH designs a 
hash memory to optimize binary hash codes.

2.2. Supervised cross-modal hashing

Unsupervised CMH, while not requiring label information, lacks 
strong semantic relevance. In contrast, supervised CMH utilize la-
bel information to improve the discriminative power of their hash 
codes, thereby outperforming unsupervised approaches. For instance, 
DCMH (Jiang and Li, 2017) was the first model to utilize deep neural 
networks for processing data from different modalities. This approach 
overcame the limitations of traditional cross-modal retrieval methods 
in terms of semantic alignment and retrieval efficiency. By integrating 
the strengths of deep learning, DCMH achieved end-to-end cross-modal 
hash learning, advancing the field of cross-modal retrieval and laying 
the groundwork for subsequent methods based on deep learning. Over 
time, research shifted from basic deep learning models to more so-
phisticated approaches, including adversarial learning, attention mech-
anisms, and self-supervised learning. While these advancements have 
shown promise, they remain constrained by inefficiencies and lim-
ited semantic alignment capabilities in large-scale retrieval tasks. This 
bottleneck was addressed by the introduction of CLIPMH (Zhu et al., 
2023), which incorporates the large-scale pre-trained model CLIP into 
cross-modal hash retrieval. This innovation enables efficient alignment 
between images and text, marking a significant milestone in leveraging 
large-scale pre-trained models for cross-modal retrieval.

2.3. CLIP on cross-modal hashing

Before the introduction of the CLIP framework, various techniques 
and frameworks, such as Transformer (Vaswani, 2017) and VGG (Si-
monyan and Zisserman, 2014), were commonly used to extract image 
and text information. However, these methods struggled with aligning 
inter-modal features, which significantly impacted the model’s learn-
ing ability and the quality of the generated hash codes. CLIP4Hash 
leverages the multimodal capabilities of CLIP to generate high-quality, 
semantically meaningful hash codes (Zhuo et al., 2022). CLIP, through 
large-scale unsupervised pre-training, successfully established a strong 
correspondence between image and text descriptions. CLIP not only 
learned to recognize image content but also understood and generated 
natural language descriptions associated with images, resulting in a 
tight alignment of visual and textual modalities. This alignment was not 
achieved through manually defined rules or mappings but through the 
model’s self-learning from a large number of instances, thus regarded 
as a ‘‘natural’’ alignment. Due to this characteristic, CLIP excels in addi-
tional supervised training tasks and is naturally suited for cross-modal 
hashing retrieval tasks. Methods such as DCMHT (Tu et al., 2022), 
DNPH (Huo et al., 2024a), DSPH (Huo et al., 2023), and DNpH (Qin 
et al., 2024) have successfully utilized the CLIP framework, achieving 
significant results.

2.4. Related work on Mamba method

The Mamba method, introduced by Gu and Dao (2023), has gar-
nered significant attention due to its exceptional capabilities in long-
sequence selection and memory modeling. By efficiently capturing 
and dynamically representing spatio-temporal features, it has achieved 
3 
Table 1
Table of notations and definitions.
 Notation Definition  
 𝐷 Training dataset  
 𝑁 Number of samples  
 𝐵 Hash code  
 𝐾 Hash code length  
 𝐿 Extracted feature length  
 𝑥𝑖 𝑖th image sample  
 𝑦𝑖 𝑖th text sample  
 𝑙𝑖 Label corresponding to 𝑖th sample 
 𝐶 Number of categories  
 𝑀 Number of features per sample  
 𝑀 ′ Number of irrelevant pairs  

remarkable success in the field of remote sensing. This has led to 
the publication of numerous high-quality studies. For instance, RS-
Mamba (Zhao et al., 2024) exploits Mamba’s unique SSM model to 
address the limitations of discrete modes effectively. It selectively 
retains relevant markers while disregarding irrelevant ones. Similarly, 
HyperMamba (Liu et al., 2024) leverages the Mamba model to imple-
ment a Spatial Neighborhood Adaptive Scanning module and a Spectral 
Adaptive Enhancement Scanning module. These innovations enable the 
efficient extraction and dynamic representation of spatial and spec-
tral information from hyperspectral images, significantly enhancing 
hyperspectral image classification performance through its selective 
mechanism. These advancements are highly inspiring for our research. 
To the best of our knowledge, the Mamba method has not yet been 
applied to cross-modal hash retrieval, which we believe represents a 
meaningful and promising avenue for exploration.

3. Methodology

In this section, we present the CAGMH model framework, as illus-
trated in Fig.  2. Section 3.1 introduces the formal definition of CAGMH, 
while Section 3.2 describes the architecture of the proposed network. 
In Section 3.3, we elaborate on the hash learning module, which serves 
as a key component of our framework. Finally, Section 3.4 details the 
procedure for generating binary hash codes from the trained CAGMH 
model.

3.1. Notation

We primarily deal with cross-modal similarity retrieval between 
image and text modalities. For this task, we define 𝑀 sample pairs 
(including images and text descriptions), denoted as 𝐷 = {𝑑𝑖}𝑀𝑖=1, 
where each 𝑑𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑙𝑖}, with 𝑥𝑖 and 𝑦𝑖 representing the 𝑖th image 
sample and the 𝑖th text sample, respectively. 𝑙𝑖 = [𝑙𝑖1, 𝑙𝑖2,… , 𝑙𝑖𝑐 ] denotes 
the multi-label annotation for the 𝑖th sample, where 𝑐 represents the 
number of categories. The specific symbols and their meanings used in 
this section are defined in Table  1.

3.2. Network framework

3.2.1. Feature extraction module
Conventional approaches typically require additional steps to align 

or map image and text features, such as using manually defined map-
ping functions or specialized domain adaptation methods. However, 
these alignment steps may introduce additional complexity and com-
putational overhead and may not adequately capture the underlying 
relationships between modalities. In contrast, this paper employs the 
CLIP framework as a feature extraction module. CLIP achieves efficient 
performance during inference and significantly reduces training time 
through semantic consistency and optimized large-scale pre-training. 
It leverages vast amounts of image–text pairs for unsupervised pre-
training. This process enables CLIP to automatically learn associa-
tions between linguistic descriptions and visual content, generating 
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Fig. 2. Overview of CAGMH, which consists of four parts, where (1) Feature Extraction Module. (2) Covariance Attention Guidance Mamba Module, which consists of Covariance 
Attention Guidance Module and Mamba Feature Fusion Module respectively. (3) Hash Module. (4) Hash Learning Module: The design employs a multimodal proxy loss in conjunction 
with a cross-modal classification balance loss.
visual and linguistic representations with greater consistency and align-
ment, thereby effectively addressing the issue of inter-modal feature 
misalignment.

In this study, we used the pre-trained ViT-B/32 model provided 
by OpenAI to establish a performance baseline for supervised vector 
machine hashing CAGMH. The feature extraction method we employed 
can be represented by the following mathematical formula: 
𝑓𝑣 = CLIP𝑣𝑖𝑠𝑖𝑜𝑛(𝑥𝑖) (1)

𝑓𝑡 = CLIP𝑡𝑒𝑥𝑡𝑢𝑎𝑙(𝑦𝑖) (2)

where 𝑓𝑣 and 𝑓𝑡 represent the extracted image features and text fea-
tures, respectively, with dimensions both being 𝑁 ×𝑀 .

3.2.2. Covariance attention guidance Mamba module
The core module is constructed collaboratively by the Covariance 

Attention Guidance Module and the Mamba Feature Fusion Module, 
which work together to achieve enhanced feature alignment and fusion 
for cross-modal retrieval.

Covariance Attention Guidance Module: This module is purely 
composed of matrix operations, tensor transformations, and the ap-
plication of nonlinear functions. These operations do not introduce 
additional parameters during execution. Notably, this module can in-
tegrate data from different modalities, thereby extracting richer and 
deeper feature representations, which aids in the efficient processing 
4 
of multimodal datasets. By optimizing the feature weight distribution 
and fusion strategy, the accuracy and stability of the model in han-
dling complex tasks are improved, thus effectively enhancing relevant 
features and suppressing irrelevant information.

Compute the column-wise summation of image and text feature 
matrices to produce the aggregated feature vectors 𝑖1 and 𝑡1: 

𝑖1 =
𝑀
∑

𝑑=1
𝑓𝑣[∶, 𝑑] (3)

𝑡1 =
𝑀
∑

𝑑=1
𝑓𝑡[∶, 𝑑] (4)

Perform a column-wise summation on the image and text feature 
matrices to generate the aggregated feature vectors. Then, compute 
the difference between the covariance matrices to derive the feature 
similarity matrix 𝑆: 
𝑆 = 𝑖1𝑖

𝑇
1 − 𝑡1𝑡

𝑇
1 (5)

Notably, smaller values in 𝑆 indicate a stronger correlation between 
the corresponding modality features.

To stabilize the similarity matrix and avoid extreme gradients, a 
composite activation function is applied to 𝑆: 
𝑆′ = (1 − tanh(𝑆2)) ⋅ sigmoid(𝑆) ⋅ (1 − sigmoid(𝑆)) (6)

where 𝑆′ is the processed feature similarity matrix. This activation 
constrains the output range between 0 and 0.25, enhancing gradient 
stability.
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This characteristic helps maintain the stability of gradient updates, 
significantly reducing the likelihood of gradient vanishing or exploding, 
thereby enhancing the overall stability of the model. Moreover, by 
effectively constraining extreme values in the input, this composite 
activation function also improves the robustness of the model. After 
passing through this activation function: 

𝐸𝑖 = 𝑆′ ⊙ 𝑓𝑣 + 𝑓𝑣 (7)

𝐸𝑡 = 𝑆′ ⊙ 𝑓𝑡 + 𝑓𝑡 (8)

where, 𝐸𝑖 represents the enhanced image feature, 𝐸𝑡 represents the 
enhanced text feature, and ⊙ denotes the Hadamard operation. By ap-
plying the Hadamard operation to multiply two matrices element-wise 
and then adding the result to the original feature matrix, this method 
effectively suppresses irrelevant information while amplifying relevant 
modality features. This process enhances feature representation and 
uncovers potential semantic information between modalities.

Concatenate the enhanced image and text features to form the final 
output matrix 𝑅𝑠: 

𝑅𝑠 = [𝐸𝑖, 𝐸𝑡] (9)

This enhanced feature matrix 𝑅𝑠 serves as the input to subsequent 
modules for further processing.

Mamba Feature Fusion Module: Building on the enhanced fea-
tures from the previous module, the Mamba model is introduced as the 
core of the feature fusion module. Mamba, a state-space model (SSM), 
is specifically designed to efficiently capture long-range dependencies 
within sequences. Its dynamic selection mechanism enables selective 
filtering or propagation of information based on token positions, al-
lowing it to effectively process long-sequence features. This capability 
makes Mamba particularly suitable for feature fusion, as it integrates 
and refines both intra-modal and inter-modal representations, enhanc-
ing the robustness and expressiveness of the learned features. Prior to 
utilizing this module, the extracted feature values must be concatenated 
and then input into the module. As shown in Eq. (10), 𝑅𝑚 denotes the 
spliced feature matrix. 

𝑅𝑚 = MAMBA
(

[𝑓𝑣, 𝑓𝑡]
)

(10)

After the features have been processed by the covariance feature 
enhancement sub-module and the Mamba feature fusion sub-module, 
we perform a weighted summation of these features. This operation 
aims to parse the data through multiple perspectives, thus improving 
the generalization ability of the model on unseen datasets. In addition, 
this method effectively reduces the model’s dependence on a single 
feature and lowers the risk of overfitting, thus enhancing the stability 
and reliability of the model. After a lot of experiments and comparisons, 
we finally set the weighting parameters to 𝛼 = 0.09. After processing in 
this module, the features will be restored to their original shapes again.

𝑅 = 𝛼 ⋅ 𝑅𝑠 + 𝑅𝑚 (11)

𝑥′ = 𝑅(∶, 1 ∶ 𝐿) (12)

𝑦′ = 𝑅(∶, 𝐿 + 1 ∶ 2𝐿) (13)

where 𝑥′ and 𝑦′ are feature-enhanced and fused image features and text 
features, respectively.

In summary, the Covariance Attention Guidance Module ensures 
fine-grained alignment between modalities, while the Mamba Feature 
Fusion Module further integrates and refines these features. Their 
combination enables CAGMH to effectively address semantic gaps and 
achieve robust cross-modal retrieval performance.
5 
3.3. Hash learning module

This module is part of the loss function section, where hash loss 
is a critical factor in reflecting the similarity relationships between 
images. This study combines multimodal proxy loss with cross-modal 
classification balance loss, which significantly enhances the stability 
and robustness of the model while optimizing the generated hash codes. 
However, most cross-modal methods typically only optimize the model 
or feature representation without introducing additional intermediate 
vectors or proxies, which limits the adjustment and optimization of 
sample representations. Although proxy-based methods perform well 
in cross-modal hashing retrieval, the initialization and updating of 
proxy vectors may affect model training and convergence, especially 
in cases of data class imbalance. Therefore, we propose a cross-modal 
classification balance loss, which helps the model learn multi-label 
classification tasks more effectively by balancing the category distri-
bution between different modalities. This loss introduces a balancing 
factor that enhances the model’s ability to differentiate between dif-
ferent classes and effectively combines image and text features. This 
approach further enhances the model’s performance and robustness 
when handling imbalanced classes or noisy labels.

3.3.1. Multimodal proxy loss
To ensure that related data is embedded in close proximity while un-

related data-proxy pairs are separated, we refine the model parameters 
using multi-label proxies. For 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑐}, where 𝑃  represents 
the continuous proxy for each class, and 𝑝𝑖 is a 𝐾-bit vector. In this 
loss, we not only consider the cosine distance between class binary hash 
codes and related proxies but also the distance between class binary 
hash codes and unrelated proxies. Thus, the cosine distance and unre-
lated proxy distance can be calculated using the following equations:

pos(ℎ, 𝑝) = 1 −
ℎ ⋅ 𝑝𝑇

‖ℎ‖2 ⋅ ‖𝑝‖2
(14)

neg(ℎ, 𝑝) = max
(

0,
ℎ ⋅ 𝑝𝑇

‖ℎ‖2 ⋅ ‖𝑝‖2
− threshold

)

(15)

where threshold = threshold(𝐶,𝐾) is a parameter used to determine 
when the corresponding similarity is considered to be negatively im-
pacted, which can be set according to Ref. Xu et al. (2022). Here, ℎ
serves as a placeholder for the feature vector representation, allowing 
for a more flexible explanation of the formula and its components.

𝐿𝑥′
𝑝𝑜𝑠_𝑛𝑒𝑔 =

∑𝑀
𝑖=1

∑𝐶
𝑗=1 𝐼(𝑙𝑖𝑗 = 1) ⋅ pos(ℎ𝑥′𝑖 , 𝑝𝑗 )
∑𝑀

𝑖=1
∑𝐶

𝑗=1 𝐼(𝑙𝑖𝑗 = 1)

+

∑𝑀
𝑖=1

∑𝐶
𝑗=1 𝐼(𝑙𝑖𝑗 = 0) ⋅ neg(ℎ𝑥′𝑖 , 𝑝𝑗 )
∑𝑀

𝑖=1
∑𝐶

𝑗=1 𝐼(𝑙𝑖𝑗 = 0)

+

∑𝑀 ′

𝑖=1
∑𝑀 ′

𝑗=1 𝐼(|𝑙𝑖 ⋅ 𝑙𝑗 | = 0) ⋅ neg(ℎ𝑥′𝑖 , ℎ𝑥′𝑗 )
∑𝑀 ′

𝑖=1
∑𝑀 ′

𝑗=1 𝐼(|𝑙𝑖 ⋅ 𝑙𝑗 | = 0)
(16)

𝐿𝑦′
𝑝𝑜𝑠_𝑛𝑒𝑔 =

∑𝑀
𝑖=1

∑𝐶
𝑗=1 𝐼(𝑙𝑖𝑗 = 1) ⋅ pos(ℎ𝑦

′

𝑖 , 𝑝𝑗 )
∑𝑀

𝑖=1
∑𝐶

𝑗=1 𝐼(𝑙𝑖𝑗 = 1)

+

∑𝑀
𝑖=1

∑𝐶
𝑗=1 𝐼(𝑙𝑖𝑗 = 0) ⋅ neg(ℎ𝑦

′

𝑖 , 𝑝𝑗 )
∑𝑀

𝑖=1
∑𝐶

𝑗=1 𝐼(𝑙𝑖𝑗 = 0)

+

∑𝑀 ′

𝑖=1
∑𝑀 ′

𝑗=1 𝐼(|𝑙𝑖 ⋅ 𝑙𝑗 | = 0) ⋅ neg(ℎ𝑦
′

𝑖 , ℎ
𝑦′
𝑗 )

∑𝑀 ′

𝑖=1
∑𝑀 ′

𝑗=1 𝐼(|𝑙𝑖 ⋅ 𝑙𝑗 | = 0)
(17)

where, 𝐼 is the indicator function, and 𝐼(𝑙𝑖𝑗 = 1), 𝐼(𝑙𝑖𝑗 = 0), and 
𝐼(|𝑙𝑖 ⋅ 𝑙𝑗 | = 0) represent ‘label-relevant,’ ‘label-irrelevant,’ and ‘label-
disjoint’ pairs, respectively. By constraining different sample pairs, 
the method pulls positive pairs closer and pushes irrelevant pairs 
apart, effectively capturing fine-grained semantics to improve retrieval 
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performance. Specifically, 𝐿𝑥′
𝑝𝑜𝑠_𝑛𝑒𝑔 and 𝐿𝑦′

𝑝𝑜𝑠_𝑛𝑒𝑔 represent the loss in 
image mode and text mode, respectively.

If only intra-modal loss is considered without addressing inter-
modal loss, it may lead to insufficient semantic consistency, thereby 
reducing the performance of cross-modal retrieval. Therefore, we calcu-
late inter-modal loss according to Eq. (18). Here, we specifically com-
pute the inter-modal irrelevance loss to mitigate the risk of semantic 
inconsistency. 

𝐿𝑛𝑒𝑔_𝑝𝑎𝑖𝑟_𝑥𝑡 =

∑𝑀 ′

𝑖=1
∑𝑀 ′

𝑗=1 𝐼(𝑙𝑖, 𝑙𝑗 = 0) ⋅ neg(ℎ𝑥′𝑖 , ℎ𝑦
′

𝑗 )
∑𝑀 ′

𝑖=1
∑𝑀 ′

𝑗=1 𝐼(𝑙𝑖, 𝑙𝑗 = 0)
(18)

As shown in Eq. (19), the total multimodal proxy loss is calculated 
as: 

𝐿𝑝𝑟𝑜𝑥𝑦 = 𝐿𝑓 ′
𝑥

𝑝𝑜𝑠_𝑛𝑒𝑔 + 𝐿
𝑓 ′
𝑦

𝑝𝑜𝑠_𝑛𝑒𝑔 + 𝐿𝑛𝑒𝑔_𝑝𝑎𝑖𝑟_𝑥𝑡 (19)

3.3.2. Cross modal class balance loss
To enhance hash representation via structured supervision and label 

constraints, we introduce the Cross Modal Classification Balancing 
Loss. This loss function is designed to significantly improve retrieval 
effectiveness and accuracy by refining the hash function and efficiently 
utilizing the hash target. The cross-modal classification balancing loss 
is composed of three auxiliary sub-losses: center loss, uniformity loss, 
and balance loss.

However, the model may lack an effective centrality constraint, 
which hinders its ability to cluster similar samples around a cen-
troid and leads to insufficient feature concentration within the same 
category. We propose a centrality loss to address this issue, thereby 
enhancing the centroid representation ability for each category, as 
shown in Eq. (20): 

𝐿𝑐𝑒𝑛𝑡𝑒𝑟 =
1
𝑀

𝑀
∑

𝑖=1
max(0, 1 − ℎ𝑖 ⋅ 𝑡𝑖). (20)

where ℎ𝑖 denotes the predicted hash code, constructed by concatenating 
the Hadamard matrix 𝐻 with its negation −𝐻 , and 𝑡𝑖 represents the 
central vector corresponding to the sample.

To ensure the generated hash codes are close to binary values 
{−1, 1}, the uniformity loss penalizes deviations from these discrete 
values. This is defined as: 

𝐿𝑢𝑛𝑖𝑓𝑜𝑟𝑚 =
𝑀
∑

𝑖=1

(

|ℎ𝑖| − 1
)3 (21)

The cubic penalty pushes the predicted hash codes ℎ toward the 
binary constraints while maintaining smooth gradients, effectively re-
ducing the impact of errors and irrelevant information in feature rep-
resentations.

In the current study, hash code generation tends to concentrate 
on a few categories, leading to a sparse distribution of hash codes in 
other categories and a reduction in category differentiation, ultimately 
affecting retrieval performance. To overcome this issue, we introduced 
a balanced loss function, as shown in Eq. (22), to ensure that hash 
codes are dispersed as widely as possible throughout the space, thereby 
improving retrieval performance. 

𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽 ⋅
1
𝐶

𝐶
∑

𝑐=1
⋅
|

|

|

|

|

|

1
𝑁𝑐

𝑁𝑐
∑

𝑖=1
ℎ𝑖𝑐 − 0.5

|

|

|

|

|

|

(22)

where, 𝑁𝑐 denotes the number of samples in the 𝑐th category, while 
ℎ𝑖𝑐 represents the feature vector of the 𝑖th sample within the 𝑐th 
category, where each element of ℎ𝑖𝑐 lies within the range [−1, 1]. 
Through extensive experiments, we set 𝛽 to 0.004. The purpose of this 
loss term is to ensure that the hash codes of each category are uniformly 
distributed around 0.5, thereby promoting an even distribution of hash 
6 
codes across the entire space. Therefore, as shown in Eqs. (23) and (24), 
the hash codes of text and image are calculated separately. 

𝐿𝑥′
𝑐𝑚𝑐𝑏 =

1
𝑀

𝑀
∑

𝑖=1

(

max(0, 1 − 𝑥′𝑖𝑡𝑖) +
𝑀
∑

𝑖=1

(

|𝑥′𝑖 − 1|
)3
)

+ 𝛽 ⋅
1
𝐶

𝐶
∑

𝑐=1
⋅
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
𝑥′𝑖𝑐 − 0.5

|

|

|

|

|

|

(23)

𝐿𝑦′
𝑐𝑚𝑐𝑏 =

1
𝑀

𝑀
∑

𝑖=1

(

max(0, 1 − 𝑦′𝑖𝑡𝑖) +
𝑀
∑

𝑖=1

(

|𝑦′𝑖 − 1|
)3
)

+ 𝛽 ⋅
1
𝐶

𝐶
∑

𝑐=1
⋅
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
𝑦′𝑖𝑐 − 0.5

|

|

|

|

|

|

(24)

The Cross Modal Class Balance Loss effectively combines center, 
uniform, and balance loss to generate compact, discrete, and balanced 
hash codes. This approach enhances both the robustness and accuracy 
of the cross-modal retrieval model.

The overall loss calculation for the cross-modal classification bal-
ance is given by Eq. (25): 
𝐿𝑐𝑚𝑐𝑏 = 𝐿𝑥′

𝑐𝑚𝑐𝑏 + 𝐿𝑦′
𝑐𝑚𝑐𝑏 (25)

The total loss calculation for the hashing learning module is shown 
in Eq. (26): 
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜎(𝜔) ⋅ 𝐿𝑐𝑚𝑐𝑏 + 𝐿𝑝𝑟𝑜𝑥𝑦 (26)

where, 𝜎(𝜔) represents the sigmoid function, where 𝜔 is a learnable 
parameter initialized to 1.6. By automatically adjusting the weight of 
the loss term, the model can more quickly converge to the optimal 
solution, thereby speeding up the training process.

3.4. Out-of-sample extension

Algorithm 1 outlines the steps for generating hash codes. First, the 
trained CAGMH model generates class-specific binary hash codes for 
the query samples, using the sign function to convert the results into 
hash codes.

Algorithm 1 Hash Code Generation Steps for CAGMH
Input: : Query samples 𝑞𝑖; Parameters for CAGMH.
 Output: : Binary hash code for 𝑞𝑖.
1: Generate binary-like hash codes by inputting the query data 𝑞𝑖 into 
the trained CAGMH model.

2: Convert these to final hash codes using a sign function: 

sign(𝑢) =

{

+1, 𝑢 > 0
−1, 𝑢 < 0

(27)

4. Experiments

We validated the effectiveness of our CAGMH framework through 
experiments on four public CMH datasets: MIRFLICKR-25K (Huiskes 
and Lew, 2008), NUS-WIDE (Chua et al., 2009), MS COCO (Lin et al., 
2014), and IAPR TC-12 (Grubinger et al., 2006) . We provide a de-
tailed description of the experimental datasets, the implementation of 
CAGMH, and the evaluation metrics used.

4.1. Datasets

MIRFLICKR-25K: This dataset from Flickr contains 24,581 image–
text pairs across 24 categories, each pair annotated with multi-labels. 
The dataset covers a broad range of subjects, including natural scenes, 
objects, people, and events, making it diverse and challenging for tasks 
involving image classification, annotation, and retrieval. The relatively 
small scale of MIRFLICKR-25K also allows for rapid experimentation, 



G. Wang et al. Engineering Applications of Artiϧcial Intelligence 152 (2025) 110777 
Table 2
Detailed settings of each data set.
 Dataset Query Train Database Total  
 MIRFLICKR-25K 2000 10,000 22,581 24,581  
 NUS WIDE 2100 10,500 190,679 192,779 
 MS COCO 5000 10,000 117,218 122,218 
 IAPR TC-12 5000 10,000 14,626 19,626  

which is particularly useful in testing new methods during early-stage 
development.

NUS-WIDE: This large dataset includes 269,648 image–text pairs 
labeled across 81 categories, covering a diverse range of scenes and 
objects. After removing less populated categories, we selected 21 major 
categories, resulting in a subset with 195,834 pairs, each belonging to 
at least one category. NUS-WIDE stands out due to its scale and real-
world-inspired diversity, reflecting the complexity of user-generated 
content, where structured and unstructured information often coex-
ist. This makes it particularly suitable for evaluating cross-modal re-
trieval methods in scenarios such as large-scale multimedia search or 
recommendation systems.

MS COCO: This dataset, a prominent benchmark for object detec-
tion, includes 80 multi-label categories. It contains a total of 123,389 
images, consisting of 82,785 training images and 40,504 validation 
images, each accompanied by five captions. In our experiments, to 
ensure that each sample contains both image and text modalities, we 
merged the training and test sets, making sure that each data pair 
belongs to at least one category. MS COCO reflects real-world applica-
tions in tasks like image captioning and multi-modal understanding due 
to its high-quality annotations and diverse content, including natural 
environments and human-centric scenes. Its focus on both multi-label 
categorization and text descriptions aligns well with the requirements 
of modern cross-modal retrieval tasks.

IAPR TC-12: The IAPR TC-12 dataset consists of 20,000 images 
across 255 categories, including people, animals, and landscapes. Each 
image is annotated with captions in multiple languages (English, Ger-
man, Spanish). For our experiments, we utilized the English captions. 
This dataset serves as a challenging and valuable resource for cross-
modal hashing retrieval.

We adopt the data division strategy proposed by DCMHT (Tu et al., 
2022) and DHaPH (Huo et al., 2024b) apply it to our datasets, with 
necessary modifications. Specifically, we exclude text pairs that do not 
belong to any class, ensuring the remaining data is properly categorized 
and aligned with our research objectives. The query set was randomly 
sampled from the original dataset, with the remaining data used as 
the retrieval set. Training instances were randomly selected from the 
retrieval database.

4.2. Experimental settings

4.2.1. Baseline methods
To effectively demonstrate the performance of our designed algo-

rithm, we compared the CAGMH framework with 11 classical and 
representative cross-modal hashing retrieval methods, including DCMH 
(Jiang and Li, 2017), GCDH (Bai et al., 2022), SCAHN (Wang et al., 
2020), DCMHT (Tu et al., 2022), DHaPH (Huo et al., 2024b), DNPH
(Huo et al., 2024a), DNpH (Qin et al., 2024), DSPH (Huo et al., 2023), 
and TwDH (Tu et al., 2024). All comparative methods were imple-
mented using their official source code. The network parameters were 
configured according to the official settings provided. If the parameters 
were not specified in the corresponding papers, we adhered to those 
provided in the official source code.
7 
4.2.2. Implementation details
We utilized a Linux server equipped with an NVIDIA A40 GPU 

for model training and comparative experiments, and implemented 
our model using the open-source framework PyTorch 2.2.1. The ViT-
B/32 pre-trained model provided by OpenAI was employed as our 
feature backbone network. We optimized the model parameters using 
the Adam optimizer with a learning rate of 0.001, training the model 
for 50 epochs with a batch size of 128. The hyperparameters 𝛼, 𝛽, 
and 𝜔 were set to 0.09, 0.004, and 1.6, respectively. During the data 
processing phase, images were uniformly resized to 224 × 224, and 
text was encoded using the BPE method. The query and train settings 
for different datasets are detailed in Table  2.

4.2.3. Evaluation indicators
To comprehensively validate the performance of CAGMH, we used 

five key metrics: Mean Average Precision (mAP), mean Average Pre-
cision within Hamming radius 2 (P@H ⩽ 2), Precision–Recall (PR) 
curve, TopN-precision curve and Normalized Discounted Cumulative 
Gain (NDCG@1000).

Table  3 presents the mAP results for text-to-image (T2I) and image-
to-text (I2T) retrieval tasks, with the best and second-best results 
highlighted in bold and underlined, respectively. Compared to baseline 
methods, our CAGMH model consistently achieves superior perfor-
mance. On the MIRFLICKR-25K dataset, CAGMH outperforms the best 
CMH method, DNpH, by 5.31% in I2T and 7.49% in T2I retrieval. Simi-
larly, on the NUSWIDE dataset, it surpasses GCDH by 3.45% and 2.96% 
in I2T and T2I retrieval, respectively. On the COCO dataset, our ap-
proach also shows a leading advantage. Finally, we achieved excellent 
results on the IAPR TC-12 dataset. Additionally, our model achieves 
optimal performance after just 50 training epochs, demonstrating fast 
convergence. This is primarily attributed to the proposed loss function, 
which integrates Covariance Attention Guidance and Cross-modal Class 
Balance Loss. The Covariance Attention Guidance module aligns fea-
tures across modalities by considering their covariance, accelerating 
convergence through improved hash code optimization. Its conver-
gence analysis and mAP changes are shown in Fig.  3. Additionally, the 
Cross-modal Class Balance Loss mitigates the prevalent issue of class 
imbalance in real-world datasets, promoting more stable and balanced 
learning. By addressing this imbalance, the model generalizes better to 
unseen data and is less susceptible to overfitting, resulting in improved 
performance across various tasks.

Moreover, we evaluated our model from multiple perspectives. Figs. 
4, 5, 6, and 7 compare the performance of different datasets under 
16-bit and 32-bit hash codes using PR curves and Top-N precision 
curves. The results show that our method significantly outperforms 
others, mainly due to the Covariance Attention Guidance Mamba Mod-
ule, which effectively fuses extracted features to enhance semantic 
alignment. In contrast, baseline methods rely solely on CLIP’s direct 
feature extraction, lacking further refinement, which limits their per-
formance. Additionally, the superior results in Top-N precision curves 
are attributed to the Cross Modal Class Balance Loss, which mitigates 
class imbalance, thereby improving retrieval accuracy and robustness.

In Fig.  8, subfigures (a), (b), (c), and (d) present the mAP@H ≤ 2 
results for I2T retrieval, while subfigures (e), (f), (g), and (h) display the 
corresponding results for T2I retrieval. When the hash code length is 64 
bits, the mAP@H ≤ 2 values for most hashing methods tend to decrease, 
likely due to the increased sparsity of the discrete space, which causes 
fewer data points to fall within a Hamming radius of 2. However, our 
method maintains a high mAP@H ≤ 2, demonstrating the effectiveness 
of our proposed loss function. This further demonstrates that the hash 
codes generated by CAGMH maintain high retrieval accuracy and 
performance, particularly in similarity matching and result ranking.

Fig.  9 shows a comparison of our method and baselines using the 
NDCG@1000 metric, which evaluates both relevance and ranking qual-
ity of retrieval results. Our method outperforms all baselines, especially 
on the MIRFLICKR-25K dataset, due to the Covariance Attention Guid-
ance Mamba Module and the designed loss function, which enhance 
feature representation and ranking precision, ensuring more efficient 
and accurate cross-modal retrieval.
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Table 3
Comparison with baselines in terms of map results w.r.t. 16 bit, 32 bit and 64 bit on four datasets.
 Task Method MIRFLICKR-25K NUS WIDE MS COCO IAPR TC-12
 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 
 DCMH 0.7288 0.7411 0.7490 0.5238 0.5995 0.6195 0.5177 0.5311 0.5471 0.4584 0.4882 0.5045  
 SCAHN 0.7647 0.7713 0.7743 0.6376 0.6577 0.6618 0.6417 0.6668 0.6516 0.5213 0.5351 0.5528  
 GCDH 0.7991 0.8123 0.8204 0.7142 0.7367 0.7498 0.7297 0.7651 0.7905 – – –  
 DCMHT 0.8254 0.8284 0.8257 0.6832 0.6892 0.7025 0.6440 0.6465 0.6552 0.5749 0.5960 0.6132  
 I2T DHaPH 0.8271 0.8351 0.8324 0.7215 0.7333 0.7410 0.7310 0.7402 0.7496 0.5999 0.6207 0.6307  
 DNPH 0.7899 0.8225 0.8201 0.6668 0.6872 0.7004 0.6356 0.6865 0.7395 0.4573 0.5240 0.5671  
 DNpH 0.8399 0.8487 0.8500 0.7135 0.7169 0.7247 0.6754 0.6897 0.6862 0.7012 0.7272 0.7473  
 DSPH 0.8036 0.8286 0.8439 0.6756 0.6898 0.7161 0.6916 0.7416 0.7706 0.5281 0.6082 0.6629  
 TwDH 0.7613 0.7544 0.7834 0.6226 0.6636 0.6668 0.6091 0.6808 0.7114 – – –  
 Ours 0.8850 0.9003 0.9128 0.7507 0.7678 0.7857 0.7131 0.7732 0.7981 0.5791 0.6780 0.7583 
 DCMH 0.7520 0.7696 0.7776 0.5440 0.5901 0.5956 0.5510 0.5883 0.6050 0.5180 0.5368 0.5464  
 SCAHN 0.7672 0.7823 0.7845 0.6676 0.6739 0.6754 0.6417 0.6645 0.6533 0.5188 0.5252 0.5398  
 GCDH 0.7849 0.8022 0.8067 0.7215 0.7423 0.7534 0.7261 0.7650 0.7885 – – –  
 DCMHT 0.8115 0.8179 0.8200 0.6920 0.7081 0.7208 0.6282 0.6361 0.6484 0.5770 0.6185 0.6271  
 T2I DHaPH 0.8089 0.8170 0.8194 0.7203 0.7284 0.7388 0.6999 0.7037 0.7168 0.6011 0.6134 0.6297  
 DNPH 0.7880 0.8123 0.8062 0.6860 0.7066 0.7204 0.6346 0.6932 0.7438 0.4479 0.5059 0.5580  
 DNpH 0.8151 0.8249 0.8329 0.7222 0.7265 0.7313 0.6595 0.6801 0.6990 0.7010 0.7260 0.7472  
 DSPH 0.7909 0.8044 0.8298 0.6910 0.7054 0.7304 0.6941 0.7445 0.7674 0.5119 0.6019 0.6611  
 TwDH 0.7508 0.7476 0.7788 0.6298 0.6731 0.6772 0.6004 0.6701 0.7056 – – –  
 Ours 0.8853 0.9000 0.9123 0.7497 0.7690 0.7874 0.7140 0.7736 0.7979 0.5788 0.6770 0.7579 
Fig. 3. MIRFLICKR-25K and NUS-WIDE 16-bit convergence curves: Loss and mAP metrics.
4.3. Ablation study

We conducted ablation experiments on MIRFLICKR-25K and NUS-
WIDE to demonstrate the effectiveness of each proposed method, in-
troducing three model variants: (1) CAGMH-0, which omits both the 
Covariance Attention Guidance Mamba Module and the cross-modal 
classification balance loss; (2) CAGMH-1, which omits only the Co-
variance Attention Guidance Mamba Module; (3) CAGMH-2, which 
omits only the cross-modal classification balance loss. The experimental 
results, presented in Table  4, indicate that the cross-modal classifica-
tion balance loss effectively addresses the proxy loss issue, while the 
Covariance Attention Guidance Mamba Module significantly enhances 
model performance by facilitating information exchange and reinforce-
ment across modalities. The combined application of these components 
results in average performance improvements of 8.91% and 7.51% on 
the two datasets, respectively.

4.4. Hyperparameter experiments

Fig.  10 presents the experimental results that compare the impact of 
the hyperparameters 𝛼, 𝛽, and 𝜔 on the performance of the MIRFLICKR-
25K dataset. These results clearly demonstrate the critical role that 
each hyperparameter plays in the overall model performance. From 
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Table 4
Ablation experiments.
 Task Method MIRFLICKR-25K NUS-WIDE

 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 
 CAGMH-0 0.8036 0.8286 0.8439 0.6756 0.6898 0.7162  
 I2T CAGMH-1 0.8324 0.8429 0.8530 0.6818 0.7009 0.7175  
 CAGMH-2 0.8648 0.8881 0.9083 0.7440 0.7601 0.7803  
 CAGMH 0.8850 0.9003 0.9128 0.7507 0.7678 0.7857 
 CAGMH-0 0.7919 0.8044 0.8298 0.6910 0.7054 0.7304  
 T2I CAGMH-1 0.8121 0.8169 0.8332 0.6995 0.7139 0.7352  
 CAGMH-2 0.8655 0.8876 0.9081 0.7424 0.7688 0.7860  
 CAGMH 0.8853 0.9000 0.9123 0.7497 0.7690 0.7874 

the experimental results, we can conclude that when 𝛼, 𝛽, and 𝜔 are 
set to 0.09, 0.004, and 1.6, respectively, the model achieves better 
performance. Furthermore, this specific configuration consistently pro-
duces optimal outcomes when the parameters are used in conjunction, 
thereby enhancing the model’s overall robustness and reliability.

5. Discussion

We propose an end-to-end deep CMH hashing method. Our ap-
proach aligns with existing deep CMH methods during feature extrac-
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Fig. 4. MIRFLICKR-25K results of Precision–Recall curves, TopN precision curves on 16 bit and 32 bit.
Fig. 5. NUS-WIDE results of Precision–Recall curves, TopN precision curves on 16 bit and 32 bit.
tion, focusing on establishing associations between cross-modal data 
and semantic labels.

Traditional methods often overlook information exchange between 
modalities, leading to insufficient fusion of cross-modal information. 
To address this, our model introduces the Mamba module, which effec-
tively integrates information across different modalities. Additionally, 
we employ a zero-parameter covariance feature enhancement method 
to further amplify significant inter-modal information. This enhance-
ment enables the model to retain single-modality information while 
9 
simultaneously learning latent connections between different modali-
ties, thereby improving the representation of similar information and 
enhancing overall feature quality.

To tackle the limitations of traditional proxy loss functions, which 
lack effective center constraints, we propose a novel loss function. 
Based on extensive experiments, it can be concluded that our method 
significantly enhances retrieval accuracy under short hash codes, as 
measured by the mAP@H ⩽ 2 metric. While our SMPH model shows 
notable improvements in accuracy compared to DSPH, the gains on 
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Fig. 6. MS COCO results of Precision–Recall curves, TopN precision curves on 16 bit and 32 bit.
Fig. 7. IAPR TC-12 results of Precision–Recall curves, TopN precision curves on 16 bit and 32 bit.
the MS COCO and IAPR TC-12 datasets remain limited. The MS COCO 
and IAPR TC-12 datasets differs significantly from the NUS-WIDE and 
MIRFLICKR-25K datasets in terms of textual description style. While 
the MS COCO and IAPR TC-12 dataset uses sentence-based descriptions 
with strong contextual associations, the NUS-WIDE and MIRFLICKR-
25K datasets rely on textual descriptions composed of related keywords. 
This distinction is a critical factor contributing to the challenge of im-
proving model performance on the MS COCO and IAPR TC-12 datasets. 
10 
To address this, future research could explore strategies such as prompt 
learning to enhance the model’s ability to focus on keywords while 
mitigating the influence of contextual interference.

6. Conclusion

This paper presents an efficient cross-modal hashing (CMH) re-
trieval method, named Covariance Attention Guidance Mamba Hashing 
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Fig. 8. The mAP@H ⩽ 2 w.r.t. different code lengths on the four datasets.
Fig. 9. Comparison with baselines in terms of NDCG@1000 w.r.t. fferent code lengths on the four datasets.
(CAGMH) for Cross-Modal Retrieval, which leverages covariance at-
tention and the Mamba feature fusion module. Compared to existing 
CMH approaches, CAGMH offers distinct advantages. First, it extracts 
intra-modal features through separate networks, while a fusion and 
enhancement module uncovers latent inter-modal relationships. More-
over, by introducing a novel cross-modal classification balance loss 
and multimodal proxy loss, CAGMH effectively overcomes limitations 
in traditional proxy-based methods, particularly in addressing cross-
modal balance, diversity loss, and robustness. Extensive experiments 
on benchmark datasets show that CAGMH consistently surpasses state-
of-the-art CMH methods, demonstrating superior retrieval accuracy and 
efficiency.
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