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Abstract

Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities for cap-
turing and reasoning over multimodal inputs. However, these models are prone to paramet-
ric knowledge conflicts, which arise from inconsistencies of represented knowledge between
their vision and language components. In this paper, we formally define the problem of
cross-modality parametric knowledge conflict and present a systematic approach to
detect, interpret, and mitigate them. We introduce a pipeline that identifies conflicts be-
tween visual and textual answers, showing a persistently high conflict rate across modalities
in recent LVLMs regardless of the model size. We further investigate how these conflicts
interfere with the inference process and propose a contrastive metric to discern the con-
flicting samples from the others. Building on these insights, we develop a novel dynamic
contrastive decoding method that removes undesirable logits inferred from the less confident
modality components based on answer confidence. For models that do not provide logits, we
also introduce two prompt-based strategies to mitigate the conflicts. Our methods achieve
promising improvements in accuracy on both the ViQuAE and InfoSeek datasets. Specif-
ically, using LLaVA-34B, our proposed dynamic contrastive decoding improves an average
accuracy of 2.24%.

1 Introduction

Large Vision-Language Models (LVLMs; OpenAI 2023; Anil et al. 2023; Liu et al. 2024) have demonstrated
potent capabilities for perceiving and understanding information across different modalities. These models
typically consist of a visual encoder and a large language model (LLM), aligned by a projection layer (Li
et al., 2022a; Alayrac et al., 2022; Liu et al., 2024). This alignment and collaboration mechanism between the
language and vision components allows users to input text and images simultaneously, breeding some of the
wildest applications, including retrieving information based on a combination of textual and visual queries
(Karthik et al., 2023; Zhang et al., 2024a) and accomplishing complex real-world tasks with multimodal
agents (Zhang & Zhang, 2023; Zheng et al., 2024).

However, the disentangled training processes and distinct learning resources leveraged by the vision and
language components of an LVLM, respectively, inherently bring along inconsistencies in their learned repre-
sentations, captured knowledge, as well as their influence during inference (Bartsch et al., 2023; Rabinovich
et al., 2023). Given that the visual encoder and the LLM are separately trained on different datasets with
distinct training objectives, their parametric knowledge across language and vision modalities is susceptible
to conflicts, potentially leading to hallucinations (Ji et al., 2023) and inconsistencies in prediction (Chang
& Bergen, 2024). As illustrated in Fig. 1, we present a conflict case from an LVLM. When asked a ques-
tion about the same entity presented in two different modalities, the LVLM provides two contradictory
answers. Even though the visual encoder is able to recognize the Sydney Opera House , the model still
fails to integrate this information coherently across modalities. This phenomenon reveals a crucial chal-
lenge: the disparity between the knowledge captured by the vision and language components of LVLMs.
However, there has been limited research on parametric knowledge conflicts within these models, especially
concerning cross-modality conflicts. Thus, in this paper, we systematically investigate the phenomenon of
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Figure 1: A conflict case of different input modalities with the same information. The conflict still happens
even when the visual components recognize the Sydney Opera House.

cross-modality parametric knowledge conflict as defined in §3. We aim to address three principled
research questions, as further detailed below:

RQ1: How to detect cross-modality parametric knowledge conflicts? In §4, we introduce a pipeline for detect-
ing such conflicts using a multiple-choice question answering format focused on named entities. Specifically,
we present each named entity in different modalities and pose the same question about it. The resulting
answers derived from the knowledge of each modality are then compared to determine if a conflict exists.
Our findings reveal a persistently high lower bound of the conflict rate across various model scales and
architectures, indicating that scaling alone does not resolve these conflicts.

RQ2: How can cross-modality parametric knowledge conflicts be interpreted, especially how they intervene
the inference process? Given the severity of knowledge conflicts in LVLMs, this intriguing question arises.
One might initially assume that such cross-modal conflicts would reduce the prediction confidence in the
original answer due to conflicting parametric knowledge. However, our analyses demonstrate that confidence
cannot reliably distinguish between correct and incorrect answers, necessitating a more nuanced interpre-
tation of these conflicts. To address this issue, we propose a contrastive metric in §5 that more effectively
identifies conflicting samples. This metric suggests that cross-modality knowledge conflicts actually widen
the information gap embedded in the tokens. Moreover, we formulate the metric in an autoregressive form
to elicit the memory of visual components and discover a distinct pattern of what different modalities learn.

RQ3: What strategies can be introduced to mitigate cross-modality knowledge conflicts at inference? Having
gained an understanding of how these conflicts affect the inference, we seek to address this question. Inspired
by the strong discriminatory power of the contrastive metric, we propose a dynamic contrastive decoding
method in §6. This method selectively removes undesired logits inferred from the less reliable modality based
on answer confidence. Additionally, we propose two prompt-based strategies to mitigate cross-modality
knowledge conflicts in cases where the model does not provide logits. Our dynamic contrastive decoding
method provides more consistent improvements.

In summary, the main contributions of this paper are threefold: 1) To the best of our knowledge, this is the
first-of-its-kind work to define and study cross-modality parametric knowledge conflicts in LVLMs. 2) We
propose a practical pipeline for detecting such conflicts, along with a metric that distinguishes conflicting
samples from non-conflicting ones. 3) We introduce a dynamic contrastive decoding method to mitigate
these conflicts, as well as two prompt-based strategies for closed-source models.

2 Related Work

Knowledge Conflict. Knowledge conflict is a critical problem in context-specific tasks, such as machine
reading comprehension (Longpre et al., 2021; Zhou et al., 2023; Wang et al., 2023a) and information extrac-
tion (Wang et al., 2022; Fang et al., 2024; Xu et al., 2022; Wang et al., 2023b;c) In the realm of LLMs, recent
studies can be categorized into context-memory conflict, inter-context conflict, and intra-memory conflict
(Xu et al., 2024). The context-memory conflict and the inter-context conflict are concerned mainly in the
process of Retrieval Augmented Generation (RAG). They find that LLMs tend to overly rely on their own
parametric memory when facing contradictory evidence (Xie et al., 2023; Wu et al., 2024). The intra-memory
conflict, on the other hand, is rooted in the pre-training corpus, which contains inaccurate and misleading
information (Bender et al., 2021; Lin et al., 2021; Kandpal et al., 2023). The inconsistency of knowledge
causes LLMs to generate contradictory outputs when given different prompts with the same information
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(Elazar et al., 2022; Grosse et al., 2023), undermining their reliability. In this context, prior work has not
systematically studied this problem for LVLMs, which motivates this work.

Robustness Issues of LVLMs. Although LVLMs have demonstrated significant potential in understanding
and reasoning over multimodal inputs, they also face several robustness challenges, including language bias
(Niu et al., 2021; Zhang et al., 2024b; Wang et al., 2024a), hallucinations (Huang et al., 2024; Zhu et al.,
2024), and the visual perception gap (Ghosh et al., 2024). Language bias refers to the tendency of LVLMs to
rely on language patterns learned during LLM pretraining (Niu et al., 2021; Zhang et al., 2024b; Wang et al.,
2024a). Hallucinations, which originate from LLMs, pertain to the discrepancies between generated contents
and facts from either real-world or user inputs. (Huang et al., 2023; 2024). The visual perception gap refers
to the phenomenon that the LVLMs demonstrate proficient knowledge and visual recognition abilities but
fail to link their visual recognition to this knowledge (Lee et al., 2023; Ghosh et al., 2024). These issues
often overlook the potential conflicts between the visual and textual components of LVLMs, contributing to
the aforementioned challenges.

Inference-time Intervention. Inference-time intervention encompasses a range of techniques designed to
influence the inference or generation process of LLMs (Damera Venkata & Bhattacharyya, 2022; Li et al.,
2024b). These techniques either directly manipulate the logits of the generated tokens or adjust the model
parameters during inference. One of the most notable strategies is contrastive decoding (Li et al., 2022b;
Leng et al., 2024; Zhang et al., 2024b), which mitigates undesired distributions by removing them from the
original distribution. Another approach involves modifying specific layers of LLMs. For instance, ITI (Li
et al., 2024b) adjusts model activation during inference by following a set of directions across several attention
heads. These methods provide a means for training-free adjustments to LVLMs, significantly reducing the
cost compared to readjusting model parameters.

3 Preliminaries

Before diving into parametric knowledge conflicts in LVLMs, we will first outline key definitions and provide
an overview of the general experimental setup.

3.1 Definitions

To ground our analysis, we need to define 1) a typical LVLM architecture, and 2) cross-modality parametric
knowledge conflicts.

LVLM Architecture. We focus on the general architecture that is adopted by a variety of LVLMs,
including LLaVA (Liu et al., 2024), Blip (Li et al., 2023), and Qwen-VL (Bai et al., 2023). Typically, these
models consist of a visual encoder V , a projector F , and a language model LM. Given a multimodal input
xm = {xv, xt}, where xv is the visual input and xt is the textual input, LVLM first processes xv with V ,
resulting in pv = V (xv). Then, through the projector F , pv is projected into the textual embedding space:
ev = F (pv). Finally, xt is embedded into the embedding space by the embedding layer of the LM, resulting
in et = embed(xt). The language model then generates the output by the probability pLM(y|ev, et). So, a
contemporary LVLM can be defined as pLM(y|F (V (xv)), embed(xt)).

Cross-Modality Parametric Knowledge Conflict. Since training a large model from scratch is pro-
hibitively costly, LVLMs typically align a vision encoder onto an existing language model. For example,
LLaVA (Liu et al., 2024) aligns the pre-trained CLIP visual encoder ViT-L/14 (Radford et al., 2021) with
Vicuna (Chiang et al., 2023), which have been separately trained on different data distributions, leading to
potential inconsistent parametric knowledge.

To elicit parametric knowledge, we propose to use answers from different modalities as the indica-
tors of the specific parametric knowledge from each modality. Specifically, given a multimodal input
xm = {xv, q}, where q is the question regarding the entity in the image xv, the output ym is generated
by pLM(F (V (xv)), embed(qm)), which we define as the visual answer. On the contrary, given a textual input
xt = {xe, q}, where xe is the textual description of a named entity and q is the question to the named entity,
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the output yt is generated by pLM(embed(qt)), which we define as the textual answer. If ym ̸= yt, then a
parametric knowledge conflict is identified.

3.2 Experimental Setup

3.2.1 Datasets Construction

Original Datasets. Following prior studies on knowledge conflicts(Xie et al., 2023; Wu et al., 2024), we
adopt the multiple choice question answering (MCQA) as the form of evaluating cross-modality parametric
knowledge conflicts. The rationale for this choice is twofold: manual evaluation of free-form answers is not
scalable due to the significant human labor required, while automated evaluation can introduce undesirable
model bias. We choose two tasks of knowledge-based visual question answering about named entities:

• ViQuAE (Lerner et al., 2022) is a semi-automatically constructed dataset comprising 3.7K questions
about named entities grounded in a visual context, built upon TriviaQA (Joshi et al., 2017). The
named entity in the original question is replaced with an image depicting it, requiring the model to
answer the question based on the visual context provided.

• InfoSeek (Chen et al., 2023) is a dataset containing 1.3M questions about over 11K visual entities,
designed to evaluate the performance of LVLMs in processing visual content while acquiring rele-
vant knowledge. The dataset is automatically constructed from templates of over 300 relations in
Wikidata, ensuring a diverse set of questions.

Multiple Choices Construction. Given that the original datasets are free-form question answering, we
synthesize distractor choices for each question. These distractor choices must be relevant to the questions to
some extent but factually incorrect, to effectively evaluate the model’s ability to discern the correct answers.
To this end, we employ LLaMA-3-8B (AI@Meta, 2024) to synthesize relevant but incorrect distractor choices.
The quality of the generated distractors is discussed in Appx. §A.3.

3.2.2 Evaluation Metrics

We evaluate model performance using two primary metrics: Accuracy and Flip Rate. Accuracy (Acc)
measures the model’s ability to identify the correct answer in the MCQA format. It is calculated as the
proportion of questions where the model’s predicted answer matches the ground truth:

Acc = 1
N

N∑
i=1

1(yi = ŷi), (1)

where N is the number of samples and ŷi is the gold answer. Flip Rate (FR) is defined to quantify the
inconsistency of the model’s internal knowledge across different modalities. It measures the frequency of
conflicting predictions when the model processes visual versus textual inputs for the same question. FR is
calculated as:

FR = 1
N

N∑
i=1

1(yvi
̸= yti

), (2)

where yvi is the visual answer and yti is the textual answer. FR only calculates cases where the textual
answer contradicts the visual answer, regardless of the correctness of the answers.

3.2.3 Models

Following prior works on LVLMs (Zhang et al., 2024b; Zhu et al., 2024), we choose the LLaVA series (Li et al.,
2024a) for evaluation, as they provide strong performance and a full range of model scales. Moreover, to
evaluate how the architecture of LVLMs affects the phenomenon of knowledge conflicts, we adopt InstructBlip
(Dai et al., 2023) and Qwen2-VL (Wang et al., 2024b).
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4 Detecting Knowledge Conflicts

In this section, we discuss the pipeline to detect parametric knowledge conflicts in LVLMs and evaluate the
severity of these conflicts.

4.1 Method

Inputs. As defined in §3.1, the visual answer is generated by asking a question about the entity presented
in the image, while the textual answer is induced by replacing the image with the textual description of
the named entity. To ensure that equal information is provided across modalities, we design distinct inputs
for each, as illustrated in Fig. 1. Specifically, given a multimodal input xm = {xv, q} ∈ D, where D is the
dataset, xv is the image containing the named entity, and q is the question to the named entity in xv, the
visual answer is generated by:

yv ∼ pVLM(xv, q) = pLM(F (V (xv)), embed(q)). (3)
To generate the textual answer, we add an indicator prompt p before the original question, informing the lan-
guage model about the named entity in the question. p is written as This is an image of $named_entity .
Thus, the input of the textual answer becomes xt = p + q. The textual answer is then generated by:

yt ∼ pVLM(xt) = pLM(embed(xt)). (4)

Irrelevant Factor Mitigation in Conflict Detection. The visual answers generated from the aforemen-
tioned inputs can be regarded as the elicited parametric knowledge from LVLMs. However, these answers are
influenced by various other factors. For example, the visual perceiver V might fail to recognize the entity in
xv, resulting in a random guess. These potential issues impede our ability to accurately detect cross-modality
parametric knowledge conflicts. To mitigate these factors, we first instruct the LVLM to identify the entity
depicted in xv. If the model correctly predicts the named entity, we assume the knowledge related to the
named entity exists in the parametric memory of V and F , implying that any such conflict is not due to a
lack of knowledge in V and F .

4.2 Metric

Conflict Samples

All Samples

Knowledge 
Conflict

Performance
Gap

Conflict Rate

Figure 2: Relationship of
conflicting samples.

Despite efforts to mitigate the recognition factor in conflict detection, certain
factors remain difficult to disentangle. For instance, a model might recognize
the entity in xv, but fail to link it to the parametric knowledge within the
LVLMs through the projector F (Ghosh et al., 2024) or falter in its reasoning
process. These issues create a Performance Gap between the modalities. To
isolate and quantify the true knowledge conflict, we estimate both the upper and
lower bounds of the conflict rate that is attributed solely to the cross-modality
knowledge conflicts. The procedure is as follows:

Determine the upper bound. The FR represents the total proportion of
samples where the visual and textual answers differ. This serves as the upper
bound for the conflict rate, as it includes conflicts from all sources.

Estimate the performance gap. We estimate the portion of disagreements
caused by the Performance Gap. We quantify this gap using the difference in accuracy on correctly recognized
entities: ∆Acc = R.Acctextual − R.Accvisual. This value represents the percentage of questions the model
answers correctly with textual input but fails with visual input, thereby isolating errors introduced specifically
by the visual processing pipeline.

Calculate the lower bound. Our core assumption is that the errors captured by ∆Acc are a primary
source of the observed flips. To find the conflicts that are not explained by this performance gap, we subtract
this value from the total flip rate. This gives us a conservative estimate—a lower bound—for the rate of
conflicts that can be attributed purely to inconsistent parametric knowledge.

This relationship is visualized in Fig. 2. The total set of conflicting samples (FR) contains a subset of
conflicts that can be explained by the ∆Acc. The remaining samples represent our estimated Conflict Rate
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Table 1: Results of detecting cross-modality parametric knowledge conflict. We report accuracy (Acc),
recognized accuracy (R. Acc), accuracy difference (∆Acc), the upper bound of the conflict rate (FR≤) and
the lower bound of the conflict rate (CR≥).

Model ViQuAE InfoSeek

Acc↑ R. Acc↑ ∆Acc↓ FR≤↓ CR≥↓ Acc↑ R. Acc↑ ∆Acc↓ FR≤↓ CR≥↓

LLaVA-7b Textual 75.65 78.43 20.32 41.68 21.36 52.74 54.55 27.28 70.13 42.85Visual 53.26 58.11 22.11 27.27

LLaVA-13b Textual 75.65 69.63 8.37 36.47 28.10 56.31 55.41 19.91 58.44 38.53Visual 58.57 61.26 31.33 35.50

LLaVA-34b Textual 82.46 82.32 4.37 24.90 20.53 66.02 64.07 15.15 43.72 28.57Visual 69.14 77.95 44.35 48.92

InstructBlip-7b Textual 81.73 80.42 34.79 55.35 20.56 50.53 53.68 15.58 59.74 40.16Visual 43.09 45.63 35.17 38.10

Qwen2-VL-7b Textual 79.30 78.56 6.19 28.65 22.46 63.24 62.77 2.16 22.51 20.35Visual 67.97 72.37 61.69 60.61

(CR). Therefore, the CR is formulated as:

CR = Nkc

N
≥ Nf − Np

N
= FR − ∆Acc. (5)

In essence, CR filters out the noise from performance errors to provide a clearer signal of the underlying
knowledge inconsistency within the model.

4.3 Analysis

We conduct experiments with LVLMs following the aforementioned procedure, and the results are presented
in Tab. 1. We report the accuracy (Acc) on the complete evaluation set and the recognized accuracy (R.
Acc) on the subset of the evaluation set recognized by the LVLM. Additionally, we calculate the flip rate
(FR) and the conflict rate (CR) based on the recognized evaluation set.

Performance. For both datasets, the LLaVA-34b model demonstrates the highest accuracy for both textual
and visual inputs. However, a significant performance gap exists between the textual and visual answers.
The most pronounced performance gap in the LLaVA family is observed in the LLaVA-7b model, where the
accuracy difference exceeds 20%. Furthermore, there is a notable improvement in the recognized accuracy (R.
Acc) across all models compared to the overall accuracy (Acc). This indicates that the models perform better
on recognized entities and that the recognition process effectively mitigates potential factors influencing the
final performance.

Conflict Rate. The flip rate (FR) decreases with increasing model size on both datasets, ranging from
55.35% to 24.90% on the ViQuAE dataset. Concurrently, the ∆Acc also declines with larger model sizes,
decreasing from 20.32% to 4.37% on the ViQuAE dataset. This trend is more likely to be driven by larger
models’ improved ability to link visual perception with parametric knowledge and their enhanced reasoning
capabilities. When calculating the lower bound of the parametric knowledge conflict rate CR, a consistent
pattern emerges across the datasets: LLaVA-7b/13b/34b exhibits values of 21.36%, 28.10%, and 20.53%,
respectively. This pattern suggests that regardless of the model’s scale and architecture, the likelihood of
parametric knowledge conflicts remains relatively constant.

Key Takeaway

There is a clear trend that as the model size increases, both the FR and the ∆Acc between textual and
visual answers decrease. However, the lower bound of the knowledge conflict rate (CR) remains consis-
tently high. This suggests that although scaling can enhance the overall performance and consistency, it
does not resolve cross-modality knowledge conflicts.
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5 Interpreting Knowledge Conflicts

The constantly large conflict rate across datasets highlights the phenomenon caused by cross-modality knowl-
edge conflicts. In this section, we will take a closer look, through the sample-wise perspective, at how para-
metric knowledge in visual components, i.e., the visual encoder V and the projector F , causes cross-modality
parametric knowledge conflict by intervening the inference process of the LLM. In particular, we explore how
these conflicts influence answer confidence and propose a metric that can serve as an indicator of the presence
of such conflicts.

5.1 Is probability a reliable indicator of answer correctness?

Method. Since the answer probability reflects the model’s confidence in a given response, it is natural to
consider how parametric knowledge conflicts might affect this probability. For instance, such conflicts may
either reduce confidence in the original answer or introduce a more confident alternative answer. Given that
embed(xe) and F (V (xv)) might encapsulate different knowledge, this discrepancy can affect the probability
distribution over possible answers, resulting in a shift in confidence in the final output. To investigate
how cross-modality parametric knowledge conflict influences answer confidence, we design experiments to
determine whether the answer confidence can serve as an indicator of conflict and whether it can suggest
the correctness of the answer.

Table 2: Testing different answer correctness indica-
tors based on answer confidence.

Method ViQuAE
Acc R. Acc

Textual Answer 75.65 78.43
Visual Answer 53.26 58.11
Max Confidence 54.22 60.14
Max Confidence Shift 54.29 60.14
Min Variance Prompt 55.51 61.41
Min Variance Dropout 46.51 50.72

To elicit the answer probability, we calculate the
textual answer probability pt and the visual answer
probability pv using Eq. 3 and Eq. 4. Since we
adopt MCQA as the task format, we extract the
logits of the answer token, i.e. “A,” “B,” “C,”
and “D” and apply the softmax function to them.
Thus, the extracted confidence can be presented as
c = softmax(log(p[A]), log(p[B]), log(p[C]), log(p[D])),
where p[A] indicates the probability of token “A,” and
so on. Then, we use the following strategies to under-
stand how visual components influence the inference:

1. Max confidence: max(ct[yt], cv[yv]), where the most confident answer is considered correct.

2. Max confidence shift: max(ct[yt] − ct[yv], cv[yv] − cv[yt]), where yt is the textual answer and yv is the
visual answer, indicating that the modality with the most significant influence on the answer is deemed
the dominant modality for the question.

3. Min variance: min(σ(ct[yt]), σ(cv[yv])), where the answer with the least variance under disturbance is
considered the final answer. We introduce disturbance through two methods: writing diverse prompts
and applying the Monte Carlo dropout (Gal & Ghahramani, 2016).

Results. The results of three strategies are listed in Tab. 2. From these results, it is evident that none of the
strategies based on token probability reliably selects the correct answer when conflicts arise between textual
and visual answers. This suggests that: 1) Confidence is not necessarily reduced by conflicts. The presence
of a cross-modality parametric knowledge conflict does not inherently lower the confidence level of the
answer. Instead, the conflict often introduces an alternative answer with higher confidence, overshadowing
the original, potentially correct answer. This observation indicates that high confidence alone is not a reliable
indicator of answer correctness in the presence of such conflicts. 2) Confidence shifts are not indicative of
reliability. The results show that a greater shift in confidence between the textual and visual answers does
not necessarily correlate with the reliability of the final answer. 3) Cross-modality parametric knowledge
conflict is not an uncertainty issue. The table also reveals that methods based on variance do not contribute
to the performance. Although these methods attempt to select the more stable answer by selecting the
answer with minimum variance in token probability, the results show reductions in accuracy. This implies
that minimizing variance does not effectively address the underlying knowledge conflicts.
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Figure 3: Distribution of the contrastive metric on all samples, samples with modality-consistent answers,
and samples with modality-conflict answers. The dashed lines indicate the medians.

5.2 Contrastive metric as indicator of conflicts

Method. To effectively understand how conflicting knowledge affects the inference, we utilize the concept
of Contrastive Decoding (Li et al., 2022b). Its objective, which subtracts an undesired distribution from the
original distribution, serves as a metric for evaluating the degree of divergence between the two distributions.
Given that we are using MCQA as the task format, our focus is specifically on the distribution of the answer
token, particularly the first token.

Specifically, given a multimodal input xm = {xv, q}, where xv is the image and q is the question, and a
textual input xt = {xe, q}, where xe is the textual description of the named entity in xv, the predicted first
token distribution of answers for each modality can be represented as Equations (3) and (4). The contrastive
objective can then be written as:

log(pcd) = log(pv) − log(pt) = log(pVLM(yv|xv, q)
pVLM(yt|xe, q) ) = log( pLM(yv|F (V (xv)), embed(q))

pLM(yt|embed(xe), embed(q)) ). (6)

Ideally, if F (V (xv) and embed(xe) provide the same information for q, Eq. 6 should be equal to 0. However,
due to the parametric knowledge conflicts V (F (xv)) may not embed the same knowledge as embed(xe),
leading to log(pcd) ̸≈ 0. Thus, | log(pcd)| can be interpreted as the degree of difference between V (F (xv))
and embed(xe). Additionally, the contrastive decoding objective also allows us to elicit visual memories by
eliminating the influence of textual knowledge.

Result. In Fig. 3, we present the distribution of the contrastive metric, specifically separating samples with
consistent answers across modalities from those with conflicting answers. The figure reveals a significant
disparity between the consistent and conflicting samples. Most consistent samples fall within the range of
0-0.6, while conflicting samples exhibit greater variability, with an average median of 1.46. This similar
trend suggests that the extent of conflicts is relatively consistent across different models, despite variations
in model scales and architectures, implying that the cross-modality parametric knowledge conflicts are not
solely dependent on the model’s architecture or size but are intrinsic challenges that persist across current
training datasets. The figure also suggests that the contrastive metric is effective in distinguishing between
consistent and conflicting answers. From the perspective of the contrastive metric, it quantifies the divergence
between the knowledge encoded in the visual components and the LLM. Thus, the misaligned knowledge
leads to the information gap embedded in the tokens of different modalities, which is ultimately presented
by the conflicting answer.
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Table 3: Examples of elicited textual and visual memories using the contrastive decoding objective.
Question Textual Memory Visual Memory
In what city did Bruce Lee
grow up?

San Francisco, California,
USA. "

Hong Kong. %

George Harrison was de-
ported from which city be-
cause of his youth?

George Harrison of the Beat-
les was deported from Ham-
burg, Germany. "

George Harrison was deported from
Liverpool, England because of his
youth. %

What species of fly has the
Latin name calliphora vomi-
toria?

Calliphora vomitoria is a
species of fly commonly
known as the “fruit fly.” %

Calliphora vomitoria is commonly
known as blue bottle fly. It belongs
to family Calliphoridae... "

Mary Robinson and Frances
Villiers were mistresses of
which 19th century King?

King Charles II % Mary Robinson and Frances Villiers
were mistresses of King George IV
of England. "

5.3 Eliciting Visual Knowledge

The contrastive decoding objective described in Eq. 6 not only serves as a metric but also offers a valuable tool
for examining the memory embedded within the visual components of LVLMs. Specifically, the contrastive
decoding metric can be reformulated in an autoregressive form:

pcd(y|x) =
n∏

i=1
pcd(yi|x, y<i) =

n∏
i=1

pLM(yv|F (V (xv)), embed(q), y<i)
pLM(yt|embed(xe), embed(q), y<i)

, (7)

where x is the inputs from both modalities and y<i indicates the tokens generated before step i. This autore-
gressive form of contrastive decoding metric allows us to elicit visual memory from the visual components by
removing the influence of textual knowledge. We accomplish this by transforming the question into a free-
form query without predefined options and then examining the elicited memory of the visual components.
The examples of the elicited memories are listed in Tab. 3.

From these memories, several observations can be made:

1. LLM is better at memorizing date and location. This aligns intuitively with the nature of
the LLM’s training process, where such factual knowledge frequently appears in the text corpora.
It corresponds well with the expectation that language models acquire structured knowledge from
reading-based data.

2. Visual components are better at memorizing the correlation between an entity and its
names and the relationship among entities. For example, when asked the king of two named
mistresses, the language model fails to answer correctly, while the visual memory is correct. This is
likely due to the training objective of extending modalities from LLMs (Zhu et al., 2025), aligning
visual components with the LLM, during which visual components learn entity-specific knowledge
by mapping images to the language space.

Key Takeaway

The proposed contrastive metric effectively distinguishes conflicting samples from consistent ones, sug-
gesting that cross-modality knowledge conflicts tend to exacerbate the information gap between tokens
across different modalities , regardless of model scaling or architectural modifications, highlighting the
inherent challenge of resolving such conflicts in LVLMs.

6 Mitigating Knowledge Conflicts at Inference Time

Having established an understanding of cross-modality parametric knowledge conflicts, we now shift our focus
to strategies for mitigating these conflicts. Since the contrastive metric has proven effective in distinguishing

9
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Table 4: Results of the dynamic contrastive decoding compared to baselines. Bold indicates the bests and
underline indicates second bests.

Model Method ViQuAE InfoSeek
Acc R. Acc Acc R. Acc

LLaVA-7b
Textual Answer 75.65 78.43 52.74 54.55
Visual Answer 53.26 58.11 22.11 27.27
DCD 76.49 (+0.84) 79.51 (+1.08) 54.90 (+2.16) 58.87 (+4.32)

LLaVA-13b
Textual Answer 75.65 69.63 56.31 55.41
Visual Answer 58.57 61.26 31.33 35.50
DCD 76.58 (+0.93) 74.14 (+4.51) 58.03 (+1.72) 56.52 (+1.11)

LLaVA-34b
Textual Answer 80.99 82.32 66.02 64.07
Visual Answer 69.14 77.95 44.35 48.92
DCD 83.35 (+2.36) 85.33 (+3.01) 68.14 (+2.12) 67.72 (+3.65)

InstructBlip-7b
Textual Answer 81.73 80.42 50.53 53.68
Visual Answer 43.09 45.63 35.17 38.10
DCD 82.47 (+0.74) 80.59 (+0.17) 50.53 (+0.00) 54.38 (+0.70)

Qwen2-VL-7b
Textual Answer 79.30 78.56 63.24 62.77
Visual Answer 67.97 72.37 61.69 60.61
DCD 80.76 (+1.46) 80.59 (+2.03) 64.30 (+1.06) 63.34 (+0.57)

conflicting samples from consistent ones, we first propose a strategy that leverages the principles of contrastive
decoding. Moreover, we also design an alternative approach based on prompting for models that do not
provide access to logits during inference.

6.1 Dynamic Contrastive Decoding

Method. In an ideal application of contrastive decoding, we would have an a priori knowledge of the
logits, which enables us to define the undesired logits. That is to say, to resolve cross-modality parametric
knowledge conflicts, the logits from the incorrect, conflicting modality should be excluded from those of the
correct modality. However, in real-world scenarios, without external validation, it is impossible to definitively
determine the correctness of an answer. Therefore, we propose using the model’s answer confidence as a
trend for correctness, also treating it as a scaling factor for the original logits. We then apply these scaled
logits to the contrastive decoding algorithm, formulating the dynamic contrastive decoding (DCD).
This approach adjusts the contrastive decoding objective by incorporating confidence as a dynamic factor
to more accurately measure the difference in information embedded by the textual and visual components.

Specifically, given the textual answer yt with its probabilities pt(yt|xe, q) and the visual answer yv with its
probabilities pv(yv|xv, q), we first calculate the confidence for each answer as follows:

ct = max(softmax(log(pt[A]), log(pt[B]), log(pt[C]), log(pt[D]))), (8)
cv = max(softmax(log(pv[A]), log(pv[B]), log(pv[C]), log(pv[D]))), (9)

where p[A] indicates the probability for token “A,” and similarly for other tokens. Next, the scaled logits
are computed as st = ct × log(pt) and sv = cv × log(pv). To assess which modality is more likely to
provide the correct answer, we view the confidence as the likelihood, selecting the modality with the higher
confidence. However, as discussed in §5.1, confidence alone is insufficient to determine correctness. Therefore,
we subtract the scaled logits of the less confident modality from those of the more confident one. This leads
to the application of contrastive decoding on the scaled logits, conditioned by the answer confidence:

log(pcd(y|x)) =
{

ct log(pt) − cv log(pv), if ct > cv

cv log(pv) − ct log(pt), otherwise.
(10)

Results. Tab. 4 presents the accuracy and the recognized accuracy for different methods across the ViQuAE
and InfoSeek datasets. Across both datasets and all model sizes, DCD consistently outperforms both the
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Table 5: Results of the prompt-based strategies compared to the baselines. Since the inputs of this experiment
are the same as generating visual answers, we compare them to the results of the visual answer. Bold
indicates best results and underline indicates second bests.

Method ViQuAE InfoSeek
Acc R. Acc Acc R. Acc

LLaVA-7b
Visual Answer 53.26 58.11 22.11 27.27
Reminder Prompt 53.99 (-1.66) 57.25 (-2.53) 21.25(-0.86) 27.99 (+0.72)
Answer Conflict Prompt 54.58 (-1.07) 58.51 (-1.27) 20.23 (-1.88) 27.39 (+0.12)

LLaVA-13b
Visual Answer 58.57 61.26 31.33 35.50
Reminder Prompt 58.57 (+0.00) 61.26 (+0.00) 35.53 (+4.20) 38.10 (+2.60)
Answer Conflict Prompt 57.59 (-0.98) 59.67 (-1.59) 34.27 (+2.94) 39.06 (+3.56)

LLaVA-34b
Visual Answer 69.14 77.95 44.35 48.92
Reminder Prompt 72.99 (+3.85) 79.28 (+1.33) 45.15 (+0.80) 49.62 (+0.70)
Answer Conflict Prompt 73.62 (+4.48) 79.66 (+1.71) 52.43 (+8.08) 53.68 (+4.76)

textual and visual answers. For instance, in the LLaVA-7b model, DCD improves the accuracy from 75.65%
to 76.49% on the ViQuAE dataset. Similarly, on the InfoSeek dataset, accuracy increases from 52.74% to
54.90%. These improvements are even more pronounced in the larger models. For example, in the LLaVA-
34b model, DCD increases accuracy by 2.36% on the ViQuAE dataset and by 2.12% on InfoSeek, indicating
its potential in models with larger scales.

DCD demonstrates particularly significant gains in R. Acc. For instance, on the InfoSeek dataset, the
recognized accuracy for the LLaVA-34b model increases by 3.65% when using DCD compared to the textual
answer. This trend is consistent across all model sizes, indicating that DCD is particularly effective in
improving the performance on recognized entities. The improvement in recognized accuracy is likely due to
the fact that the visual answers within the recognized set are expected to contain more relevant information
than those in the unrecognized set, as the visual components have some prior knowledge of these entities.
Consequently, the DCD can more effectively leverage this information to discern which option is correct. For
the ablation study, we also compare DCD with contrastive decoding in Appx. §B.

6.2 Prompting Strategy

Method. Since not all models provide the logits of the generated contents, we propose two prompt-based
improvement strategies for those models.

1. Reminder prompt. Once a knowledge conflict is detected , the model is prompted to regenerate the
answer with a reminder that highlights the potential presence of conflicting knowledge. This prompt
require the model to decide internally which modality is more reliable.

2. Answer prompt. Since both textual and visual answers are already generated during the detection
process, this prompt asks the model to determine which is correct.

Results. Tab. 5 presents the results of prompt-based improvements using two strategies across two datasets
and different model sizes. The effectiveness of these strategies depends on the model size. For smaller models,
both prompts negatively impact performance across both datasets, with accuracy dropping by at least 1.07%
on the ViQuAE dataset and 0.86% on the InfoSeek dataset. This suggests that smaller models may struggle
to handle prompts reminding them of potential knowledge conflicts. Furthermore, presenting smaller models
with conflicting answers seems to introduce additional confusion, evidenced by the more substantial accuracy
declines. In contrast, larger models leverage the prompts effectively, achieving accuracy gains of 4.48% and
8.08% on ViQuAE and InfoSeek, respectively. These findings suggest that prompt-based conflict strategy
becomes more effective with model scale, particularly when both conflicting answers are provided.
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Key Takeaway

Dynamic contrastive decoding (DCD) brings universal improvements against the baselines. When the
visual components recognize the entity, the logits contain more information than those that are not
recognized. The performance of prompting-based strategies varies depending on the model size. Larger
models are better at understanding and processing the designed instructions.

7 Conclusions

In this paper, we introduce the concept of cross-modality parametric knowledge conflicts in LVLMs, stemming
from misalignments between visual and textual modalities. We propose a systematic approach to detect these
conflicts, revealing a persistently high conflict rate across all model sizes and showing that scaling alone does
not resolve these issues. Building on this, we propose the contrastive metric, which effectively identifies
conflicting samples by measuring the information gap between modalities. Further, we introduce dynamic
contrastive decoding (DCD), which selectively removes unreliable logits to improve answer accuracy. For
models without access to logits, we propose two prompt-based strategies. These approaches collectively
improve model performance. On LLaVA-34B, DCD achieves an accuracy improvement of 2.36% on the
ViQuAE dataset and 2.12% on the InfoSeek dataset. Our study advances the understanding of cross-
modality parametric knowledge conflicts in LVLMs and provide practical solutions to mitigate them, leading
to more robust multimodal inference.
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Table 6: Distractor Example
Question: Which protected area is this building usually located in?
Choices: [’The Peak District’, ’Yorkshire Dales’, ’North York Moors’, ’Lake District’]

A Experimental Details

A.1 Experimental Setup

Confidence Analysis. We will describe the experimental setup of the Min variance strategy in §5.1. For
both settings, we sample 10 times with disturbance. For the prompt disturbance, we ask the LLaMA-3-8b
(AI@Meta, 2024) to rephrase the original prompt to obtain 10 different prompts and generate the answer
with each of them. For the dropout disturbance, we set the dropout rate to 0.1 and sample 10 times. Then
we extract the confidence of the gold answer and calculate the variance.

A.2 Prompts

The details of the prompts used in our experiments are listed here. The prompt to generate false options is
in Tab. 8. The reminder prompt to mitigate knowledge conflicts is in Tab. 9. The answer conflict prompt
to mitigate knowledge conflicts is in Tab. 10.

A.3 Distractor Quality

The quality of our generated distractors is manually evaluated to ensure they are both correctly formatted
and contextually relevant. An example of a question with its corresponding correct answer and generated
distractors is shown in Tab. 6. We randomly sample 200 samples from the InfoSeek dataset and assess the
generated distractors against two primary criteria:

1. Format Consistency: The distractors must match the data type and format of the correct answer.
For example, if the correct answer is a specific date like "July 26, 1990," a generated distractor such
as "in 1990" would be considered a format violation.

2. Semantic Relevance: The distractors must belong to the same semantic category as the correct
answer. In the example shown in Tab. 6, the correct answer, "Lake District," is a national park. All
generated distractors are also well-known national parks in the UK, making them highly plausible
but incorrect choices. A distractor like "London" would be a relevance violation, as it is a city, not
a protected area.

Our manual evaluation revealed a high level of quality. Out of the 200 samples, only 3 violated the format
consistency criterion, and a mere 2 violated the semantic relevance criterion. These results confirm that our
generation method produces high-quality and challenging distractors suitable for our evaluation framework.

B Ablation Study

Table 7: Experimental results of the overall ac-
curacy on the ViQuAE and the InfoSeek dataset.

ViQuAE InfoSeek
CD 70.10 49.05
DCD 76.49 54.90

We conduct experiments on the LLaVA-7b model to com-
pare the proposed DCD and the traditional contrastive
decoding method, where the latter omits the confidence
scaling in Eq. 10. The results, presented in Tab. 7, in-
dicate that the confidence scaling is effective in resolv-
ing cross-modality knowledge conflicts, which further sug-
gests that the answer confidence encapsulates valuable in-
formation about the relative informativeness of each modality for a given question. While confidence alone
may not serve as a reliable indicator, the rich information it conveys can be leveraged to enhance overall
performance.
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Table 8: Prompt for generating false options to construct the multiple-choice question answering datasets.
Given the question and its gold answer, please generate a multiple choice version
of this question. Note that the wrong choices should be relevant to the question
and the gold answer should be exactly copied from what is given. You can
randomly put the gold answer wherever you want. Please output as a json
format: {“A”: Answer A, “B”: Answer B, “C”: Answer C, “D”: Answer D}.
No further explanation or note.

Table 9: Reminder prompt to mitigate cross-modality parametric knowledge conflicts.
You are an expert at question answering. Given the question, please output
the answer. No explanation and further question. Be aware that your visual
memory might differ from your textual memory, causing a conflict in your
knowledge.

Table 10: Answer conflict prompt to mitigate cross-modality parametric knowledge conflicts.
You are an expert at question answering. Given the question, please output the
answer. No explanation and further question. Be aware that your visual mem-
ory might differ from your text memory, causing a conflict in your knowledge.
Your text memory is: {textual answer} and your visual memory is: {visual
answer}.
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