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Abstract

We introduce CSAR, an algorithm for inducing
morphemes from emergent language corpora of
parallel utterances and meanings. It is a greedy
algorithm that (1) weights morphemes based on
mutual information between forms and mean-
ings, (2) selects the highest-weighted pair, (3)
removes it from the corpus, and (4) repeats
the process to induce further morphemes (i.e.,
Count, Select, Ablate, Repeat). The effective-
ness of CSAR is first validated on procedurally
generated datasets and compared against base-
lines for related tasks. Second, we validate
CSAR’s performance on human language data
to show that the algorithm makes reasonable
predictions in adjacent domains. Finally, we
analyze a handful of emergent languages, quan-
tifying linguistic characteristics like degree of
synonymy and polysemy.

1 Introduction

Emergent languages—communication systems in-
vented by neural networks via reinforcement
learning—are fascinating entities. They give us a
chance to experiment with the processes underlying
the development of human language to which we
would not otherwise have access. A perennial prob-
lem in this field, though, is that emergent languages
are difficult to interpret. The strategies emergent
languages use to convey meaning do not always
align with those known from human language (Kot-
tur et al., 2017; Chaabouni et al., 2019; Kharitonov
and Baroni, 2020). Yet a lack of general-purpose
methods for investigating the structure of emergent
communication prevents us from systematically in-
vestigating how they encode meaning.

As an essential step towards understanding emer-
gent languages, we introduce CSAR, an algorithm
for morpheme induction on emergent language.
That is, given an input corpus of parallel data: ut-
terances and their associated meanings, find the
smallest meaningful components of utterances with

Form Meaning

3,6 {not, gray}

7,7 {not, blue}

32 {circle}

4,5 {not, yellow}
6,12,6,12 {green, or, yellow}
3,12,3 {blue, or, yellow}

Figure 1: Example of morphemes extracted from a sig-
nalling game with pixel observations.

their accompanying meaning. Simply put, this task
is to jointly segment utterances and align them with
their meanings. The output of this algorithm, then,
is a mapping between the forms and meanings of
the emergent language (example shown in Fig. 1).
Furthermore, the proposed algorithm is easily ap-
plicable to almost any emergent language due to the
simplicity of the input format. In fact, the algorithm
is general purpose enough to produce reasonable
results in other domains, as we demonstrate with
human language-based image captioning, machine
translation, and word segmentation data.

An inventory of the morphemes of an emergent
language is the foundation of many further linguis-
tic analyses. Existing studies of compositionality
(Korbak et al., 2020), word boundaries (Ueda et al.,
2023), and grammar induction (van der Wal et al.,
2020) could be validated and augmented with infor-
mation on the morphology of emergent languages,
and new directions would also be made possible,
including analyses of the morphosyntactic patterns
and typological properties of emergent languages.
Ultimately, such studies form one of the pillars of
emergent communication research: learning what
emergent language can tell us about human lan-
guage (Boldt and Mortensen, 2024).

In Section 2 we define the task of morpheme
induction and discuss related work. Section 3
presents the proposed algorithm, CSAR. Section 4



validates CSAR’s performance on procedurally
generated and human language data. Section 5
applies CSAR to emergent languages. And we
discuss the paper’s findings and limitations and
conclude in Sections 6 to 8.

Contributions This work: (1) Introduces an al-
gorithm for inducing morphemes, applicable to a
wide variety of emergent language corpora. (2)
Offers an easy-to-use Python implementation for
executing the proposed algorithm on arbitrary emer-
gent language data. (3) Provides a first look into
the morphology of emergent languages including
phenomena such as polysemy and synonymy.

2 Problem Definition

In this section we give a precise definition of the
problem and the terms we will use throughout the

paper.
2.1 Task: morpheme induction

We define the task of morpheme induction as
follows: Given a corpus of utterances and their
corresponding complete meanings, identify mini-
mal, well-founded form—meaning pairs (i.e., mor-
phemes) present in the corpus. This collection of
pairs is the morpheme inventory of the corpus.

form a sequence of (form) tokens; represented as
an integer sequence in emergent language.

utterance a complete sequence of tokens pro-
duced by an agent; forms are subsequences of
utterances.

meaning a set of meaning tokens (i.e., atomic
meanings grounded in the environment).

complete meaning a meaning which represents
the entire meaning of an utterance.'

well-founded a form-meaning pair is well-
founded when the particular form corresponds
with a particular meaning.

minimal a well-founded form—meaning pair is
minimal when there is no way to decompose
the pair while maintaining continuity of mean-
ings.

It is important to note that we make two assump-
tions about the complete meanings. First, complete
meanings are assumed to be abstracted already,
hence the reason we can represent them as a set
of atomic meanings. That is to say that the “raw
semantics” of the utterances are already broken
down into individual components of interest; this

1 . . . .
atomic meaning € meaning C complete meaning

task does not entail automatically finding mean-
ing in arbitrary data (cf. clustering). Second, since
complete meanings are sets, they are not able to
represent more complex phenomena that might re-
quire graph structures, for example (cf. abstract
meaning representations).

Additionally, we note that well-founded corre-
spondence is a concept subject to a variety of philo-
sophical accounts. Sometimes these accounts hold
that the meaning is derived from either the behav-
ior or state of mind of a language user. Yet in
this task, we only have access to a corpus, not to
the language users themselves; thus, we employ
a notion of “well-founded correspondence” most
akin to a statistical view semantics (e.g., as in the
distributional hypothesis).

2.2 Related work

Emergent language Lipinski et al. (2024) serves
as the inspiration for this paper through its applica-
tion of normalized pointwise mutual information
to probe emergent languages for certain kinds of
form—meaning relationships, though it stops short
of providing full morpheme inventories over arbi-
trary data. Ueda et al. (2023) introduces a method
of form-only segment induction for emergent lan-
guage based on token-level entropy patterns in ut-
terances.

Finally, Brighton (2003) introduce methods for
inducing morphemes from simulations of language
evolution. In particular, the algorithm is based on
finite state transducers and the minimum descrip-
tion length principle. The key difference, though,
is that the FST-based method assumes a strict form-
meanings correspondence that does not appear to
hold in emergent languages generated by deep neu-
ral networks.

Statistical word alignment The task of mor-
pheme induction resembles the task of statistical
word alignment for machine translation insofar as
it involves learning a mapping between two modal-
ities. Well-known algorithms for this task include
the IBM alignment models (Brown et al., 1993).
While morphemes can be extracted from the align-
ments, the alignments themselves are not intended
to represent morphemes as such.

Segment induction Segment induction is similar
to morpheme induction, except that it deals only
with the forms. Sometimes this task is called “mor-
pheme induction” since the segments are supposed



to correspond to morphemes, but they are not mor-
phemes in the sense of being form—meaning pairs.
An example of an algorithm which addresses this
task is Morfessor (Creutz and Lagus, 2002; Virpi-
oja et al., 2013) or the submissions to the SIGMOR-
PHON 2022 Shared Task Batsuren et al. (2022).
The discovery of valid segments by tokenization
methods based on statistics—such as BPE (Sen-
nrich et al., 2016; Gage, 1994) and Unigram LM
(Kudo, 2018)—is largely an epiphenomenon, not a
design goal.

3 Algorithm

In this section we introduce the algorithm for mor-
pheme induction: CSAR (Count, Select, Ablate,
Repeat). CSAR comprises the following steps:

1. Collect form and meaning candidates from the
corpus.
2. While form and meaning candidates remain.
(a) Count co-occurrences of form and mean-
ing candidates.
(b) Select form—meaning pair with the highest
weight.
(c) Remove instances of the form—meaning
pair from the corpus.
3. Selected form—meaning pairs constitute the
morpheme inventory of the corpus.

The code implementing CSAR as well as the exper-
iments discussed later is available under a free and
open source license at https://example.com/repo
(supplemental material while under review).

3.1 Representation and preprocessing

Input data The input data to CSAR is a paral-
lel corpus of utterances and their meanings. Each
record in the corpus is a tuple of form and mean-
ing where a form is a list of (form) tokens and a
meaning is a set of (meaning) tokens.

Candidate collection Given the corpus, we can
identify and count the form and meaning candi-
dates to produce their corresponding occurrence
matrices. A form candidate is any substring of
form tokens under consideration for inducing mor-
phemes. A meaning candidate is any subset of
meaning tokens under consideration for inducing
morphemes. The most straightforward approach
is to simply consider every non-empty substring
of forms and subset meanings, although CSAR is
not constrained to this approach in theory (cf. Ap-
pendix A.1).

Having defined the universe of forms and mean-
ings, we can build a binary occurrence matrix for
forms and one for meanings, where each row cor-
responds to a record and each entry corresponds to
the presence (1) or absence (0) of a form/meaning
in that record. Thus, the form occurrence matrix
has the shape Or : |R| x |F| and the meaning
matrix Onq @ |R| x | M|, where R is the list of
records, F is the set of all forms candidates, and
M is the set of all meanings candidates.

Example If we had a simple corpus with records
(“s7, O), (“st”, X), (“ct”, ®), the corresponding
occurrence matrices would be:
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where entries with value 1’s are shown with the
occurring symbols, and entries with value 0’s with
- for clarity.

3.2 Main loop

Weighting and co-occurrences Given the oc-
currence matrices, the next step is to compute
the weights of all potential pairs. The pair with
the highest weight will be selected and added to
the morpheme inventory. The weight of a form—
meaning pair is the mutual information of the bi-
nary variables representing the corresponding form
and meaning. The mutual information of a particu-
lar form—meaning pair is given by

I(F;M) =YY plz,y) IOgQIm’ )
zeF yeM

where F' = {f,—f}, p(f) is the probability of f
appearing in a record, p(—f) is the probability of f
not appearing, and the rest are defined analogously.
The key term of the mutual information expression
is the joint probability between a form and a mean-
ing, p(f,m): since f and m are binary variables,
all other joint probabilities can be computed from
their joint probability and the marginal probabil-
ities. The joint probability can be computed by
normalizing the sum of co-occurrences of given
forms and meanings, namely:
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where iy and i,, are the indices of f and m in
their respective matrices. More succinctly, co-


https://example.com/repo

occurrences can be computed with matrix multipli-
cations, yielding

p(f,m) = = (O]T-‘OM> [ifyim] (4

R
Other weighting methods were explored includ-
ing joint probabilities, pointwise mutual informa-
tion, and normalized pointwise mutual information,
though mutual information was found to perform
best empirically.

The above weighting function results in ties
which we break with the following criteria: (1)
higher initial weight, (2) fewer selected pairs with
this form, (3) larger form size, and (4) smaller
meaning size.

Remove pair from corpus The final step of the
algorithm’s main loop is ablating the pair from the
corpus. That is, once we select a form—meaning
pair, we want to remove all co-occurrences of the
form and meaning in order to determine what form—
meaning correspondences remain to be explained.
For example, after ablating the pair (“t”, X), the
corpus from above would comprise (“s”, [J), (“s”,
), and (“c”, O); the occurrence matrices would
then be updated to reflect this. In cases where
ablating a pair is ambiguous, we apply a heuristic
(see Appendix A.2).

Repeating and stopping After ablating the se-
lected form—meaning pair, the algorithm repeats
the main loop, beginning again at the weight-
computation step (with the updated occurrence ma-
trices). The one difference is that—in subsequent
weight computations—the weight of a pair can-
not go up, preventing spurious correlations from
arising in later steps.

This loop continues until form or meaning occur-
rences are exhausted or some other criterion is met
(e.g., time limit, inventory size limit). In this way,
CSAR is an “anytime” algorithm since it can be
stopped after an arbitrary number of iterations and
still produce a sensible result. This is because the
most heavily weighted morphemes can be consid-
ered the highest confidence morphemes, meaning
that stopping the algorithm before completion will
only leave out the lowest confidence morphemes.

3.3 Implementation

The implementation of CSAR introduced in this
paper is written in Python making use of sparse
matrices from scipy (Virtanen et al., 2020, BSD
3-Clause license) and JIT compilation with numba

(Lam et al., 2015, BSD 2-Clause license) to speed
up execution. CSAR is conceptually simple. Most
of the implementation complexity lies in efficiently
handling the occurrence matrices, especially when
removing a form—meaning pair from the corpus.
For example, the co-occurrence matrix has the
shape |F| x |M| which is massive considering
that F and M are already accounting for the uni-
verses of all possible forms and meanings in the
corpus. Nevertheless, there are a wide range of
heuristics that can be applied to greatly speed up
execution while maintaining performance (see Ap-
pendix A.3).

4 Empirical Validation

To validate the ability of CSAR to find well-
founded morpheme inventories, we test it against
procedurally generated datasets as well as human
languages. Since we do not have access to ground
truth morphemes for emergent languages, we gauge
the effectiveness of CSAR’s morpheme induction
in the next best way: by testing its performance
in these adjacent domains. Procedurally generated
datasets (described in Section 4.1) both give us
access to the “ground truth” morphemes and al-
low us to vary particular facets of the languages.
Having ground truth morphemes allows us to quan-
titatively evaluate CSAR against baseline methods
(Section 4.2). Fine-grained control over the facets
of the languages permits us to identify particular
phenomena that are challenging for CSAR to in-
duce correctly (Section 4.3). We also test CSAR
against human language data (Section 4.4) in order
to give a qualitative sense of the effectiveness of
the algorithm.

4.1 Procedural datasets

The dataset-generating procedure has the follow-
ing basic structure: (1) Meanings are sampled ac-
cording to some structure (viz. a fixed attribute—
value vector). (2) An utterance is produced from
this meaning according to a mapping of meaning
components to form components. (3) The form—
meaning pairs that were used to generate the ut-
terance are added to the set of ground truth mor-
phemes. In the basic case, for example, each partic-
ular attribute and value is associated with a unique
sequence of tokens which are concatenated to form
an utterance, creating a one-to-one mapping from
meanings to forms.



Variations Such languages are trivial to induce
morphemes from, so we introduce the following
variations to produce more complex datasets:

Synonymy Multiple forms may correspond to
the same meaning.

Polysemy Multiple meanings may correspond to
the same form.

Multi-token forms A form may comprise more
than one token, possibly overlapping with
other forms.

Vocab size Number of unique tokens.

Sparse meanings Meanings occur indepen-
dently of each other with no additional
structure (i.e., not structured as attribute—
value pairs).

Distribution imbalance Meanings are sampled
from non-uniform distributions.

Dataset size Number of records in the dataset.

Number of meanings Total number of mean-
ings (e.g., varying number of attributes and
values).

Noise forms Form tokens not corresponding to
any meanings are added.

Shuffle form Inter-form order is varied ran-
domly (while maintaining intra-form order).

Non-compositionality A given form may corre-
spond to multiple meanings simultaneously.

For the following analyses, we report values for
a collection of procedural datasets built from the
Cartesian product of two values for each of the
above variations (one where the variation is inactive
and one where it is). See Appendix B.1 for details.

Evaluation metric We use Fj score (harmonic
mean of precision and recall) to assess the qual-
ity of an induced morpheme inventory given the
ground truth inventory. We define precision as

1
7 glgggé‘(z,g% (5)

where Z is the set of induced morphemes, G is the
set of ground truth morphemes, and s is the similar-
ity function. For exact F7, the similarity function
is 1 if the morphemes are identical and O otherwise.
In fuzzy F7, the similarity function is the minimum
of form similarity (normalized insertion—deletion
ratioz) and meaning similarity (Jaccard index). Re-
call is defined similarly to precision except that the
roles of 7 and G from Eq. (5) are reversed.

CSAR

IBM
Model 1

IBM
Model 3

ﬁ‘a‘&

I Form+meaning

Morfessor [ Form-only

Model

11

BPE

ULM

0.4 0.6 0.8 1.0
F1-score

Figure 2: Fuzzy F; scores for CSAR and baseline meth-
ods across procedural datasets. Results reported for
form—meaning inventories and form-only inventories.

4.2 Comparison with baselines
Below we describe the baseline methods we use
for comparison.

IBM Model 1 Simple expectation-maximization
approach to machine translation primarily
through aligning words in a sentence-parallel
corpus. (Brown et al., 1993)

IBM Model 3 Built on top of the IBM Model 1
to handle phenomena such as allowing a form
to align to no meaning.

Morfessor A form-only segmentation algorithm
built to handle human language; also uses an
EM algorithm.

Byte pair encoding A greedy form-only tok-
enization method which recursively merges
frequently occurring pairs of tokens. Vocab-
ulary size is selected according to a simple
heuristic (see Appendix B.2). (Gage, 1994;
Sennrich et al., 2016)

Unigram LM An EM-based form-only tokeniza-
tion method which starts with a large vocabu-
lary and iteratively removes tokens contribut-
ing least to the likelihood of the data. Vocab-
ulary size is selected according to a simple
heuristic (see Appendix B.2). (Kudo, 2018)

Record A trivial baseline where the inventory is
just the set of all records.

For the baseline methods which do not handle

%1 — (insertions + deletions) /(|s1| + |s2|)



meanings and only produce forms, we report the
form-only F score (i.e., s(, g) only takes the form
into account), though CSAR and IBM models still
have access to meanings. For form-only metrics,
we exclude datasets which include noise forms as
form-only methods cannot identify which forms
are noise.

Results The results of CSAR and the baselines
on the procedural datasets are presented in Fig. 2,
which shows the distributions of mean scores for
each hyperparameter setting for the procedural
datasets. Each setting was repeated over 3 random
seeds. Additional results are given in Appendix B.3.
For inducing full morphemes (form and meaning),
CSAR performs the best by a large margin over
the baselines (and even greater margin when con-
sidering exact F7). The IBM alignment models
perform better than the trivial record-based base-
line but still perform noticeably worse than CSAR.
While CSAR yields roughly equal precision and
recall, the IBM models’ precision is lower than
their recall suggesting that they are more prone to
inducing spurious morphemes than CSAR.

When evaluating the forms only, we find that
CSAR is the best method with Morfessor exhibit-
ing comparable performance. The IBM alignment
models exhibit roughly the same performance as
the tokenization methods (BPE and Unigram LM).
As with the full morpheme results, CSAR is the
only method to achieve comparable precision and
recall with all other baselines having precisions
lower than their recalls.

4.3 Error Analysis

For the most part, the errors CSAR makes are “edit
errors”: identifying a correct morpheme but adding
or removing a form or meaning token. This is re-
flected in the near-parity between precision and
recall. This is in contrast to the baseline methods
which are more prone to inducing too many mor-
phemes, leading to lower precision.

Generally speaking, as more variations are added
to a dataset, the performance degrades further. In
particular, CSAR’s performance decreases the most
with small corpus sizes, overlapping multi-token
forms, and non-compositional mappings. On the
other hand, using sparse meanings, shuffling the
forms, and using a non-uniform meaning distribu-
tion have relatively little effect.

Dataset Induced Morpheme

(“ed$”, {PAST})
(“>”, {POSSESSIVE})

Morphology

(“stop sign”, {stop sign})
(“woman”, {person})
(“skier”, {person, skis})

(“Member States”, {Mit-
gliedstaaten})

Image captions

Translation

Figure 3: Examples of morphemes induced from various
human language datasets and tasks.

4.4 Human language data

In this section we discuss the results of running
CSAR on three different human language datasets.
While these datasets are not the intended domain of
CSAR—and CSAR is certainly not the best algo-
rithm for the tasks—the point of these experiments
is to demonstrate the general effectiveness of the
algorithm qualitatively (examples shown in Fig. 3).
Since these datasets are larger, we employed heuris-
tic optimizations to CSAR to reduce their runtime
(described in Appendix A.3). The top 100 induced
morphemes for each human language dataset are
given in Appendix D.1.

Morpho Challenge The first human language
dataset we use is from the Morpho Challenge (Ku-
rimo et al., 2010). This dataset is a human language
approximation of the task of morpheme induction
for emergent language. Concretely, the utterances
are single English words, divided up at the char-
acter level, while the meanings are the constituent
morphemes.

CSAR is able to recover a wide variety of
morphemes including: roots like (‘““fire”, {fire}),
prefixes like (““re”, {re-}), suffixes like (“ed$”,
{PAST}), and other affixes like (“’”, {POSSES-
SIVE}). While the vast majority of morphemes
CSAR induces are accurate, a handful of the lowest-
weighted morphemes are spurious (e.g., (“s$”,
{boy})) likely due to inaccurate decoding earlier in
the process (i.e., part of the true form for a given
meaning was included in a prior meaning).

Image captions The next dataset we employ is
the MS COCO dataset (Lin et al., 2015, CC BY
4.0). In particular, we take the image captions to be
the utterances, treating words as atomic units, and
the meaning to be the labeled objects in the image
(e.g., person, cat).



The bulk of highest weighted induced mor-
phemes are direct equivalents of the objects they
describe (e.g., (“cat”, {cat})). We find instances of
synonymy (e.g., (“bicycle”, {bicycle}) and (“bike”,
{bicycle})) as well as polysemy (e.g., (“animals”,
{cow}) and (“animals”, {sheep})). Finally, we
also observe compound forms like (“stop sign”,
{stop sign}) as well as compound meanings such
as (“skier”, {person, skis}). As we go beyond the
top 100 or so, the associations between forms and
meanings remain reasonable but become looser
such as (“bride”, {dining table, tie}) or (“sink”,
{toothbrush}).

Machine translation For machine translation,
we use the WMTI16 dataset and the English—
German split, in particular (Bojar et al., 2016). In
this case, the English text is considered to be the
utterance and the German text to be the meaning,
with words being the atomic units on both sides.

As with the image caption results, the bulk of
induced morphemes are direct equivalents (e.g.,
(“and”, {und})). Beyond these simple one-to-one
mappings, CSAR induces the polysemic relation-
ship (“the”, {der}) and (“the”, {die}). Finally,
CSAR also picks up on multi-token forms like
(“Member States”, {Mitgliedstaaten}).

5 Analysis of Emergent Languages

5.1 Datasets

We apply CSAR to two different signalling game
environments: one with vector-based observations
and one with image-based observations.

Vector observations In the vector observation
signalling game the agents directly observe one-hot
vectors which directly correspond to the informa-
tion to be communicated (Kharitonov et al., 2021,
MIT license). Specifically, we use two variants: (1)
the standard attribute—value setting where each of
4 attributes can take on 4 distinct values and (2) the
“sparse” setting where there are 8 binary attributes
and only attributes which are “true” are included
in the meanings given to CSAR. Hyperparameters
for both environments are given in Appendix C.1.

ShapeWorld observations The second environ-
ment is introduced by Mu and Goodman (2021,
MIT license) with the following differences: (1)
observations are images, and (2) employs varia-
tions which increase the level of abstraction of the
game to encourage generalization. First, this en-

vironment uses the ShapeWorld tool for generat-
ing observations (Kuhnle and Copestake, 2017);
namely, underlying concepts are particular shapes
(e.g., red square) while the observations passed to
the agents in the signalling game are pixel-based
images. Second, Mu and Goodman (2021) provide
three variants with increasing levels of abstraction:
(1) reference the sender indicates a single image,
(2) set reference the sender indicates a set of im-
ages with a common attribute, and (3) concept as
in set reference but the receiver’s observations are
different instances sharing the common attribute
(referenced in Fig. 1).

5.2 Metrics

We present the following metrics to give analyze
the morpheme inventories induced from the emer-
gent language data:

Inventory size Number of morphemes in the in-
ventory.

Inventory entropy Entropy (in bits) of the mor-
phemes according to their prevalence.

Synonymy Entropy across forms for a given
meaning.

Polysemy Entropy across meanings for a given
form.

Form size Mean number of tokens in a form.

Meaning size Mean number of tokens in a mean-
ing.

Topographic similarity Correlation (p) be-
tween distances in the utterance space and
complete meaning space (Brighton and Kirby,
2006; Lazaridou et al., 2018).

With the exception of inventory size and toposim,
the above metrics are weighted by prevalence
which is the proportion of records from which the
morpheme was ablated.

5.3 Results

Table 1 shows the results (induced morphemes
from each emergent language are given in Ap-
pendix D.2). Looking at form size, while the
forms of morphemes do tend towards smaller val-
ues, many comprise more than one token, suggest-
ing that assuming that each token can be analyzed
as a word or independent unit of meaning is not a
safe assumption. Addressing the mapping between
forms and meanings, we see that synonymy (forms
per meaning) is higher than polysemy (meanings
per form). The fact that there is a higher degree of
synonymy than polysemy makes sense insofar as



[Inv.| Inv. H |Form| |Meaning|] Synonymy Polysemy Toposim
Vector, AV 223 6.81 3.07 1.37 1.52 0.58 0.35
Vector, sparse 156 6.09 2.08 1.55 1.91 0.62 0.39
SW, ref 1124 6.52 1.76 1.01 2.99 1.64 0.04
SW, setref 396 6.14 1.54 1.38 1.43 0.74 0.15
SW, concept 351 5.86 1.89 1.43 1.04 0.95 0.17

Table 1: Morpheme inventory metrics (described in Section 5.2) across various emergent languages. (AV: attribute—

value, SW: ShapeWorld, Inv.: Inventory)

the optimization penalizes ambiguity (polysemy)
while it does not penalize merely inefficient en-
coding (synonymy). This is concordant with find-
ing such as Chaabouni et al. (2019) which finds
that emergent languages, in the absence of addi-
tion pressures, do not develop efficient encoding
schemes. Additionally, the ShapeWorld languages
show much higher degrees of synonymy and pol-
ysemy than the vector environment likely due in
part to the continuous nature of the observations.

Compositionality The meaning size metric, in
particular, is interesting insofar as it relates to com-
positionality. In the simplest case of composi-
tionality, morphemes comprise singleton meanings
which can be combined to form compound mean-
ings. More holistic languages, on the other hand,
assign multiple atomic meanings per morpheme re-
sulting in in larger meaning sizes. The fact that the
emergent languages tend towards a meaning size of
1 suggests a non-trivial degree of compositionality
under this interpretation. Yet when we compare
meaning sizes values to topographic similarity val-
ues computed across records (i.e., not involving
CSAR), we find that there is no obvious correlation
between toposim values and meaning sizes. This
could be due to the fact that individual form tokens
could have “partial meanings” and need to be com-
bined to comprise an atomic meaning. Although
our sample size is too small to make any definitive
claims.

6 Discussion

Due to CSAR'’s strong performance and easy ap-
plication to a wide variety of emergent language
environments, it would be a valuable addition to
the standard toolkit of emergent language analyses.
In particular, it helps fill a gap of environment-
agnostic methods for interpreting the ways that
emergent languages convey meaning—a perennial
question in the field. Furthermore, morpheme in-

ventories are a foundation for higher-level linguis-
tic analyses of emergent language like inducing
their syntactic structure. To skip the morpheme in-
duction step would be comparable to attempting to
understand the grammatical role of the letter C in
English. Such analyses of the syntax of emergent
language and beyond are critical to understanding
how emergent and human language are similar and
how they are different.

7 Conclusion

CSAR presents a strong platform for investigat-
ing the morphology of emergent language, demon-
strating the ability to find minimal form—meaning
pairs in both procedural and human language data.
Given the morpheme inventory of an emergent lan-
guages we can not only analyze phenomena like
synonymy and polysemy but also the typological
features of emergent languages, determining which
human languages they most closely resemble, if
they resemble any. Such a study of morphology
forms the foundation for the more general study
of the linguistic features of emergent language and
unlocks the door to the insights they can provide
us about human language.

8 Limitations

Greed is not always good While the greediness
of CSAR does simplify induction (conceptually
and implementation-wise), improve runtime, and
provide good partial inventories, it suffers from the
same limitation inherent to greedy algorithms: it
can get trapped in local optima. For example, it is
possible to construct corpora for which a greedy ap-
proach is “misled” since certain heuristics require
revision based on information encountered later in
the induction process (e.g., preferring smaller ver-
sus larger forms). Related algorithms use iterative
algorithms (IBM models and Morfessor) or search
(Brighton, 2003) to avoid the local minima that trap



greedy approaches. Future work could incorporate
such methods to improve upon the performance of
CSAR for morpheme induction.

Limited emergent language data The other lim-
itation of this paper relates to the type and breadth
of emergent language data. In terms of type, since
we do not have ground truth morpheme inventories
for emergent language, we cannot directly evalu-
ate CSAR’s performance on the target domain. In
terms of breadth, without a larger and more repre-
sentative sample of more systematically generated
data we are unable to make definitive claims about
the patterns and trends of morpheme inventories in
emergent languages.
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A Algorithm

A.1 Candidate generation

For simplicity’s sake (and inductive bias), we limit
the candidate generation functions to all non-empty
substrings for forms and all non-empty subsets for
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meanings. Nevertheless, we could extend form can-
didate generation to non-contiguous forms to detect
non-concatenative morphology (e.g., the form “x.z”
matching “xyz” and “xwz”). In fact, we could
could use arbitrary regular expressions to represent
forms (or meanings) such as “"..x” or “x+” to rep-
resent absolute position and optional repetitions,
respectively. We could consider empty forms and
empty meanings to explicitly identify forms and
meanings which do not have mappings (as opposed
to implicitly not including them in the morphol-
0gy).

Of course, part of the difficulty of extending the
complexity of the candidate generation is that it
expands the already (sometimes intractably) large
search space. One method of making this tractable,
though, is adding heuristics that determine which
form candidates should be considered rather than
considering every possible candidate.

A.2 Ambiguous pair application

In some cases of applying a morpheme to record in
the dataset, there are multiple applications possible.
Say we have the utterance “x y z X y” meaning
{A, B} and we want to apply the morpheme (*“x
y”, {A}). The form matches two substrings in
the utterance, so there are two possible ways to
apply the morpheme. As a heuristic for selecting
the best application, CSAR break ties by selecting
the substring least likely to be a morpheme (as
determined by the morpheme weights). Going back
to the above example, if it is the case the morpheme
(“z x y”, { B}) has a higher weight than (“x y z”,
{B}), then CSAR will apply (“x y”, {A}) to the
first instance of “x y” instead of the second.

This search can be very computationally expen-
sive since it can entail going through a large number
of morpheme candidates. Thus for the experiments
with human language data, we do not perform this
search and select the best form pseudorandomly.

A.3 Heuristic optimizations

Below we include a summary of heuristic optimiza-
tions available in CSAR:

max input records Only consider a certain num-
ber of records from the input data; 20 000
for machine translation, image captions, and
ShapeWorld.

max inventory size Stop after inducing a certain
number of morphemes; 300 for image cap-
tions and machine translation settings.
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n-gram semantics Treat complete meanings as
ordered and generate meaning candidates
identically to forms (i.e., as n-grams); used
for machine translation data where the “mean-
ings” are sentences.

max form/meaning size Only consider for-
m/meaning candidates up to a certain size; 3
for machine translation (form and meaning)
and image captions (form only), 2 for image
captions meaning.

no search best form When ablating a form with
multiple matches in an utterance, do not
search for best form, simply choose it ran-
domly; no search for image captions and ma-
chine translation.

form/meaning vocabulary size Only consider
the most common form/meaning candidates;
100 000 for image captions and machine trans-
lation.

token vocabulary size Only consider the most
common form/meaning tokens and ignore an
form meaning candidates which contain an
unknown token; 1000 for image captions and
500 for machine translation.

co-occurrence threshold Zero out any co-
occurrences which fall below a certain
threshold (e.g., if a form and meaning
candidate only occur once, treat it as never co-
occurring); 1 for ShapeWorld, 10 for image
captions, and 100 for machine translation.

B Empirical Validation

B.1 Procedural dataset hyperparameters

The following hyperparameters were used for gen-
erating the procedural datasets. Each dataset uses 4
attributes and 4 values except for the sparse setting
which uses 8 independent values.

Synonymy {1, 3}; forms per meaning

Polysemy {0,0.15}; proportion of meanings
mapped to an already-used form

Multi-token forms {{1},{1,2,3,4}}; possible
tokens per form

Vocab size {10,50}; only applies to non-unity
multi-token forms

Sparse meanings {true, false}

Distribution imbalance {true, false}; non-
uniform distribution is based on the ramp
function, i.e., probability of given value for
an attribute is proportional to its index + 1.

Dataset size {50,500}

Noise forms {0,0.5}; 1 — p of parameter of ge-
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Figure 4: Exact F} scores of baseline methods on the
procedural datasets

ometric distribution

Shuffle form {true, false}

Non-compositionality {true, false}

Random seeds 3 per hyperparameter setting
Non-unity polysemy and synonymy rates for the
non-compositional dataset implementation were
not implemented and are excluded from the above
grid.

B.2 Tokenizer vocabulary size

The heuristic for the tokenizer vocabulary size is
as follows:

|7;neaning|
V=
P>

| T'form |

+ |7;orm|7 (6)

| T'meaning |

where Tmeaning 1S the set of all meaning tokens in
the dataset (likewise for Trom), R is the multiset
of records in dataset, r¢m, is the particular form
(utterance) for an individual record (likewise for
Tmeaning- 1his heuristic can be interpreted as the
mean form tokens per meaning tokens times the
number unique meaning tokens added to the num-
ber of unique form tokens (since each of them will
automatically be included in the vocabulary).

B.3 Additional procedural dataset results

Table 2 shows all results of baseline methods on the
procedural datasets. Figure 4 visualizes the results
of the baseline methods with exact I} score.



CSAR IBM Model1 IBM Model3 Morfessor BPE ULM Records
Exact Fi, form 0.868 0.616 0.595 0.827 0.624 0.670 0.133
Fuzzy F1, form 0.960 0.899 0.893 0.949 0.890 0.891 0.637
Fuzzy prec., form  0.954 0.855 0.850 0.933 0.852 0.853 0.597
Fuzzy recall, form  0.967 0.952 0.946 0.967 0.934 0.938 0.701
Exact F} 0.788 0.375 0.379 0.000 0.000 0.000 0.101
Fuzzy Fy 0.899 0.721 0.726 0.000 0.000 0.000 0.441
Fuzzy prec. 0.881 0.641 0.640 0.000 0.000 0.000 0.390
Fuzzy recall 0.921 0.855 0.866 0.000 0.000 0.000 0.543

Table 2: Results of baseline methods on the procedural datasets.

C Analysis of Emergent Languages

C.1 Emergent language hyperparameters

The following hyperparameters were used for the
vector observation environment:

n values 4, 2 (sparse)

n attributes 4, 8 (sparse)

n distractors 3

vocab size 32

max sequence length 10

dataset size (CSAR input) 10 000 records

The ShapeWorld observation environment uses
the following hyperparameters

observations 5 shapes, 6 colors, 3 operators
(and, or, not); and or or may only be used
once

n examples 20 total; 10 correct targets, 10 dis-
tractors

vocab size 32

max sequence length §

dataset size (CSAR input) 20 000 records

Both environments had any beginning-of-
sentence and end-of-sentence tokens removed be-
fore being fed into CSAR. Running the above
experiments requires about 25 GPU-hours on
NVIDIA GeForce RTX 2080Ti.

D Morpheme Inventories

Top 100 morphemes induced by CSAR from hu-
man and emergent language datasets.

D.1 Human languages

Morpho Challenge (“’, {+GEN}) (“ing$”,
{+PCP1}) (“ed$”, {+PAST}) (“s”, {+PL}) (“er”,
{er_s}) (“ly$”, {ly_s}) (“s$”, {+3SG}) (“ist”,
{ist_s}) (“iz”, {ize_s}) (“ness”, {ness_s}) (“ion”,
{ion_s}) (“"re”, {re_p}) (‘“"de”, {de_p}) (“ation”,
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{ation_s}) (“est$”, {+SUP}) (““un”, {un_p})
(“less”, {less_s}) (“ful”, {ful_s}) (“"mis”, {mis_-
pH (“head”, {head_N}) (“way”, {way_N})
(“ment”, {ment_s}) (“al”, {al_s}) (“it”, {ity_s})
(““fire”, {fire_N}) (“ency$”, {ency_s}) (“hook”,
{hook_N1}) (“ish$”, {ish_s}) (“mind”, {mind_-
N}) ("in”, {in_p}) (“at”, {ate_s}) (“if”, {ify_s})
(“able$”, {able_s}) (“ically$”, {ally_s}) (““inter”,
{inter_p}) (““photo”, {photo_p}) (“"hand”, {hand_-
N} (““scho”, {school_N}) (“house”, {house_N})
(“ical$”, {ical_s}) (“hold”, {hold_V}) (“long”,
{long_A}) (“work”, {work_V}) (“up”, {up_B})
(“ag”, {age_s}) (“ant”, {ant_s}) (“ib”, {ible_-
s}) (“line”, {line_N}) (“ed$”, {ed_s}) (“er$”,
{+CMP}) (*“"over”, {over_p}) (“"dis”, {dis_p})
“’sea”, {sea_N}) (““im”, {im_p}) (*or”, {or_-
s}) (“pos”, {pose_V}) (“ence”, {ence_s}) (“"car-
dinal”, {cardinal_A}) (““rational”, {rational_A})
(““shoplift”, {shop_N}) (“conciliat”, {conciliate_-
V] (““manicur”, {manicure_N}) (““predict”, {pre-
dict_V}) (“dressing”, {dressing_V}) (“"buffet”,
{buffet_V}) (““crimin”, {crime_N1}) (“"entitl”, {en-
title_V}) (““frivol”, {frivolous_A}) (“"heartb”,
{heart_N}) (““maroon”, {maroon_A}) (“"ribald”,
{ribald_A}) (““spread”, {spread_V}) (“"squeak”,
{squeak_V}) (““squint”, {squint_V}) (“"statue”,
{statue_N}) (“"summar”, {summary_A}) (“whis-
per”, {whisper_V}) (“"blink”, {blink_V}) (“"carri”,
{carry_V}) (““cheer”, {cheer_V}) (““four-", {four_-
Q}) (““hitch”, {hitch_V}) (““louvr”, {louvre_-
N}) (““muzzl”, {muzzle_N}) (“"nihil”, {nihilism_-
N} (““tooth”, {tooth_N}) (““waist”, {waist_-
N}) (“guard$”, {guard_N}) (“"bull”, {bull_N})
(“"rail”, {rail_V}) (“"seri”, {series_N}) (“"test”,
{test_N}) (““two-", {two_Q}) (“ance$”, {ance_-
s}) (“board”, {board_N}) (“chain”, {chain_N})
(“eroom”, {room_N}) (“grand”, {grand_A}) (“or-
der”, {order_V}) (“power”, {power_N})



Image captions (“tennis”, {tennis racket})
(“cat”, {cat}) (“train”, {train}) (“dog”, {dog})
(“pizza”, {pizza}) (“toilet”, {toilet}) (“man”, {per-
son}) (“bus”, {bus}) (“clock”, {clock}) (“baseball”,
{baseball glove}) (“frisbee”, {frisbee}) (“bed”,
{bed}) (“horse”, {horse}) (“skateboard”, {skate-
board}) (“laptop”, {laptop}) (“cake”, {cake})
(“giraffe”, {giraffe}) (“table”, {dining table})
(“bench”, {bench}) (“motorcycle”, {motorcycle})
(“bathroom”, {sink}) (“elephant”, {elephant})
(“umbrella”, {umbrella}) (“kitchen”, {oven})
(“kite”, {kite}) (“people”, {person}) (“ball”,
{sports ball}) (“sheep”, {sheep}) (“zebra”, {ze-
bra}) (“phone”, {cell phone}) (“surfboard”, {surf-
board}) (“hydrant”, {fire hydrant}) (“zebras”, {ze-
bra}) (“teddy”, {teddy bear}) (“truck”, {truck})
(“stop sign”, {stop sign}) (“sandwich”, {sand-
wich}) (“boat”, {boat}) (“street”, {car}) (“bat”,
{baseball bat}) (“bananas”, {banana}) (“giraffes”,
{giraffe}) (“living”, {couch}) (“snow”, {skis})
(“bird”, {bird}) (“elephants”, {elephant}) (“vase”,
{vase}) (“cows”, {cow}) (“broccoli”, {broccoli})
(“computer”, {keyboard}) (“woman”, {person})
(“tie”, {tie}) (“horses”, {horse}) (“bear”, {bear})
(“desk”, {mouse}) (“plane”, {airplane}) (“lug-
gage”, {suitcase}) (“airplane”, {airplane}) (“per-
son”, {person}) (“hot”, {hot dog}) (“refrigera-
tor”, {refrigerator}) (“wii”, {remote}) (“kites”,
{kite}) (“boats”, {boat}) (“couch”, {couch}) (“traf-
fic”, {traffic light}) (“plate”, {fork}) (“surf”, {surf-
board}) (“umbrellas”, {umbrella}) (“wine”, {wine
glass}) (“skate”, {skateboard}) (“bowl”, {bowl})
(“stuffed”, {teddy bear}) (“room”, {tv}) (“cow”,
{cow}) (“scissors”, {scissors}) (“‘snowboard”,
{snowboard}) (“chair”, {chair}) (“car”, {car}) (“ba-
nana”, {banana}) (“bicycle”, {bicycle}) (“birds”,
{bird}) (“vegetables”, {broccoli}) (“microwave”,
{microwave}) (“donuts”, {donut}) (“video”, {re-
mote}) (“batter”, {baseball bat, person}) (“skate-
boarder”, {person, skateboard}) (“surfer”, {per-
son, surfboard}) (“skis”, {skis}) (“motorcycles”,
{motorcycle}) (“meter”, {parking meter}) (“suit-
case”, {suitcase}) (“sink”, {sink}) (“bike”, {bicy-
cle}) (“chairs”, {chair}) (“food”, {bowl}) (“dogs”,
{dog}) (“oven”, {oven}) (“court”, {sports ball})

Machine translation (“and”, {und}) (“Commis-
sion”, { Kommission}) (“not”, {nicht}) (“Union”,
{Union}) (“we”, {wir}) (“I”, {ich}) (“that”, {daB})
(“Mr”, {Herr}) (“1”, {Ich}) (“Parliament”, {Par-
lament}) (“President”, {Prisident}) (“Member
States”, {Mitgliedstaaten}) (“report”, {Bericht})
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(“European”, {Europdischen}) (“We”, {Wir})
(“or”, {oder}) (“in”, {in}) (“Europe”, {Eu-
ropa}) (“the”, {der}) (“Council”’, {Rat}) (“be-
tween”, {zwischen}) (“is”, {ist}) (“2000”, {2000})
(“Commissioner”’, {Kommissar}) (“EU”, {EU})
(“for”, {fir}) (“the”, {die}) (“The”, {Die})
(“also”, {auch}) (“with”, {mit}) (“like to”,
{mochte}) (“you”, {Sie}) (19997, {1999}) (“di-
rective”, {Richtlinie}) (“only”, {nur}) (‘“pro-
posal”, {Vorschlag}) (“European”, {Europdis-
che}) (“Madam”, {Prisidentin}) (“Mrs”, {Frau})
(“Kosovo”, {Kosovo}) (“but”, {aber}) (“new”,
{neuen}) (“Group”, {Fraktion}) (“have”, {haben})
(“behalf”, {Namen}) (“Mr”, {Herrn}) (“women”,
{Frauen}) (“has”, {hat}) (“regions”, {Regionen})
(“years”, {Jahren}) (“all”, {alle}) (“two”, {zwei})
(“cooperation”, { Zusammenarbeit}) (“if”, {wenn})
17, {1}) (“new”, {neue}) (“Article”, { Artikel})
(“because”, {weil}) (“whether”, {ob}) (“Par-
liament”, {Parlaments}) (“a”, {eine}) (“mea-
sures”’, {MaBnahmen}) (“but”, {sondern}) (“in-
stitutions”, {Institutionen}) (“social”, {sozialen})
(“t0”, {zu}) (“political”, {politischen}) (“develop-
ment”, { Entwicklung}) (“national”, {nationalen})
(“today”, {heute}) (“countries”, {Linder}) (“Eu-
ropean”, {europdischen}) (“must”, {muf3}) (“our”,
{unsere}) (“as”, {wie}) (“problems”, {Prob-
leme}) (“initiative”, {Initiative}) (“work”, {Ar-
beit}) (“be”, {werden}) (“very”, {sehr}) (“human
rights”, {Menschenrechte}) (“of the”, {des}) (“us”,
{uns}) (“three”, {drei}) (“debate”, { Aussprache})
(“other”, {anderen}) (“hope”, ({hoffe}) (“al-
ready”, {bereits}) (“question”, {Frage}) (“this”,
{diesem}) (“debate”, {Debatte}) (“are”, {sind})
(“will”, {wird}) (“proposals”, { Vorschlage}) (“If”,
{Wenn}) (“Prodi”, {Prodi}) (““Council”, {Rates})
(“rapporteur”, {Berichterstatter}) (“INTERREG”,
{INTERREGY}) (“role”, {Rolle})

D.2 Emergent languages

Vector, attribute—value Note that meanings are
in the format attribute_value meaning that 1_2
means the 1% attribute has value 2.

(“15”, {3_3}) (“25 257, {3_0}) (“3”, {2_3}) (“20
207, {0_3, 1._0}) (“7 77, {0_3, 1_3}) (“4”, {2_0})
(“16 16 16 16 16 16 16 16 167, {0_3, 3_0}) (2",
{0_0,2_0}) (“13 1313 13 13 137, {2_0}) (“23 23
23232323237, {0_0,2_3}) (“28, {0_0, 1_3})
(27 277, {1_0}) (“17 17 177, {0_0}) (“31”, {2_0,
3.2}) (22222222227, {1_3}) (%22 25 2525 25",
{0_1, 1_3}) (“30 30", {2_1}) (“22 22 13", {1_3,



3_3}) (26 26 26 26 26 26 26 267, {1_3,2_0,3_0})
(“15”, {3_1}) (“15 27 27 27 27 27 27 27", {0_1,
3.2}) (87, {0_0}) (“3333030”, {0_1,1_1,2_2})
(“16 167, {3_0}) (“333330”, {0.2,1.2,2.2})
(“777,{0_2,3_1}) (153333, {0_2,3.2}) (“15
720272727272727277,{0.2,1_1,2_1,3.2})
(2027 27 27 27 27 277, {0_2,3_2}) (“15 15 15 3
2727272727277, {02, 1_1,2.2,3.2}) (“22 22
22222230303030307, {0_1,1.2,2.2,3.2})
(“8 123, {1_1,3_0}) (22 22 22 25 3 30 30 30
30307, {0_1,1.2,2.2,3_1})(“282822222
27, {1.2,3_1}) (*22 2222 17 17 17 177, {1.2,
3.31)(“2626 6 4447, {0_1,3_0}) (“23”, {1_0,
23D (“1515151515 151515 157, {1_2,2_3})
(“2222 223", {0_1, 1_2}) (“7 7 20 20 20 20 20
2020207, {1_1}) (*77777207", {1.2,3.2})
(“31 317, {0_3,3.3}) (“28 2828 8 8 8 12 12 12
127, {1.2,2.1,3.0}) (1515151515 17 17 17
177, {0_1, 1.2, 2_2}) (*3 27 27 27", {2.2}) (“7
151515151515 15157, {0.3,1.2,2_2}) (“3 3
33333333 {0.2,1.0,3_0}) (*713”, {0_1,
1.2,3.2}) (“28 267, {3_0}) (“15 1577, {0_2, 1_3,
2.2})(“22222323232323232323”, {1_1,2.2,
3.1)) (77, {1.2) (“13 13 13", {3.3) (*777 7",
(3.2)) (“1517 17 17 17 177, {1_1}) (“22 22 22
177, {1.2}) (“1515 1513 13 13 13 13 177, {0_1,
1.2,2_11) (333332323237, {0_1,1_1,3_1})
(“71616 16 1647, {0_3, 1_1, 3_11}) (26 26 26 26
67, {1.2,3_0}) (“2222 22227, {2.2,3_2}) (“25
25252525”, {2_2}) (“7 252525257, {0_2, 1_3,
2.31)(*2272613”,{0_1,1.3,3.2}) (“1515 15
15177, {0_1,1.2}) (“23 23 177, {2._2,3.2}) (“7
2626 26 26267, {0_2, 1.3,2_1}) (“8 8 8 23 23
237, {1.2,2.2,3_1}) (“7 26 26 26 26 26 26 26",
[2.0,3_1}) (“22 7 26 26 26 26 28 28 28 28", {0_1,
2 1,31} (“151515 151515 15157, {0_2,2_3)})
(“544447,{0.2,1.0,3_1}) (26 26 26”, {2_0,
3.01)(“2213 1313131313 1327, {1_2,3.2})
(“151531313131313131”,{0.2,1_1,2_1})
(“22 28 28 28 28 28 28 28 28”, {2_1,3_1}) (“157,
(11} (1313131322227, {1_1,32}) (“1 1 1
1117, {1.2,2.3}) (“8 830307, {1_1,3_0}) (“4 4
427277, {0_1,3_1}) (“17 17 17 177, {1_0, 3_3})
(“23 23 23 23 23 23 23 277, {2_2}) (“15 31 317,
[0.2,2 1)) (52727272727, {0_2,2_1}) (227,
{0_0,2.3}) (“28 8888”,{2.2,3.0}) (172222
27, {2_1,3.2}) (*22222”, {1_1,3_1}) (3323
2323, {0_1,3_1}) (“28 28 28 28", {2_11}) (“26
262644444, {0_1,3_1}) (“17 17 27 27 27",
(2.1,3.2) (“15 13 13 13 137, {1_2, 2_1}) (“25
3253257, {0_1, 1_2}) (“20 20 20 27 27 27 27
2727277, {2_1,3_1}) (“333 3, {0_2}) (“31 31
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31313131313131317, {1_0}) (“17 137, {0_0,
2.1H(*333337,{1.0,3_0})

Vector, bag of meanings (“227, {4, 7}) (“24”,
{0, 3, 6}) (“167, {1, 5}) (“117, {6}) (“26, {0, 4,
6}) (“1 17, {3}) (“67, {0, 7}) (“177, {5, 7}) (28
287, {0,2}) (“187, {0,2}) (“21 217, {0, 6}) (“14
14 14 14 14”7, {1, 3, 6, 7}) (“167, {4, 7}) (“24”,
{1, 5}) (“1 28>, {3, 4}) (“31 317, {4, 7}) (“127,
{4}) (“37,{4,5}) (2222227, {0, 3, 6}) (47, {3})
(“287, {2} (“12 1212 12 127, {2}) (“28 27 27 27
2727277, {0,4}) (“28 97, {0,3,4}) (“11 11 117,
{3D) ¢“77, {3} (“12 12 12 127, {2}) (‘24 57, {4})
(“30307, {1,7) (“14 14 14 14”7, {1,2,7}) (“2525
252525257, {1}) (“455557,{2,4}) (“26”, {2})
(“25252727272727,{0,5}) (“1 2929 29 29
29292912127, {1,3,6}) (“55555555”, {4})
1111111, {1,7p 1121212121212 12
127, {1,3}) (“66 667, {2}) (“1 1117, {0, 1}) (“1
307, {2}) (“1 187, {3, 5}) (“23”, {7}) (“16 16 16
167, {0}) (“2121 21217, {7}) (“5552727”, {1})
457, {4} (“5127,{2,3}) (“1 127, {3,5}) (“18
277, {5}) (“1122 227, {2,3}) (“22”, {6}) (“22 22
117, {1, 2}) (“4 4 27 277, {5}) (“1 29 29, {3})
(“16 167, {0}) (127, {1,3}) (9999999 9~,
{fopHe111”,{1,2}) (“202020 202020 20 207,
{1,7}) (“26 26 26 26 28 28 28, {1,7}) (‘29294
1212121212127, {5}) (“1 17, {1,2}) (“2929 4
4444444 {1,6}) (“1111232323”, {3}) (“12
12 127, {2}) (“22 227, {3}) (“28 127, {0}) (‘21 21
21 87, {2}) (“1 44”7, {2}) (“21 21 237, {2}) (“21
2121 212121212167 {1,2}) (“12 167, {2})
(“1010 10 10 10 10 10 25 25 257, {2, 7}) (“28 28
287, {1,4}) (“24 24 24 24 24 24 24 24, {7}) (“21
21667, {2}) (“21 217, {2}) (“9 57, {4}) (“31 31
31317, {3}) (“28 28 28 28 28 28 28”, {3}) (“10 10
1010107, {7}) (“13 13 137, {7}) (“11 14 14 2222
21717177, {2) (“7777,{2}) (22262655
55557, {1}) (2222227, {2,5}) (“11 117, {7})
(“12 1227272727277, {2}) (“30 30 30 30 30 30
272727277, {5}) (“29 12 12, {2}) (“11 11 23
1717 177, {3}) (“18 18 18 18 18 18 28 18”, {1})
(“257,{0}) (*2323232319191919”, {1}) (“6 6
101010101010 107, {3}) (“6 666666 17 177,
{3})(“242424 4412127, {2}) (“2222 222228
2857, {1} (‘24444444444 {2})

Shapeworld, reference (“29”, {ellipse}) (“29”,
{gray}) (“29”, {green}) (“29”, {rectangle}) (“29”,
{triangle}) (‘“29”, {white}) (“30 27, {ellipse})
(307, {square}) (“29 297, {blue}) (“18 4 18~,
{white}) (‘29 297, {circle}) (“5 37, {square}) (“5
37, {rectangle}) (“6”, {square}) (“24 18, {el-



lipse}) (“11 4”7, {white}) (“30 57, {triangle}) (“2
2 2227, {white}) (“29”, {yellow}) (“117, {el-
lipse}) (“2 2 37, {ellipse}) (“4”, {rectangle}) (“30
30 37, {ellipse}) (“2”, {square, yellow}) (“30”,
{circle}) (“22 2227, {ellipse}) (“3”, {gray}) (“23
57, {rectangle}) (“4”, {green}) (“13 6 13 27, {el-
lipse}) (“23 18 23 237, {white}) (“3”, {rectangle})
(“18 3 187, {white}) (“2 2 57, {ellipse}) (“24 6
24 67, {white}) (“6 27, {ellipse}) (“3”, {green})
(“13 13 23”7, {square}) (‘24 24”, {white}) (“18
18 18 23 187, {white}) (“30 5 27, {ellipse}) (“23
24 237, {ellipse}) (“18 4 18 57, {ellipse}) (“4 18
4 57, {yellow}) (“13”, {gray}) (“18 54 18”7, {el-
lipse}) (“2 187, {white}) (“4 5 47, {ellipse}) (“18
187, {yellow}) (“23 13 23”, {square}) (“6 37, {tri-
angle}) (“23 323 3 237, {yellow}) (“13 6 13 247,
{ellipse}) (“24 247, {yellow}) (“13 13 24 13 13
13 247, {ellipse}) (“6 37, {circle}) (“23 18 237,
{ellipse}) (“2 223 27, {white}) (“5 23", {green})
(“30 307, {red}) (“18 5 47, {yellow}) (“3 2333 37,
{square, yellow}) (“23 24 237, {white}) (“18 18 3
187, {ellipse}) (“3 3 3 3", {square}) (‘24 6 13 67,
{white}) (“30 6 30 3", {ellipse}) (“18 3 187, {yel-
low}) (“5 307, {blue}) (‘24 27, {ellipse}) (“24 13
24 13 137, {square, white}) (“23 18 23”, {square,
yellow}) (“4 18 18 47, {ellipse}) (“2 2 37, {white})
(“13 6 137, {ellipse}) (“13 13 247, {white}) (“18
23 187, {white}) (“13”, {rectangle}) (“13 13 24
13 137, {ellipse}) (“30 24 307, {white}) (“13 13
13 137, {white}) (“23 3 23 3 237, {ellipse}) (5 18
18 57, {ellipse}) (“24”, {green}) (“13 1323 13 13
13 247, {circle, red}) (“30 6 30 67, {blue}) (“55
4, {ellipse}) (“13 24”, {blue}) (“5”, {circle, red})
(“30 6 30 27, {white}) (“3 33 3 3 3”, {yellow})
(“18518 5187, {ellipse}) (“3 3 37, {white}) (“18”,
{square}) (“18 5 18 4 2, {ellipse}) (“13 27, {el-
lipse}) (“3 32333233327, {circle, red}) (“18 3
18 518 3”7, {ellipse}) (“4 4, {blue}) (“13 24 137,
{yellow})

Shapeworld, set reference (“3 3”, {circle, not})
(‘21 217, {circle}) (“23 23, {gray, not}) (‘20
207, {blue, not}) (“5 57, {and, green, not}) (“28”,
{square}) (“26”, {or, yellow}) (“28”, {ellipse, not})
(“4 47, {white}) (“11”, {not, rectangle}) (“11 11”,
{ellipse}) (‘2525 257, {blue, red}) (“254”, {blue})
(“3 287, {triangle}) (‘22 26", {not, red}) (“25 237,
{green, or, red}) (“5 4 57, {gray, or, white}) (“12
237, {yellow}) (“12 187, {or, red, white}) (‘23 257,
{and, gray, white}) (“5 207, {gray, or, red}) (“4 23”,
{and, red}) (“12 127, {yellow}) (“3 117, {and, cir-
cle}) (“217, {circle, or}) (“28”, {rectangle}) (“23
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26 237, {green}) (“26 20”7, {and, white}) (117,
{ellipse}) (“21 227, {and, triangle}) (“22 57, {blue,
green}) (“28 257, {triangle}) (*5 26 57, {gray})
(“3”, {and, circle}) (“25 207, {white}) (“25 26
4>, {blue}) (“28 37, {triangle}) (“21”, {square})
(“127, {yellow}) (“11 227, {triangle}) (“12 25,
{or, red, white}) (“217, {and}) (“3”, {square}) (“20
12 20 127, {blue, not}) (“20 22 227, {or, triangle,
white}) (“18”, {rectangle}) (“5 57, {gray}) (“5”,
{red}) (“23 227, {red}) (*“23 23", {green}) (“26 22",
{and, white}) (“3”, {rectangle}) (“20 55", {white})
(227, {or}) (“5 57, {triangle}) (“12 12 23", {not})
(277, {triangle}) (“12 57, {green, not}) (“25 23
207, {and, gray, white}) (“25 21 4”, {blue}) (“4
25 127, {blue, or}) (‘22 227, {triangle}) (“20 3
207, {white}) (“22 207, {blue, not}) (“12 227, {tri-
angle}) (“28 267, {triangle}) (“21 23”, {green})
(“20 20 207, {and, white}) (“25”, {blue}) (“28 207,
{triangle}) (“22 22, {not}) (“5”, {gray}) (“12”,
{or}) (“5 117, {and, green}) (“3”, {triangle}) (“4
227, {red}) (“23”, {not}) (“23 4, {green}) (“18”,
{triangle}) (“27”, {rectangle}) (“12 20 12 20 23>,
{and}) (*“20 227, {blue}) (“25 23”, {and, gray})
(“4 12 237, {and}) (‘23 3 237, {green}) (“20 22
207, {white}) (“12 20 23”, {and}) (“12 20 12 207,
{and}) (“8 5 127, {and, not}) (“23 11 23”, {green})
(“23 207, {white}) (“28 4 28 4 25, {and, trian-
gle, white}) (“217, {triangle}) (“25 5 20”, {white})
(“22 267, {gray}) (“28 47, {triangle}) (“26 187,
{and}) (“5 4 18, {white}) (“12 20 127, {and})
(287, {or})

Shapeworld, concept (“3 67, {gray, not}) (“7 77,
{blue, not}) (“32”, {circle}) (“4 57, {not, yellow})
(“6 126 127, {green, or, yellow}) (“3 12 37, {blue,
or, yellow}) (“373 3", {green, white}) (“6 6”, {not,
red}) (“4 7 4”, {green, or, red}) (“6 28 6 28”, {or,
white, yellow}) (“25 5 257, {blue, or, white}) (“32
32 327, {ellipse}) (“55555555”, {green, not,
yellow}) (252525 25 25”7, {green, not, red}) (“3 4
3”, {and, white, yellow}) (“28 28 28 28", {white})
(327, {rectangle}) (“5 3 57, {blue, red}) (“12 28,
{yellow}) (“22”, {square}) (“22”, {triangle}) (*7
287, {or, red, yellow}) (“3 6 37, {white}) (‘5 327,
{or, red, white}) (“28 28 57, {gray, or, white}) (*“7
287287287, {blue, green}) (“3 31 37, {blue})
(“12 4 127, {and, green}) (‘28 3", {gray}) (“56 5
657, {and, red, yellow}) (“25 7 257, {green, not,
or})(“75757575”, {blue, not, yellow}) (“4 4
4”, {not, or, yellow}) (“22”, {and, ellipse, not}) (“6
12 6 67, {and, gray}) (“31 31 31 317, {and, blue})
(“7 12 77, {and, white}) (“55 3 28 77, {gray, or,



red}) (“28 28 317, {gray}) (“25 3”, {red, white})
(“76767, {blue, not, or}) (“32”, {triangle}) (“22
227, {or, rectangle}) (“12 12 32”, {and, yellow})
(“5 287, {red}) (“4 6 47, {or}) (“57 57", {and,
yellow}) (327, {and, square}) (“4 127, {green})
(“3333”, {and, not}) (“3 3 6", {and}) (“32 327,
{ellipse, or}) (“6 5 57, {and, gray}) (“7”, {or, red})
(“4 37, {and, gray}) (“12 12 127, {yellow}) (‘“28
72877, {and, green}) (“25 25 25, {and}) (“28 3
37, {or}) (“23 23, {blue, not}) (“4 4 32 4 32 47,
{not, or, yellow}) (“4 3 4 37, {not}) (“6 4, {or})
(“25 7 327, {green, not}) (“317, {blue, or}) (“4”,
{not}) (“55525”, {green, not, yellow}) (“28 31 28
317, {gray}) (12 22 127, {rectangle, yellow}) (“3
337, {and, not}) (“53 57, {or}) (“28”, {or, white})
(“55 37, {gray}) (“31 287, {red}) (“6 25”, {not,
red}) (“32 27 277, {ellipse, yellow}) (“7 6 7 32
77, {blue, not}) (“32 67, {not}) (“4”, {green, or})
(“12 6 287, {yellow}) (“32”, {ellipse}) (‘27 277,
{yellow}) (“25 327, {not}) (“3 6 77, {white}) (“28
28 12 37, {yellow}) (“4”, {circle}) (*“27 32 27",
{yellow}) (“3 47, {and, gray}) (“6 7 6, {square})
(“6 12 257, {red}) (‘23 22 23, {blue}) (“6 37,
{white}) (“3 377, {green, white}) (“3 557, {or})
(“5 27 327, {or, red, white}) (“7”, {blue, not})
(57, {and, yellow}) (7 127, {and, white}) (‘“28”,
{gray}) (325 3", {not})
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