
Morpheme Induction for Emergent Language

Anonymous ACL submission

Abstract001

We introduce CSAR, an algorithm for inducing002
morphemes from emergent language corpora of003
parallel utterances and meanings. It is a greedy004
algorithm that (1) weights morphemes based on005
mutual information between forms and mean-006
ings, (2) selects the highest-weighted pair, (3)007
removes it from the corpus, and (4) repeats008
the process to induce further morphemes (i.e.,009
Count, Select, Ablate, Repeat). The effective-010
ness of CSAR is first validated on procedurally011
generated datasets and compared against base-012
lines for related tasks. Second, we validate013
CSAR’s performance on human language data014
to show that the algorithm makes reasonable015
predictions in adjacent domains. Finally, we016
analyze a handful of emergent languages, quan-017
tifying linguistic characteristics like degree of018
synonymy and polysemy.019

1 Introduction020

Emergent languages—communication systems in-021

vented by neural networks via reinforcement022

learning—are fascinating entities. They give us a023

chance to experiment with the processes underlying024

the development of human language to which we025

would not otherwise have access. A perennial prob-026

lem in this field, though, is that emergent languages027

are difficult to interpret. The strategies emergent028

languages use to convey meaning do not always029

align with those known from human language (Kot-030

tur et al., 2017; Chaabouni et al., 2019; Kharitonov031

and Baroni, 2020). Yet a lack of general-purpose032

methods for investigating the structure of emergent033

communication prevents us from systematically in-034

vestigating how they encode meaning.035

As an essential step towards understanding emer-036

gent languages, we introduce CSAR, an algorithm037

for morpheme induction on emergent language.038

That is, given an input corpus of parallel data: ut-039

terances and their associated meanings, find the040

smallest meaningful components of utterances with041

Form Meaning

3, 6 {not, gray}
7, 7 {not, blue}
32 {circle}
4, 5 {not, yellow}
6, 12, 6, 12 {green, or, yellow}
3, 12, 3 {blue, or, yellow}

Figure 1: Example of morphemes extracted from a sig-
nalling game with pixel observations.

their accompanying meaning. Simply put, this task 042

is to jointly segment utterances and align them with 043

their meanings. The output of this algorithm, then, 044

is a mapping between the forms and meanings of 045

the emergent language (example shown in Fig. 1). 046

Furthermore, the proposed algorithm is easily ap- 047

plicable to almost any emergent language due to the 048

simplicity of the input format. In fact, the algorithm 049

is general purpose enough to produce reasonable 050

results in other domains, as we demonstrate with 051

human language-based image captioning, machine 052

translation, and word segmentation data. 053

An inventory of the morphemes of an emergent 054

language is the foundation of many further linguis- 055

tic analyses. Existing studies of compositionality 056

(Korbak et al., 2020), word boundaries (Ueda et al., 057

2023), and grammar induction (van der Wal et al., 058

2020) could be validated and augmented with infor- 059

mation on the morphology of emergent languages, 060

and new directions would also be made possible, 061

including analyses of the morphosyntactic patterns 062

and typological properties of emergent languages. 063

Ultimately, such studies form one of the pillars of 064

emergent communication research: learning what 065

emergent language can tell us about human lan- 066

guage (Boldt and Mortensen, 2024). 067

In Section 2 we define the task of morpheme 068

induction and discuss related work. Section 3 069

presents the proposed algorithm, CSAR. Section 4 070

1

validates CSAR’s performance on procedurally071

generated and human language data. Section 5072

applies CSAR to emergent languages. And we073

discuss the paper’s findings and limitations and074

conclude in Sections 6 to 8.075

Contributions This work: (1) Introduces an al-076

gorithm for inducing morphemes, applicable to a077

wide variety of emergent language corpora. (2)078

Offers an easy-to-use Python implementation for079

executing the proposed algorithm on arbitrary emer-080

gent language data. (3) Provides a first look into081

the morphology of emergent languages including082

phenomena such as polysemy and synonymy.083

2 Problem Definition084

In this section we give a precise definition of the085

problem and the terms we will use throughout the086

paper.087

2.1 Task: morpheme induction088

We define the task of morpheme induction as089

follows: Given a corpus of utterances and their090

corresponding complete meanings, identify mini-091

mal, well-founded form–meaning pairs (i.e., mor-092

phemes) present in the corpus. This collection of093

pairs is the morpheme inventory of the corpus.094

form a sequence of (form) tokens; represented as095

an integer sequence in emergent language.096

utterance a complete sequence of tokens pro-097

duced by an agent; forms are subsequences of098

utterances.099

meaning a set of meaning tokens (i.e., atomic100

meanings grounded in the environment).101

complete meaning a meaning which represents102

the entire meaning of an utterance.1103

well-founded a form–meaning pair is well-104

founded when the particular form corresponds105

with a particular meaning.106

minimal a well-founded form–meaning pair is107

minimal when there is no way to decompose108

the pair while maintaining continuity of mean-109

ings.110

It is important to note that we make two assump-111

tions about the complete meanings. First, complete112

meanings are assumed to be abstracted already,113

hence the reason we can represent them as a set114

of atomic meanings. That is to say that the “raw115

semantics” of the utterances are already broken116

down into individual components of interest; this117

1atomic meaning ∈ meaning ⊆ complete meaning

task does not entail automatically finding mean- 118

ing in arbitrary data (cf. clustering). Second, since 119

complete meanings are sets, they are not able to 120

represent more complex phenomena that might re- 121

quire graph structures, for example (cf. abstract 122

meaning representations). 123

Additionally, we note that well-founded corre- 124

spondence is a concept subject to a variety of philo- 125

sophical accounts. Sometimes these accounts hold 126

that the meaning is derived from either the behav- 127

ior or state of mind of a language user. Yet in 128

this task, we only have access to a corpus, not to 129

the language users themselves; thus, we employ 130

a notion of “well-founded correspondence” most 131

akin to a statistical view semantics (e.g., as in the 132

distributional hypothesis). 133

2.2 Related work 134

Emergent language Lipinski et al. (2024) serves 135

as the inspiration for this paper through its applica- 136

tion of normalized pointwise mutual information 137

to probe emergent languages for certain kinds of 138

form–meaning relationships, though it stops short 139

of providing full morpheme inventories over arbi- 140

trary data. Ueda et al. (2023) introduces a method 141

of form-only segment induction for emergent lan- 142

guage based on token-level entropy patterns in ut- 143

terances. 144

Finally, Brighton (2003) introduce methods for 145

inducing morphemes from simulations of language 146

evolution. In particular, the algorithm is based on 147

finite state transducers and the minimum descrip- 148

tion length principle. The key difference, though, 149

is that the FST-based method assumes a strict form- 150

meanings correspondence that does not appear to 151

hold in emergent languages generated by deep neu- 152

ral networks. 153

Statistical word alignment The task of mor- 154

pheme induction resembles the task of statistical 155

word alignment for machine translation insofar as 156

it involves learning a mapping between two modal- 157

ities. Well-known algorithms for this task include 158

the IBM alignment models (Brown et al., 1993). 159

While morphemes can be extracted from the align- 160

ments, the alignments themselves are not intended 161

to represent morphemes as such. 162

Segment induction Segment induction is similar 163

to morpheme induction, except that it deals only 164

with the forms. Sometimes this task is called “mor- 165

pheme induction” since the segments are supposed 166

2

to correspond to morphemes, but they are not mor-167

phemes in the sense of being form–meaning pairs.168

An example of an algorithm which addresses this169

task is Morfessor (Creutz and Lagus, 2002; Virpi-170

oja et al., 2013) or the submissions to the SIGMOR-171

PHON 2022 Shared Task Batsuren et al. (2022).172

The discovery of valid segments by tokenization173

methods based on statistics—such as BPE (Sen-174

nrich et al., 2016; Gage, 1994) and Unigram LM175

(Kudo, 2018)—is largely an epiphenomenon, not a176

design goal.177

3 Algorithm178

In this section we introduce the algorithm for mor-179

pheme induction: CSAR (Count, Select, Ablate,180

Repeat). CSAR comprises the following steps:181

1. Collect form and meaning candidates from the182

corpus.183

2. While form and meaning candidates remain.184

(a) Count co-occurrences of form and mean-185

ing candidates.186

(b) Select form–meaning pair with the highest187

weight.188

(c) Remove instances of the form–meaning189

pair from the corpus.190

3. Selected form–meaning pairs constitute the191

morpheme inventory of the corpus.192

The code implementing CSAR as well as the exper-193

iments discussed later is available under a free and194

open source license at https://example.com/repo195

(supplemental material while under review).196

3.1 Representation and preprocessing197

Input data The input data to CSAR is a paral-198

lel corpus of utterances and their meanings. Each199

record in the corpus is a tuple of form and mean-200

ing where a form is a list of (form) tokens and a201

meaning is a set of (meaning) tokens.202

Candidate collection Given the corpus, we can203

identify and count the form and meaning candi-204

dates to produce their corresponding occurrence205

matrices. A form candidate is any substring of206

form tokens under consideration for inducing mor-207

phemes. A meaning candidate is any subset of208

meaning tokens under consideration for inducing209

morphemes. The most straightforward approach210

is to simply consider every non-empty substring211

of forms and subset meanings, although CSAR is212

not constrained to this approach in theory (cf. Ap-213

pendix A.1).214

Having defined the universe of forms and mean- 215

ings, we can build a binary occurrence matrix for 216

forms and one for meanings, where each row cor- 217

responds to a record and each entry corresponds to 218

the presence (1) or absence (0) of a form/meaning 219

in that record. Thus, the form occurrence matrix 220

has the shape OF : |R| × |F| and the meaning 221

matrix OM : |R| × |M|, where R is the list of 222

records, F is the set of all forms candidates, and 223

M is the set of all meanings candidates. 224

Example If we had a simple corpus with records 225

(“s”, □), (“st”, ⊠), (“ct”, ⊗), the corresponding 226

occurrence matrices would be: 227

OF =
[· s · · ·
· s t · st
c · t ct ·

]
OM =

[
□ · · · ·
□ × · ⊠ ·
· × ⃝ · ⊗

]
, (1) 228

where entries with value 1’s are shown with the 229

occurring symbols, and entries with value 0’s with 230

· for clarity. 231

3.2 Main loop 232

Weighting and co-occurrences Given the oc- 233

currence matrices, the next step is to compute 234

the weights of all potential pairs. The pair with 235

the highest weight will be selected and added to 236

the morpheme inventory. The weight of a form– 237

meaning pair is the mutual information of the bi- 238

nary variables representing the corresponding form 239

and meaning. The mutual information of a particu- 240

lar form–meaning pair is given by 241

I(F ;M) =
∑
x∈F

∑
y∈M

p(x, y) log2
p(x, y)

p(x)p(y)
, (2) 242

where F = {f,¬f}, p(f) is the probability of f 243

appearing in a record, p(¬f) is the probability of f 244

not appearing, and the rest are defined analogously. 245

The key term of the mutual information expression 246

is the joint probability between a form and a mean- 247

ing, p(f,m): since f and m are binary variables, 248

all other joint probabilities can be computed from 249

their joint probability and the marginal probabil- 250

ities. The joint probability can be computed by 251

normalizing the sum of co-occurrences of given 252

forms and meanings, namely: 253

p(f,m) =
1

|R|

|R|∑
j=1

OF [j, if] ∧OM[j, im] (3) 254

where if and im are the indices of f and m in 255

their respective matrices. More succinctly, co- 256

3

https://example.com/repo

occurrences can be computed with matrix multipli-257

cations, yielding258

p(f,m) =
1

|R|
·
(
O⊤

FOM

)
[if , im] (4)259

Other weighting methods were explored includ-260

ing joint probabilities, pointwise mutual informa-261

tion, and normalized pointwise mutual information,262

though mutual information was found to perform263

best empirically.264

The above weighting function results in ties265

which we break with the following criteria: (1)266

higher initial weight, (2) fewer selected pairs with267

this form, (3) larger form size, and (4) smaller268

meaning size.269

Remove pair from corpus The final step of the270

algorithm’s main loop is ablating the pair from the271

corpus. That is, once we select a form–meaning272

pair, we want to remove all co-occurrences of the273

form and meaning in order to determine what form–274

meaning correspondences remain to be explained.275

For example, after ablating the pair (“t”, ×), the276

corpus from above would comprise (“s”, □), (“s”,277

□), and (“c”, #); the occurrence matrices would278

then be updated to reflect this. In cases where279

ablating a pair is ambiguous, we apply a heuristic280

(see Appendix A.2).281

Repeating and stopping After ablating the se-282

lected form–meaning pair, the algorithm repeats283

the main loop, beginning again at the weight-284

computation step (with the updated occurrence ma-285

trices). The one difference is that—in subsequent286

weight computations—the weight of a pair can-287

not go up, preventing spurious correlations from288

arising in later steps.289

This loop continues until form or meaning occur-290

rences are exhausted or some other criterion is met291

(e.g., time limit, inventory size limit). In this way,292

CSAR is an “anytime” algorithm since it can be293

stopped after an arbitrary number of iterations and294

still produce a sensible result. This is because the295

most heavily weighted morphemes can be consid-296

ered the highest confidence morphemes, meaning297

that stopping the algorithm before completion will298

only leave out the lowest confidence morphemes.299

3.3 Implementation300

The implementation of CSAR introduced in this301

paper is written in Python making use of sparse302

matrices from scipy (Virtanen et al., 2020, BSD303

3-Clause license) and JIT compilation with numba304

(Lam et al., 2015, BSD 2-Clause license) to speed 305

up execution. CSAR is conceptually simple. Most 306

of the implementation complexity lies in efficiently 307

handling the occurrence matrices, especially when 308

removing a form–meaning pair from the corpus. 309

For example, the co-occurrence matrix has the 310

shape |F| × |M| which is massive considering 311

that F and M are already accounting for the uni- 312

verses of all possible forms and meanings in the 313

corpus. Nevertheless, there are a wide range of 314

heuristics that can be applied to greatly speed up 315

execution while maintaining performance (see Ap- 316

pendix A.3). 317

4 Empirical Validation 318

To validate the ability of CSAR to find well- 319

founded morpheme inventories, we test it against 320

procedurally generated datasets as well as human 321

languages. Since we do not have access to ground 322

truth morphemes for emergent languages, we gauge 323

the effectiveness of CSAR’s morpheme induction 324

in the next best way: by testing its performance 325

in these adjacent domains. Procedurally generated 326

datasets (described in Section 4.1) both give us 327

access to the “ground truth” morphemes and al- 328

low us to vary particular facets of the languages. 329

Having ground truth morphemes allows us to quan- 330

titatively evaluate CSAR against baseline methods 331

(Section 4.2). Fine-grained control over the facets 332

of the languages permits us to identify particular 333

phenomena that are challenging for CSAR to in- 334

duce correctly (Section 4.3). We also test CSAR 335

against human language data (Section 4.4) in order 336

to give a qualitative sense of the effectiveness of 337

the algorithm. 338

4.1 Procedural datasets 339

The dataset-generating procedure has the follow- 340

ing basic structure: (1) Meanings are sampled ac- 341

cording to some structure (viz. a fixed attribute– 342

value vector). (2) An utterance is produced from 343

this meaning according to a mapping of meaning 344

components to form components. (3) The form– 345

meaning pairs that were used to generate the ut- 346

terance are added to the set of ground truth mor- 347

phemes. In the basic case, for example, each partic- 348

ular attribute and value is associated with a unique 349

sequence of tokens which are concatenated to form 350

an utterance, creating a one-to-one mapping from 351

meanings to forms. 352

4

Variations Such languages are trivial to induce353

morphemes from, so we introduce the following354

variations to produce more complex datasets:355

Synonymy Multiple forms may correspond to356

the same meaning.357

Polysemy Multiple meanings may correspond to358

the same form.359

Multi-token forms A form may comprise more360

than one token, possibly overlapping with361

other forms.362

Vocab size Number of unique tokens.363

Sparse meanings Meanings occur indepen-364

dently of each other with no additional365

structure (i.e., not structured as attribute–366

value pairs).367

Distribution imbalance Meanings are sampled368

from non-uniform distributions.369

Dataset size Number of records in the dataset.370

Number of meanings Total number of mean-371

ings (e.g., varying number of attributes and372

values).373

Noise forms Form tokens not corresponding to374

any meanings are added.375

Shuffle form Inter-form order is varied ran-376

domly (while maintaining intra-form order).377

Non-compositionality A given form may corre-378

spond to multiple meanings simultaneously.379

For the following analyses, we report values for380

a collection of procedural datasets built from the381

Cartesian product of two values for each of the382

above variations (one where the variation is inactive383

and one where it is). See Appendix B.1 for details.384

Evaluation metric We use F1 score (harmonic385

mean of precision and recall) to assess the qual-386

ity of an induced morpheme inventory given the387

ground truth inventory. We define precision as388

1

|I|
∑
i∈I

max
g∈G

s(i, g), (5)389

where I is the set of induced morphemes, G is the390

set of ground truth morphemes, and s is the similar-391

ity function. For exact F1, the similarity function392

is 1 if the morphemes are identical and 0 otherwise.393

In fuzzy F1, the similarity function is the minimum394

of form similarity (normalized insertion–deletion395

ratio2) and meaning similarity (Jaccard index). Re-396

call is defined similarly to precision except that the397

roles of I and G from Eq. (5) are reversed.398

0.4 0.6 0.8 1.0
F1-score

CSAR

IBM
Model 1

IBM
Model 3

Morfessor

BPE

ULM

Records

M
od

el Form+meaning
Form-only

Figure 2: Fuzzy F1 scores for CSAR and baseline meth-
ods across procedural datasets. Results reported for
form–meaning inventories and form-only inventories.

4.2 Comparison with baselines 399

Below we describe the baseline methods we use 400

for comparison. 401

IBM Model 1 Simple expectation-maximization 402

approach to machine translation primarily 403

through aligning words in a sentence-parallel 404

corpus. (Brown et al., 1993) 405

IBM Model 3 Built on top of the IBM Model 1 406

to handle phenomena such as allowing a form 407

to align to no meaning. 408

Morfessor A form-only segmentation algorithm 409

built to handle human language; also uses an 410

EM algorithm. 411

Byte pair encoding A greedy form-only tok- 412

enization method which recursively merges 413

frequently occurring pairs of tokens. Vocab- 414

ulary size is selected according to a simple 415

heuristic (see Appendix B.2). (Gage, 1994; 416

Sennrich et al., 2016) 417

Unigram LM An EM-based form-only tokeniza- 418

tion method which starts with a large vocabu- 419

lary and iteratively removes tokens contribut- 420

ing least to the likelihood of the data. Vocab- 421

ulary size is selected according to a simple 422

heuristic (see Appendix B.2). (Kudo, 2018) 423

Record A trivial baseline where the inventory is 424

just the set of all records. 425

For the baseline methods which do not handle 426

21− (insertions + deletions)/(|s1|+ |s2|)

5

meanings and only produce forms, we report the427

form-only F1 score (i.e., s(i, g) only takes the form428

into account), though CSAR and IBM models still429

have access to meanings. For form-only metrics,430

we exclude datasets which include noise forms as431

form-only methods cannot identify which forms432

are noise.433

Results The results of CSAR and the baselines434

on the procedural datasets are presented in Fig. 2,435

which shows the distributions of mean scores for436

each hyperparameter setting for the procedural437

datasets. Each setting was repeated over 3 random438

seeds. Additional results are given in Appendix B.3.439

For inducing full morphemes (form and meaning),440

CSAR performs the best by a large margin over441

the baselines (and even greater margin when con-442

sidering exact F1). The IBM alignment models443

perform better than the trivial record-based base-444

line but still perform noticeably worse than CSAR.445

While CSAR yields roughly equal precision and446

recall, the IBM models’ precision is lower than447

their recall suggesting that they are more prone to448

inducing spurious morphemes than CSAR.449

When evaluating the forms only, we find that450

CSAR is the best method with Morfessor exhibit-451

ing comparable performance. The IBM alignment452

models exhibit roughly the same performance as453

the tokenization methods (BPE and Unigram LM).454

As with the full morpheme results, CSAR is the455

only method to achieve comparable precision and456

recall with all other baselines having precisions457

lower than their recalls.458

4.3 Error Analysis459

For the most part, the errors CSAR makes are “edit460

errors”: identifying a correct morpheme but adding461

or removing a form or meaning token. This is re-462

flected in the near-parity between precision and463

recall. This is in contrast to the baseline methods464

which are more prone to inducing too many mor-465

phemes, leading to lower precision.466

Generally speaking, as more variations are added467

to a dataset, the performance degrades further. In468

particular, CSAR’s performance decreases the most469

with small corpus sizes, overlapping multi-token470

forms, and non-compositional mappings. On the471

other hand, using sparse meanings, shuffling the472

forms, and using a non-uniform meaning distribu-473

tion have relatively little effect.474

Dataset Induced Morpheme

Morphology
(“ed$”, {PAST})
(“ ’ ”, {POSSESSIVE})

Image captions
(“stop sign”, {stop sign})
(“woman”, {person})
(“skier”, {person, skis})

Translation
(“Member States”, {Mit-
gliedstaaten})

Figure 3: Examples of morphemes induced from various
human language datasets and tasks.

4.4 Human language data 475

In this section we discuss the results of running 476

CSAR on three different human language datasets. 477

While these datasets are not the intended domain of 478

CSAR—and CSAR is certainly not the best algo- 479

rithm for the tasks—the point of these experiments 480

is to demonstrate the general effectiveness of the 481

algorithm qualitatively (examples shown in Fig. 3). 482

Since these datasets are larger, we employed heuris- 483

tic optimizations to CSAR to reduce their runtime 484

(described in Appendix A.3). The top 100 induced 485

morphemes for each human language dataset are 486

given in Appendix D.1. 487

Morpho Challenge The first human language 488

dataset we use is from the Morpho Challenge (Ku- 489

rimo et al., 2010). This dataset is a human language 490

approximation of the task of morpheme induction 491

for emergent language. Concretely, the utterances 492

are single English words, divided up at the char- 493

acter level, while the meanings are the constituent 494

morphemes. 495

CSAR is able to recover a wide variety of 496

morphemes including: roots like (“ˆfire”, {fire}), 497

prefixes like (“ˆre”, {re-}), suffixes like (“ed$”, 498

{PAST}), and other affixes like (“ ’ ”, {POSSES- 499

SIVE}). While the vast majority of morphemes 500

CSAR induces are accurate, a handful of the lowest- 501

weighted morphemes are spurious (e.g., (“s$”, 502

{boy})) likely due to inaccurate decoding earlier in 503

the process (i.e., part of the true form for a given 504

meaning was included in a prior meaning). 505

Image captions The next dataset we employ is 506

the MS COCO dataset (Lin et al., 2015, CC BY 507

4.0). In particular, we take the image captions to be 508

the utterances, treating words as atomic units, and 509

the meaning to be the labeled objects in the image 510

(e.g., person, cat). 511

6

The bulk of highest weighted induced mor-512

phemes are direct equivalents of the objects they513

describe (e.g., (“cat”, {cat})). We find instances of514

synonymy (e.g., (“bicycle”, {bicycle}) and (“bike”,515

{bicycle})) as well as polysemy (e.g., (“animals”,516

{cow}) and (“animals”, {sheep})). Finally, we517

also observe compound forms like (“stop sign”,518

{stop sign}) as well as compound meanings such519

as (“skier”, {person, skis}). As we go beyond the520

top 100 or so, the associations between forms and521

meanings remain reasonable but become looser522

such as (“bride”, {dining table, tie}) or (“sink”,523

{toothbrush}).524

Machine translation For machine translation,525

we use the WMT16 dataset and the English–526

German split, in particular (Bojar et al., 2016). In527

this case, the English text is considered to be the528

utterance and the German text to be the meaning,529

with words being the atomic units on both sides.530

As with the image caption results, the bulk of531

induced morphemes are direct equivalents (e.g.,532

(“and”, {und})). Beyond these simple one-to-one533

mappings, CSAR induces the polysemic relation-534

ship (“the”, {der}) and (“the”, {die}). Finally,535

CSAR also picks up on multi-token forms like536

(“Member States”, {Mitgliedstaaten}).537

5 Analysis of Emergent Languages538

5.1 Datasets539

We apply CSAR to two different signalling game540

environments: one with vector-based observations541

and one with image-based observations.542

Vector observations In the vector observation543

signalling game the agents directly observe one-hot544

vectors which directly correspond to the informa-545

tion to be communicated (Kharitonov et al., 2021,546

MIT license). Specifically, we use two variants: (1)547

the standard attribute–value setting where each of548

4 attributes can take on 4 distinct values and (2) the549

“sparse” setting where there are 8 binary attributes550

and only attributes which are “true” are included551

in the meanings given to CSAR. Hyperparameters552

for both environments are given in Appendix C.1.553

ShapeWorld observations The second environ-554

ment is introduced by Mu and Goodman (2021,555

MIT license) with the following differences: (1)556

observations are images, and (2) employs varia-557

tions which increase the level of abstraction of the558

game to encourage generalization. First, this en-559

vironment uses the ShapeWorld tool for generat- 560

ing observations (Kuhnle and Copestake, 2017); 561

namely, underlying concepts are particular shapes 562

(e.g., red square) while the observations passed to 563

the agents in the signalling game are pixel-based 564

images. Second, Mu and Goodman (2021) provide 565

three variants with increasing levels of abstraction: 566

(1) reference the sender indicates a single image, 567

(2) set reference the sender indicates a set of im- 568

ages with a common attribute, and (3) concept as 569

in set reference but the receiver’s observations are 570

different instances sharing the common attribute 571

(referenced in Fig. 1). 572

5.2 Metrics 573

We present the following metrics to give analyze 574

the morpheme inventories induced from the emer- 575

gent language data: 576

Inventory size Number of morphemes in the in- 577

ventory. 578

Inventory entropy Entropy (in bits) of the mor- 579

phemes according to their prevalence. 580

Synonymy Entropy across forms for a given 581

meaning. 582

Polysemy Entropy across meanings for a given 583

form. 584

Form size Mean number of tokens in a form. 585

Meaning size Mean number of tokens in a mean- 586

ing. 587

Topographic similarity Correlation (ρ) be- 588

tween distances in the utterance space and 589

complete meaning space (Brighton and Kirby, 590

2006; Lazaridou et al., 2018). 591

With the exception of inventory size and toposim, 592

the above metrics are weighted by prevalence 593

which is the proportion of records from which the 594

morpheme was ablated. 595

5.3 Results 596

Table 1 shows the results (induced morphemes 597

from each emergent language are given in Ap- 598

pendix D.2). Looking at form size, while the 599

forms of morphemes do tend towards smaller val- 600

ues, many comprise more than one token, suggest- 601

ing that assuming that each token can be analyzed 602

as a word or independent unit of meaning is not a 603

safe assumption. Addressing the mapping between 604

forms and meanings, we see that synonymy (forms 605

per meaning) is higher than polysemy (meanings 606

per form). The fact that there is a higher degree of 607

synonymy than polysemy makes sense insofar as 608

7

|Inv.| Inv. H |Form| |Meaning| Synonymy Polysemy Toposim

Vector, AV 223 6.81 3.07 1.37 1.52 0.58 0.35
Vector, sparse 156 6.09 2.08 1.55 1.91 0.62 0.39
SW, ref 1124 6.52 1.76 1.01 2.99 1.64 0.04
SW, setref 396 6.14 1.54 1.38 1.43 0.74 0.15
SW, concept 351 5.86 1.89 1.43 1.04 0.95 0.17

Table 1: Morpheme inventory metrics (described in Section 5.2) across various emergent languages. (AV: attribute–
value, SW: ShapeWorld, Inv.: Inventory)

the optimization penalizes ambiguity (polysemy)609

while it does not penalize merely inefficient en-610

coding (synonymy). This is concordant with find-611

ing such as Chaabouni et al. (2019) which finds612

that emergent languages, in the absence of addi-613

tion pressures, do not develop efficient encoding614

schemes. Additionally, the ShapeWorld languages615

show much higher degrees of synonymy and pol-616

ysemy than the vector environment likely due in617

part to the continuous nature of the observations.618

Compositionality The meaning size metric, in619

particular, is interesting insofar as it relates to com-620

positionality. In the simplest case of composi-621

tionality, morphemes comprise singleton meanings622

which can be combined to form compound mean-623

ings. More holistic languages, on the other hand,624

assign multiple atomic meanings per morpheme re-625

sulting in in larger meaning sizes. The fact that the626

emergent languages tend towards a meaning size of627

1 suggests a non-trivial degree of compositionality628

under this interpretation. Yet when we compare629

meaning sizes values to topographic similarity val-630

ues computed across records (i.e., not involving631

CSAR), we find that there is no obvious correlation632

between toposim values and meaning sizes. This633

could be due to the fact that individual form tokens634

could have “partial meanings” and need to be com-635

bined to comprise an atomic meaning. Although636

our sample size is too small to make any definitive637

claims.638

6 Discussion639

Due to CSAR’s strong performance and easy ap-640

plication to a wide variety of emergent language641

environments, it would be a valuable addition to642

the standard toolkit of emergent language analyses.643

In particular, it helps fill a gap of environment-644

agnostic methods for interpreting the ways that645

emergent languages convey meaning—a perennial646

question in the field. Furthermore, morpheme in-647

ventories are a foundation for higher-level linguis- 648

tic analyses of emergent language like inducing 649

their syntactic structure. To skip the morpheme in- 650

duction step would be comparable to attempting to 651

understand the grammatical role of the letter C in 652

English. Such analyses of the syntax of emergent 653

language and beyond are critical to understanding 654

how emergent and human language are similar and 655

how they are different. 656

7 Conclusion 657

CSAR presents a strong platform for investigat- 658

ing the morphology of emergent language, demon- 659

strating the ability to find minimal form–meaning 660

pairs in both procedural and human language data. 661

Given the morpheme inventory of an emergent lan- 662

guages we can not only analyze phenomena like 663

synonymy and polysemy but also the typological 664

features of emergent languages, determining which 665

human languages they most closely resemble, if 666

they resemble any. Such a study of morphology 667

forms the foundation for the more general study 668

of the linguistic features of emergent language and 669

unlocks the door to the insights they can provide 670

us about human language. 671

8 Limitations 672

Greed is not always good While the greediness 673

of CSAR does simplify induction (conceptually 674

and implementation-wise), improve runtime, and 675

provide good partial inventories, it suffers from the 676

same limitation inherent to greedy algorithms: it 677

can get trapped in local optima. For example, it is 678

possible to construct corpora for which a greedy ap- 679

proach is “misled” since certain heuristics require 680

revision based on information encountered later in 681

the induction process (e.g., preferring smaller ver- 682

sus larger forms). Related algorithms use iterative 683

algorithms (IBM models and Morfessor) or search 684

(Brighton, 2003) to avoid the local minima that trap 685

8

greedy approaches. Future work could incorporate686

such methods to improve upon the performance of687

CSAR for morpheme induction.688

Limited emergent language data The other lim-689

itation of this paper relates to the type and breadth690

of emergent language data. In terms of type, since691

we do not have ground truth morpheme inventories692

for emergent language, we cannot directly evalu-693

ate CSAR’s performance on the target domain. In694

terms of breadth, without a larger and more repre-695

sentative sample of more systematically generated696

data we are unable to make definitive claims about697

the patterns and trends of morpheme inventories in698

emergent languages.699

References700

Khuyagbaatar Batsuren, Gábor Bella, Aryaman Arora,701
Viktor Martinovic, Kyle Gorman, Zdeněk Žabokrt-702
ský, Amarsanaa Ganbold, Šárka Dohnalová, Magda703
Ševčíková, Kateřina Pelegrinová, Fausto Giunchiglia,704
Ryan Cotterell, and Ekaterina Vylomova. 2022. The705
SIGMORPHON 2022 shared task on morpheme seg-706
mentation. In Proceedings of the 19th SIGMOR-707
PHON Workshop on Computational Research in Pho-708
netics, Phonology, and Morphology, pages 103–116,709
Seattle, Washington. Association for Computational710
Linguistics.711

Ond rej Bojar, Rajen Chatterjee, Christian Federmann,712
Yvette Graham, Barry Haddow, Matthias Huck, An-713
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-714
gacheva, Christof Monz, Matteo Negri, Aurelie715
Neveol, Mariana Neves, Martin Popel, Matt Post,716
Raphael Rubino, Carolina Scarton, Lucia Specia,717
Marco Turchi, and 2 others. 2016. Findings of the718
2016 conference on machine translation. In Proceed-719
ings of the First Conference on Machine Translation,720
pages 131–198, Berlin, Germany. Association for721
Computational Linguistics.722

Brendon Boldt and David R Mortensen. 2024. A review723
of the applications of deep learning-based emergent724
communication. Transactions on Machine Learning725
Research.726

Henry Brighton. 2003. Simplicity as a driving force727
in linguistic evolution. Ph.D. thesis, University of728
Edinburgh, Edinburgh, UK.729

Henry Brighton and Simon Kirby. 2006. Understanding730
linguistic evolution by visualizing the emergence of731
topographic mappings. Artificial Life, 12(2):229–732
242.733

Peter F. Brown, Stephen A. Della Pietra, Vincent J.734
Della Pietra, and Robert L. Mercer. 1993. The math-735
ematics of statistical machine translation: Parameter736
estimation. Computational Linguistics, 19(2):263–737
311.738

Rahma Chaabouni, Eugene Kharitonov, Emmanuel 739
Dupoux, and Marco Baroni. 2019. Anti-efficient en- 740
coding in emergent communication. Curran Asso- 741
ciates Inc., Red Hook, NY, USA. 742

Mathias Creutz and Krista Lagus. 2002. Unsupervised 743
discovery of morphemes. In Proceedings of the ACL- 744
02 Workshop on Morphological and Phonological 745
Learning, pages 21–30. Association for Computa- 746
tional Linguistics. 747

Philip Gage. 1994. A new algorithm for data compres- 748
sion. C Users J., 12(2):23–38. 749

Eugene Kharitonov and Marco Baroni. 2020. Emergent 750
language generalization and acquisition speed are not 751
tied to compositionality. arXiv, 2004.03420. 752

Eugene Kharitonov, Roberto Dessì, Rahma Chaabouni, 753
Diane Bouchacourt, and Marco Baroni. 2021. EGG: 754
a toolkit for research on Emergence of lanGuage in 755
Games. https://github.com/facebookresearc 756
h/EGG. 757

Tomasz Korbak, Julian Zubek, and Joanna Rączaszek- 758
Leonardi. 2020. Measuring non-trivial composi- 759
tionality in emergent communication. Preprint, 760
arXiv:2010.15058. 761

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. 762
2017. Natural language does not emerge ‘naturally’ 763
in multi-agent dialog. In Proceedings of the 2017 764
Conference on Empirical Methods in Natural Lan- 765
guage Processing, pages 2962–2967, Copenhagen, 766
Denmark. Association for Computational Linguis- 767
tics. 768

Taku Kudo. 2018. Subword regularization: Improv- 769
ing neural network translation models with multiple 770
subword candidates. In Proceedings of the 56th An- 771
nual Meeting of the Association for Computational 772
Linguistics (Volume 1: Long Papers), pages 66–75, 773
Melbourne, Australia. Association for Computational 774
Linguistics. 775

Alexander Kuhnle and Ann Copestake. 2017. Shape- 776
world - a new test methodology for multimodal lan- 777
guage understanding. arXiv, 1704.04517. 778

Mikko Kurimo, Sami Virpioja, Ville Turunen, and 779
Krista Lagus. 2010. Morpho challenge 2005-2010: 780
Evaluations and results. In Proceedings of the 11th 781
Meeting of the ACL Special Interest Group on Com- 782
putational Morphology and Phonology, pages 87– 783
95, Uppsala, Sweden. Association for Computational 784
Linguistics. 785

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 786
2015. Numba: a llvm-based python jit compiler. In 787
Proceedings of the Second Workshop on the LLVM 788
Compiler Infrastructure in HPC, LLVM ’15, New 789
York, NY, USA. Association for Computing Machin- 790
ery. 791

9

https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://openreview.net/forum?id=jesKcQxQ7j
https://openreview.net/forum?id=jesKcQxQ7j
https://openreview.net/forum?id=jesKcQxQ7j
https://openreview.net/forum?id=jesKcQxQ7j
https://openreview.net/forum?id=jesKcQxQ7j
https://era.ed.ac.uk/handle/1842/23810
https://era.ed.ac.uk/handle/1842/23810
https://era.ed.ac.uk/handle/1842/23810
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://doi.org/10.1162/artl.2006.12.2.229
https://aclanthology.org/J93-2003/
https://aclanthology.org/J93-2003/
https://aclanthology.org/J93-2003/
https://aclanthology.org/J93-2003/
https://aclanthology.org/J93-2003/
https://doi.org/10.3115/1118647.1118650
https://doi.org/10.3115/1118647.1118650
https://doi.org/10.3115/1118647.1118650
https://arxiv.org/abs/2004.03420
https://arxiv.org/abs/2004.03420
https://arxiv.org/abs/2004.03420
https://arxiv.org/abs/2004.03420
https://arxiv.org/abs/2004.03420
https://github.com/facebookresearch/EGG
https://github.com/facebookresearch/EGG
https://github.com/facebookresearch/EGG
https://arxiv.org/abs/2010.15058
https://arxiv.org/abs/2010.15058
https://arxiv.org/abs/2010.15058
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://arxiv.org/abs/1704.04517
https://arxiv.org/abs/1704.04517
https://arxiv.org/abs/1704.04517
https://arxiv.org/abs/1704.04517
https://arxiv.org/abs/1704.04517
https://aclanthology.org/W10-2211/
https://aclanthology.org/W10-2211/
https://aclanthology.org/W10-2211/
https://doi.org/10.1145/2833157.2833162

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls,792
and Stephen Clark. 2018. Emergence of linguistic793
communication from referential games with sym-794
bolic and pixel input. ArXiv, abs/1804.03984.795

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir796
Bourdev, Ross Girshick, James Hays, Pietro Perona,797
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dol-798
lár. 2015. Microsoft coco: Common objects in con-799
text. arXiv, 1405.0312.800

Olaf Lipinski, Adam Sobey, Federico Cerutti, and Tim-801
othy J. Norman. 2024. Speaking your language: Spa-802
tial relationships in interpretable emergent communi-803
cation. In The Thirty-eighth Annual Conference on804
Neural Information Processing Systems.805

Jesse Mu and Noah Goodman. 2021. Emergent commu-806
nication of generalizations. In Advances in Neural807
Information Processing Systems, volume 34, pages808
17994–18007. Curran Associates, Inc.809

Rico Sennrich, Barry Haddow, and Alexandra Birch.810
2016. Neural machine translation of rare words with811
subword units. In Proceedings of the 54th Annual812
Meeting of the Association for Computational Lin-813
guistics (Volume 1: Long Papers), pages 1715–1725,814
Berlin, Germany. Association for Computational Lin-815
guistics.816

Ryo Ueda, Taiga Ishii, and Yusuke Miyao. 2023. On817
the word boundaries of emergent languages based on818
harris’s articulation scheme. In The Eleventh Inter-819
national Conference on Learning Representations.820

Oskar van der Wal, Silvan de Boer, Elia Bruni, and821
Dieuwke Hupkes. 2020. The grammar of emergent822
languages. In Proceedings of the 2020 Conference on823
Empirical Methods in Natural Language Processing824
(EMNLP), pages 3339–3359, Online. Association for825
Computational Linguistics.826

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and827
Mikko Kurimo. 2013. Morfessor 2.0: Python im-828
plementation and extensions for Morfessor baseline.829
Technical Report ISBN 978-952-60-5501-5, Aalto830
University, Helsinki, Finland.831

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt832
Haberland, Tyler Reddy, David Cournapeau, Ev-833
geni Burovski, Pearu Peterson, Warren Weckesser,834
Jonathan Bright, Stéfan J. van der Walt, Matthew835
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay836
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert837
Kern, Eric Larson, and 16 others. 2020. SciPy 1.0:838
Fundamental Algorithms for Scientific Computing in839
Python. Nature Methods, 17:261–272.840

A Algorithm841

A.1 Candidate generation842

For simplicity’s sake (and inductive bias), we limit843

the candidate generation functions to all non-empty844

substrings for forms and all non-empty subsets for845

meanings. Nevertheless, we could extend form can- 846

didate generation to non-contiguous forms to detect 847

non-concatenative morphology (e.g., the form “x.z” 848

matching “xyz” and “xwz”). In fact, we could 849

could use arbitrary regular expressions to represent 850

forms (or meanings) such as “ˆ..x” or “x+” to rep- 851

resent absolute position and optional repetitions, 852

respectively. We could consider empty forms and 853

empty meanings to explicitly identify forms and 854

meanings which do not have mappings (as opposed 855

to implicitly not including them in the morphol- 856

ogy). 857

Of course, part of the difficulty of extending the 858

complexity of the candidate generation is that it 859

expands the already (sometimes intractably) large 860

search space. One method of making this tractable, 861

though, is adding heuristics that determine which 862

form candidates should be considered rather than 863

considering every possible candidate. 864

A.2 Ambiguous pair application 865

In some cases of applying a morpheme to record in 866

the dataset, there are multiple applications possible. 867

Say we have the utterance “x y z x y” meaning 868

{A,B} and we want to apply the morpheme (“x 869

y”, {A}). The form matches two substrings in 870

the utterance, so there are two possible ways to 871

apply the morpheme. As a heuristic for selecting 872

the best application, CSAR break ties by selecting 873

the substring least likely to be a morpheme (as 874

determined by the morpheme weights). Going back 875

to the above example, if it is the case the morpheme 876

(“z x y”, {B}) has a higher weight than (“x y z”, 877

{B}), then CSAR will apply (“x y”, {A}) to the 878

first instance of “x y” instead of the second. 879

This search can be very computationally expen- 880

sive since it can entail going through a large number 881

of morpheme candidates. Thus for the experiments 882

with human language data, we do not perform this 883

search and select the best form pseudorandomly. 884

A.3 Heuristic optimizations 885

Below we include a summary of heuristic optimiza- 886

tions available in CSAR: 887

max input records Only consider a certain num- 888

ber of records from the input data; 20 000 889

for machine translation, image captions, and 890

ShapeWorld. 891

max inventory size Stop after inducing a certain 892

number of morphemes; 300 for image cap- 893

tions and machine translation settings. 894

10

https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://openreview.net/forum?id=vIP8IWmZlN
https://openreview.net/forum?id=vIP8IWmZlN
https://openreview.net/forum?id=vIP8IWmZlN
https://openreview.net/forum?id=vIP8IWmZlN
https://openreview.net/forum?id=vIP8IWmZlN
https://proceedings.neurips.cc/paper_files/paper/2021/file/9597353e41e6957b5e7aa79214fcb256-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9597353e41e6957b5e7aa79214fcb256-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9597353e41e6957b5e7aa79214fcb256-Paper.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://openreview.net/forum?id=b4t9_XASt6G
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.18653/v1/2020.emnlp-main.270
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

n-gram semantics Treat complete meanings as895

ordered and generate meaning candidates896

identically to forms (i.e., as n-grams); used897

for machine translation data where the “mean-898

ings” are sentences.899

max form/meaning size Only consider for-900

m/meaning candidates up to a certain size; 3901

for machine translation (form and meaning)902

and image captions (form only), 2 for image903

captions meaning.904

no search best form When ablating a form with905

multiple matches in an utterance, do not906

search for best form, simply choose it ran-907

domly; no search for image captions and ma-908

chine translation.909

form/meaning vocabulary size Only consider910

the most common form/meaning candidates;911

100 000 for image captions and machine trans-912

lation.913

token vocabulary size Only consider the most914

common form/meaning tokens and ignore an915

form meaning candidates which contain an916

unknown token; 1000 for image captions and917

500 for machine translation.918

co-occurrence threshold Zero out any co-919

occurrences which fall below a certain920

threshold (e.g., if a form and meaning921

candidate only occur once, treat it as never co-922

occurring); 1 for ShapeWorld, 10 for image923

captions, and 100 for machine translation.924

B Empirical Validation925

B.1 Procedural dataset hyperparameters926

The following hyperparameters were used for gen-927

erating the procedural datasets. Each dataset uses 4928

attributes and 4 values except for the sparse setting929

which uses 8 independent values.930

Synonymy {1, 3}; forms per meaning931

Polysemy {0, 0.15}; proportion of meanings932

mapped to an already-used form933

Multi-token forms {{1}, {1, 2, 3, 4}}; possible934

tokens per form935

Vocab size {10, 50}; only applies to non-unity936

multi-token forms937

Sparse meanings {true, false}938

Distribution imbalance {true, false}; non-939

uniform distribution is based on the ramp940

function, i.e., probability of given value for941

an attribute is proportional to its index + 1.942

Dataset size {50, 500}943

Noise forms {0, 0.5}; 1− p of parameter of ge-944

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

CSAR

IBM
Model 1

IBM
Model 3

Morfessor

BPE

ULM

Records

M
od

el

Form+meaning
Form-only

Figure 4: Exact F1 scores of baseline methods on the
procedural datasets

ometric distribution 945

Shuffle form {true, false} 946

Non-compositionality {true, false} 947

Random seeds 3 per hyperparameter setting 948

Non-unity polysemy and synonymy rates for the 949

non-compositional dataset implementation were 950

not implemented and are excluded from the above 951

grid. 952

B.2 Tokenizer vocabulary size 953

The heuristic for the tokenizer vocabulary size is 954

as follows: 955

|V | =

⌊
|Tmeaning|

|R|
∑
r∈R

|rform|
|rmeaning|

⌋
+ |Tform|, (6) 956

where Tmeaning is the set of all meaning tokens in 957

the dataset (likewise for Tform), R is the multiset 958

of records in dataset, rform is the particular form 959

(utterance) for an individual record (likewise for 960

rmeaning. This heuristic can be interpreted as the 961

mean form tokens per meaning tokens times the 962

number unique meaning tokens added to the num- 963

ber of unique form tokens (since each of them will 964

automatically be included in the vocabulary). 965

B.3 Additional procedural dataset results 966

Table 2 shows all results of baseline methods on the 967

procedural datasets. Figure 4 visualizes the results 968

of the baseline methods with exact F1 score. 969

11

CSAR IBM Model 1 IBM Model 3 Morfessor BPE ULM Records

Exact F1, form 0.868 0.616 0.595 0.827 0.624 0.670 0.133
Fuzzy F1, form 0.960 0.899 0.893 0.949 0.890 0.891 0.637
Fuzzy prec., form 0.954 0.855 0.850 0.933 0.852 0.853 0.597
Fuzzy recall, form 0.967 0.952 0.946 0.967 0.934 0.938 0.701
Exact F1 0.788 0.375 0.379 0.000 0.000 0.000 0.101
Fuzzy F1 0.899 0.721 0.726 0.000 0.000 0.000 0.441
Fuzzy prec. 0.881 0.641 0.640 0.000 0.000 0.000 0.390
Fuzzy recall 0.921 0.855 0.866 0.000 0.000 0.000 0.543

Table 2: Results of baseline methods on the procedural datasets.

C Analysis of Emergent Languages970

C.1 Emergent language hyperparameters971

The following hyperparameters were used for the972

vector observation environment:973

n values 4, 2 (sparse)974

n attributes 4, 8 (sparse)975

n distractors 3976

vocab size 32977

max sequence length 10978

dataset size (CSAR input) 10 000 records979

The ShapeWorld observation environment uses980

the following hyperparameters981

observations 5 shapes, 6 colors, 3 operators982

(and, or, not); and or or may only be used983

once984

n examples 20 total; 10 correct targets, 10 dis-985

tractors986

vocab size 32987

max sequence length 8988

dataset size (CSAR input) 20 000 records989

Both environments had any beginning-of-990

sentence and end-of-sentence tokens removed be-991

fore being fed into CSAR. Running the above992

experiments requires about 25 GPU-hours on993

NVIDIA GeForce RTX 2080Ti.994

D Morpheme Inventories995

Top 100 morphemes induced by CSAR from hu-996

man and emergent language datasets.997

D.1 Human languages998

Morpho Challenge (“”’, {+GEN}) (“ing$”,999

{+PCP1}) (“ed$”, {+PAST}) (“s”, {+PL}) (“er”,1000

{er_s}) (“ly$”, {ly_s}) (“s$”, {+3SG}) (“ist”,1001

{ist_s}) (“iz”, {ize_s}) (“ness”, {ness_s}) (“ion”,1002

{ion_s}) (“ˆre”, {re_p}) (“ˆde”, {de_p}) (“ation”,1003

{ation_s}) (“est$”, {+SUP}) (“ˆun”, {un_p}) 1004

(“less”, {less_s}) (“ful”, {ful_s}) (“ˆmis”, {mis_- 1005

p}) (“head”, {head_N}) (“way”, {way_N}) 1006

(“ment”, {ment_s}) (“al”, {al_s}) (“it”, {ity_s}) 1007

(“ˆfire”, {fire_N}) (“ency$”, {ency_s}) (“hook”, 1008

{hook_N}) (“ish$”, {ish_s}) (“mind”, {mind_- 1009

N}) (“ˆin”, {in_p}) (“at”, {ate_s}) (“if”, {ify_s}) 1010

(“able$”, {able_s}) (“ically$”, {ally_s}) (“ˆinter”, 1011

{inter_p}) (“ˆphoto”, {photo_p}) (“ˆhand”, {hand_- 1012

N}) (“ˆscho”, {school_N}) (“house”, {house_N}) 1013

(“ical$”, {ical_s}) (“hold”, {hold_V}) (“long”, 1014

{long_A}) (“work”, {work_V}) (“up”, {up_B}) 1015

(“ag”, {age_s}) (“ant”, {ant_s}) (“ib”, {ible_- 1016

s}) (“line”, {line_N}) (“ed$”, {ed_s}) (“er$”, 1017

{+CMP}) (“ˆover”, {over_p}) (“ˆdis”, {dis_p}) 1018

(“ˆsea”, {sea_N}) (“ˆim”, {im_p}) (“or”, {or_- 1019

s}) (“pos”, {pose_V}) (“ence”, {ence_s}) (“ˆcar- 1020

dinal”, {cardinal_A}) (“ˆrational”, {rational_A}) 1021

(“ˆshoplift”, {shop_N}) (“conciliat”, {conciliate_- 1022

V}) (“ˆmanicur”, {manicure_N}) (“ˆpredict”, {pre- 1023

dict_V}) (“dressing”, {dressing_V}) (“ˆbuffet”, 1024

{buffet_V}) (“ˆcrimin”, {crime_N}) (“ˆentitl”, {en- 1025

title_V}) (“ˆfrivol”, {frivolous_A}) (“ˆheartb”, 1026

{heart_N}) (“ˆmaroon”, {maroon_A}) (“ˆribald”, 1027

{ribald_A}) (“ˆspread”, {spread_V}) (“ˆsqueak”, 1028

{squeak_V}) (“ˆsquint”, {squint_V}) (“ˆstatue”, 1029

{statue_N}) (“ˆsummar”, {summary_A}) (“whis- 1030

per”, {whisper_V}) (“ˆblink”, {blink_V}) (“ˆcarri”, 1031

{carry_V}) (“ˆcheer”, {cheer_V}) (“ˆfour-”, {four_- 1032

Q}) (“ˆhitch”, {hitch_V}) (“ˆlouvr”, {louvre_- 1033

N}) (“ˆmuzzl”, {muzzle_N}) (“ˆnihil”, {nihilism_- 1034

N}) (“ˆtooth”, {tooth_N}) (“ˆwaist”, {waist_- 1035

N}) (“guard$”, {guard_N}) (“ˆbull”, {bull_N}) 1036

(“ˆrail”, {rail_V}) (“ˆseri”, {series_N}) (“ˆtest”, 1037

{test_N}) (“ˆtwo-”, {two_Q}) (“ance$”, {ance_- 1038

s}) (“board”, {board_N}) (“chain”, {chain_N}) 1039

(“eroom”, {room_N}) (“grand”, {grand_A}) (“or- 1040

der”, {order_V}) (“power”, {power_N}) 1041

12

Image captions (“tennis”, {tennis racket})1042

(“cat”, {cat}) (“train”, {train}) (“dog”, {dog})1043

(“pizza”, {pizza}) (“toilet”, {toilet}) (“man”, {per-1044

son}) (“bus”, {bus}) (“clock”, {clock}) (“baseball”,1045

{baseball glove}) (“frisbee”, {frisbee}) (“bed”,1046

{bed}) (“horse”, {horse}) (“skateboard”, {skate-1047

board}) (“laptop”, {laptop}) (“cake”, {cake})1048

(“giraffe”, {giraffe}) (“table”, {dining table})1049

(“bench”, {bench}) (“motorcycle”, {motorcycle})1050

(“bathroom”, {sink}) (“elephant”, {elephant})1051

(“umbrella”, {umbrella}) (“kitchen”, {oven})1052

(“kite”, {kite}) (“people”, {person}) (“ball”,1053

{sports ball}) (“sheep”, {sheep}) (“zebra”, {ze-1054

bra}) (“phone”, {cell phone}) (“surfboard”, {surf-1055

board}) (“hydrant”, {fire hydrant}) (“zebras”, {ze-1056

bra}) (“teddy”, {teddy bear}) (“truck”, {truck})1057

(“stop sign”, {stop sign}) (“sandwich”, {sand-1058

wich}) (“boat”, {boat}) (“street”, {car}) (“bat”,1059

{baseball bat}) (“bananas”, {banana}) (“giraffes”,1060

{giraffe}) (“living”, {couch}) (“snow”, {skis})1061

(“bird”, {bird}) (“elephants”, {elephant}) (“vase”,1062

{vase}) (“cows”, {cow}) (“broccoli”, {broccoli})1063

(“computer”, {keyboard}) (“woman”, {person})1064

(“tie”, {tie}) (“horses”, {horse}) (“bear”, {bear})1065

(“desk”, {mouse}) (“plane”, {airplane}) (“lug-1066

gage”, {suitcase}) (“airplane”, {airplane}) (“per-1067

son”, {person}) (“hot”, {hot dog}) (“refrigera-1068

tor”, {refrigerator}) (“wii”, {remote}) (“kites”,1069

{kite}) (“boats”, {boat}) (“couch”, {couch}) (“traf-1070

fic”, {traffic light}) (“plate”, {fork}) (“surf”, {surf-1071

board}) (“umbrellas”, {umbrella}) (“wine”, {wine1072

glass}) (“skate”, {skateboard}) (“bowl”, {bowl})1073

(“stuffed”, {teddy bear}) (“room”, {tv}) (“cow”,1074

{cow}) (“scissors”, {scissors}) (“snowboard”,1075

{snowboard}) (“chair”, {chair}) (“car”, {car}) (“ba-1076

nana”, {banana}) (“bicycle”, {bicycle}) (“birds”,1077

{bird}) (“vegetables”, {broccoli}) (“microwave”,1078

{microwave}) (“donuts”, {donut}) (“video”, {re-1079

mote}) (“batter”, {baseball bat, person}) (“skate-1080

boarder”, {person, skateboard}) (“surfer”, {per-1081

son, surfboard}) (“skis”, {skis}) (“motorcycles”,1082

{motorcycle}) (“meter”, {parking meter}) (“suit-1083

case”, {suitcase}) (“sink”, {sink}) (“bike”, {bicy-1084

cle}) (“chairs”, {chair}) (“food”, {bowl}) (“dogs”,1085

{dog}) (“oven”, {oven}) (“court”, {sports ball})1086

Machine translation (“and”, {und}) (“Commis-1087

sion”, {Kommission}) (“not”, {nicht}) (“Union”,1088

{Union}) (“we”, {wir}) (“I”, {ich}) (“that”, {daß})1089

(“Mr”, {Herr}) (“I”, {Ich}) (“Parliament”, {Par-1090

lament}) (“President”, {Präsident}) (“Member1091

States”, {Mitgliedstaaten}) (“report”, {Bericht})1092

(“European”, {Europäischen}) (“We”, {Wir}) 1093

(“or”, {oder}) (“in”, {in}) (“Europe”, {Eu- 1094

ropa}) (“the”, {der}) (“Council”, {Rat}) (“be- 1095

tween”, {zwischen}) (“is”, {ist}) (“2000”, {2000}) 1096

(“Commissioner”, {Kommissar}) (“EU”, {EU}) 1097

(“for”, {für}) (“the”, {die}) (“The”, {Die}) 1098

(“also”, {auch}) (“with”, {mit}) (“like to”, 1099

{möchte}) (“you”, {Sie}) (“1999”, {1999}) (“di- 1100

rective”, {Richtlinie}) (“only”, {nur}) (“pro- 1101

posal”, {Vorschlag}) (“European”, {Europäis- 1102

che}) (“Madam”, {Präsidentin}) (“Mrs”, {Frau}) 1103

(“Kosovo”, {Kosovo}) (“but”, {aber}) (“new”, 1104

{neuen}) (“Group”, {Fraktion}) (“have”, {haben}) 1105

(“behalf”, {Namen}) (“Mr”, {Herrn}) (“women”, 1106

{Frauen}) (“has”, {hat}) (“regions”, {Regionen}) 1107

(“years”, {Jahren}) (“all”, {alle}) (“two”, {zwei}) 1108

(“cooperation”, {Zusammenarbeit}) (“if”, {wenn}) 1109

(“1”, {1}) (“new”, {neue}) (“Article”, {Artikel}) 1110

(“because”, {weil}) (“whether”, {ob}) (“Par- 1111

liament”, {Parlaments}) (“a”, {eine}) (“mea- 1112

sures”, {Maßnahmen}) (“but”, {sondern}) (“in- 1113

stitutions”, {Institutionen}) (“social”, {sozialen}) 1114

(“to”, {zu}) (“political”, {politischen}) (“develop- 1115

ment”, {Entwicklung}) (“national”, {nationalen}) 1116

(“today”, {heute}) (“countries”, {Länder}) (“Eu- 1117

ropean”, {europäischen}) (“must”, {muß}) (“our”, 1118

{unsere}) (“as”, {wie}) (“problems”, {Prob- 1119

leme}) (“initiative”, {Initiative}) (“work”, {Ar- 1120

beit}) (“be”, {werden}) (“very”, {sehr}) (“human 1121

rights”, {Menschenrechte}) (“of the”, {des}) (“us”, 1122

{uns}) (“three”, {drei}) (“debate”, {Aussprache}) 1123

(“other”, {anderen}) (“hope”, {hoffe}) (“al- 1124

ready”, {bereits}) (“question”, {Frage}) (“this”, 1125

{diesem}) (“debate”, {Debatte}) (“are”, {sind}) 1126

(“will”, {wird}) (“proposals”, {Vorschläge}) (“If”, 1127

{Wenn}) (“Prodi”, {Prodi}) (“Council”, {Rates}) 1128

(“rapporteur”, {Berichterstatter}) (“INTERREG”, 1129

{INTERREG}) (“role”, {Rolle}) 1130

D.2 Emergent languages 1131

Vector, attribute–value Note that meanings are 1132

in the format attribute_value meaning that 1_2 1133

means the 1st attribute has value 2. 1134

(“15”, {3_3}) (“25 25”, {3_0}) (“3”, {2_3}) (“20 1135

20”, {0_3, 1_0}) (“7 7”, {0_3, 1_3}) (“4”, {2_0}) 1136

(“16 16 16 16 16 16 16 16 16”, {0_3, 3_0}) (“2”, 1137

{0_0, 2_0}) (“13 13 13 13 13 13”, {2_0}) (“23 23 1138

23 23 23 23 23”, {0_0, 2_3}) (“28”, {0_0, 1_3}) 1139

(“27 27”, {1_0}) (“17 17 17”, {0_0}) (“31”, {2_0, 1140

3_2}) (“22 22 22 22 22”, {1_3}) (“22 25 25 25 25”, 1141

{0_1, 1_3}) (“30 30”, {2_1}) (“22 22 13”, {1_3, 1142

13

3_3}) (“26 26 26 26 26 26 26 26”, {1_3, 2_0, 3_0})1143

(“15”, {3_1}) (“15 27 27 27 27 27 27 27”, {0_1,1144

3_2}) (“8”, {0_0}) (“3 3 3 30 30”, {0_1, 1_1, 2_2})1145

(“16 16”, {3_0}) (“3 3 3 3 30”, {0_2, 1_2, 2_2})1146

(“7 7”, {0_2, 3_1}) (“15 3 3 3 3”, {0_2, 3_2}) (“151147

7 20 27 27 27 27 27 27 27”, {0_2, 1_1, 2_1, 3_2})1148

(“20 27 27 27 27 27 27”, {0_2, 3_2}) (“15 15 15 31149

27 27 27 27 27 27”, {0_2, 1_1, 2_2, 3_2}) (“22 221150

22 22 22 30 30 30 30 30”, {0_1, 1_2, 2_2, 3_2})1151

(“8 1 23”, {1_1, 3_0}) (“22 22 22 25 3 30 30 301152

30 30”, {0_1, 1_2, 2_2, 3_1}) (“28 28 2 2 2 2 21153

2”, {1_2, 3_1}) (“22 22 22 17 17 17 17”, {1_2,1154

3_3}) (“26 26 6 4 4 4”, {0_1, 3_0}) (“23”, {1_0,1155

2_3}) (“15 15 15 15 15 15 15 15 15”, {1_2, 2_3})1156

(“22 22 22 3”, {0_1, 1_2}) (“7 7 20 20 20 20 201157

20 20 20”, {1_1}) (“7 7 7 7 7 20 7”, {1_2, 3_2})1158

(“31 31”, {0_3, 3_3}) (“28 28 28 8 8 8 12 12 121159

12”, {1_2, 2_1, 3_0}) (“15 15 15 15 15 17 17 171160

17”, {0_1, 1_2, 2_2}) (“3 27 27 27”, {2_2}) (“71161

15 15 15 15 15 15 15 15”, {0_3, 1_2, 2_2}) (“3 31162

3 3 3 3 3 3 3 3”, {0_2, 1_0, 3_0}) (“7 13”, {0_1,1163

1_2, 3_2}) (“28 26”, {3_0}) (“15 15 7”, {0_2, 1_3,1164

2_2}) (“22 22 23 23 23 23 23 23 23 23”, {1_1, 2_2,1165

3_1}) (“7”, {1_2}) (“13 13 13”, {3_3}) (“7 7 7 7”,1166

{3_2}) (“15 17 17 17 17 17”, {1_1}) (“22 22 221167

17”, {1_2}) (“15 15 15 13 13 13 13 13 17”, {0_1,1168

1_2, 2_1}) (“3 3 3 3 3 23 23 23”, {0_1, 1_1, 3_1})1169

(“7 16 16 16 16 4”, {0_3, 1_1, 3_1}) (“26 26 26 261170

6”, {1_2, 3_0}) (“22 22 22 22”, {2_2, 3_2}) (“251171

25 25 25 25”, {2_2}) (“7 25 25 25 25”, {0_2, 1_3,1172

2_3}) (“22 7 26 13”, {0_1, 1_3, 3_2}) (“15 15 151173

15 17”, {0_1, 1_2}) (“23 23 17”, {2_2, 3_2}) (“71174

26 26 26 26 26”, {0_2, 1_3, 2_1}) (“8 8 8 23 231175

23”, {1_2, 2_2, 3_1}) (“7 26 26 26 26 26 26 26”,1176

{2_0, 3_1}) (“22 7 26 26 26 26 28 28 28 28”, {0_1,1177

2_1, 3_1}) (“15 15 15 15 15 15 15 15”, {0_2, 2_3})1178

(“5 4 4 4 4”, {0_2, 1_0, 3_1}) (“26 26 26”, {2_0,1179

3_0}) (“22 13 13 13 13 13 13 13 2”, {1_2, 3_2})1180

(“15 15 31 31 31 31 31 31 31”, {0_2, 1_1, 2_1})1181

(“22 28 28 28 28 28 28 28 28”, {2_1, 3_1}) (“15”,1182

{1_1}) (“13 13 13 13 2 2 2 2”, {1_1, 3_2}) (“1 1 11183

1 1 1”, {1_2, 2_3}) (“8 8 30 30”, {1_1, 3_0}) (“4 41184

4 27 27”, {0_1, 3_1}) (“17 17 17 17”, {1_0, 3_3})1185

(“23 23 23 23 23 23 23 27”, {2_2}) (“15 31 31”,1186

{0_2, 2_1}) (“5 27 27 27 27 27”, {0_2, 2_1}) (“22”,1187

{0_0, 2_3}) (“28 8 8 8 8”, {2_2, 3_0}) (“17 2 2 2 21188

2”, {2_1, 3_2}) (“22 22 2”, {1_1, 3_1}) (“3 3 231189

23 23”, {0_1, 3_1}) (“28 28 28 28”, {2_1}) (“261190

26 26 4 4 4 4 4”, {0_1, 3_1}) (“17 17 27 27 27”,1191

{2_1, 3_2}) (“15 13 13 13 13”, {1_2, 2_1}) (“251192

3 25 3 25”, {0_1, 1_2}) (“20 20 20 27 27 27 271193

27 27 27”, {2_1, 3_1}) (“3 3 3 3”, {0_2}) (“31 311194

31 31 31 31 31 31 31 31”, {1_0}) (“17 13”, {0_0, 1195

2_1}) (“3 3 3 3 3”, {1_0, 3_0}) 1196

Vector, bag of meanings (“22”, {4, 7}) (“24”, 1197

{0, 3, 6}) (“16”, {1, 5}) (“11”, {6}) (“26”, {0, 4, 1198

6}) (“1 1”, {3}) (“6”, {0, 7}) (“17”, {5, 7}) (“28 1199

28”, {0, 2}) (“18”, {0, 2}) (“21 21”, {0, 6}) (“14 1200

14 14 14 14”, {1, 3, 6, 7}) (“16”, {4, 7}) (“24”, 1201

{1, 5}) (“1 28”, {3, 4}) (“31 31”, {4, 7}) (“12”, 1202

{4}) (“3”, {4, 5}) (“22 22 22”, {0, 3, 6}) (“4”, {3}) 1203

(“28”, {2}) (“12 12 12 12 12”, {2}) (“28 27 27 27 1204

27 27 27”, {0, 4}) (“28 9”, {0, 3, 4}) (“11 11 11”, 1205

{3}) (“7”, {3}) (“12 12 12 12”, {2}) (“24 5”, {4}) 1206

(“30 30”, {1, 7}) (“14 14 14 14”, {1, 2, 7}) (“25 25 1207

25 25 25 25”, {1}) (“4 5 5 5 5”, {2, 4}) (“26”, {2}) 1208

(“25 25 27 27 27 27 27”, {0, 5}) (“1 29 29 29 29 1209

29 29 29 12 12”, {1, 3, 6}) (“5 5 5 5 5 5 5 5”, {4}) 1210

(“1 1 1 1 1 1 1”, {1, 7}) (“1 12 12 12 12 12 12 12 1211

12”, {1, 3}) (“6 6 6 6”, {2}) (“1 1 1 1”, {0, 1}) (“1 1212

30”, {2}) (“1 18”, {3, 5}) (“23”, {7}) (“16 16 16 1213

16”, {0}) (“21 21 21 21”, {7}) (“5 5 5 27 27”, {1}) 1214

(“4 5”, {4}) (“5 12”, {2, 3}) (“1 12”, {3, 5}) (“18 1215

27”, {5}) (“11 22 22”, {2, 3}) (“22”, {6}) (“22 22 1216

11”, {1, 2}) (“4 4 27 27”, {5}) (“1 29 29”, {3}) 1217

(“16 16”, {0}) (“12”, {1, 3}) (“9 9 9 9 9 9 9 9”, 1218

{0}) (“6 1 1 1”, {1, 2}) (“20 20 20 20 20 20 20 20”, 1219

{1, 7}) (“26 26 26 26 28 28 28”, {1, 7}) (“29 29 4 1220

12 12 12 12 12 12”, {5}) (“1 1”, {1, 2}) (“29 29 4 1221

4 4 4 4 4 4 4”, {1, 6}) (“11 11 23 23 23”, {3}) (“12 1222

12 12”, {2}) (“22 22”, {3}) (“28 12”, {0}) (“21 21 1223

21 8”, {2}) (“1 4 4”, {2}) (“21 21 23”, {2}) (“21 1224

21 21 21 21 21 21 21 6”, {1, 2}) (“12 16”, {2}) 1225

(“10 10 10 10 10 10 10 25 25 25”, {2, 7}) (“28 28 1226

28”, {1, 4}) (“24 24 24 24 24 24 24 24”, {7}) (“21 1227

21 6 6”, {2}) (“21 21”, {2}) (“9 5”, {4}) (“31 31 1228

31 31”, {3}) (“28 28 28 28 28 28 28”, {3}) (“10 10 1229

10 10 10”, {7}) (“13 13 13”, {7}) (“11 14 14 22 22 1230

22 17 17 17”, {2}) (“7 7 7 7”, {2}) (“22 26 26 5 5 1231

5 5 5 5”, {1}) (“22 22 22”, {2, 5}) (“11 11”, {7}) 1232

(“12 12 27 27 27 27 27”, {2}) (“30 30 30 30 30 30 1233

27 27 27 27”, {5}) (“2 9 12 12”, {2}) (“11 11 23 1234

17 17 17”, {3}) (“18 18 18 18 18 18 28 18”, {1}) 1235

(“25”, {0}) (“23 23 23 23 19 19 19 19”, {1}) (“6 6 1236

10 10 10 10 10 10 10”, {3}) (“6 6 6 6 6 6 6 17 17”, 1237

{3}) (“24 24 24 4 4 12 12”, {2}) (“22 22 22 22 28 1238

28 5”, {1}) (“24 4 4 4 4 4 4 4 4 4”, {2}) 1239

Shapeworld, reference (“29”, {ellipse}) (“29”, 1240

{gray}) (“29”, {green}) (“29”, {rectangle}) (“29”, 1241

{triangle}) (“29”, {white}) (“30 2”, {ellipse}) 1242

(“30”, {square}) (“29 29”, {blue}) (“18 4 18”, 1243

{white}) (“29 29”, {circle}) (“5 3”, {square}) (“5 1244

3”, {rectangle}) (“6”, {square}) (“24 18”, {el- 1245

14

lipse}) (“11 4”, {white}) (“30 5”, {triangle}) (“21246

2 2 2 2”, {white}) (“29”, {yellow}) (“11”, {el-1247

lipse}) (“2 2 3”, {ellipse}) (“4”, {rectangle}) (“301248

30 3”, {ellipse}) (“2”, {square, yellow}) (“30”,1249

{circle}) (“2 2 2 2 2”, {ellipse}) (“3”, {gray}) (“231250

5”, {rectangle}) (“4”, {green}) (“13 6 13 2”, {el-1251

lipse}) (“23 18 23 23”, {white}) (“3”, {rectangle})1252

(“18 3 18”, {white}) (“2 2 5”, {ellipse}) (“24 61253

24 6”, {white}) (“6 2”, {ellipse}) (“3”, {green})1254

(“13 13 23”, {square}) (“24 24”, {white}) (“181255

18 18 23 18”, {white}) (“30 5 2”, {ellipse}) (“231256

24 23”, {ellipse}) (“18 4 18 5”, {ellipse}) (“4 181257

4 5”, {yellow}) (“13”, {gray}) (“18 5 4 18”, {el-1258

lipse}) (“2 18”, {white}) (“4 5 4”, {ellipse}) (“181259

18”, {yellow}) (“23 13 23”, {square}) (“6 3”, {tri-1260

angle}) (“23 3 23 3 23”, {yellow}) (“13 6 13 24”,1261

{ellipse}) (“24 24”, {yellow}) (“13 13 24 13 131262

13 24”, {ellipse}) (“6 3”, {circle}) (“23 18 23”,1263

{ellipse}) (“2 2 23 2”, {white}) (“5 23”, {green})1264

(“30 30”, {red}) (“18 5 4”, {yellow}) (“3 23 3 3 3”,1265

{square, yellow}) (“23 24 23”, {white}) (“18 18 31266

18”, {ellipse}) (“3 3 3 3”, {square}) (“24 6 13 6”,1267

{white}) (“30 6 30 3”, {ellipse}) (“18 3 18”, {yel-1268

low}) (“5 30”, {blue}) (“24 2”, {ellipse}) (“24 131269

24 13 13”, {square, white}) (“23 18 23”, {square,1270

yellow}) (“4 18 18 4”, {ellipse}) (“2 2 3”, {white})1271

(“13 6 13”, {ellipse}) (“13 13 24”, {white}) (“181272

23 18”, {white}) (“13”, {rectangle}) (“13 13 241273

13 13”, {ellipse}) (“30 24 30”, {white}) (“13 131274

13 13”, {white}) (“23 3 23 3 23”, {ellipse}) (“5 181275

18 5”, {ellipse}) (“24”, {green}) (“13 13 23 13 131276

13 24”, {circle, red}) (“30 6 30 6”, {blue}) (“5 51277

4”, {ellipse}) (“13 24”, {blue}) (“5”, {circle, red})1278

(“30 6 30 2”, {white}) (“3 3 3 3 3 3”, {yellow})1279

(“18 5 18 5 18”, {ellipse}) (“3 3 3”, {white}) (“18”,1280

{square}) (“18 5 18 4 2”, {ellipse}) (“13 2”, {el-1281

lipse}) (“3 3 23 3 3 23 3 3 2”, {circle, red}) (“18 31282

18 5 18 3”, {ellipse}) (“4 4”, {blue}) (“13 24 13”,1283

{yellow})1284

Shapeworld, set reference (“3 3”, {circle, not})1285

(“21 21”, {circle}) (“23 23”, {gray, not}) (“201286

20”, {blue, not}) (“5 5”, {and, green, not}) (“28”,1287

{square}) (“26”, {or, yellow}) (“28”, {ellipse, not})1288

(“4 4”, {white}) (“11”, {not, rectangle}) (“11 11”,1289

{ellipse}) (“25 25 25”, {blue, red}) (“25 4”, {blue})1290

(“3 28”, {triangle}) (“22 26”, {not, red}) (“25 23”,1291

{green, or, red}) (“5 4 5”, {gray, or, white}) (“121292

23”, {yellow}) (“12 18”, {or, red, white}) (“23 25”,1293

{and, gray, white}) (“5 20”, {gray, or, red}) (“4 23”,1294

{and, red}) (“12 12”, {yellow}) (“3 11”, {and, cir-1295

cle}) (“21”, {circle, or}) (“28”, {rectangle}) (“231296

26 23”, {green}) (“26 20”, {and, white}) (“11”, 1297

{ellipse}) (“21 22”, {and, triangle}) (“22 5”, {blue, 1298

green}) (“28 25”, {triangle}) (“5 26 5”, {gray}) 1299

(“3”, {and, circle}) (“25 20”, {white}) (“25 26 1300

4”, {blue}) (“28 3”, {triangle}) (“21”, {square}) 1301

(“12”, {yellow}) (“11 22”, {triangle}) (“12 25”, 1302

{or, red, white}) (“21”, {and}) (“3”, {square}) (“20 1303

12 20 12”, {blue, not}) (“20 22 22”, {or, triangle, 1304

white}) (“18”, {rectangle}) (“5 5”, {gray}) (“5”, 1305

{red}) (“23 22”, {red}) (“23 23”, {green}) (“26 22”, 1306

{and, white}) (“3”, {rectangle}) (“20 5 5”, {white}) 1307

(“22”, {or}) (“5 5”, {triangle}) (“12 12 23”, {not}) 1308

(“27”, {triangle}) (“12 5”, {green, not}) (“25 23 1309

20”, {and, gray, white}) (“25 21 4”, {blue}) (“4 1310

25 12”, {blue, or}) (“22 22”, {triangle}) (“20 3 1311

20”, {white}) (“22 20”, {blue, not}) (“12 22”, {tri- 1312

angle}) (“28 26”, {triangle}) (“21 23”, {green}) 1313

(“20 20 20”, {and, white}) (“25”, {blue}) (“28 20”, 1314

{triangle}) (“22 22”, {not}) (“5”, {gray}) (“12”, 1315

{or}) (“5 11”, {and, green}) (“3”, {triangle}) (“4 1316

22”, {red}) (“23”, {not}) (“23 4”, {green}) (“18”, 1317

{triangle}) (“27”, {rectangle}) (“12 20 12 20 23”, 1318

{and}) (“20 22”, {blue}) (“25 23”, {and, gray}) 1319

(“4 12 23”, {and}) (“23 3 23”, {green}) (“20 22 1320

20”, {white}) (“12 20 23”, {and}) (“12 20 12 20”, 1321

{and}) (“8 5 12”, {and, not}) (“23 11 23”, {green}) 1322

(“23 20”, {white}) (“28 4 28 4 25”, {and, trian- 1323

gle, white}) (“21”, {triangle}) (“25 5 20”, {white}) 1324

(“22 26”, {gray}) (“28 4”, {triangle}) (“26 18”, 1325

{and}) (“5 4 18”, {white}) (“12 20 12”, {and}) 1326

(“28”, {or}) 1327

Shapeworld, concept (“3 6”, {gray, not}) (“7 7”, 1328

{blue, not}) (“32”, {circle}) (“4 5”, {not, yellow}) 1329

(“6 12 6 12”, {green, or, yellow}) (“3 12 3”, {blue, 1330

or, yellow}) (“3 7 3 3”, {green, white}) (“6 6”, {not, 1331

red}) (“4 7 4”, {green, or, red}) (“6 28 6 28”, {or, 1332

white, yellow}) (“25 5 25”, {blue, or, white}) (“32 1333

32 32”, {ellipse}) (“5 5 5 5 5 5 5 5”, {green, not, 1334

yellow}) (“25 25 25 25 25”, {green, not, red}) (“3 4 1335

3”, {and, white, yellow}) (“28 28 28 28”, {white}) 1336

(“32”, {rectangle}) (“5 3 5”, {blue, red}) (“12 28”, 1337

{yellow}) (“22”, {square}) (“22”, {triangle}) (“7 1338

28”, {or, red, yellow}) (“3 6 3”, {white}) (“5 32”, 1339

{or, red, white}) (“28 28 5”, {gray, or, white}) (“7 1340

28 7 28 7 28 7”, {blue, green}) (“3 31 3”, {blue}) 1341

(“12 4 12”, {and, green}) (“28 3”, {gray}) (“5 6 5 1342

6 5”, {and, red, yellow}) (“25 7 25”, {green, not, 1343

or}) (“7 5 7 5 7 5 7 5”, {blue, not, yellow}) (“4 4 1344

4”, {not, or, yellow}) (“22”, {and, ellipse, not}) (“6 1345

12 6 6”, {and, gray}) (“31 31 31 31”, {and, blue}) 1346

(“7 12 7”, {and, white}) (“5 5 3 28 7”, {gray, or, 1347

15

red}) (“28 28 31”, {gray}) (“25 3”, {red, white})1348

(“7 6 7 6 7”, {blue, not, or}) (“32”, {triangle}) (“221349

22”, {or, rectangle}) (“12 12 32”, {and, yellow})1350

(“5 28”, {red}) (“4 6 4”, {or}) (“5 7 5 7”, {and,1351

yellow}) (“32”, {and, square}) (“4 12”, {green})1352

(“3 3 3 3”, {and, not}) (“3 3 6”, {and}) (“32 32”,1353

{ellipse, or}) (“6 5 5”, {and, gray}) (“7”, {or, red})1354

(“4 3”, {and, gray}) (“12 12 12”, {yellow}) (“281355

7 28 7”, {and, green}) (“25 25 25”, {and}) (“28 31356

3”, {or}) (“23 23”, {blue, not}) (“4 4 32 4 32 4”,1357

{not, or, yellow}) (“4 3 4 3”, {not}) (“6 4”, {or})1358

(“25 7 32”, {green, not}) (“31”, {blue, or}) (“4”,1359

{not}) (“5 5 5 25”, {green, not, yellow}) (“28 31 281360

31”, {gray}) (“12 22 12”, {rectangle, yellow}) (“31361

3 3”, {and, not}) (“5 3 5”, {or}) (“28”, {or, white})1362

(“5 5 3”, {gray}) (“31 28”, {red}) (“6 25”, {not,1363

red}) (“32 27 27”, {ellipse, yellow}) (“7 6 7 321364

7”, {blue, not}) (“32 6”, {not}) (“4”, {green, or})1365

(“12 6 28”, {yellow}) (“32”, {ellipse}) (“27 27”,1366

{yellow}) (“25 32”, {not}) (“3 6 7”, {white}) (“281367

28 12 3”, {yellow}) (“4”, {circle}) (“27 32 27”,1368

{yellow}) (“3 4”, {and, gray}) (“6 7 6”, {square})1369

(“6 12 25”, {red}) (“23 22 23”, {blue}) (“6 3”,1370

{white}) (“3 3 7”, {green, white}) (“3 5 5”, {or})1371

(“5 27 32”, {or, red, white}) (“7”, {blue, not})1372

(“5”, {and, yellow}) (“7 12”, {and, white}) (“28”,1373

{gray}) (“3 25 3”, {not})1374

16

	Introduction
	Problem Definition
	Task: morpheme induction
	Related work

	Algorithm
	Representation and preprocessing
	Main loop
	Implementation

	Empirical Validation
	Procedural datasets
	Comparison with baselines
	Error Analysis
	Human language data

	Analysis of Emergent Languages
	Datasets
	Metrics
	Results

	Discussion
	Conclusion
	Limitations
	Algorithm
	Candidate generation
	Ambiguous pair application
	Heuristic optimizations

	Empirical Validation
	Procedural dataset hyperparameters
	Tokenizer vocabulary size
	Additional procedural dataset results

	Analysis of Emergent Languages
	Emergent language hyperparameters

	Morpheme Inventories
	Human languages
	Emergent languages

