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Figure 1: Teaser – We introduce 3D Gaussian Flats, a hybrid representation of 2D Gaussians on
semantically distinct planar surfaces and 3D Gaussians elsewhere (left). Our method achieves a
photorealistic quality on par with fully 3D approaches, while improving geometry over surface
reconstruction methods (right) e.g. no visible hole in the middle of the ‘garden’ scene from Mip-
NeRF360 [1].

Abstract

Recent advances in radiance fields and novel view synthesis enable creation of
realistic digital twins from photographs. However, current methods struggle with
flat, texture-less surfaces, creating uneven and semi-transparent reconstructions, due
to an ill-conditioned photometric reconstruction objective. Surface reconstruction
methods solve this issue but sacrifice visual quality. We propose a novel hybrid
2D/3D representation that jointly optimizes constrained planar (2D) Gaussians for
modeling flat surfaces and freeform (3D) Gaussians for the rest of the scene. Our
end-to-end approach dynamically detects and refines planar regions, improving
both visual fidelity and geometric accuracy. It achieves state-of-the-art depth
estimation on ScanNet++ and ScanNetv2, and excels at mesh extraction without
overfitting to a specific camera model, showing its effectiveness in producing
high-quality reconstruction of indoor scenes.
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1 Introduction

Recent advances in radiance fields and novel view synthesis have enabled the creation of realistic
digital twins from collections of real-world photographs [2, 3]. These techniques allow for high-
fidelity 3D reconstructions that capture intricate details of real-world scenes, making them invaluable
for applications in virtual reality, gaming, cultural heritage preservation, and scientific visualization.

However, when optimizing for novel view synthesis on flat and texture-less surfaces (e.g. walls,
ceilings, tables that are prevalent in indoor scenes), current methods struggle in producing a faithful
3D reconstruction as the problem is photometrically under-constrained [4]. Specifically, modern
novel view synthesis frameworks like [5, 6], which are optimized via volume rendering, model flat
surfaces with low densities, resulting in non-opaque representations of solid surfaces; see the surface
of the table in Figure 1 as an example. Conversely, surface reconstruction methods that assume solid,
flat surfaces avoid this limitation [7]. However, they compromise visual quality in favor of a more
parsimonious 3D reconstruction; see figure 1. Our core research question is whether these seemingly
conflicting objectives could be achieved simultaneously.

Some approaches have attempted to answer this questions by first creating a full 3D representation,
and then – post-training – detecting planar surfaces to enable 3D planar reconstruction [8, 9].
However, these methods do not leverage planar assumptions during the optimization of the scene
representation itself, limiting their effectiveness. Others enforce planar assumptions during training
through various regularizer losses [10]. However, these losses can be hard to tune, as they are only
suitable for the portion of the scene that is solid and flat, hindering the reconstruction whenever these
assumptions are violated.

In contrast to these methods, we propose to look at the problem in an end-to-end fashion, conjoining
the process of photometric to the one of planar surface reconstruction. To achieve this, we introduce
a hybrid 2D/3D representation, where flat surfaces are modeled with 2D Gaussian splats [7] that
are confined to 2D planes, while the remaining of the scene is modeled with a classical, and more
expressive, 3DGS model [6]. By jointly optimizing planar (2D) and freeform (3D) Gaussians, our
approach enables better fitting of the final representation to planar surfaces within the scene. During
photometric optimization, our method dynamically detects planar regions, and adaptively grows their
extent, resulting in reconstruction that retains high visual quality (as measured by PSNR) compared
to a classical 3DGS scene, while simultaneously achieving superior geometric accuracy (as measured
by depth error).

Our evaluations demonstrate that this hybrid representation achieves state-of-the-art depth estimation
results on challenging indoor datasets including the new ScanNet++ dataset which was designed
for dense reconstruction tasks using NeRF-based approaches, and the legacy ScanNetv2 dataset
with sparser camera views. Our method delivers crisp reconstructed surfaces, while maintaining
competitive visual quality compared to fully 3D representations. Beyond novel view synthesis, our
approach has application in mesh extraction for planar surfaces, producing high-quality meshes
and accurate mesh segmentation results across diverse capture setups (DSLR and iPhone captures),
without the overfitting issues that negatively affect previous methods trained on specific camera
models.

2 Related Work

Modern neural scene reconstruction methods aim to generate high-quality 3D representations from
2D images for applications like novel view synthesis [5, 6]. Despite significant progress, volumetric
approaches struggle to accurately reconstruct planar surfaces [11], while surface reconstruction
methods fail to recover volumetric effects [12]. Finding an approach that accurately reconstructs
planar geometry without compromising the quality of the surrounding scene geometry and appearance
is a key challenge.

Representations for differentiable rendering Neural Radiance Field (NeRF) [5] pioneered scene
reconstruction with a 3D neural representation optimized through differentiable volumetric rendering.
3D Gaussian Splatting (3DGS) [6] overcame NeRF slow training/rendering speed by representing
scenes as efficiently rasterizable 3D Gaussians, dramatically accelerating rendering while maintaining
quality. The impressive speed-quality balance of 3DGS quickly established it as a standard approach,
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with recent advancements such as 3DGS-MCMC [13] further enhancing its accessibility by elimi-
nating the dependency on SfM initialization. Despite these innovations, volumetric representations
still struggle with clean geometry reconstruction in flat and textureless surfaces common in indoor
environments, hindering applications like mesh extraction. Our method addresses these challenges
through a hybrid 2D/3D Gaussian representation that achieves superior geometric reconstruction
while preserving rendering quality.

Surface representations and planar constraints While NeRF [5] and 3DGS [6] employ fully
volumetric representations, alternative approaches such as [11, 14] model scenes as solid surfaces.
This philosophy inspired SuGaR [15], to use a regularization term that encourages the Gaussians
to align with the surface of the scene, and later 2DGS [7], which uses 2D Gaussian primitives
to reconstruct surfaces outperforming prior surface reconstruction methods [11, 14, 15]. Recent
work [16] uses 2D Gaussians as in 2DGS, with multi-view depth and normal regularization to improve
surface quality, while RaDe-GS [17] enables depth and normal rasterization for 3D Gaussians to
support similar regularization. Other works introduced more explicit primitives, including planes [18,
19], optimizable geometry through learnable opacity maps [20], and soup of planes for dynamic
reconstruction [21]. While these methods excel at representing flat surfaces with clean geometry,
they typically sacrifice rendering quality and struggle to model phenomena that are better explained
by volumetric effects, rather than surfaces. Some methods enforce planar constraints only as
regularization losses, such as Guo et al. [22] that uses Manhattan world assumptions on semantically
segmented regions and Chen et al. [23] that enforces plane normal consistency in textureless regions.
Although helpful, regularizers can be difficult to tune. Our approach instead explicitly detects and
optimizes planes within scene reconstruction, avoiding such issues.

3D plane detection and reconstruction Another research direction detects planar surfaces in
an initial 3D reconstruction and fits planes only to detected regions, extending single-image plane
detection [24, 25] to multi-view settings. PlanarNeRF [26] adds a plane-predicting MLP branch to
NeRF, supervised via ground truth labels or plane detection consistency across frames, but prevents
plane MLP gradients from affecting the geometry prediction branch. PlanarRecon [8] reconstructs
a sparse feature volume, which is decoded into plane features and clustered. AirPlanes [9] and
NeuralPlane [27] build 3D-consistent plane embeddings per 3D point, emphasizing semantic priors
for accurate detection. While we also use semantic knowledge, our method jointly detects and
optimizes planes alongside scene reconstruction, allowing geometry to benefit from planar constraints.
Further, unlike these methods, our approach yields full scene reconstructions suitable for novel view
synthesis, vs. a coarse surface reconstruction.

Hybrid representations Recent hybrid 2D-3D approaches have explored planar surface representa-
tion. Kim and Lim [28] integrate meshes into 3DGS for indoor scenes, using SAM [29] to detect
planar surfaces and represent them with meshes while employing 3D Gaussians for other objects.
Zanjani et al. [30] combine SAM segmentation with normal estimation to lift 2D plane descriptors to
3D, clustering the planar Gaussians using a tree structure. In contrast, our method offers a simpler
solution by representing the scene with a mixture of 2D and 3D Gaussians. This design remains
fully compatible with the 3DGS rendering pipeline, eliminating the need for complex hybrid mesh
handling, or hierarchical tree structures.

3 Method

Given N posed images {Ic} and M planar surfaces {Pp}, each specified by binary image masks
{Mp,c}, we aim to reconstruct a hybrid novel view synthesis method that combines a classical 3DGS
model with a 2D piecewise planar representation of the scene. Our goal is to reconstruct the scene
so that the planar surfaces are accurately recovered and compactly represented by 2D Gaussian
primitives, while the rest of the scene is modeled with 3D Gaussians, with the key objective of
avoiding the artifacts that can typically be seen when using 3D primitives to model planar surfaces;
see Figure 1.
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Figure 2: Overview – Training of our model is split into two parts: warm-up, in which 3D Gaussians
are trained as in [6] using a photometric loss; and planar training, in which 3D Gaussians and planar
Gaussians are trained along with the parameters of the planes to which planar Gaussians are locked.
Planar training is performed in alternating phases, with Gaussian parameters frozen while plane pa-
rameters are optimized, and vice versa. Legend: learnable (warm up) , learnable (Gaussian phase) ,
learnable (plane phase) .

3.1 Hybrid representation

Our representation consists of M planes P={Pp}, each characterized by its 3D origin and nor-
mal (op,np). The geometry of each each plane Pp is represented through a set of 2D Gaussians
G={gk}Kk

k=1 such that,

gk = N (µk,Σk), µk ∈ Pk, Σk ∈ R2×2. (1)

Here, µk is the center of the k-th Gaussian on the plane Pp, and Σk is the 2D covariance matrix,
parametrized with a 2D in-plane rotation Rk and a 2D diagonal scale matrix Sk. The plane-to-world
transformation matrix is defined as Tpw=hom(R,o), where R is any rotation matrix that satisfies
ẑ=Rn with ẑ being the unit vector along the z-axis in the world frame. Thus, the degrees of freedom
of planar Gaussians can be mapped to world coordinates through the rigid transformation:

µ̄k = Tpw[µk; 0; 1], Σ̄k = Tpw diag(Σk, 1, 1) T
⊤
pw (2)

yielding a standard 3D Gaussian primitive representation suitable for rendering. The remaining scene
geometry is represented by unconstrained 3D Gaussians Ḡ={ḡk}K̄k=1:

ḡk = N (µ̄k, Σ̄k), µk ∈ R3, Σk ∈ R3×3 (3)

All Gaussians have view-dependent colors c represented as Spherical Harmonics, and opacity α as
in vanilla 3DGS. To reconstruct the scene with our hybrid representation, we need to optimize the
degrees of freedom of planes P , 2D planar Gaussians G, and 3D freeform Gaussians Ḡ. We begin
our optimization with a warm-up stage using only 3D Gaussians (for N=3500 iterations). After
that, we begin our planar reconstruction where in each round of optimization we: (i) dynamically
initialize plane parameters by robustly fitting planes to the current representation (section 3.2);
(ii) alternate between optimizing plane and Gaussian parameters (section 3.2); (iii) densify our
representation through a (slightly modified) MCMC densification, due to the challenges of optimizing
compact-support functions (section 3.4).

3.2 Plane initialization

For compactness of notation, let us drop our indices, and consider the binary maskM←Mc,p for
the p-th planar surface in the c-th view, and denote with π the function that projects a 3D point to the
coordinate frame of the n-th image. We start by selecting all the Gaussians (i) whose mean projects
into the mask, (ii) that are sufficiently opaque, and (iii) that lie within a shell of the expected ray
termination of the n-th image:

G̃ = {ḡk | π(µ̄k)∈M, αk>κ, |D(π(µ̄k))− dk|<δ}, (4)

where the thresholds αth=0.1 and dth=0.05 are hyper-parameters that control this selection process,
and where D is the expected ray termination map (i.e. depth map), and dk is the depth of the
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Figure 3: Planar Relocation – A freeform Gaussian (teal) gets relocated to the plane to become a
planar Gaussian (brown), when both its distace to the plane (d⊥) and along (d∥) the plane are small.

Gaussians. We then extract a candidate plane P by RANSAC optimization on the point cloud that
samples the Gaussians:

P, I = RANSAC
(
{x ∼ ḡ | ḡ ∈ G̃}, ϵ

)
(5)

where we accept P as a viable plane candidate only whenever the mean inlier residual is lower than
ϵ. The set I includes the indexes of Gaussians in G̃ that are inliers of the RANSAC process. We
further discard planes that are too small with set I having a smaller size than 100. Once a plane
corresponding toM has been accepted, all the semantic masks for that plane p are excluded from
subsequent RANSAC runs. The plane initialization process is repeated for remaining masks, after
each completed round of plane and Gaussian optimization, as described in Section 3.3.

Snapping We then remove the discovered inliers from the set of 3D Gaussians Ḡ ← Ḡ \ I, and add
them to our set of 2D Gaussians G ← G ∪ I. During the latter operation, we clip 3D Gaussians to
2D to become planar by transforming to the local plane coordinates, and set the third component of
their means and scales to zero. Further, only rotation about the z-axis in local plane coordinates is
preserved

Active set update If the accepted plane Pi has an angular distance below a threshold to an already
existing plane, while its origin oi also has a small Euclidean distance to the closest Gaussian center
on that plane, we merge the two planes. Otherwise, the plane is added as a new plane to the active
set of planes P . In merging, we assign the new plane’s Gaussians to the previously found one. This
allows our optimization to merge planar areas that have only been partially observed in any view.

3.3 Optimization

We optimize our representation by block-coordinate descent, starting each round of optimization by
only optimizing the plane parameters for a fixed number of 10 iterations, and then freezing these, and
optimizing the Gaussian parameters (both 2D and 3D) for another 100 iterations. This alternation in
optimization is critical to avoid instability; see an ablation in figure 7. In the first optimization block,
within each iteration, the parameters of the p-th plane within the c-th image are optimized by the loss:

argmin
op,np

= ∥Ic − Ĩc∥1︸ ︷︷ ︸
Lphoto

+λmask ∥Mc,p − M̃c,p∥1︸ ︷︷ ︸
Lmask

, (6)

where M̃ is the predicted plane mask, obtained by rendering the mixture of Gaussians with binarized
color (white for planar, and black for 3D), and alpha blended using the original Gaussian opacities
during the rasterization. In the second optimization block, we optimize all Gaussian parameters
jointly:

argmin
G,Ḡ

Lphoto + λmaskLmask + λTVLTV + λscaleLscale + λopacityLopacity, (7)

where LTV is the total depth variation regularization from Niemeyer et al. [10], Lscale is the scale
regularizer and Lopacity is the opacity regularizer from Kheradmand et al. [13] that vanishes the size
of Gaussians that are unconstrained by the photometric loss. Note that planar Gaussians move rigidly
during plane optimization (6), and move locally in the plane during Gaussian optimization (7), as
only their 2D in-plane parameters are optimized.

3.4 Planar relocation

We follow 3DGS-MCMC [13] in our training dynamics. For densification of planes, we rely
on relocating low-opacity Gaussians to locations of dense high-opacity Gaussians, as this allows
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3DGS 3DGS-MCMC 2DGS Ours GTRaDe-GS PGSR

Metric / Method RMSE↓ MAE↓ AbsRel↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑ PSNR↑ LPIPS↓ SSIM↑ #primitives (%planar)

3DGS [6] 0.44 0.34 0.17 0.71 0.89 0.94 27.09 0.20 0.89 2.43M
3DGS-MCMC [13] 0.49 0.32 0.19 0.78 0.93 0.96 27.23 0.20 0.90 2.43M
RaDe-GS [17] 0.65 0.49 0.26 0.64 0.74 0.77 20.13 0.30 0.82 1.58M
2DGS [7] 0.39 0.24 0.13 0.82 0.88 0.91 25.56 0.24 0.88 1.54M
PGSR [16] 0.35 0.20 0.10 0.85 0.90 0.93 25.78 0.23 0.88 2.47M
Ours 0.27 0.18 0.10 0.88 0.96 0.98 27.01 0.21 0.89 2.43M (27.8%)

Figure 4: Novel View Synthesis – Quantitative and qualitative results show significant improvement
in predicted depth compared to previous work, while maintaining comparable rendering quality to
the full 3D representations.

transferring between 3D and 2D/planar Gaussians. However, the number of Gaussians on planes,
especially when the plane has weak texture, is usually low, leading to a slow densification rate for
planes / planar Gaussians. To address this issue, whenever a freeform Gaussian projects into the
current mask π(µ̄k) ∈M, and it is sufficiently close to the currently reconstruction, we stochastically
re-locate it to the plane. To measure distance, we identify the 2D Gaussian with the smallest Euclidean
distance to µ̄k, and measure its distance in the direction of the plane normal d⊥, and the one along
the plane d∥; see Figure 3. We stochastically relocate this if both distances are sufficiently small, as
expressed by the following Bernoulli distribution:

p ∼ B(β), β =

[
1− Φ

(
d⊥
σ⊥

)]
·
[
1− Φ

(
d∥

σ∥

)]
, (8)

where Φ is the cumulative distribution function of a Gaussian, and σ⊥ and σ∥ are hyper-parameters
that control the stochastic re-location.

4 Results

We validate our proposed method for scene reconstruction through the novel view synthesis task
on common indoor scene datasets, assessing both rendered image and depth quality metrics (sec-
tion 4.1). We then show an application of our method to mesh extraction for planar surfaces (sec-
tion 4.2). Finally, we validate our design choices through an ablation study on different aspects of the
method (section 4.3). We provide our implementation details in the supplementary material.
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3DGS-MCMC 2DGS Ours GT

Metric 3DGS-MCMC 2DGS Ours
RMSE↓ 0.46 0.60 0.40
MAE↓ 0.37 0.44 0.31
AbsRel↓ 0.19 0.23 0.16
δ < 1.25 ↑ 0.61 0.63 0.70
δ < 1.252 ↑ 0.87 0.77 0.90
δ < 1.253 ↑ 0.95 0.83 0.97
PSNR↑ 20.18 21.44 21.75
LPIPS↓ 0.29 0.30 0.27
SSIM↑ 0.83 0.85 0.86
# primitives
(% planar)

500K 809K 500K
(17.6%)

Figure 5: Novel View Synthesis on ScanNetv2 – Our method outperforms baselines in image and
depth quality on ScanNetv2 despite sparse camera views.

4.1 Novel View Synthesis – Figures 4 and 5

We evaluate our hybrid representation’s novel view synthesis on common indoor scene reconstruction
benchmarks and provide comparisons with both state-of-the-art fully 3D representations and 2D
surface reconstruction approaches. We show a significant improvement in the reconstructed surface
geometry while maintaining high visual quality.

Datasets We perform evaluations on common indoor scene benchmarks ScanNet++[31] and
ScanNetv2[32], as they primarily feature indoor scenes with flat textureless surfaces suitable for the
task at hand. ScanNet++ provides dense scenes with SfM camera poses and sparse point clouds,
designed primarily for 3D reconstruction approaches that follow the NeRF [5] paradigm. Conversely,
the legacy version of ScanNet i.e. ScanNetv2 offers sparser views without SfM information. Our
method works with or without initial sparse point clouds, enabling reconstruction initialized with
sparse SfM point cloud on ScanNet++ and experiments with randomly initialized point clouds on
ScanNetv2. For ScanNet++, we use 11 training scenes with ground truth meshes for depth derivation,
utilizing iPhone video streams, sampling every 10th frame for training at 2× downsampling and
every 8th for testing. We chose the scenes that are diverse in their content and contain various
planar surfaces. For ScanNet, we evaluate on 5 scenes with sufficient overlapping views of planar
surfaces following the data preparation scheme of [27]. The 2D plane masks were generated using
PlaneRecNet [25] and propagated through the image sequence with SAMv2 video processor [29].

Baselines We compare against SOTA reconstruction methods, both fully 3D representations and
2D surface reconstruction methods. For 3D representations, we compare with vanilla 3DGS [6], and
3DGS-MCMC [13] as it is more robust version to random initializations, and has higher rendering
quality. Within photometric surface reconstruction methods, we compare to 2DGS [7] as a widely
used state-of-the-art, as well as to PGSR [16] and RaDe-GS [17], which more recently report
improved depth quality. All methods are trained for 30K iterations.

Metrics We use the common image quality metrics PSNR, SSIM and LPIPS for evaluating the
rendered RGB. Further, we choose depth as a strong indicator for the quality of the reconstructed
surface geometry. We provide depth quality metrics by computing the rendered depth as the expected
ray termination at each pixel. We report RMSE, MAE and average absolute error relative to ground
truth depth (AbsRel). Additionally, we provide depth accuracy percentage at different error thresholds
similar to [33]. The metrics are computed only on the defined portion of the ground-truth depths. We
further report the total number of primitives in our model and the percentage that are planar (and thus
can be represented more compactly).

Analysis Quantitative and qualitative results across both datasets show significant improvement in
depth accuracy compared to all baselines. Notably, our method achieves comparable image quality
to SOTA 3D representations on dense ScanNet++ scenes while surpassing them in depth quality,
evidenced by sharper geometry reconstruction in qualitative examples. The slight PSNR difference
with 3D methods reflects a trade-off: our constrained geometry enforces correct structure, while
unconstrained methods can inflate PSNR by fitting view-dependent effects with incorrect geometry.
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Dataset Metrics Acc↓ Comp↓ Chamfer↓ Precision↑ Recall↑ F1 score↑ VOI↓ RI↑ SC↑

DSLR
Airplanes [9] 23.09 30.12 26.60 8.47 6.57 7.35 5.24 0.64 0.18

PlanarRecon [8] 15.99 59.92 37.96 23.10 4.16 6.77 4.31 0.63 0.20
Ours 6.93 17.31 12.12 65.33 46.34 53.71 3.89 0.64 0.24

iPhone
Airplanes [9] 7.15 15.46 11.31 48.03 38.02 41.94 4.38 0.69 0.28

PlanarRecon [8] 8.72 30.08 19.40 50.61 30.44 36.93 4.23 0.68 0.24
Ours 4.60 32.59 18.60 75.10 39.12 50.24 4.08 0.67 0.23

Figure 6: Mesh Extraction – Our method shows consistent results across iPhone and DSLR captures,
while baselines typically overfit to one camera type. Qualitatively, our approach extracts complete
meshes for most target planes with fewer inaccurate plane detections (shown in gray) compared to
baselines. Target planes are shown with distinct colors on the ground truth.

In the sparser ScanNetv2 scenes, our approach delivers superior performance in both depth and image
quality, leveraging the planar prior of indoor environments to overcome the geometric ambiguity that
challenges pure 3D methods in sparse captures. Our method also substantially outperforms 2DGS in
both image fidelity and depth accuracy metrics.

4.2 Mesh Extraction – figure 6

Our method enables mesh extraction from reconstructed 3D planar surfaces. For each plane, we
un-project all 2D segmentation masks to 3D by computing ray-plane intersections, yielding a point
cloud. This point cloud is downsampled using fixed-size voxels and rasterized onto plane coordinates
to create an occupancy grid. We then use Marching Squares for contour extraction (We omit small
contours with less than 100 points), followed by ear-clipping triangulation to produce the final mesh.
We evaluate the quality of the retrieved mesh for the planar surfaces and compare our method to
planar reconstruction methods.

Datasets We use ScanNet++ to extract planar surface meshes. We show results both on the subset
of this dataset captured by iPhone and also the DSLR subset, showing that our method can handle
different camera models, while previous methods usually overfit to one modality. For ground truth,
we follow the approach of Watson et al. [9] to obtain a ground truth planar mesh. We then only
consider the subset of planes in the ground truth mesh that we have annotated segmentation masks
for each scene. We provide details on selecting these planes in Appendix E.

Baselines We compare against previous planar reconstruction methods AirPlanes [9] and Pla-
narRecon [8] that provide extracted planar mesh as output of their methods. We follow the same
evaluation setting as in the original papers on the iPhone subset of the dataset. For DSLR images, we
crop the images to the specified FoV in each baseline to match their training distribution.
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Oursw/o relocationreg. w/o snapw/o snapsimult. opt.w/o plane opt.w/o mask lossw/o TV loss
Loss design Optimization design 2D Gaussian design

Full model w/o LTV w/o Lmask w/o plane optimization simult. joint optimization w/o snapping reg. w/o snapping w/o relocation

PSNR↑ 26.83 23.24 24.02 21.08 19.52 25.53 21.69 20.00
RMSE↓ 0.25 0.34 0.62 0.54 0.40 0.38 0.36 0.59

Figure 7: Ablation on design choices – Loss components and optimization strategy are critical, with
simultaneous plane-Gaussian optimization causing significant drops. 2D Gaussian snapping greatly
improves depth accuracy compared to regularization alternatives. Similarly, Gaussian relocation is
essential.

Metrics We report mesh accuracy metrics including accuracy, precision, recall, completeness and
Chamfer distance as defined in Ye et al. [27]. We also provide mesh segmentation metrics that
evaluate how well detected plane segments match ground truth segments following [9].

Analysis Our method outperforms the baselines on DSLR images subset of the dataset. Unlike
previous methods that are trained on specific modalities (i.e. phone camera) and struggle to transfer
to different camera models (i.e. DSLR camera), our approach maintains consistent mesh quality due
to having zero-shot mesh extraction on test scenes through photometric reconstruction. Additionally,
our method outperforms PlanarRecon on iPhone data, while having competitive performance to
AirPlanes. Qualitative results reveal that both PlanarRecon and AirPlanes extract extraneous planes
with numerous random small fragments, resulting in unsightly and impractical meshes. In contrast,
our method produces clean planar surfaces, yielding a more coherent and usable reconstruction.

4.3 Ablation – Figure 7

We ablate our design choices and additionally test our method’s robustness to random point cloud
initialization (in table 1).

Loss design We ablate the effect of Lmask and LTV . Although removing these losses reduces
the image quality by some margin, it affects depth quality more significantly. Qualitative rendering
shows that Lmask contributes significantly to detecting and growing 2D Gaussians.

Optimization design Our method is based on optimizing Gaussians and plane parameters together
in an alternating fashion. We show that fixing plane parameters with no optimization degrades our
results both quantitatively and qualitatively. Simultaneous joint optimization of Gaussians and planes
also affects the results negatively. In Figure 7, note how the floor plane gets stuck above the ground
level, as revealed by its intersection with the bin.

2D Gaussian design Using hybrid 2D/3D Gaussians is one of the main components of our design.
Therefore, we ablate the necessity of having 2D Gaussians by disabling snapping as described in
Section 3.2. This shows a significant drop in depth accuracy, which is also evident in qualitative
results. As an alternative to snapping, we can regularize the smallest scale component in planar
Gaussians. However, we find that this approach is difficult to tune and provides suboptimal results.
Finally, we ablate our densification process with relocation of Gaussians to planes. Without relocation,
planes are not fully detected, with the planar Gaussians comprising the plane maintaining low opacity.
Furthermore, some of the Gaussians remain close to the plane while not being detected as belonging
to that plane.
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5 Conclusions

We introduce 3D Gaussian Flats, a hybrid 2D/3D Gaussian representation that accurately models
planar surfaces without sacrificing rendering quality. Our method jointly optimizes 2D Gaussians
constrained to planar surfaces alongside free-form Gaussians for the remaining scene. By leveraging
semantic segmentation masks, we predict both a full 3D representation and semantically distinct
planes for planar mesh extraction in indoor scenes. Our approach achieves state-of-the-art depth
estimation on indoor scene benchmarks while maintaining high image quality. Additionally, our
planar mesh extraction method generalizes across different camera models, overcoming domain gap
limitations that typically cause previous methods to fail.

Limitations Our reliance on initial 3DGS reconstruction often generates insufficient Gaussians in
flat areas with no texture, although this potentially can be addressed via more adaptive densification
strategies. Further, using a weak spherical harmonics appearance model still leads to building extra
geometry to compensate for view-dependent effects, which a stronger appearance model would
resolve. Additionally, we depend on 2D semantic masks from SAMv2 that may contain errors,
but our method will naturally improve alongside advances in semantic segmentation. Finally, our
RANSAC-based approach, while robust, introduces computational overhead that extends training
time. We believe our hybrid representation opens exciting new avenues for research into more
efficient approaches that balance geometric precision with visual fidelity.
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tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]
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public.
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• While we encourage the release of code and data, we understand that this might not be
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance
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Answer: [No]
Justification: It is infeasible to report statistical significance for all compared methods due
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information is provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors reviewed and followed the NeurIPS Code of Ethics. In particular,
used datasets are anonymized.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The method improves the quality and efficiency in the tasks of Novel View
Synthesis and planar mesh extraction – however, these improvements do not introduce
conceptually new capabilities that would require revision of societal impact when compared
to prior work.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Used datasets are credited with licences ([31] and [32]), competing methods
are cited after the method short name in every table, and the citation includes code access
links crediting license. Used codebases are credited in Appendix E.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code contains README file with all the information to reproduce the
paper results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM policy is reflected in OpenReview submission. The paper does not
involve LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Full mesh extraction results – Figures 8 to 10

We evaluate our hybrid representation on the task of full mesh extraction using the method from [7],
we do it in addition to the planar-only mesh extraction experiments presented in Section 4.2, concate-
nating the two meshes together and comparing them to common benchmarks from Section 4.1.

Datasets We evaluate on ScanNet++ [31], a common indoor scene benchmark, as well as on subset
of suitable indoor/outdoor scenes from ETH3D [34], which provides high quality mesh, and is more
challenging because of sparse image supervision.

Baselines For ScanNet++ we reuse the models trained on iPhone data stream and evaluated on
the task of NVS in Section 4.1 to access mesh quality reconstruction. On ETH3D, in addition,
we evaluate Gaussian Opacity Fields (GOF) [35], an extention of 2DGS for higher quality mesh
reconstruction, and DNSplatter [36], a method supervising 3DGS with mono-depth 2

To obtain the mesh, we use TSDF fusion with the median depth estimate for 3DGS, 2DGS, DNSplatter
and ours, rather than the expected ray termination as in default settings (i.e., average depth). For
PGSR we use their proposed unbiased depth computation, and for Gaussian Opacity Fields we extract
the mesh using the level set of the Gaussians, hence the mesh is not colored.

Metrics We use the same metrics as for meshing task in planar mesh experiments Section 4.2. We
compute the F1-score at 5 cm threshold. For both of the datasets, we use every 8th image as a test
image.

Analysis We provide full mesh renders along with the metrics on ScanNet++ in Figure 8. For
ETH3D, in addition to mesh renders in Figure 10, we provide rendered novel views from the test set
in Figure 9. Note that captured planar surfaces are unbiased and outline well the structures of the
scenes. Moreover, on in the sparse view setting on ETH3D dataset we achieve a notable rendering
quality improvement.

B Additional ablations – Tables 1 and 2

Random initialization We analyze the effect of having sparse point cloud initialization versus ran-
dom initialization in our method on 11 DSLR scenes from ScanNet++ [31]. for random initialization
we do 5000 iterations in our warmup stage, as opposed to the usual 3500. We show that our method
maintains the robustness to random initialization similar to 3DGS-MCMC [13], and despite a drop in
number of planar Gaussians, it achieves comparable depth and image quality metrics to our method
when initialized with SfM sparse point cloud.

Table 1: Ablation on initialization – Our method is robust to random initialization and achieves
comparable performance to when initialized with SfM point cloud.

Method PSNR↑ SSIM↑ LPIPS↓ RMSE↓ MAE↓ AbsRel↓ #primitives (%planar)

3DGS-MCMC (SfM) 23.38 0.87 0.24 0.41 0.24 0.26 1.13M
Ours (SfM) 23.42 0.87 0.24 0.20 0.13 0.12 1.13M (31%)

Ours (Random) 23.30 0.86 0.25 0.21 0.14 0.13 1.13M (21%)

Full metrics set for ablation on design choices We provide the full set of metrics for ablation on
design choices (described in section 4.3) in the table 2.

2Note that the released codebase for DNSplatter does not support multiple camera models (different camera
intrinsics) for aligning mono-depth to SfM points, therefore we cannot easily report the metrics for ‘Electro’ and
‘Terrace’ scenes.
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3DGS 2DGS PGSR Ours Ground Truth

Acc↓ Comp↓ Chamfer↓ F1↑

3DGS 0.14 0.12 0.1274 0.5639
2DGS 0.27 0.15 0.2082 0.5280
PGSR 0.13 0.15 0.1404 0.5981
Ours 0.25 0.12 0.1833 0.5820

Figure 8: Full Mesh Extraction Results on ScanNet++ – Out method achieves competitive
performance for surface reconstruction, while mainatining the rendering quality. Checkered surfaces
indicate different planes, planes are usually behind the TSDF-extracted mesh as they represent
unbiased surfaces. Some of the meshes are shown from outside of the indoor scene to highlight the
planar alignment.

C Additional video and 3D mesh results

We provide video renderings of RGB and depth for our method compared to baselines in
https://theialab.github.io/3dgs-flats. Video results best capture the significant enhancement of our
approach over baselines in depth estimation and accurately modeling scene geometry.
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3DGS 2DGS Ours GTGOF

Electro Terrace Delivery area

Method PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS 16.45 0.38 0.72 20.77 0.27 0.78 19.48 0.29 0.83
2DGS 16.40 0.41 0.72 20.82 0.29 0.79 19.26 0.35 0.81
GOF 17.34 0.36 0.71 20.80 0.27 0.75 19.40 0.33 0.79

PGSR – – – – – – 16.64 0.41 0.69
DNSplatter – – – – – – 19.56 0.24 0.77

Ours 18.72 0.31 0.75 22.57 0.22 0.81 22.56 0.21 0.87

Figure 9: Rendering Results on ETH3D Scenes – Our method outperforms the baselines in terms
of rendering quality on this set of sparse view outdoor/indoor scenes, and the planar representation is
crucial for achieving good novel view synthesis in sparse scenarios.

Table 2: Ablation on design choices – Loss components and optimization strategy are critical, with
simultaneous plane-Gaussian optimization causing significant drops. 2D Gaussian snapping greatly
improves depth accuracy compared to regularization alternatives. Similarly, Gaussian relocation is
essential.

PSNR↑ LPIPS↓ SSIM↑ RMSE↓ MAE↓ AbsRel↓
Full model 26.83 0.27 0.86 0.25 0.18 0.09

Loss design:
w/o LTV 23.24 0.34 0.82 0.34 0.24 0.13
w/o Lmask 24.02 0.32 0.83 0.62 0.53 0.29

Optimization design:
w/o plane optimization 21.08 0.37 0.80 0.54 0.43 0.24
simult. joint optimization 19.52 0.38 0.79 0.40 0.32 0.18

2D Gaussian design:
w/o snapping 25.53 0.31 0.84 0.38 0.31 0.17
reg. w/o snapping 21.69 0.35 0.81 0.36 0.28 0.15
w/o relocation 20.00 0.37 0.80 0.59 0.50 0.28

D Additional qualitative results – Figures 11 and 12

We provide more qualitative evidence for the performance of our method compared to 2DGS [7],
3DGS [6] and 3DGS-MCMC [13] baselines on the ScanNet++ [31] dataset in figure 11. The results
show how baselines particularly struggle with reconstructing accurate geometry for the textureless
areas while our method significantly improves upon these methods in depth estimation and keeps the
visual quality of images.
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3DGS 2DGS GOF Ours Ground Truth

Electro Terrace Delivery area

Method Chamfer↓ F1↑ Chamfer↓ F1↑ Chamfer↓ F1↑

3DGS 0.6524 0.2511 0.3258 0.4517 0.3064 0.2335
2DGS 0.5873 0.2570 0.3312 0.4036 0.3265 0.2366
GOF 0.5371 0.2991 0.2107 0.4045 0.2939 0.3131

PGSR – – – – 0.4266 0.4287
DNSplatter – – – – 0.2488 0.2516

Ours 0.4062 0.3009 0.1480 0.5033 0.1825 0.3313

Figure 10: Full Mesh Extraction Results on ETH3D Scenes – Our method outperforms the
baselines.

Further, we provide more visualization for our estimated planes on ScanNet++ [31] dataset, showcas-
ing the perfect alignment of our planes with the detected planar surfaces in figure 12.

E Input planar masks

2D semantic masks Our method relies on input consistent 2D segmentation masks of planar
surfaces. To obtain these masks, we can either annotate each image collection manually or automate
the process for larger scenes. To automatically obtain the 2D segmentation masks, we employ
PlaneRecNet [25] and SAMv2 video segmentation model [29], to create an annotation pipeline. We
first input images to PlaneRecNet to obtain 2D plane annotations that are not semantically consistent
across the image collection. We set the plane probability threshold to 0.5. While this method
works well on iPhone images, it produces fewer plane annotations for DSLR images, that are out of
distribution for its network trained on iPhone data. We then input these unmatched masks as seed to
SAMv2. In order to do that, we order image collections that are not already sampled from a video.
We propagate masks from the initial frame in 16-frame chunks of the sequence to the next 15 frames,
and match SAMv2’s prediction with any subsequent 2D masks output from [25], using Hungarian
matching with an IoU metric. Although largely effective, this process is prone to error accumulation
through mask propagation. However, we assume resultant masks are semantically consistent across
the image sequence. We provide sample segmentation of an input sequence in the supplementary
video and on the website.
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3DGS 3DGS-MCMC RaDe-GS 2DGS PGSR Ours Ground Truth

Figure 11: Novel view synthesis and depth – Qualitative results on ScanNet++ iPhone dataset
show our superior performance in both image quality and depth estimation in novel views. Note the
limitation of the quality of Gaussian Splatting based methods for textureless surfaces, which makes
the plane fitting procedure less robust.
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Figure 12: We provide visualizations of our output planes on the rendered test views of ScanNet++
DSLR streams (top 2 rows) and iPhone stream (bottom 2 rows). Pink markings are due to the
anonymization of the original ScanNet++ dataset. While some planar surfaces are missed due to lack
of manual 2D planar mask annotation, the captured planes are reconstructed faithfully.

Masked ground truth meshes For the planar mesh extraction task, we only consider planes with
annotated segmentation masks from the ground truth mesh, as the 2D plane segmentation task is
orthogonal to our method. To identify the relevant subset of planes, we unproject points from the
ground truth depth maps that correspond to each plane according to its segmentation mask. We then
fit a plane to each resulting point cloud using RANSAC and compile these fitted planes into a set S.
We match planes from the ground truth mesh to those in set S by applying two criteria: the normal
cosine distance must be less than 0.99 to at least one plane in S, and the distance between their closest
points must be less than 0.1. Doing this allows for computational efficiency and increased robustness
to missing or undersegmented planes in the input 2D annotations.

Code We release our code3 publicly for reproducibility purposes and to facilitate future research
in this area. We base our code on the 3DGS-MCMC paper [13] and additionally use SAMv2 [29],
and PlaneRecNet [25] to generate masks. The baselines are evaluated using their official released
code [7, 6, 16, 17, 13, 8, 9]. We further utilize AirPlanes [9] code to compute meshing metrics.

3https://github.com/theialab/3dgs-flats
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F Hyperparameters settings

We use σ⊥ and σ∥ as hyper-parameters that control the stochastic re-location. These parameters are
chosen depending on the metric scale of the dataset, and are defined in millimeters. For both datasets
we used σ⊥ = 0.01 and σ∥ = 0.3. We observe that setting λmask = 0.1, yields best results empirically.
For regularizers, we use λTV=0.1, λscale=0.01 and λopacity = 0.01 following [10] and [13]. We use
the same scheduling policy for learning plane origin and normal (rotation) as for the Gaussian
means the vanilla 3DGS. All experiments were conducted on a single A6000 ADA GPU, with 46GB
memory. The method runs for approximately 1 hour for a single ScanNet++/ScanNetV2 scene,
which is comparable to PGSR [16], the second best method for geometric quality according to our
experiments and 1.5× longer than 3DGS-MCMC [13], the best method for Novel View Synthesis. The
training time is increased due to the RANSAC overhead and block-coordinate descent optimization
of planar parameters. Additionally, mesh extraction takes ∼ 3 minutes and SAM mask propagation is
on average 7 minutes long, depending on the scene type. We believe that the training time can be
reduced in future work with addition of customized CUDA kernels.
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