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ABSTRACT

Prototypicality is extensively studied in machine learning and computer vision.
However, there is still no widely accepted definition of prototypicality. In this paper,
we first propose to define prototypicality based on the concept of congealing. Then,
we develop a novel method called HACK to automatically discover prototypical
examples from the dataset. HACK conducts unsupervised prototypicality learning
in Hyperbolic space with sphere pACKing. HACK first generates uniformly packed
particles in the Poincaré ball of hyperbolic space and then assigns the image
uniquely to each particle. Due to the geometrical property of hyperbolic space,
prototypical examples naturally emerge and tend to locate in the center of the
Poincaré ball. HACK naturally leverages hyperbolic space to discover prototypical
examples in a data-driven fashion. We verify the effectiveness of the method with
synthetic dataset and natural image datasets. Extensive experiments show that
HACK can naturally discover the prototypical examples without supervision. The
discovered prototypical examples and atypical examples can be used to reduce
sample complexity and increase model robustness.

1 INTRODUCTION

Not all instances are created equal. Some instances are more representative of the class and some
instances are outliers or anomalies. Representative examples can be viewed as prototypes and used
for interpretable machine learning (Bien & Tibshirani, 2011), curriculum learning (Bengio et al.,
2009) and learning better decision boundaries (Carlini et al., 2018). With prototypical examples, we
can also conduct classification with few or even one example (Miller et al., 2000). Given an image
dataset, thus it is desirable to organize the examples based on prototypicality.

If the features of the images are given, it is relatively easy to find the prototypes by examining
the density peaks of the feature distribution. If the features are not given, to discover prototypical
examples without supervision is difficult: there is no universal definition or simple metric to assess
the prototypicality of the examples. A naive method to address this problem is to examine the gradient
magnitude (Carlini et al., 2018). However, this approach is shown to have a high variance which is
resulted from different training setups (Carlini et al., 2018). Some methods address this problem from
the perspective of adversarial robustness (Stock & Cisse, 2018; Carlini et al., 2018): prototypical
examples should be more adversarially robust. However, the selection of the prototypical examples
highly depends on the adversarial method and the metric used in adversarial attack. Several other
methods exist for this problem but they are either based on heuristics or lack a proper justification
(Carlini et al., 2018).

In this paper, we first introduce a way of obtaining prototypical examples from image congealing
(Miller et al., 2000). Congealing is the process of jointly aligning a set of images. The congealed
images are transformed to better align with the average image and thus more typical. We further pro-
pose a novel method, called HACK, by leveraging the geometry of hyperbolic space for unsupervised
learning. Hyperbolic space is non-Euclidean space with constant non-negative curvature Anderson
(2006). Different from Euclidean space, hyperbolic space can represent hierarchical relation with
low distortion. Poincaré ball model is one of the most commonly used models for hyperbolic space
(Nickel & Kiela, 2017b). One notable property of Poincaré ball model is that the distance to the
origin grows exponentially as we move towards the boundary. Thus, the points located in the center
of the ball are close to all the other points while the points located close to the boundary are infinitely
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Figure 1: Different from the existing
unsupervised learning methods which
aim to group examples via semantic
similarity, HACK organizes images
in hyperbolic space in a hierarchical
manner. The typical images are at the
center of the Poincaré ball and the atypi-
cal images are close to the boundary of
the Poincaré ball.

far away from other points. With unsupervised learning in hyperbolic space, HACK can learn features
which capture both visual similarity and prototypicality(Figure 1).

HACK optimizes the organization of the dataset by assigning the images to a set of uniformly
distributed particles in hyperbolic space. The assignment is done by minimizing the total hyperbolic
distance between the image features and the particles via Hungarian algorithm. The prototypicality
arises naturally based on the distance of the example to other examples. Prototypical examples tend
to locate in the center of the Poincaré ball and atypical examples tend to locate close to the boundary.
Hyperbolic space readily facilitates such an organization due to property of the hyperbolic distance.

In summary, the contributions of the papers are,

• We propose the first unsupervised feature learning method to learn features which capture
both visual similarity and prototypicality. The positions of the features reflect prototypicality
of the examples.

• The proposed method HACK assigns images to particles that are uniformly packed in
hyperbolic space. HACK fully exploits the property of hyperbolic space and prototypicality
arises naturally.

• We ground the concept of prototypicality based on congealing which conforms to human
visual perception. The congealed examples can be used to replace the original examples
for constructing datasets with known prototypicality. We validate the effectiveness of the
method by using a synthetic data with natural and congealed images. We further apply the
proposed method to commonly used image datasets to reveal prototypicality.

• The discovered prototypical and atypical examples are shown to reduce sample complexity
and increase robustness of the model.

2 RELATED WORK

Prototypicality. The study of prototypical examples in machine learning has a long history. In
Zhang (1992), the authors select typical instances based on the fact that typical instances should be
representative of the cluster. In Kim et al. (2016), prototypical examples are defined as the examples
that have minimum maximum mean discrepancy within the data. Li et al. (Li et al., 2018) propose
to discover prototypical examples by architectural modifications: the dataset is first projected onto
a low-dimensional manifold and a prototype layer is used to minimize the distance between inputs
and the prototypes on the manifold. The robustness to adversarial attacks are also used as a criteria
for prototypicality (Stock & Cisse, 2018). In Carlini et al. (2018), the authors propose multiple
metrics for prototypicality discovery. For example, the features of prototypical examples should be
consistent across different training setups. However, these metrics usually depend heavily on the
training setups and hyperparameters used for training. The idea of prototypicality is also extensively
studied in meta-learning for one-shot or few-shot classification (Snell et al., 2017). No existing works
address the prototypicality discovery problem in a data-driven fashion. Our proposed HACK naturally
exploits hyperbolic space to organize the images based on prototypicality.

Unsupervised Learning in Hyperbolic Space. Learning features in hyperbolic space has shown
to be useful for many machine learning problems (Nickel & Kiela, 2017a; Ganea et al., 2018). One

2



Under review as a conference paper at ICLR 2023

Original Images:

Congealed Images:

Figure 2: Congealed images are more typical than the original images. First row: sampled
original images. Second row: the corresponding congealed images.

useful property is that hierarchical relations can be embedded in hyperbolic space with low distortion
(Nickel & Kiela, 2017a). A generalized version of the normal distribution called wrapped normal
distribution is proposed for modeling distribution of points in hyperbolic space (Nagano et al., 2019).
The proposed wrapped normal distribution is used as the latent space for constructing hyperbolic
variational autoencoders (VAEs) (Kingma & Welling, 2013). Poincaré VAEs is constructed in Mathieu
et al. (2019) with a similar idea to Nagano et al. (2019) by replacing the standard normal distribution
with hyperbolic normal distribution. Unsupervised 3D segmentation (Hsu et al., 2020) and instance
segmentation (Weng et al., 2021) are conducted in hyperbolic space via hierarchical hyperbolic triplet
loss. CO-SNE (Guo et al., 2021a) is recently proposed to visualize high-dimensional hyperbolic
features in a two-dimensional hyperbolic space. Although hyperbolic distance facilitates the learning
of hierarchical structure, how to leverage hyperbolic space for unsupervised prototypicality discovery
is not explored in the current literature.

Sphere Packing. The problem of sphere packing is to pack a set of particles as densely as possible in
a space (Conway & Sloane, 2013). Sphere packing can be served as a toy model for granular materials
and has applications in information theory (Shannon, 2001) to find error-correcting codes (Cohn,
2016). Sphere packing is difficult due to multiple local minima, the curse of high-dimensionality and
complicated geometrical configurations. Packing in hyperbolic space is also studied in the literature.
It is given in Böröczky (1978) a universal upper bound for the density of sphere packing in an
n-dimensional hyperbolic space when n ≥ 2. We are interested in generating uniform packing in a
two-dimensional hyperbolic space. Uniformity has been shown to be a useful criterion for learning
good features on the hypersphere (Wang & Isola, 2020). We opt to find the configuration with an
optimization procedure which is easily applicable even with thousands of particles.

3 OVERVIEW

Given existing features {f(vi)} which are obtained by applying a feature extractor for each instance
vi, we can find the prototypical examples by examining the density peaks via techniques from density
estimation. For example, the K-nearest neighbor density (K-NN) estimation (Fix & Hodges, 1989) is
defined as,

pknn(vi, k) =
k

n

1

Ad ·Dd(vi, vk(i))
(1)

where d is the feature dimension, Ad = πd/2/Γ(d/2+1), Γ(x) is the Gamma function and k(i) is the
kth nearest neighbor of example vi. The nearest neighbors can be found by computing the distance
between the features. However, different training setups can induce different feature spaces, which
in turn lead to different conclusions of prototypicality. Our goal is to learn features that naturally
reflect prototypicality of the examples. We ground our concept of prototypicality based on congealing
(Miller et al., 2000). In particular, we define prototypical examples in the pixel space by examining
the distance of the images to the average image in the corresponding class. Our idea is based on a
traditional computer vision technique called image alignment (Szeliski et al., 2007) which aims to
find correspondences across images. During congealing (Miller et al., 2000), a set of images are
transformed to be jointly aligned by minimizing the joint pixelwise entropies. The congealed images
are more prototypical: they are better aligned with the average image. Thus, we have a simple way
to transform an atypical example to a typical example (see Figure 2). This is useful since given an
unlabeled image dataset the typicality of the examples are unknown, congealing examples can be
naturally served as examples with known typicality and be used as a validation for the effectiveness
of our method.
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a) Supervised classification b) Our unsupervised feature learning c) Metric feature learning
with fixed known targets with fixed but unknown targets with unknown targets

Figure 3: The proposed HACK has a predefined geometrical arrangement and allows the images
to be freely assigned to any particle. a) Standard supervised learning has predefined targets. The
image is only allowed to be assigned to the corresponding target. b) HACK packs particles uniformly
in hyperbolic space to create initial seeds for organization. The images are assigned to the particles
based on their prototypicality and semantic similarities. c) Standard unsupervised learning has no
predefined targets and images are clustered based on their semantic similarities.

4 UNSUPERVISED FEATURE REPRESENTATION IN HYPERBOLIC SPACE

We aim to develop a method which can automatically discover prototypical examples unsupervisedly.
In particular, we conduct unsupervised learning in hyperbolic space with sphere packing (Figure
5). We specify where the targets should be located ahead of training with uniform packing in
hyperbolic space, which by design are maximally evenly spread out in hyperbolic space. The
uniformly distributed particles guide feature learning to achieve maximum instance discrimination
(Wu et al., 2018).

HACK figures out which instance should be mapped to which target through bipartite graph matching
as a global optimization procedure. During training HACK minimizes the total hyperbolic distances
between the mapped image point (in the feature space) and the target, those that are more typical
naturally emerge closer to the origin of Poincaré ball. Prototypicality comes for free as a result of
self-organization. HACK differs from the existing learning methods in several aspects (Figure 3).
Different from supervised learning, HACK allows the image to be assigned to any target (particle).
This enables exploration of natural organizations of the data. Different from existing unsupervised
learning learning method, HACK specifies a predefinted geometrical organization which encourages
the corresponding structure to be emerged from the dataset. Existing methods are not applicable for
prototypicality discovery without supervision due to their aforementioned limitations.

Section 4.1 gives the background on hyperbolic space. Section 4.2 describes the steps for generating
uniformly distributed particles in hyperbolic space. Section 4.3 delineates the details of hyperbolic
instance assignment via Hungarian algorithm.

4.1 POINCARÉ BALL MODEL FOR HYPERBOLIC SPACE

Hyperbolic space. Euclidean space has a curvature of zero and a hyperbolic space is a Riemannian
manifold with a constant negative curvature.

Poincaré Ball Model for Hyperbolic Space. There are several isometrically equivalent models for
visualizing hyperbolic space with Euclidean representation. The Poincaré ball model is the commonly
used one in hyperbolic representation learning (Nickel & Kiela, 2017b). The n-dimensional Poincaré
ball model is defined as (Bn, gx), where Bn = {x ∈ Rn : ∥x∥ < 1} and gx = (γx)

2In is the
Riemannian metric tensor. γx = 2

1−∥x∥2 is the conformal factor and In is the Euclidean metric tensor.

Hyperbolic Distance. Given two points u ∈ Bn and v ∈ Bn, the hyperbolic distance is defined as,

dBn(u,v) = arcosh

(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
(2)

where arcosh is the inverse hyperbolic cosine function and ∥·∥ is the usual Euclidean norm.
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Figure 4: The proposed repulsion
loss is used to generate uniformly
packed particles in hyperbolic
space. (a) If the distance between
two particles are within rn,r, min-
imizing the repulsion loss would
push the two particles away. (b)
The repulsion loss is larger when
the two particles become closer. (a) (b)

Hyperbolic distance has the unique property that it grows exponentially as we move towards the
boundary of the Poincaré ball. In particular, the points on the circle represents points in the infinity.
Hyperbolic space is naturally suitable for embedding hierarchical structure (Sarkar, 2011; Nickel
& Kiela, 2017b) and can be regarded as a continuous representation of trees (Chami et al., 2020).
The hyperbolic distance between samples implicitly reflects their hierarchical relation. Thus, by
embedding images in hyperbolic space we can naturally organize images based on their semantic
similarity and prototypicality.

4.2 SPHERE PACKING IN HYPERBOLIC SPACE

Given n particles, our goal is to pack the particles into a two-dimensional hyperbolic space as densely
as possible. We derive a simple repulsion loss function to encourage the particles to be equally distant
from each other. The loss is derived via the following steps. First, we need to determine the radius
of the Poincaré ball used for packing. We use a curvature of 1.0 so the radius of the Poincaré ball
is 1.0. The whole Poincaré ball cannot be used for packing since the volume is infinite. We use
r < 1 to denote the actual radius used for packing. Thus, our goal is to pack n particles in a compact
subspace of Poincaré ball. Then, the Euclidean radius r is further converted into hyperbolic radius rB.
Let s = 1√

c
, where c is the curvature. The relation between r and rB is rB = s log s+r

s−r . Next, the

total hyperbolic area AB of a Poincaré ball of radius rB can be computed as AB = 4πs2 sinh2( rB2s ),
where sinh is the hyperbolic sine function. Finally, the area per point An can be easily computed
as AB

n , where n is the total number of particles. Given An, the radius per point can be computed as

rn = 2s sinh−1(
√

An

4πs2 ). We use the following loss to generate uniform packing in hyperbolic space.
Given two particles i and j, the repulsion loss V is defined as,

V (i, j; k, n, r) = { 1

[2rn −max(0, 2rn − dB(i, j))]k
− 1

(2rn)k
} · C(k) (3)

where C(k) = (2rn)
k+1

k and k is a hyperparameter. Intuitively, if the particle i and the particle j are
within 2rn, the repulsion loss is positive. Minimizing the repulsion loss would push the particle i and
j away. If the repulsion is zero, this indicates all the particles are equally distant (Figure 4 a). Figure
4 b) shows that the repulsion loss grows significantly when the two particles become close.

We also adopt the following boundary loss to prevent the particles from escaping the ball,

B(i; r) = max(0, normi − r + margin) (4)

where normi is the ℓ2 norm of the representation of the particle i. Figure 3 b) shows an example of
the generated particles that are uniformly packed in hyperbolic space.

4.3 HYPERBOLIC INSTANCE ASSIGNMENT

HACK learns the features by optimizing the assignments of the images to the particles (Figure 5).
Once we generate a fixed set of uniformly packed particles in a two-dimensional hyperbolic space, our
next goal is to assign each image to the corresponding particle. The assignment should be one-to-one,
that is, each image should be assigned to one particle and each particle is allowed to be associated
with only one image. We cast the instance assignment problem as a bipartite matching problem
(Gibbons, 1985) and solve it Hungarian algorithm (Munkres, 1957).
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Figure 5: HACK conducts unsupervised learning
in hyperbolic space with sphere packing. The im-
ages are mapped to particles by minimizing the total
hyperbolic distance. HACK learns features that can
capture both visual similarities and prototypicality.

Algorithm 1 HACK: Unsupervised Learning
in Hyperbolic Space.
Require: # of images: n ≥ 0. Radius for

packing: r < 1. An encoder with param-
eters θ: fθ

1: Generate uniformly distributed particles
in hyperbolic space by minimizing the
repulsion loss in Equation 3

2: Given {(x1, s1), (x2, s2), ..., (xb, sb)},
optimize fθ by minimizing the total
hyperbolic distance via Hungarian
algorithm.

Initially, we randomly assign the particles to the images, thus there is a random one-to-one cor-
respondence between the images to the particles (not optimized). Given a batch of samples
{(x1, s1), (x2, s2), ..., (xb, sb)}, where xi is an image and si is the corresponding particle, and
an encoder fθ, we generate the hyperbolic feature for each image xi as fθ(xi) ∈ B2, where B2 is a
two-dimensional Poincaré ball. We aim to find the minimum cost bipartite matching of the images to
the particles within this batch. It is worth noting that no labels are needed and the assignment is done
without supervision.

In the bipartite matching, the cost is the hyperbolic distance of each image to the particle. Thus, the
criterion is to minimize the total hyperbolic distances of the assignment. We achieve this goal with
Hungarian algorithm Munkres (1957) which has a complexity of O(b3), where b is the batch size. It
is worth noting that the assignment is only limited to the samples in the particular batch, thus the
time and memory complexity is tolerable. The one-to-one correspondence between the images and
particles are always maintained during training. The details of HACK is shown in Algorithm 1.

Due to the property of hyperbolic distance, the images that are more typical tend to be assigned to the
particles located in the center of the Poincaré ball. Thus, HACK implicitly defines prototypicality as
the distance of the sample to all the other samples. The prototypicality of the images can be easily
reflected by the location of the assigned particles. Moreover, similar images tend to cluster together
due to semantic similarity. In summary, with hyperbolic instance assignment, HACK automatically
organizes images based on prototypicality by exploiting hyperbolicity of the space.

Why Does HACK Work? Hyperbolic space can embed tree structure with no distortion. In particular,
the root of the tree can be embedded in the center of of the Poincaré ball and the leaves are embedded
close to the boundary. Thus, the root is close to all the other nodes. This agrees with our intuition
that typical examples should be close to all other examples. By minimizing the total assignment loss
of the images to the particles, we seek to organize the images implicitly in a tree-structure manner.
Consider three images A, B, C for an example. Assume image A is the most typical image. Thus the
feature of A is close to both the features of B and C. The bipartite matching tends to assign image A
to the particle in the center since this naturally reflects the feature distances between the three images.

Connection to Existing Methods. Existing works address the problem of prototypicality discovery
with ad-hoc defined metrics (Carlini et al., 2018). These metrics usually have high-variances due
to different training setups or hyperparameters. In this paper, we take a different perspective by
exploiting the natural organization of the data by optimizing hyperbolic instance assignment. The
property of hyperbolic space facilitates discovery of prototypicality. Also, popular contrastive learning
based unsupervised learning methods such as SimCLR (Chen et al., 2020) and MoCo (He et al.,
2020) cannot achieve this goal since the predefined structure is not specified.

5 EXPERIMENTS

We design several experiments to show the effectiveness of HACK for semantic and prototypical
organization. First, we first construct a dataset with known prototypicality using the congealing
algorithm (Miller et al., 2000). Then, we apply HACK to datasets with unknown prototypicality to
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organize the samples based on the semantic and prototypical structure. Finally, we show that the
prototypical structure can be used to reduce sample complexity and increase model robustness.

5.1 DATASETS

We first construct a dataset called Congealed MNIST. To verify the efficacy of HACK for unsupervised
prototypicality discovery, we need a benchmark with known prototypical examples. However,
currently there is no standard benchmark for this purpose. To construct the benchmark, we use the
congealing algorithm from Miller et al. (2000) to align the images in each class of MNIST (LeCun,
1998). The congealing algorithm is initially used for one-shot classification. During congealing, the
images are brought into correspondence with each other jointly. The congealed images are more
prototypical: they are better aligned with the average image. In Figure 2, we show the original images
and the images after congealing. The original images are transformed via affine transformation to
better align with each other. The synthetic data is generated by replacing 500 original images with
the corresponding congealed images. In Section E of the Appendix, we show the results of changing
the number of replaced original images. We expect HACK to discover the congealed images and
place them in the center of the Poincaré ball. We also aim to discover the prototypical examples from
each class of the standard MNIST dataset (LeCun, 1998) and CIFAR10 (Krizhevsky et al., 2009).
CIFAR10 consists of 60000 from 10 object categories ranging from airplane to truck. CIFAR10 is
more challenging than MNIST since it has larger intra-class variations.

5.2 BASELINES

We consider several existing metrics proposed in Carlini et al. (2018) for prototypicality discovery,
the details can be found in Section C of the Appendix.

Holdout Retraining: We consider the Holdout Retraining proposed in Carlini et al. (2018). The idea
is that the distance of features of prototypical example obtained from models trained on different
datasets should be close.

Model Confidence: Intuitively, the model should be confident on prototypical examples. Thus, it is
natural to use the confidence of the model prediction as the criterion for prototypicality.

5.3 IMPLEMENTATION DETAILS

We implement HACK in Pytorch and the code will be made public. To generate the uniform particles,
we first randomly initialize the particles. We run the training for 1000 epochs to minimize the
repulsion loss and boundary loss. The learning rate is 0.01. The curvature of the Poincaré ball
is 1.0 and the r is 0.76 which is used to alleviate the numerical issues (Guo et al., 2021b). The
hyperparameter k is 1.55 which is shown to generate uniform particles well. For the assignment,
we use a LeNet (LeCun et al., 1998) for MNIST and a ResNet20 (He et al., 2016) for CIFAR10 as
the encoder. We apply HACK to each class separately. We attach a fully connected layer to project
the feature into a two-dimensional Euclidean space. The image features are further projected onto
hyperbolic space via an exponential map. We run the training for 200 epochs and the initial learning
rate is 0.1. We use a cosine learning rate scheduler (Loshchilov & Hutter, 2016). We optimize the
assignment every other epoch. All the experiments are run on a NVIDIA TITAN RTX GPU.

5.4 PROTOTYPICALITY DISCOVERY ON CONGEALED MNIST

Figure 6 shows that HACK can discover the congealed images from all the images. In Figure 6 a),
the red particles denote the congealed images and cyan particles denote the original images. We
can observe that the congealed images are assigned to the particles that locate in the center of the
Poincaré ball. This verifies that HACK can indeed discover prototypical examples from the original
dataset. Section G.1 in the Appendix shows that during training the features of atypical examples
gradually move to the boundary of the Poincaré ball. In Figure 6 b), we show the actual images that
are embedded in the two-dimensional hyperbolic space. We can observe that the images in the center
of Poincaré ball are more prototypical and images close to the boundary are more atypical. Also, the
images are naturally organized by their semantic similarity. Figure 7 shows that the features of the
original images become closer to the center of Poincaré ball after congealing. In summary, HACK
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a) b)

Figure 6: Congealed images are located in
the center of the Poincaré ball. a) Red dots
denote congealed images and cyan dots de-
note original images. b) Typical images are in
the center and atypical images are close to the
boundary. Images are also clustered together
based on visual similarity. Congealed images
are shown in red boxs.

a) b)

Figure 7: Original images are pushed to the
center of the ball after congealing. We train
the first model with original images. Then we
train the second model by replacing a subset
of original images (marked with cyan) with
the corresponding congealed images. The fea-
tures of the congealed images (marked with
red) become closer to the center of the ball.

a) b) c) d)

Figure 8: Our unsupervised learning methods conforms to our visual perception HACK TODO
a) Samples of 2000 images from MNIST. b) Images of MNIST arranged angularly. c) Samples of
2000 images from CIFAR10. d) Images of CIFAR10 arranged angularly. Images are organized based
on prototypicality and visual similarity.

can discover prototypicality and also organizes the images based on their semantics. To the best of
our knowledge, this is the first unsupervised learning method that can be used to discover prototypical
examples in a data-driven fashion.

5.5 RESULTS ON STANDARD BENCHMARKS

Figure 8 shows the embedding of class 0 from MNIST and class “airplane” from CIFAR10 in the
hyperbolic space. We sample 2000 images from MNIST and CIFAR10 for better visualization. We
also show the arrangement of the images angularly with different angles. Radially, we can observe
that images are arranged based on prototypicality. The prototypical images tend to locate in the center
of the Poincaré ball. Especially for CIFAR10, the images become blurry and even unrecognizable
as we move towards the boundary of the ball. Angularly, the images are arranged based on visual
similarity. The visual similarity of images has a smooth transition as we move around angularly.
Please see Section D for more results.

Comparison with Baselines Figure 11 shows the comparison of the baselines with HACK. We can
observe that both HACK and Model Confidence (MC) can discover typical and atypical images.
Compared with MC, HACK defines prototypicality as the distance of the sample to other samples
which is more aligned with human intuition. Moreover, in addition to prototypicality, HACK can also
be used to organize examples by semantic similarities. Holdout Retraining (HR) is not effective for
prototypicality discovery due to the randomness of model training.
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HACK HR MC Mean Image

Typical Images:

Atypical Images:

Figure 11: HACK can discover both typical and atypical examples. First row: typical images
discovered by different methods. Second row: atypical images discovered by different methods.

5.6 APPLICATION OF PROTOTYPICALITY

Reducing Sample Complexity. The proposed HACK can discover prototypical images as well
as atypical images. We show that with atypical images we can reduce the sample complexity for
training the model. Prototypical images are representative of the dataset but lack variations. Atypical
examples contain more variations and it is intuitive that models trained on atypical examples should
generalize better to the test samples. To verify this hypothesis, we select a subset of samples based
on the norm of the features which indicates prototypicality of the examples. We consider using both
the most typical and atypical examples for training the model. We train a LeNet on MNIST for 10
epochs with a learning rate of 0.1. Figure 9 a) shows that training with atypical images can achieve
much higher accuracy than training with typical images. In particular, training with the most atypical
10% of the images achieves 16.54% higher accuracy than with the most typical 10% of the images.
Thus, HACK provides an easy solution to reduce sample complexity. The results further verify that
HACK can distinguish between prototypical and atypical examples.

Figure 9: Training with atypical examples
achieves higher accuracy than training with typ-
ical examples.

Figure 10: The adversarial accuracy greatly im-
proves after removing the X% of most atypical
examples.

Increasing Model Robustness. Training models with atypical examples can lead to vulnerable
model to adversarial attacks (Liu et al., 2018; Carlini et al., 2018). Intuitively, atypical examples
lead to less smooth decision boundary and a small perturbation to the example is likely to change
the prediction. With HACK, we can easily identify atypical samples to improve the robustness of
the model. We use MNIST as the benchmark and use FGSM (Goodfellow et al., 2014) to attack the
model with an ϵ = 0.07. We identify the atypical examples with HACK and remove the most atypical
X% of the examples. Figure 9 b) shows that discarding atypically examples greatly improve the
robustness of the model: the adversarial accuracy is improved from 84.72% to 93.42% by discarding
the most atypical 1% of the examples. It is worth noting that the clean accuracy remains the same
after removing a small number of atypical examples.

6 SUMMARY

We propose an unsupervised learning method, called HACK, for organizing images with sphere
packing in hyperbolic space. HACK optimizes the assignments of the images to a fixed set of
uniformly distributed particles. Prototypical and semantic structures emerge naturally due to the
property of hyperbolic distance. We apply HACK to synthetic data with known prototypicality and
standard image datasets. The discovered prototypicality and atypical examples can be used to reduce
sample complexity and increase model robustness.
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A APPENDIX

B MORE DETAILS ON HYPERBOLIC INSTANCE ASSIGNMENT

a) b)

Figure 12: Hyperbolic Instance Assignment minimizes the total hyperbolic distances between
the image features and the particles. a) Initial assignment. b) Optimized assignment.

A more detailed description of the hyperbolic instance assignment is given.

Initially, we randomly assign the particles to the images. Given a batch of samples
{(x1, s1), (x2, s2), ..., (xb, sb)}, where xi is an image and si is the corresponding particle. Given
an encoder fθ, we generate the hyperbolic feature for each image xi as fθ(xi) ∈ B2, where B2 is a
two-dimensional Poincaré ball.

we aim to find the minimum cost bipartite matching of the images to the particles. The cost to
minimize is the total hyperbolic distance of the hyperbolic features to the particles. We first compute
all the pairwise distances between the hyperbolic features and the particles. This is the cost matrix of
the bipartite graph. Then we use Hungarian algorithm to optimize the assignment (Figure 12).

Suppose we train the encoder fθ for T epochs. We run the hyperbolic instance assignment every other
epoch to avoid instability during training. We optimize the encoder fθ to minimize the hyperbolic
distance of the hyperbolic feature to the assigned particle in each batch.

C DETAILS OF BASELINES

Holdout Retraining: We consider the Holdout Retraining proposed in Carlini et al. (2018). The idea
is that the distance of features of prototypical example obtained from models trained on different
datasets should be close. In Holdout Retraining, multiple models are trained on the same dataset. The
distances of the features of the images obtained from different models are computed and ranked. The
prototypical examples are those examples with closest feature distance.

Model Confidence: Intuitively, the model should be confident on prototypical examples. Thus, it is
natural to use the confidence of the model prediction as the criterion for prototypicality. Once we train
a model on the dataset, we use the confidence of the model to rank the examples. The prototypical
examples are those examples that the model is most

D MORE RESULTS ON PROTOTYPICALITY DISCOVERY

We show the visualization of all the images in Figure 17 and Figure 18. The images are organized
naturally based their prototypicality and semantic similarity. We further conduct retrieval based on
the norm of the hyperbolic features to extract the most typical and atypical images on CIAFR10 in
Figure 19. The hyperbolic features with large norms correspond to atypical images and the hyperbolic
features with small norms correspond to typical images. It can be observed that the object in the
atypical images are not visible.
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E GRADUALLY ADDING MORE CONGEALED IMAGES

We gradually increase the number of original images replaced by congealed images from 100 to 500.
Still, as shown in Figure 13, HACK can learn representation that capture the concept of prototypicality
regardless of the number of congealed images. This again confirms that the effectiveness of HACK
for discovering prototypicality.

100 200 300 400 500

Figure 13: HACK consistently places congealed images in the center of the Poincaré ball. We
gradually increase the number of original images replaced by congealed images from 100 to 500.
The congealed images are marked with red dots and the original images are marked with cyan dots.

F DIFFERENT RANDOM SEEDS

We further run the assignment for 5 times with different random seeds. The results are shown in
Figure 14. We observe that the algorithm does not suffer from high variance and the congealed
images are always assigned to the particles in the center of the Poincaré ball. This further confirms
the efficacy of the proposed method for discovering prototypicality.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Figure 14: HACK consistently places congealed images in the center of the Poincaré ball in
multiple runs with different random seeds.. The congealed images are marked with red dots and
the original images are marked with cyan dots.

G EMERGENCE OF PROTOTYPICALITY IN THE FEATURE SPACE

Existing unsupervised learning methods mainly focus on learning features for differentiating different
classes or samples Wu et al. (2018); He et al. (2020); Chen et al. (2020). The learned representations
are transferred to various downstream tasks such as segmentation and detection. In contrast, the
features learned by HACK aim at capturing prototypicality within a single class.

To investigate the effectiveness of HACK for revealing prototypicality, we can include or exclude
congealed images in the training process. When the congealed images are included in the training
process, we expect the congealed images to be located in the center of the Poincaré ball while the
original images to be located near the boundary of the Poincaré ball. When the congealed images
are excluded from the training process, we expect the features of congealed images produced via the
trained network are located in the center of the Poincaré ball.
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G.1 TRAINING WITH CONGEALED IMAGES AND ORIGINAL IMAGES

We follow the same setups as in the Section 4.3.1 of the main text. Figure 15 shows the hyperbolic
features of the congealed images and original images in different training epochs. The features of
the congealed images stay in the center of the Poincaré ball while the features of the original images
gradually expand to the boundary.

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 200

Figure 15: Atypical images gradually move to the boundary of the Poincaré ball. This shows that
the representations learned by HACK captures prototypicality. Congealed images are in red boxes
which are more typical. The network is trained with both the congealed images and original images.

G.2 TRAINING ONLY WITH ORIGINAL IMAGES

Epoch 1 Epoch 10 Epoch 20 Epoch 40 Epoch 200

Figure 16: The representations learned by HACK gradually capture prototypicality during
the training process. Congealed images are in red boxes which are more typical. We produce the
features of the congealed images with the trained network in different epochs. The network is only
trained with original images.

Figure 16 shows the hyperbolic features of the congealed images when the model is trained only
with original images. As we have shown before, congealed images are naturally more typical than
their corresponding original images since they are aligned with the average image. The features
of congealed images are all located close to the center of the Poincaré ball. This demonstrate that
prototypicality naturally emerge in the feature space.

Without using congealed images during training, we exclude any artifacts and further confirm the
effectiveness of HACK for discovering prototypicality. We also observe that the features produced by
HACK also capture the fine-grained similarities among the congealing images despite the fact that all
the images are aligned with the average image.
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a) b)

c) d)

Figure 17: HACK captures prototypicality and semantic similarity on MNIST. a) Class 0. b)
Class 1. c) Class 2. d) Class 3.
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a) b)

c) d)

Figure 18: HACK captures prototypicality and semantic similarity on CIFAR10. a) Class
“airplane”. b) Class “automobile”. c) Class “bird”. d) Class “cat”.

Typical Images:

Atypical Images:

Typical Images:

Atypical Images:

Figure 19: Most typical and atypical images extracted by HACK from CIFAR10.

H DISCUSSIONS ON SOCIETAL IMPACT AND LIMITATIONS.

We address the problem of unsupervised learning in hyperbolic space. We believe the proposed
HACK should not raise any ethical considerations. We discuss current limitations below,

Applying to the Whole Dataset Currently, HACK is applied to each class separately. Thus, it would
be interesting to apply HACK to all the classes at once without supervision. This is much more
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challenging since we need to differentiate between examples from different classes as well as the
prototypical and semantic structure.

Exploring other Geometrical Structures We consider uniform packing in hyperbolic space to
organize the images. It is also possible to extend HACK by specifying other geometrical structures to
encourage the corresponding organization to emerge from the dataset.
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