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ABSTRACT

Inverse Reinforcement Learning (IRL) aims to recover Reward Models from ex-
pert demonstrations, but traditional methods yield "black-box" models that are
difficult to interpret and debug. In this work, we introduce GRACE (Generating
Rewards As CodE), a method for using code Large Language Models (LLMs)
within an evolutionary search to reverse-engineer an interpretable, code-based re-
ward function directly from expert trajectories. The resulting reward function is
executable code that can be inspected and verified. We empirically demonstrate
that GRACE can efficiently learn highly accurate rewards in the multi-task setups
as defined by two benchmarks, BabyAI and AndroidWorld. Further, we demon-
strate that the resulting reward leads to strong policies compared to both com-
petitive Imitation Learning and online RL approaches with groundtruth rewards.
Finally, we show that GRACE is able to build complex reward APIs in multi-task
setups.

1 INTRODUCTION

The performance of modern Reinforcement Learning (RL) agents is determined by, among other
factors, the quality of their reward function. Traditionally, reward functions are defined manually as
part of the problem specification. In many real-world settings, however, environments are readily
available while reward functions are absent and must be specified. Manually designing rewards
is often impractical, error-prone, and does not scale, particularly in contemporary multi-task RL
scenarios (Wilson et al., 2007; Teh et al., 2017; Parisotto et al., 2016).

A natural alternative is to automate reward specification by learning a reward model from data. The
dominant paradigm here is Inverse Reinforcement Learning (IRL), which attempts to infer a reward
model from observations of expert behavior (Ng & Russell, 2000; Christiano et al., 2017; Ziebart
et al., 2008). In the era of Deep RL, approaches such as GAIL (Ho & Ermon, 2016) represent
rewards with deep neural networks. While effective, these reward functions are typically opaque
black boxes, making them difficult to interpret or verify (Molnar, 2020). Moreover, IRL methods
often require substantial amounts of data and often lead to inaccurate rewards (Sapora et al., 2024).

An alternative representation that has recently gained traction is using code to express reward mod-
els (Venuto et al., 2024a; Ma et al., 2023). These approaches leverage code-generating Large Lan-
guage Models (LLMs) and human-provided task descriptions or goal states to generate reward pro-
grams (Venuto et al., 2024a). Subsequently, the generated rewards are verified (Venuto et al., 2024a)
or improved using the performance of a trained policy as feedback (Ma et al., 2023). However,
this prior work has not investigated whether it is possible to recover a reward function purely from
human demonstrations in an IRL-style setting, without utilizing any explicit task description or
domain-specific design assumptions.

In this work, we address the question of how to efficiently infer rewards-as-code from expert demon-
strations using Large Language Models (LLMs). We propose an optimization procedure inspired by
evolutionary search (Goldberg, 1989; Eiben & Smith, 2003; Salimans et al., 2017; Romera-Paredes
et al., 2024a; Novikov et al., 2025b), in which code LLMs iteratively introspect over demonstrations
to generate and refine programs that serve as reward models. This perspective effectively revisits the
IRL paradigm in the modern context of program synthesis with LLMs.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our contributions are threefold. We first demonstrate that code LLMs conditioned on expert demon-
strations can produce highly accurate reward models. These rewards generalize well to held-out
demonstrations and are well-shaped, providing informative intermediate signals rather than merely
verifying final success criteria. We further show that the approach is sample-efficient: accurate re-
wards are obtained from relatively few demonstrations, in contrast to IRL methods based on neural
networks that typically require large amounts of training data. More importantly, directly using
demonstrations means no domain knowledge or human-in-the-loop guidance is manually specified
during reward generation.

Second, we show that the learned rewards enable training of strong policies. We perform our eval-
uations in two domains: the procedurally generated navigation environment BabyAI (Chevalier-
Boisvert et al., 2018) and the real-world device control environment AndroidWorld (Rawles et al.,
2024) demonstrate that GRACE outperforms established IRL approaches such as GAIL (Ho & Er-
mon, 2016) as well as online RL with ground-truth rewards (Schulman et al., 2017). This highlights
both the efficiency of GRACE in learning rewards and its promise for building capable agents across
diverse domains.

Finally, by representing rewards as code, GRACE inherits additional advantages. The resulting re-
wards are interpretable and verifiable by humans, and, when inferred across multiple tasks, naturally
form reusable reward APIs that capture common structure and enable efficient multi-task general-
ization. Our analysis shows that as the evolutionary search progresses, GRACE shifts from creating
new functions to heavily reusing effective, high-level modules it has already discovered, demon-
strating the emergence of a modular code library.

2 RELATED WORKS

LLMs for Rewards A common way to provide verification/reward signals in an automated fashion
is to utilize Foundation Models. LLM-based feedback has been used directly by Zheng et al. (2023)
to score a solution. Additionally, an LLM can be used to a critique examples (Zankner et al., 2024).
Comparing multiple outputs in a relative manner has been also explored by Wang et al. (2023).
Note that such approaches use LLM in a zero shot fashion with additional prompting and potential
additional examples. Hence, they can utilize only a small number of demonstrations at best. In
addition to zero shot LLM application, it is also common to train reward models, either from human
feedback (Ouyang et al., 2022) or from AI feedback (Klissarov et al., 2023; 2024). Note that such
approaches require training a reward model that isn’t interpretable and often times require a larger
number of examples.

Code as Reward As LLMs have emerged with powerful program synthesis capabilities (Chen et al.,
2021; Austin et al., 2021; Li et al., 2023; Fried et al., 2022; Nijkamp et al., 2022) research has turned
towards generating environments for training agents Zala et al. (2024); Faldor et al. (2025) for var-
ious domains and complexities. When it comes to rewards in particular, code-based verifiers use a
language model to generate executable Python code based on a potentially private interface such as
the environment’s full state. Because early language models struggled to reliably generate syntacti-
cally correct code, the first code-based verifiers (Yu et al., 2023; Venuto et al., 2024b) implemented
iterative re-prompting and fault-tolerance strategies. More recent approaches focus on progressively
improving a syntactically correct yet suboptimal reward function, particularly by encouraging ex-
ploration (Romera-Paredes et al., 2024b; Novikov et al., 2025a). Other approaches such as Zhou
et al. (2023); Dainese et al. (2024) use search in conjunction with self-reflection (Madaan et al.,
2023) to provide feedback.

Inverse Reinforcement Learning (IRL) Early approaches infer a reward function by requiring the
expert policy to outperform all alternatives (Ng & Russell, 2000). While related to our formulation,
our representation (code) and our optimization strategy (evolutionary search) are fundamentally
different. Subsequent works have focused on directly learning policies without explicit reward re-
covery (Abbeel & Ng, 2004), while incorporating entropy regularization (Ziebart et al., 2008) or
leveraging convex formulations (Ratliff et al., 2006). In contrast, GRACE benefits from implicit
regularization through its symbolic reward representation, though evolutionary search provides no
optimization guarantees. More recently, Imitation Learning (IL) has achieved considerable practical
success (Ross et al., 2011), often by training a discriminator to distinguish expert from non-expert
trajectories (Ho & Ermon, 2016; Swamy et al., 2021). While such discriminators define implicit
rewards, our approach instead operates with explicit reward representations.
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3 METHOD

3.1 BACKGROUND

Reinforcement Learning We consider a finite-horizon Markov Decision Process (MDP) (Put-
erman, 2014) parameterized by M = ⟨S,A, T, r⟩ where S, A are the state and action spaces,
T : S × A → ∆(S) is the transition operator, and R is a reward function. The agent’s behavior is
described by the policy π : S → ∆(A). Starting from a set of initial states S0 ⊂ S, the agent takes
the action a ∼ π(s) at s, receives a reward r(s) and transitions into state s′ ∼ T (s, a).

The performance of the agent is measured with expected cumulative per-timestep rewards, referred
to as return:

J(π, r) = Eτ∼π,T [

H∑
t=1

r(st)] (1)

where τ are trajectory unrolls of horizon H of the policy π inM. An optimal agent can be learned
by maximizing Equation (1) via gradient descent with respect to the policy, also known as policy
gradient (Sutton et al., 1999; Schulman et al., 2017).

Inverse Reinforcement Learning If the reward r is not specified, it can be learned from demon-
strations of an expert policy πE . In particular, the classical IRL objective learns a reward whose
optimal return is attained by the expert (Ng & Russell, 2000; Syed & Schapire, 2007):

min
π

max
R

J(πE , r)− J(π, r) (2)

More recent Imitation Learning (IL) approaches learn a discriminator that distinguishes between
expert and non-expert demonstrations (Ho & Ermon, 2016; Swamy et al., 2021). The likelihood
of the agent’s data under the trained discriminator can be implicitly thought of as a reward. These
approaches utilize gradient based methods to optimize their objectives.

Evolutionary search As an alternative for cases where the objective is not readily differentiable,
gradient-free methods can be employed. One such method is evolutionary search, which maintains a
set of candidate solutions (called a population) and applies variation operators to improve it. These
operators include mutation, where a hypothesis is partially modified, and recombination, where
two hypotheses are combined to produce a new one. Each variation is evaluated using a fitness
function, which measures the quality of a given hypothesis. Starting with an initial population,
evolutionary search repeatedly applies these variation operators, replacing hypotheses with higher-
fitness alternatives.

In this work, we focus on inferring reward functions, represented as Python code, from a set of
demonstrations. While this setup is related to IRL, representing rewards as code prevents us from
applying gradient-based methods commonly used in IRL. For this reason, we adopt evolutionary
search as our optimization method.

3.2 GRACE

We propose GRACE - Generating Rewards As CodE, an interpretable IRL framework that gener-
ates a reward function as executable Python code. Initially, an LLM analyzes expert and random
trajectories to optionally identify goal states (Phase 1) and generates a preliminary set of reward
programs. The step of goal identification is optional and can be skipped in favor of directly querying
the LLM for a reward function which best matches the expert trajectories. This initial set is then
iteratively improved through evolutionary search, where the LLM mutates the code based on mis-
classified examples to maximize a fitness function (Phase 2). Finally, an RL agent is trained using
the refined reward, and the new trajectories it generates are used to further expand the dataset and
further improve the reward function (Phase 3). The overall process is illustrated in Figure 1 and
detailed below and in Algorithm 1

Phase 1: Initialization The initial reward code generation by GRACE is based on a set of demon-
stration trajectoriesD+ and a set of random trajectoriesD−. The former is generated using an expert
policy or human demonstrations depending on the concrete setup, while the latter is produced by a
random policy. Note that with a slight abuse of notation we will use D to denote interchangebly a
set of trajectories as well the set of all states from these trajectories.

3
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Figure 1: Overview of the GRACE framework. (a) The expert, negative and extra data (if any) is
used to identify goal states. By default, all expert states are classified as goal states and all negative
states as non-goal states (b) The goal and non-goal states are used to generate reward functions
through an evolutionary procedure. The rewards are iteratively refined by feeding the examples
misclassified by the reward. (c) An agent is trained with online RL using the converged reward; the
data it sees during the training is classified by the LLM into D+,D− and used to further improve
the reward.

The language model is prompted with a random subset of D+ and, optionally, extra information
available about the environment (e.g. its Python code or tool signature), to produce two artifacts:

Initial rewards: The LLM generates an initial set Rinit of reward functions. Each function
r ∈ Rinit is represented as Python code:

def reward(state: string) -> float:
<LLM produced code>

(Optional) Goal states: The LLM analyzes the states from expert demonstrations to identify the
subset of goal states Sg ⊆ D+ that solve the task - these are positive samples. All remaining
non-goal states Sng = {D+ \ Sg} ∪ D− are initially treated as negative samples.
designed to assign high values to goal states Sg and low values to non goal ones Sng . This set of
rewards is treated as the population in the subsequent evolution phase.

Phase 2: Reward Refinement through Evolutionary Search GRACE uses Evolutionary Search
to obtain rewards that best explain the current set of goal and non goal states. This is achieved by
mutating the current reward populationR using a code LLM and retaining rewards with high fitness.

The fitness f of a reward function r measures how well this function assigns large values to goal and
small values to non-goal states, akin to what would be expected from a meaningful reward:

f(r) = Es∼Sg
[r(s)]− Es∼Sng

[r(s)] (3)

In practice, to normalize the fitness computation, we bound the reward signal. Any reward value
greater than or equal to a predefined r(s) ≥ τ is treated as 1, and any value below is treated as 0 for
the purpose of this calculation.

The mutation operator m of a reward, that is used to improve the current reward population, is
based on an LLM that is prompted to introspect the reward code and address failures. To do so it is
provided with several inputs pertaining to the source code of the reward (if available), misclassified
states, and additional debugging information:

m(r) = LLM(source(r), info, prompt) (4)

In more detail, source(r) is the Python code for the reward. The info = (sg, r(sg), se, debug(r, sg))
is intended to focus the model on failures by honing onto states misclassified by the reward. It con-
sists of a sequence of misclassified states s ∈ S, their reward value r(s), as well as a debugging info
debug(r, s) produced by printing intermediate values during the execution of r on the misclassified
state s. The composition of this feedback is intentionally varied; each prompt contains a different

4
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number of examples, presented as either individual states or full trajectories. To help the model dis-
criminate between true and false positives, prompts containing a false positive are augmented with
an expert state se ∼ D+.

We repeatedly apply the above mutation operation to modify the reward population R to improve
its fitness. In more detail, we repeatedly sample a reward r ∈ R with probability expF (r)∑

r′∈Ri
P

exp(F (r′)) .

Subsequently, we apply the mutation and keep the new reward function only if it has a higher fitness
than other already created rewards. After K mutations, we return the reward function with highest
fitness r∗ = argmaxr∈R{f(r)}. This phase is presented as function EVOSEARCH in Algorithm 1.

Phase 3: Training Trajectory Expansion via Reinforcement Learning The optimal reward r∗

above is obtained by inspecting existing demonstrations. In order to further improve the reward, we
ought to collect further demonstrations by training a policy πr∗ using the current optimal reward r∗;
and use this policy to collect additional data Dr∗ .

In more detail, we employ PPO (Schulman et al., 2017) to train a policy in the environment of
interest. As this process can be expensive, we use a predefined environment interaction budget N
instead of training to convergence. After obtaining these additional trajectories, we use the same
process as described in Sec. (3.2, Phase 1) to identify goal Sg∗ and non-goal states Sng∗ . The new
trajectories are likely to contain new edge cases and examples of reward hacking, if any. These are
used to further refine the reward population as described in the preceeding Sec. (3.2, Phase 2.1).
The process terminates when the RL agent achieves a desired level of performance. This phase is
presented as function DATAEXPAND in Algorithm 1.

The final algorithm, presented in Algorithm 1, consists of repeatedly performing Evolutionary
Search over reward population R followed by data expansion using RL-trained policy. Each it-
eration is called a generation.

Additional reward shaping When the reward function offline performance onD doesn’t translate
to good online RL performance, we assume that the reward signal is poorly shaped, and additional
refinement is required. In these cases, the LLM’s info in Eq. 4 is augmented beyond misclassified
states to include failed trajectory examples from Dr∗ . To achieve this, we instruct the LLM to
reshape the reward function, using expert trajectories as a reference, so that it provides a signal that
increases monotonically towards the goal.

Discussion The above algorithm iterates between policy optimization and reward optimization.
The objective for the latter is the fitness function from Eq. 3. If one flips the reward on non-goal
states of positive demonstrations or goal states in learned policy demonstrations, it is straightforward
to show that GRACE optimizes the canonical IRL objective using Evolutionary Search.

Proposition 1. Suppose m(s) = 1 iff s ∈ Sg , else m(s) = −1, then GRACE optimizes,
minπ maxr J(πE ,m ◦ r)− J(π,−m ◦ r), which is a variation of Eq. (2).

The proof can be found in Appendix A.1.

4 EXPERIMENTS

We empirically evaluate GRACE with respect to its ability to generate rewards that lead to effective
policy learning. Specifically, we aim to address the following questions:

Accuracy and Generalization: Can GRACE recover correct rewards, and how much supervi-
sion is required to do so?

Policy Learning Performance: How does GRACE compare to other IRL methods or to online
RL trained with ground-truth rewards?

Qualitative Properties: How well-shaped are the rewards produced by GRACE?

Interpretability and Multi-Task Efficacy: Does GRACE produce reward APIs that can be
shared across tasks?

5
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Algorithm 1 GRACE: Generating Rewards As CodE
Inputs:
D+: expert trajectories
D−: random trajectories

Parameters:
P : reward population size
K: mutation steps
M number of generations
N : RL budget

procedure GRACE(D+, D−)
// Phase 1: Initialization.
Sg = {s ∈ D+ | LLM(s, goal_prompt)}
Sng = D+ ∪ D−/Sg
R = {LLM(Sn, Sng, reward_prompt)}

// Reward Refinement.
for i = 1 . . .M do
R ← EVOSEARCH(R,Sg,Sng)
D,S∗g ,S∗ng ← DATAEXPANDRL(R)
Sg = S∗g ∪ Sg,Sng = S∗ng ∪ Sng

end for
return r∗ = argmaxr∈R f(r)

end procedure

// Phase 2: Refinement via Evolution.
function EVOSEARCH(R,Sg,Sng)

for k = 1 . . .K do
Sample r ∼ exp(f(r)), r ∈ R
r′ ← m(r) // See Eq. 4
if f(r′) > minr∈R f(r) then

r′′ = argminr∈R f(r)
R = R/{r′′} ∪ {r′}

end if
end for
returnR

end function

// Phase 3: Trajectory expansion via RL.
function DATAEXPANDRL(R)

r∗ ← argmaxr∈R f(r)
Train πr∗ with PPO under budget N
Collect new trajectories Dr∗

Sg = {s ∈ Dr∗ | LLM(s, goal_prompt)}
Sng = Dr∗/Sg
return Sg,Sng

end function

4.1 EXPERIMENTAL SETUP

To evaluate GRACE, we conduct experiments in two distinct domains: the procedurally generated
maze environment BabyAI (Chevalier-Boisvert et al., 2018), which tests reasoning and generaliza-
tion, and the Android-based UI simulator AndroidWorld (Rawles et al., 2024), which tests control in
high-dimensional action spaces.

BabyAI Our BabyAI evaluation suite comprises 20 levels, including 3 custom levels designed to
test zero-shot reasoning on tasks not present in public datasets, thereby mitigating concerns of data
contamination. Expert demonstrations are generated using the BabyAI-Bot (Farama Foundation
et al., 2025), which algorithmically solves BabyAI levels optimally. We extend the bot to support
our custom levels as well. For each level, we gather approximately 500 expert trajectories. Another
500 negative trajectories are collected by running a randomly initialized agent in the environment.
The training dataset consists of up to 16 trajectories, including both expert and negative examples.
All remaining trajectories constitute the test set. For each dataset, we evolve the reward on the train
trajectories and report both train and test fitness from Eq. (3).

The state is represented by a (h,w, 3) array. The state is fully observable, with the first channel
containing information about the object type (with each integer corresponding to a different object,
such as box, key, wall, or agent), the second channel contains information about the object’s color
and the third any extra information (e.g. agent direction, if is the door locked).

Android To assess GRACE in a high-dimensional, real-world setting, we use the AndroidControl
dataset (Rawles et al., 2023; Li et al., 2024), which provides a rich collection of complex, multi-step
human interactions across standard Android applications. The state space includes both raw screen
pixels and the corresponding XML view hierarchy.

From this dataset, we curate a subset of trajectories focused on the Clock application, where users
successfully complete tasks such as "set an alarm for 6AM." These serve as our positive exam-
ples. Negative samples are drawn from trajectories in other applications (e.g., Calculator, Calendar,
Settings). For each negative trajectory, we randomly assign an instruction from the positive set,
ensuring the instruction is clock-related but the trajectory completes a task in an unrelated app. We
use 80% of trajectories in the train set and the remaining for the test set.
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Figure 2: Fitness vs Number of Expert Trajectories. The fitness is computed on test dataset after
obtaining maximum fitness on training data with corresponding number of expert and negative train-
ing trajectories. (a) Performance on all 20 BabyAI tasks. (b) Aggregate fitness across 20 BabyAI
tasks.

MuJoCo We finally conduct additional experiments on 4 challenging tasks from the classical Mu-
JoCo continuous control suite (Todorov et al., 2012): Hopper, Walker, Ant, Humanoid.
These tasks demonstrate that GRACE also excels at reward design in continuous action and state
spaces. In these experiments, we don’t perform the goal identification step and simply classify all
expert states as Goal states and all learner states as Non-Goal states. We run all our MuJoCo experi-
ments using the fully differentiable physics engine Brax (Freeman et al., 2021) to speed up learning.
Unlike the BabyAI and Android experiments, in MuJoCo we update the dataset 5 times (M = 5)
with new trajectories coming from the learner policy. The reward is only updated if the fitness is
low on the newly added trajectories.

GRACE Parameters All parameters of our approach used across our experiments can be found in
Appendix A.6.

4.2 ANALYSIS

GRACE recovers rewards with high accuracy. We first examine whether GRACE evolutionary
search (Phase 1) can successfully recover the underlying task reward from demonstrations alone.
We evaluate this in two settings using BabyAI: (i) a single-level setting, where the model infers a
task-specific reward, and (ii) a more challenging multi-level setting, where GRACE must learn a
single, general reward function conditioned on both state and a language goal.

In Figures 2 and 3, we show that the fitness consistently reaches 1.0 across all BabyAI tasks in
both single- and multi-level settings, as well as on AndroidControl. A fitness of 1.0 corresponds to
assigning higher values to all goal states than to non-goal states.

We further ablate two aspects of the algorithm. First, we analyze sample efficiency by varying the
number of expert and negative demonstrations. Results on BabyAI (Figure 2a) show non-trivial per-
formance even with a single demonstration, with gradual improvement and perfect scores achieved
using only eight expert trajectories. The number of negative trajectories also plays a role, though
to a lesser degree: for example, fitness of 0.95 is achieved with just a single negative trajectory,
provided that sufficient expert trajectories are available (Figure 2b).

Finally, we assess the robustness and efficiency of the evolutionary process. As shown in Figure 3,
in the multi-task setting GRACE reliably converges to a high-fitness reward function in fewer than
100 generations (i.e., evolutionary search steps), demonstrating the effectiveness of our LLM-driven
refinement procedure.

GRACE outperforms other IRL and online RL: To validate the quality of the inferred reward
model, we compare against two approaches. First, we employ PPO Schulman et al. (2017), as a
representative algorithm for online RL, with both GRACE as a reward as well as a groundtruth

7
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Figure 3: Fitness vs Number of generations. Evolution of train and test fitness across evolution
generations, as defined by Algorithm 1, for BabyAI (multi-level settings) and AndroidControl (bot-
tom) for "set alarm" task. For BabyAI, we provide 8 expert trajectories and 8 negative trajectories
for each task. Shading is standard deviation across 3 seeds. For these experiments, no online data is
added beyond the initial trajectories provided (M = 1).

sparse success reward. Clearly, the latter should serve as an oracle, while it does not benefit from
dense rewards.

As an IRL baseline, we compare against GAIL (Ho & Ermon, 2016), that trains a policy whose
behavior is indiscriminable from the expert data, as judged by a learned discriminator. GAIL is
trained with a large dataset of 2, 000 expert trajectories per task, substantially larger than our train
data of 8 expert trajectories.

As shown in Table 1 and 2, GRACE consistently matches or outperforms GAIL across all tasks
with lesser training data. On several BabyAI tasks, GRACE matches Oracle PPO with ground-
truth rewards, whereas GAIL completely fails. This demonstrates that the interpretable, code-based
rewards from GRACE are practically effective, enabling successful downstream policy learning. To
ensure a fair comparison, the agents for the GAIL baseline and GRACE are trained using the same
underlying PPO implementation, agent architecture and hyperparameters as the oracle. Performance
is measured by the final task success rate after 1e7 environment steps. No extra information or
environment code is provided in context to GRACE.

Similarly, we use the evolved reward function on the AndroidControl dataset to finetune our agent on
the Clock AndroidWorld tasks: ClockStopWatchPausedVerify, ClockStopWatchRunning and Clock-
TimerEntry. The agent obtains near perfect performance on the Stopwatch tasks zero-shot, but learn-
ing on our reward doesn’t decrease performance. The training curves for all tasks are reported in
Figure 4.

PPO GRACE w/ GRACE w/ GAIL w/ GAIL w/
GPT-4o Qwen3-Coder-30B 10 traj 200 traj

Hopper 2212± 54 2143± 80 2106± 76 1902± 183 2056± 92

Walker 2675± 292 2072± 576 2229± 600 790± 90 1982± 101

Ant 6239± 237 5707± 210 6085± 804 3871± 408 5521± 674

Humanoid 6455± 302 5809± 106 5921± 301 4772± 251 6521± 337

Table 1: Average returns on 4 MuJoCo (BRAX) continuous control tasks. Average and standard
deviation is reported across 5 different seeds. The total number of required LLM calls to recover a
reward for each task averages at 200 for both GPT-4o and Qwen3-Coder-30B.
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Figure 5: Shaping Using the default reward recovered by GRACE occasionally leads to failure in
learning the correct behavior due to poor shaping. Through the targeted shaping in Phase 3, we
significantly improve final performance and speed of learning.

Task PPO GAIL GRACE

GoToRedBallNoDist 1.00 1.00 1.00
GoToRedBall 1.00 0.35 1.00
PickupDist 0.31 0.15 0.32
PickupLoc 0.21 0.00 0.26
GoToObj 1.00 0.92 1.00
OpenDoorColor 1.00 0.98 1.00
OpenTwoDoors 1.00 0.37 1.00
PlaceBetween (new) 0.09 0.01 0.09
OpenMatchingDoor (new) 0.79 0.20 0.35
Multi-task 0.95 0.31 0.92

Table 2: Success rates on selected BabyAI environ-
ments. GRACE compared against PPO and GAIL.
GRACE uses 8 expert trajectories per task, while GAIL
uses 2000.
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Figure 4: Training Curves for An-
droidWorld Clock Tasks. Mean episode
success over the 3 AndroidWorld clock
tasks: ClockStopWatchPausedVerify,
ClockStopWatchRunning, and Clock-
TimerEntry.

GRACE generates well shaped rewards: We demonstrate GRACE’s ability to produce well-
shaped rewards that accelerate learning. For challenging, long-horizon tasks like OpenTwoDoors,
a correct but unshaped reward can lead to local optima where the agent gets stuck (Figure 5, "Gen
1"). By explicitly tasking the LLM to introduce shaping terms during Phase 3, GRACE refines the
reward to provide a denser learning signal. As shown in Figure 5, this targeted shaping dramatically
improves both the final performance and the speed of learning, allowing the agent to solve the task
efficiently. This confirms that GRACE not only finds what the goal is but also learns how to guide
an agent towards it.

GRACE Code Reuse: A key advantage of representing rewards as code is the natural emergence
of reusable functions that collectively form a domain-specific reward library. We study this phe-
nomenon in the multi-task BabyAI setting (Figure 6). In the early generations of evolutionary search,
GRACE actively generates many new modules to explore alternative reward structures. After gener-
ation 10, the rate of new module creation drops sharply. At this point, GRACE shifts toward reusing
the most effective, high-level modules it has already discovered.

To further illustrate this reuse, Figure 6 (right) shows call counts for a selected set of modules within
the evolving reward API. For instance, the Goal module, which summarizes a set of goals, is initially
used sparingly but becomes heavily invoked following a code refactor at generation 30. Likewise,
the agent_pos function is reused at least five times after its introduction. These trends demonstrate
that GRACE progressively builds a reward library that supports efficient multi-task generalization.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60
Generations

0

5

10

15
Ca

ll 
Nu

m
be

r

Reused Modules
New Modules 0.6

0.7

0.8

0.9

1.0

Fit
ne

ss

10 20 30 40 50 60
Generations

0

5

10

15

20

25

Ca
ll 

Nu
m

be
r

agent_pos
go_to_reward
is_target
Goal

Figure 6: Module and function reuse across generations On the left, we show at each generation
step the number of newly created modules and the number of existing and thus reused modules from
prior rewards, contrasted with the fitness in the reward population. On the right, we show number of
times a module are being re-used, for a select set of modules.

5 DISCUSSION

Limitations A key limitation of GRACE is its limited scalability to high-dimensional state spaces
for evolving reward functions. First, generating a reward from high-dimensional observations (such
as pixels or waveform audio) directly requires the model to perform symbolic feature extraction.
Second, the amount of expert and suboptimal trajectories that can be passed to the LLM is limited
by its context length, which makes learning GRACE rewards from large datasets challenging.

Conclusion We introduce GRACE, a novel framework that leverages LLMs within an evolution-
ary search to address the critical challenge of interpretability in IRL. Our empirical results demon-
strate that by representing reward functions as executable code, we can move beyond the "black-box"
models of traditional IRL and produce rewards that are transparent, verifiable, and effective in RL
learning. We show that GRACE successfully recovers accurate and generalizable rewards from few
expert trajectories, in stark contrast to deep IRL methods like GAIL. This sample efficiency suggests
that the strong priors and reasoning capabilities of LLMs provide a powerful inductive bias. Further-
more, we demonstrate the framework’s practical utility by applying it to the complex AndroidWorld
environment, showing that GRACE can learn rewards for a variety of tasks directly from unlabeled
user interaction data with real-world applications.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we commit to making our code, datasets, and exper-
imental configurations publicly available upon acceptance of this paper. We have already included
extensive details within the paper itself. The appendix provides the full prompts used to interact
with the LLM for goal identification, initial reward generation, evolutionary mutation, and reward
shaping (Appendix A.9). Furthermore, all hyperparameters required to reproduce our results are
listed in Appendix A.6.
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A APPENDIX

A.1 RELATIONS TO INVERSE REINFORCEMENT LEARNING

Proposition 2. Suppose m(s) = 1 iff s ∈ Sg else m(s) = −1, then GRACE optimizes,
minπ maxr J(πE ,m ◦ r)− J(π,−m ◦ r), which is a variation of Eq. (2)

Proof. Suppose m(s) = 1 iff s ∈ Sg else m(s) = −1 is a mask over goal states. Then, the fitness
function from Eq. 3 can be re-written in terms of the policy return akin to Eq. 1:

f(r) = Es∼Sg [r(s)]− Es∼Sng [r(s)] (5)

= Eτ∼D+,s∈τ [m(s)r(s)]− Eτ∼D−,s∈τ [−m(s)r(s)] (6)
= J(πE ,m ◦ r)− J(π,−m ◦ r) (7)

where m flips the reward value either if the state is non-goal and generated by the expert or it is a
goal and generated by the learned policy.

The operator m can either be defined in Phase 1 by the LLM, or it can default to m(s) = 1 iff
s ∈ SE (expert states) or m(s) = −1 iff s ∈ SL (learner states). Phase 2, the reward refinement
stage is maximizing f w.r.t the reward. Phase 3, on the other side, is maximizing the return of π, or
minimizing its negative. Thus, GRACE attempts to solve:

min
π

max
r

J(πE ,m ◦ r)− J(π,−m ◦ r)

A.2 GOAL IDENTIFICATION

Goal identification is the critical first step (Phase 1) of the GRACE framework, where an LLM
automatically labels states from expert demonstration trajectories (D+) as either goal states (sg) or
non-goal states (sng). This process creates the initial dataset that the evolutionary search uses to
refine the reward functions. We evaluated the effectiveness of this automated approach using gpt-4o
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(OpenAI et al., 2024), with the results presented in Table 3. The findings show that providing the
model with textual representations of states is highly effective, achieving 94% accuracy. In contrast,
relying on image-based input alone was significantly less effective, with accuracy dropping to 49%.
However, it is likely that models with more comprehensive visual pre-training would be substantially
better at identifying goal states from image-only inputs. This is still much better than chance, as the
trajectories average around 20 steps. The experiment also tested performance on shuffled trajectories
to see if the model relied on temporal order. Accuracy with text input saw a minor drop to 88%,
indicating that while the model leverages the sequence of events, it is not entirely dependent on it to
identify goal states.

Table 3: Model Accuracy Comparison

gpt-4o w/

Metric Text Images Text and Images

Accuracy 0.94± 0.24 0.49± 0.38 0.88± 0.34
Accuracy on Shuffled 0.88± 0.48 0.49± 0.50 0.75± 0.43

In the more complex AndroidControl domain, GRACE showed a remarkable ability not only to
identify the goal state within a trajectory but also to refine the task’s textual instruction to accurately
reflect the demonstrated behavior. A few examples highlight this robustness:

• Refining Instructions to Match Behavior: GRACE resolves ambiguities between an in-
struction and the corresponding trajectory. For instance, in a trajectory where the user was
instructed to "set a timer" but did not start it, GRACE updated the instruction to explicitly
include a "don’t start the timer" clause. Similarly, when a user was asked to "set an alarm
for 9am" but also performed the extra step of naming the alarm, GRACE appended the
instruction to include the naming step, ensuring the final instruction precisely matched the
expert demonstration.

• Discarding Irrelevant Trajectories: The system correctly identifies and filters out trajec-
tories where the user’s actions are inconsistent with the instruction’s domain. When a user
was instructed to perform a task in the ’Clock’ app but completed it in the ’ClockBuddy’
app, GRACE identified the application mismatch. This allowed the trajectory to be filtered
from the dataset for the intended ’Clock’ app task. A similar process occurred when a user
was given a nonsensical instruction like "give me directions for X in the clock app" and
then used Google Maps.
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A.3 ADDITIONAL ONLINE RESULTS

Task PPO GAIL GRACE
OpenRedDoor 1.00 1.00 1.00
GoToObjS4 1.00 1.00 1.00
GoToRedBlueBall 0.96 0.40 0.99
GoToRedBallGrey 0.97 0.77 0.99
Pickup 0.10 0.00 0.09
Open 0.30 0.18 0.22
OpenRedBlueDoors 1.00 0.96 0.98
OpenDoorLoc 0.39 0.40 1.00
GoToLocalS8N7 0.64 0.39 0.97
GoToDoor 0.74 0.37 0.99
SortColors (new) 0.00 0.00 0.00

Table 4: Success rates on additional BabyAI environments. The performance of our method,
GRACE, is compared against two key baselines: PPO, trained on the ground-truth reward, and
GAIL, trained using 2000 expert trajectories per task. GRACE’s performance is evaluated with 8
expert trajectories per task to demonstrate its high sample efficiency. All values represent the final
success rate at the end of training.

A.4 EXTENDED DISCUSSION AND FUTURE WORK

GRACE’s reliance on programmatic reward functions introduces several limitations, particularly
when compared to traditional deep neural network based approaches. These limitations also point
toward promising directions for future research.

Input modality While generating rewards as code offers interpretability and sample efficiency, it
struggles in domains where the reward depends on complex, high-dimensional perceptual inputs.
Code is inherently symbolic and structured, making it less suited for interpreting raw sensory data
like images or audio. For instance, creating a programmatic reward for a task like "navigate to the
object that looks most fragile" is non-trivial, as "fragility" is a nuanced visual concept. NNs, in
contrast, excel at learning features directly from this kind of data. Programmatic rewards can also
be brittle: a small, unforeseen perturbation in the environment that violates a hard-coded assumption
could cause the reward logic to fail completely, whereas NNs often degrade more gracefully.

Data Quantity GRACE demonstrates remarkable performance with very few demonstrations.
This is a strength in data-scarce scenarios. However, it is a limitation when vast amounts of data are
available. Deep IRL methods like GAIL are designed to scale with data and may uncover subtle,
complex patterns from millions of demonstrations that would be difficult to capture in an explicit
program. While GRACE’s evolutionary search benefits from tight feedback on a small dataset, it is
not clear how effectively it could learn from a massive dataset.

Failure Cases Although GRACE is highly sample-efficient, it is not a magic bullet. For example,
in the BabyAI-OpenTwoDoors task, GRACE often proposed a reward that didn’t take into account
the order in which the doors were being opened. Similarly, in the new BabyAI-SortColors task,
it would sometimes return a reward that only accounted for picking up and dropping both objects,
without paying attention to where they were being dropped. While these errors can be easily fixed
by providing a relevant negative trajectory or by treating all learner-generated states as negative
trajectories, they highlight that GRACE can still misinterpret an agent’s true intent based on expert
demonstrations alone.

Hybrid Approaches These limitations can be substantially mitigated by extending the GRACE
framework to incorporate tool use, combining the strengths of both systems. The LLM could be
granted access to a library of pre-trained models (e.g., object detectors, image classifiers, or seg-
mentation models). The LLM’s task would then shift from writing low-level image processing code
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to writing high-level logic that calls these tools and reasons over their outputs. A final direction
involves generating hybrid reward functions that are part code and part neural network. The LLM
could define the overall structure, logic, and shaping bonuses in code, but instantiate a small, learn-
able NN module for a specific, difficult-to-program component of the reward. This module could
then be fine-tuned using the available demonstrations, creating a reward function that is both largely
interpretable and capable of handling perceptual nuance. By exploring these hybrid approaches,
future iterations of GRACE could retain the benefits of interpretability and sample efficiency while
overcoming the inherent limitations of purely programmatic solutions in complex, perception-rich
environments.
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A.5 NEW BABYAI LEVELS

To evaluate the generalization and reasoning capabilities of GRACE and mitigate concerns of data
contamination from pre-existing benchmarks, we designed three novel BabyAI levels.

PlaceBetween The agent is placed in a single room with three distinct objects (e.g., a red ball, a
green ball, and a blue ball). The instruction requires the agent to pick up a specific target object
and place it on an empty cell that is strictly between the other two anchor objects. Success requires
being on the same row or column as the two anchors, creating a straight line. This task moves
beyond simple navigation, demanding that the agent understand the spatial relationship "between"
and act upon a configuration of three separate entities.

OpenMatchingDoor This level is designed to test indirect object identification and chained infer-
ence. The environment consists of a single room containing one key and multiple doors of different
colors. The instruction is to "open the door matching the key". The agent cannot solve the task by
simply parsing an object and color from the instruction. Instead, it must first locate the key, visually
identify its color, and then find and open the door of the corresponding color. This task assesses the
agent’s ability to perform a simple chain of reasoning: find object A, infer a property from it, and
then use that property to identify and interact with target object B.

SortColors The environment consists of two rooms connected by a door, with a red ball in one
room and a blue ball in the other. The instruction is a compound goal: "put the red ball in the
right room and put the blue ball in the left room". To make the task non-trivial, the objects’ initial
positions are swapped relative to their goal locations. The agent must therefore execute a sequence
of sub-tasks for each object: pick up the object, navigate to the other room, and drop it. This level
tests the ability to decompose a complex language command and carry out a plan to satisfy multiple,
distinct objectives.
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A.6 HYPERPARAMETERS

Table 5: Hyperparameters for Training BabyAI with PPO

Parameter Value
Base Model llava-onevision-qwen2-0.5b-ov-hf
Gamma 0.999
Learning Rate 3e-5
Entropy Coef 1e-5
Num Envs 10
Num Steps 64
Episode Length 100
PPO Epochs 2
Num Minibatch 6

Table 6: Hyperparameters for Training AndroidWorld

Parameter Value
Base Model Qwen2.5-VL-3B-Instruct
LoRA Rank 512
LoRA Alpha 32
LoRA Dropout 0.1
Critic Hidden Size 2048
Critic Depth 4
Gamma 0.999
Learning Rate 3e-5
Entropy Coef 0.0
Num Envs 16
Num Steps 16
Episode Length 20
PPO Epochs 2
Num Minibatch 2

Table 7: Hyperparameters for GRACE Evolution

Parameter Value
Population Size 20
Elite 4
Num Generations 100
Include expert trajectory chance 0.25
Incorrect state only chance 0.5
Expert state only chance 0.75
Model gpt-4o
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A.7 EVOLUTION EXAMPLES

1 def _parse_colour_from_text(text: Optional[str]) -> Optional[int]:
2 if text is None:
3 return None
4
5 colour_words: Dict[str, int] = {
6 "red": 0,
7 "green": 1,
8 "blue": 2,

9 "yellow": 3, "purple": 3,

10 "yellow": 4,

11 "orange": 5, # keep old mapping

12 "grey": 5, # alias for the observed colour code in the trajectory

13 "gray": 5,

14 }

15 lower = text.lower()

16 for word, code in colour_words.items():

17 if word in text.lower(): lower:

18 return code
19 return None
20
21
22 def _parse_goal_type(text: Optional[str]) -> str:
23 if text is None:
24 return "key"
25 txt = text.lower()
26 if "ball" in txt:
27 return "ball"

28 if "box" in txt:

29 return "box"
30 return "key"

Figure 7: GRACE iteratively refines the initial BabyAI reward function (iteration 0) to handle
unseen entities (iteration 10). Using execution traces, the agent fixes its color code mistake and
adds a new box entity.

1 from __future__ import annotations
2
3 import re
4 from typing import Optional, Tuple
5
6 import numpy as np
7
8 COLOR2ID = {
9 "red": 0,

10 "green": 1,
11 "blue": 2,
12 "purple": 3,
13 "yellow": 4,
14 "grey": 5,
15 "gray": 5, # US spelling
16 }
17
18 OBJECT2ID = {
19 "empty": 0,
20 "wall": 1,
21 "floor": 2,
22 "door": 3,
23 "key": 5,
24 "ball": 6,
25 "box": 8,
26 "agent": 10,
27 }
28

29 # Map MiniGrid direction codes (stored in the 3-rd channel of the agent cell)

30 # to row/col deltas. Empirically direction 0 points *down/south* in the

31 # provided trajectories.

32 DIR2VEC: dict[int, Tuple[int, int]] ={

33 0: (1, 0), # south

34 1: (0, 1), # east
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35 2: (-1, 0), # north

36 3: (0, -1), # west

37 }
38
39 def _parse_goal(extra_info: str ) -> Tuple[int, Optional[int]]:

40 """Return *(object_id, colour_id)* parsed from *extra_info*."""

41 if not extra\_info:
42 raise ValueError("extra_info must specify the target, e.g. ’the red ball’.")
43
44 tokens = re.findall(r"[a-zA-Z]+", extra\_info.lower())
45 obj_id: Optional[int] = None
46 col_id: Optional[int] = None
47 for tok in tokens:

48 if obj_id is None and tok in OBJECT2ID:

49 if tok in COLOR2ID and col_id is None:

50 col_id = COLOR2ID[tok]

51 if tok in OBJECT2ID and obj_id is None:

52 obj_id = OBJECT2ID[tok]

53 if col_id is None and tok in COLOR2ID:

54 col_id = COLOR2ID[tok]

55 if obj_id is None:
56 raise ValueError(
57 f"Could not parse target object from extra_info=’{extra_info}’."
58 )
59 return obj_id, col_id # colour may be None (wild-card)
60
61
62 class Reward:

63 """Success when definition (single-step, dense reward):

64 100.0 âĂŞ the **first** cell in front of the agent is *either*

65 âĂŞ on / adjacent (according to the

66 closest target object (Manhattan distance âL’d’ 1), OR

67 âĂŞ direction stored in the third observation channel) contains a

68 matching target has disappeared from the observable grid (picked up).

69

70 Shaping: r = 1 / (1+d) with d the Manhattan distance to the closest

71 still-visible target, clipped at 0 object.

72 <1.0 âĂŞ shaping reward 1/(d+1) otherwise.

73 0.0 âĂŞ if either the agent or (a matching) target is out of view. not visible.

74

75 The implementation is modular so new goal

76 types can be handled by extending the OBJECT/COLOR lookup tables or by

77 replacing the *success predicate*.

78 """
79

80 SUCCESS_REWARD = 100.0

81 def __init__(self, extra\_info: Optional[str] str = None):

82 self.tgt_obj_id, self.tgt_col_id self._target_obj_id, self._target_colour_id =

_parse_goal(extra_info)
83

84 def __call__(self, state: np.ndarray) -> float: # enable direct call

85 return self.reward_fn(state)

86
87 def reward_fn(self, state: np.ndarray) -> float:

88 """state: (H, W, 3) """

89 agent_pos = self._find_agent(state)
90 if agent_pos is None:
91 return 0.0
92

93 # mask of all target objects still visible

94 tgt_mask = (state[:, :, 0] == self.tgt_obj_id) & (

95 state[:, :, 1] == self.tgt_col_id

96 )

97

98 if not tgt_mask.any():

99 # object gone -> picked up / carried
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100 return self.SUCCESS_REWARD

101

102 # distance to the closest visible target

103 tgt_positions = np.argwhere(tgt_mask)

104 dists = np.abs(tgt_positions - agent_pos).sum(axis=1)

105

106 target_positions = self._find_targets(state)

107 if target_positions.size == 0:

108 # No matching target in view -> no shaping.

109 return 0.0
110

111 # --------------------------------------------

112 # Success predicate âĂŞ target must be directly in front of the agent.

113 # --------------------------------------------

114 if self._is_target_in_front(agent_pos, state):

115 return 100.0
116

117 # --------------------------------------------

118 # Shaping: inverse Manhattan distance (< 1.0) to the *nearest* target.

119 # --------------------------------------------

120 dists = np.abs(target_positions - agent_pos).sum(axis=1)

121 min_dist = int(dists.min())

122 if min_dist <= 1:

123 return self.SUCCESS_REWARD

124
125 return 1.0 / (1.0 + min_dist)
126
127 @staticmethod
128 def _find_agent(state: np.ndarray) -> Optional[np.ndarray]:

129 """Return (row, col) of """Locate the first agent

pixel found, in the observation (row, col) or None.""" *None* if absent."""

130 locs = np.argwhere(state[:, :, 0] == OBJECT2ID["agent"])
131 if locs.size == 0:
132 return None
133 return locs[0]
134

135 def _find_targets(self, state: np.ndarray) -> np.ndarray:

136 """Return an (N, 2) array of row/col positions of matching targets."""

137 obj_mask = state[:, :, 0] == self._target_obj_id

138 if self._target_colour_id is not None:

139 col_mask = state[:, :, 1] == self._target_colour_id

140 mask = obj_mask & col_mask

141 else:

142 mask = obj_mask

143 return np.argwhere(mask)

144

145 def _is_target_in_front(self, agent_pos: np.ndarray, state: np.ndarray) -> bool:

146 """Return *True* iff the cell directly in front of the agent matches target."""

147 row, col = agent_pos

148 agent_dir = int(state[row, col, 2])

149 drow, dcol = DIR2VEC.get(agent_dir, (1, 0)) # default to south if unknown

150 f_row, f_col = row + drow, col + dcol

151

152 # Out of bounds âĘŠ cannot be success.

153 if not (0 <= f_row < state.shape[0] and 0 <= f_col < state.shape[1]):

154 return False
155

156 # Check object id

157 if state[f_row, f_col, 0] != self._target_obj_id:

158 return False
159

160 # Check colour if colour was specified.
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161 if (

162 self._target_colour_id is not None

163 and state[f_row, f_col, 1] != self._target_colour_id

164 ):

165 return False
166

167 return True

Figure 8: Example of code evolution across many generations.
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A.8 GENERATED REWARDS

1 # ------------------------------------------------------------
2 # IMPORTS
3 # ------------------------------------------------------------
4 import json
5 import math
6 import re
7 from typing import Callable, List, Optional, Set, Tuple
8
9 # ------------------------------------------------------------

10 # GENERIC & NORMALISATION HELPERS
11 # ------------------------------------------------------------
12
13
14 def _contains_any(text: str, keywords) -> bool:
15 text_l = text.lower()
16 return any(k.lower() in text_l for k in keywords)
17
18
19 def _has_stopwatch(text: str) -> bool:
20 t = text.lower()
21 return any(p in t for p in ("stopwatch", "stop watch", "stop-watch"))
22
23
24 # ---------------- Tab-selection helpers ---------------------
25
26
27 def _tab_selected(state: str, label: str) -> bool:
28 pattern = (
29 rf’"(content_description|text)"\s*:\s*"{label}"[^\n]*?"is_selected"\s*:\s*true’
30 )
31 return bool(re.search(pattern, state, re.I))
32
33
34 def _alarm_tab_selected(state: str) -> bool:
35 return _tab_selected(state, "Alarm") or _tab_selected(state, "Alarms")
36
37
38 def _timer_tab_selected(state: str) -> bool:
39 return _tab_selected(state, "Timer")
40
41
42 def _stopwatch_tab_selected(state: str) -> bool:
43 return _tab_selected(state, "Stopwatch")
44
45
46 def _clock_tab_selected(state: str) -> bool:
47 return _tab_selected(state, "Clock")
48
49
50 # ---------------- Text normalisation helper -----------------
51
52
53 def _normalize_time_text(txt: str) -> str:
54 txt2 = txt.replace(";", ":")
55 txt2 = re.sub(r"\b([ap])\s*(?:\.m\.|\.m|m)\b", r"\1m", txt2, flags=re.I)
56 return txt2
57
58
59 # ------------------------------------------------------------
60 # TIMER / DURATION PARSING
61 # ------------------------------------------------------------
62
63
64 def _parse_requested_time(text: str) -> int:
65 text = text.replace("-", " ")
66 hours = minutes = seconds = 0
67 for patt, mult in (
68 (r"(\d+)\s*hour", 3600),
69 (r"(\d+)\s*minute", 60),
70 (r"(\d+)\s*second", 1),
71 ):
72 m = re.search(patt, text, re.I)
73 if m:
74 val = int(m.group(1)) * mult
75 if mult == 3600:
76 hours = val // 3600
77 elif mult == 60:
78 minutes = val // 60
79 else:
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80 seconds = val
81 if hours == minutes == seconds == 0:
82 m = re.search(r"(\d+)\s*-?\s*min", text, re.I)
83 if m:
84 minutes = int(m.group(1))
85 else:
86 m = re.search(r"(\d+)", text)
87 if m:
88 minutes = int(m.group(1))
89 total = hours * 3600 + minutes * 60 + seconds
90 return total if total > 0 else 60
91
92
93 # ------------------------------------------------------------
94 # ADDITIONAL HELPERS
95 # ------------------------------------------------------------
96
97
98 def _parse_adjust_timer_amount(instr: str) -> Optional[int]:
99 instr_l = instr.lower()

100 verb = r"(?:add|increase|extend|plus|up|extra|more|additional)"
101 unit = r"(hours?|minutes?|seconds?)"
102 pat1 = re.compile(rf"{verb}\s+(\d+)\s*(?:more\s+)?{unit}")
103 pat2 = re.compile(rf"by\s+(\d+)\s*{unit}")
104 seconds: List[int] = []
105 for pat in (pat1, pat2):
106 for m in pat.finditer(instr_l):
107 num = int(m.group(1))
108 u = m.group(2)
109 if u.startswith("hour"):
110 seconds.append(num * 3600)
111 elif u.startswith("minute"):
112 seconds.append(num * 60)
113 else:
114 seconds.append(num)
115 if seconds:
116 return max(1, min(seconds))
117 return None
118
119
120 def _parse_alarm_time(instr: str) -> Tuple[int, int, Optional[str]]:
121 instr_n = _normalize_time_text(instr)
122 instr_l = instr_n.lower()
123 m = re.search(r"(\d{1,2})\s*[:.]\s*(\d{2})\s*(am|pm)?", instr_l)
124 if m:
125 h, minute, ap = int(m.group(1)), int(m.group(2)), m.group(3)
126 else:
127 m = re.search(r"\b(\d{1,2})\s*(am|pm)\b", instr_l)
128 if m:
129 h, minute, ap = int(m.group(1)), 0, m.group(2)
130 else:
131 return 7, 0, "am"
132 if ap:
133 ap = ap.lower()
134 if ap == "pm" and h != 12:
135 h += 12
136 if ap == "am" and h == 12:
137 h = 0
138 return h % 24, minute, ap
139
140
141 def _extract_timer_components(state: str) -> Optional[Tuple[int, int, int]]:
142 m = re.search(r"(\d+)\s*minutes?\s*(\d+)\s*seconds", state, re.IGNORECASE)
143 if m:
144 minutes = int(m.group(1))
145 seconds = int(m.group(2))
146 return (0, minutes, seconds)
147
148 m = re.search(r"(\d+)h\s*(\d+)m\s*(\d+)s", state, re.IGNORECASE)
149 if m:
150 hours = int(m.group(1))
151 minutes = int(m.group(2))
152 seconds = int(m.group(3))
153 return (hours, minutes, seconds)
154
155 # Case 3: "MM:SS" format, ensuring it’s not part of a timestamp (like 12:30 PM)
156 for mm_match in re.finditer(r"(\d{1,2}):(\d{2})(?!\s*[AaPp][Mm])", state):
157 mm, ss = int(mm_match.group(1)), int(mm_match.group(2))
158 if not (0 <= ss < 60):
159 continue
160 context = state[mm_match.end() : mm_match.end() + 80].lower()
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161 if "minute" in context or "timer" in context or "remaining" in context:
162 return (0, mm, ss)
163
164 if not _timer_tab_selected(state):
165 return None
166
167 tokens = re.findall(r’"text"\s*:\s*"([^"]+)"’, state)
168 tokens = [t.strip() for t in tokens]
169
170 for i in range(len(tokens) - 4):
171 if (
172 re.fullmatch(r"\d{1,2}", tokens[i])
173 and tokens[i + 1] == ":"
174 and re.fullmatch(r"\d{2}", tokens[i + 2])
175 and tokens[i + 3] == ":"
176 and re.fullmatch(r"\d{2}", tokens[i + 4])
177 ):
178 h = int(tokens[i])
179 m_val = int(tokens[i + 2])
180 s = int(tokens[i + 4])
181 if 0 <= m_val < 60 and 0 <= s < 60:
182 return (h, m_val, s)
183
184 for i in range(len(tokens) - 2):
185 if (
186 re.fullmatch(r"\d{1,2}", tokens[i])
187 and tokens[i + 1] == ":"
188 and re.fullmatch(r"\d{2}", tokens[i + 2])
189 ):
190 m_val = int(tokens[i])
191 s_val = int(tokens[i + 2])
192 if 0 <= s_val < 60:
193 return (0, m_val, s_val)
194
195 return None
196
197 def _extract_timer_value(state: str) -> int:
198 timer_components = _extract_timer_components(state)
199 if timer_components:
200 hh, mm, ss = timer_components
201 return int(hh) * 3600 + int(mm) * 60 + int(ss)
202 else:
203 return None
204
205 # --- UI helpers ------------------------------------------------------
206
207
208 def _button_visible(state: str, label: str) -> bool:
209 return bool(
210 re.search(rf’"(content_description|text)"\s*:\s*"{label}"’, state, re.I)
211 )
212
213
214 def _timer_screen_visible(state: str) -> bool:
215 if _timer_tab_selected(state):
216 return True
217 s = state.lower()
218 return "remaining" in s or "minutes timer" in s
219
220
221 def _is_timer_running(state: str) -> bool:
222 return _button_visible(state, "Pause")
223
224
225 def _timer_keypad_mode(state: str) -> bool:
226 return bool(re.search(r"\b\d{1,2}h\s*\d{1,2}m\s*\d{1,2}s\b", state))
227
228
229 def _is_timer_paused(state: str) -> bool:
230 if _timer_keypad_mode(state):
231 return False
232 if _button_visible(state, "Start") and not _button_visible(state, "Pause"):
233 return True
234 if not _timer_screen_visible(state):
235 return False
236 s = state.lower()
237 return "timer paused" in s or ("paused" in s and "timer" in s)
238
239
240 def _timer_keypad_zero(state: str) -> bool:
241 if not all(
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242 re.search(rf’"text"\s*:\s*"{lbl}"’, state, re.I)
243 for lbl in ("hour", "min", "sec")
244 ):
245 return False
246 return len(re.findall(r’"text"\s*:\s*"0{2}"’, state)) >= 3
247
248
249 def _timer_deleted(state: str) -> bool:
250 s = state.lower()
251 if "no timers" in s:
252 return True
253 val = _extract_timer_value(state)
254 if val == 0 and not _is_timer_running(state):
255 return True
256 return _timer_keypad_zero(state)
257
258
259 def _stopwatch_running(state: str) -> bool:
260 return (
261 _button_visible(state, "Pause")
262 or _button_visible(state, "Stop")
263 or "stopwatch running" in state.lower()
264 )
265
266
267 def _stopwatch_time_zero(state: str) -> bool:
268 if re.search(r"\b0{1,2}(?::0{2}){1,3}\b(?!:\d{2})", state):
269 return True
270 nums = re.findall(r’"text"\s*:\s*"(\d{2})"’, state)
271 return bool(nums) and all(n == "00" for n in nums)
272
273
274 def _timer_paused_notification(state: str) -> bool:
275 return bool(
276 re.search(r"the\s+clock\s+notification:\s*timer", state, re.I)
277 or re.search(r"timer\s+paused", state, re.I)
278 )
279
280
281 def _alarm_context_present(state: str) -> bool:
282 return _alarm_tab_selected(state) or bool(re.search(r"\balarm\b", state, re.I))
283
284
285 def _parse_new_timer_label(instr_l: str) -> str:
286 for kw in (" as ", " named ", " called ", " name "):
287 if kw in instr_l:
288 part = instr_l.split(kw, 1)[1]
289 part = re.split(r"[.,;]|\bfor\b|\btimer\b", part, flags=re.I)[0]
290 return part.strip()
291 return ""
292
293
294 def _timer_label_present(state: str, label: str) -> bool:
295 if not label:
296 return False
297 return bool(
298 re.search(
299 rf’"(text|content_description)"\s*:\s*"{re.escape(label)}"’, state, re.I
300 )
301 )
302
303
304 def _safe_json_dumps(obj) -> str:
305 try:
306 return json.dumps(obj, ensure_ascii=False)
307 except Exception:
308 return json.dumps({"error": "debug-serialization failed"})
309
310
311 def _any_alarm_present(state: str) -> bool:
312 sl = state.lower()
313 if "alarm set" in sl:
314 return True
315 if _alarm_tab_selected(state) and re.search(r"\b\d{1,2}:\d{2}\s*(?:am|pm)\b", sl):
316 return True
317 return False
318
319
320 def _is_alarm_deleted(state: str) -> bool:
321 s = state.lower()
322 return any(
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323 re.search(p, s)
324 for p in (
325 r"alarm (deleted|removed|dismissed)",
326 r"\bno (active )?alarms?\b",
327 r"tap here to create an alarm",
328 r"alarm deleted",
329 )
330 )
331
332
333 def _snooze_completed(state: str) -> bool:
334 s_low = state.lower()
335 if "alarm snoozed" in s_low:
336 return True
337 if re.search(r"snoozed\s+for\s+\d+", s_low):
338 return True
339 if re.search(r"\bsnooz(ing|ed)\b", s_low):
340 return True
341 if "select snooze duration" in s_low:
342 return True
343 return False
344
345
346 def _rename_dialog_open(state: str) -> bool:
347 s = state.lower()
348 if "enter timer name" in s:
349 return True
350 has_buttons = re.search(r’"text"\s*:\s*"(ok|cancel)"’, state, re.I)
351 has_edit = re.search(r’"is_editable"\s*:\s*true’, state, re.I)
352 return bool(has_buttons and has_edit)
353
354
355 def _detect_alarm_time(state: str) -> bool:
356 return bool(re.search(r"\b\d{1,2}\s*:\s*\d{2}(?:\s*[ap]m)?\b", state, re.I))
357
358
359 def _selected_weekdays(state: str) -> Set[str]:
360 selected = set()
361 for key, full, abbrev in (
362 ("sunday", "Sunday", "S"),
363 ("monday", "Monday", "M"),
364 ("tuesday", "Tuesday", "T"),
365 ("wednesday", "Wednesday", "W"),
366 ("thursday", "Thursday", "T"),
367 ("friday", "Friday", "F"),
368 ("saturday", "Saturday", "S"),
369 ):
370 patt = rf’("content_description"|"text")\s*:\s*"(?:{full}|{abbrev})"[^\n]*?("

is_selected"|"is_checked")\s*:\s*true’
371 if re.search(patt, state, re.I):
372 selected.add(key)
373 return selected
374
375
376 def _alarm_time_present(state: str, hour24: int, minute: int, ap: Optional[str]):
377 s = state.lower().replace("\u200a", "")
378 h12 = hour24 % 12 or 12
379 patterns = [rf"\b0*{h12}:{minute:02d}\s*(?:am|pm)?\b"]
380 if minute == 0:
381 patterns.append(rf"\b0*{h12}\s*(?:am|pm)\b")
382 patterns.append(rf"\b0*{hour24}:{minute:02d}\b")
383 for p in patterns:
384 if re.search(p, s):
385 if ap and not re.search(rf"{ap}\b", s):
386 continue
387 return True
388 return False
389
390
391 # --------------- NEW HELPER -----------------------------------------
392
393
394 def _day_toggle_buttons_visible(state: str) -> bool:
395 """Detect if the row of weekday toggle buttons is visible."""
396 matches = re.findall(r’"text"\s*:\s*"(S|M|T|W|F)"’, state)
397 unique = set(matches)
398 return len(matches) >= 5 and len(unique.intersection({"M", "T", "W", "F"})) >= 3
399
400
401 # ------------------------------------------------------------
402 # REWARD CLASS
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403 # ------------------------------------------------------------
404
405
406 class Reward:
407 """Dense reward function for Google Clock tasks."""
408
409 _SHAPING_INC = 0.3
410 _ADJ_INC_THRESHOLD = 10
411
412 # --------------------------------------------------------
413 # INIT
414 # --------------------------------------------------------
415 def __init__(self, extra_info: Optional[str] = None):
416 self.raw_instr: str = extra_info or ""
417 self.instruction: str = self.raw_instr.lower()
418 self.instruction_norm_full = _normalize_time_text(self.raw_instr)
419 self.instruction_norm = self.instruction_norm_full.lower()
420
421 # Task detection
422 self.task_type = self._infer_task()
423
424 # Stopwatch flags
425 self.restart_mode = False
426 self._reset_seen = False
427
428 # Goal parsing / bookkeeping
429 self.goal_seconds = 0
430 self.goal_label = ""
431 self.goal_hour24 = 0
432 self.goal_minute = 0
433 self.goal_hms = (0, 0, 0)
434 self.goal_ap: Optional[str] = None
435 self.city_keyword = ""
436 self.city_keywords: List[str] = []
437 self.recurrence_days: Set[str] = set()
438 self.alarm_any_time = False
439
440 # Timer-adjust bookkeeping
441 self.initial_timer_val: Optional[int] = None
442 self.prev_timer_val: Optional[int] = None
443 self.max_timer_val: Optional[int] = None
444 self.increments = 0
445 self.needed_increments = 0
446 self._countdown_seen = False
447
448 # Alarm creation flag
449 self._alarm_creation_seen = False
450
451 # delete-alarm bookkeeping
452 self._alarm_present_ever = False
453
454 # adjust-alarm bookkeeping
455 self.orig_hour24 = 0
456 self.orig_minute = 0
457 self._orig_seen = False
458
459 # pause-timer stability tracking
460 self._prev_timer_val_for_pause: Optional[int] = None
461 self._same_val_steps: int = 0
462
463 # snooze-specific
464 self._snooze_dialog_seen = False
465
466 # Generic bookkeeping
467 self.goal_achieved = False
468 self._best_level = 0
469 self._t = 0
470 self._confirm_goal_seen = False
471
472 # Map tasks to progress-functions
473 self._progress_fns: dict[str, Callable[[str], int]] = {
474 "reset_stopwatch": self._pl_reset_stopwatch,
475 "restart_stopwatch": self._pl_restart_stopwatch,
476 "start_stopwatch": self._pl_start_stopwatch,
477 "pause_stopwatch": self._pl_pause_stopwatch,
478 "pause_timer": self._pl_pause_timer,
479 "delete_timer": self._pl_delete_timer,
480 "delete_alarm": self._pl_delete_alarm,
481 "add_city": self._pl_add_city,
482 "set_alarm": self._pl_set_alarm,
483 "adjust_alarm": self._pl_adjust_alarm,
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484 "rename_timer": self._pl_rename_timer,
485 }
486
487 # Goal-specific parsing / bookkeeping
488 if self.task_type == "set_timer" or self.task_type == "run_timer":
489 self.goal_seconds = _parse_requested_time(self.instruction)
490 h = self.goal_seconds // 3600
491 rem = self.goal_seconds % 3600
492 m = rem // 60
493 s = rem % 60
494 self.goal_hms = (h, m, s)
495 if self.task_type == "adjust_timer":
496 inc_secs = _parse_adjust_timer_amount(
497 self.instruction_norm_full
498 ) or _parse_requested_time(self.instruction)
499 self.goal_seconds = max(1, inc_secs)
500 self.needed_increments = max(1, math.ceil(self.goal_seconds / 60))
501 if self.task_type == "rename_timer":
502 self.goal_seconds = _parse_requested_time(self.instruction)
503 self.goal_label = _parse_new_timer_label(self.instruction)
504 if self.task_type == "set_alarm":
505 explicit = re.search(
506 r"\d{1,2}(:\d{2})?\s*(am|pm)", self.instruction_norm_full, re.I
507 )
508 if explicit:
509 self.alarm_any_time = False
510 self._parse_alarm_goal_time()
511 else:
512 self.alarm_any_time = True
513 self.recurrence_days = self._parse_recurrence_days(self.instruction_norm)
514 if self.task_type == "adjust_alarm":
515 self.goal_hour24, self.goal_minute = self._parse_adjusted_alarm()
516 self.goal_ap = None
517 self.orig_hour24, self.orig_minute, _ = _parse_alarm_time(
518 self.instruction_norm_full
519 )
520 if self.task_type == "add_city":
521 self.city_keyword = self._parse_city_name(self.instruction) or "italy"
522 self.city_keywords = [self.city_keyword]
523 first = self.city_keyword.split()[0] if self.city_keyword else ""
524 if first and first not in self.city_keywords:
525 self.city_keywords.append(first)
526 if self.task_type == "reset_stopwatch":
527 if re.search(r"\brestart\b", self.instruction) or re.search(
528 r"start\s+(?:over|again)", self.instruction
529 ):
530 self.restart_mode = True
531
532 # --------------------------------------------------------
533 # PUBLIC API
534 # --------------------------------------------------------
535 def reward_fn(self, state: str) -> float:
536 self._t += 1
537 if self.task_type == "set_alarm":
538 self._update_alarm_creation_seen(state)
539 if self.goal_achieved:
540 return 100.0
541 if self.task_type in self._progress_fns:
542 return self._reward_from_progress(self._progress_fns[self.task_type], state)
543 if self.task_type == "set_timer" or self.task_type == "run_timer":
544 return self._reward_timer(state, self.task_type == "set_timer")
545 if self.task_type == "adjust_timer":
546 return self._reward_adjust_timer(state)
547 if self.task_type == "snooze_alarm":
548 return self._reward_snooze(state)
549 return 0.0
550
551 def debug_fn(self, state: str) -> str:
552 dbg = {
553 "step": self._t,
554 "task_type": self.task_type,
555 "goal_achieved": self.goal_achieved,
556 "best_level": self._best_level,
557 }
558 if self.task_type in {"set_timer", "run_timer", "adjust_timer"}:
559 dbg.update(
560 {
561 "goal_seconds": self.goal_seconds,
562 "increments": self.increments,
563 "countdown_seen": self._countdown_seen,
564 }
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565 )
566 if self.task_type == "rename_timer":
567 dbg["goal_label"] = self.goal_label
568 if self.task_type == "snooze_alarm":
569 dbg["dialog_seen"] = self._snooze_dialog_seen
570 return _safe_json_dumps(dbg)
571
572 # --------------------------------------------------------
573 # TASK INFERENCE
574 # --------------------------------------------------------
575 def _infer_task(self) -> str:
576 instr = self.instruction
577 has_sw = _has_stopwatch(instr)
578
579 if has_sw and _contains_any(instr, ["pause", "stop"]):
580 return "pause_stopwatch"
581 elif has_sw and _contains_any(
582 instr, ["restart", "start over", "start again", "begin again"]
583 ):
584 return "restart_stopwatch"
585 if has_sw and _contains_any(instr, ["reset", "zero", "set to zero", "clear"]):
586 return "reset_stopwatch"
587 if has_sw:
588 return "start_stopwatch"
589
590 if (
591 (re.search(r"\btime\b", instr) or "clock" in instr)
592 and re.search(r"\bin\s+\w+", instr)
593 and not _contains_any(instr, ["timer", "alarm"])
594 ):
595 return "add_city"
596
597 if "timer" in instr:
598 if _contains_any(instr, ["delete", "remove", "clear"]):
599 return "delete_timer"
600 if _contains_any(instr, ["pause", "stop", "cancel"]):
601 return "pause_timer"
602 if _contains_any(instr, ["rename", "name", "called", "label"]):
603 return "rename_timer"
604 if re.search(
605 r"\badd\b[^\n]*?\b\d+\s*(?:hour|minute|second)s?\s+timer", instr
606 ):
607 dont_start_req = bool(
608 re.search(
609 r"(?:\b(?:don’?t|do\s+not)\s+(?:start|run)\b)"
610 r"|(?:\bwithout\s+starting\b)"
611 r"|(?:\b(?:but|and)\s+don’?t\s+start\b)"
612 r"|(?:\bleave\s+it\s+paused\b)"
613 r"|(?:\bkeep\s+it\s+paused\b)",
614 instr,
615 )
616 )
617 if dont_start_req:
618 return "set_timer"
619 else:
620 return "run_timer"
621 if _contains_any(instr, ["increase", "extend", "more", "up"]):
622 return "adjust_timer"
623 if re.search(
624 r"\badd\b[^\n]*?\b(minutes?|hours?|seconds?)\b[^\n]*?\bto\b[^\n]*?\btimer\b",
625 instr,
626 ):
627 return "adjust_timer"
628 return "run_timer"
629
630 if "snooze" in instr:
631 return "snooze_alarm"
632 if _contains_any(instr, ["delete", "remove"]) and "alarm" in instr:
633 return "delete_alarm"
634 if "alarm" in instr and _contains_any(
635 instr,
636 [
637 "delay",
638 "resched",
639 "push",
640 "move",
641 "change",
642 "shift",
643 "defer",
644 "later",
645 "increase",
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646 ],
647 ):
648 return "adjust_alarm"
649 if "alarm" in instr:
650 return "set_alarm"
651
652 if _contains_any(
653 instr, ["add", "timezone", "time zone", "city", "world clock"]
654 ):
655 return "add_city"
656 return "none"
657
658 def _update_alarm_creation_seen(self, state: str):
659 s = state.lower()
660 if any(kw in s for kw in ("add alarm", "alarm time", "select time")):
661 self._alarm_creation_seen = True
662
663 # --------------------------------------------------------
664 # GENERIC reward helpers
665 # --------------------------------------------------------
666 def _reward_from_progress(self, fn: Callable[[str], int], state: str) -> float:
667 lvl = fn(state)
668 if self.task_type == "set_alarm":
669 if lvl >= 3:
670 if self._alarm_creation_seen:
671 self.goal_achieved = True
672 return 100.0
673 if self._confirm_goal_seen or self._best_level >= 2:
674 self.goal_achieved = True
675 return 100.0
676 self._confirm_goal_seen = True
677 self._best_level = max(self._best_level, 2)
678 return 0.99
679 self._confirm_goal_seen = False
680 if lvl >= 3:
681 self.goal_achieved = True
682 return 100.0
683 if lvl > self._best_level:
684 inc = (lvl - self._best_level) * self._SHAPING_INC
685 self._best_level = lvl
686 return min(inc, 0.99)
687 return 0.0
688
689 # --------------------------------------------------------
690 # TIMER-specific dense reward
691 # --------------------------------------------------------
692 def _reward_timer(self, state: str, start_req: bool) -> float:
693 reward = 0.0
694 if _timer_tab_selected(state):
695 reward += 0.2
696 current_val = _extract_timer_components(state)
697 if current_val is None:
698 return min(reward, 0.99)
699 cur_hh, cur_mm, cur_ss = current_val
700 current_digit_string = f"{cur_hh:02d}{cur_mm:02d}{cur_ss:02d}".lstrip("0")
701 if current_digit_string == "":
702 current_digit_string = "0"
703 goal_digit_string = f"{self.goal_hms[0]:02d}{self.goal_hms[1]:02d}{self.goal_hms[2]:02

d}".lstrip("0")
704 if goal_digit_string == "":
705 goal_digit_string = "0"
706 running = _is_timer_running(state)
707 if current_digit_string == goal_digit_string and running:
708 if start_req and running:
709 self.goal_achieved = True
710 return 100.0
711 if not start_req and not running:
712 self.goal_achieved = True
713 return 100.0
714 matching_digits = 0
715 for i in range(0, min(len(current_digit_string), len(goal_digit_string))):
716 if goal_digit_string[i] == current_digit_string[i]:
717 matching_digits += 1
718 else:
719 # Stop counting as soon as a mismatch occurs
720 break
721 reward += (matching_digits / len(goal_digit_string)) * 0.7
722 return min(reward, 0.99)
723
724 # --------------------------------------------------------
725 # Other dense rewards (adjust_timer, snooze)
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726 # --------------------------------------------------------
727 def _reward_adjust_timer(self, state: str) -> float:
728 reward = 0.0
729 if _timer_screen_visible(state):
730 reward += 0.2
731 current_val = _extract_timer_value(state)
732 if current_val is None:
733 return min(reward, 0.99)
734 if self.initial_timer_val is None:
735 self.initial_timer_val = self.prev_timer_val = self.max_timer_val = (
736 current_val
737 )
738 return min(reward, 0.99)
739 if current_val > (self.max_timer_val or 0):
740 self.max_timer_val = current_val
741 diff_step = current_val - (self.prev_timer_val or current_val)
742 if diff_step > self._ADJ_INC_THRESHOLD:
743 self.increments += max(1, int(round(diff_step / 60.0)))
744 elif diff_step < -1:
745 self._countdown_seen = True
746 self.prev_timer_val = current_val
747 net_increase_max = (self.max_timer_val or current_val) - self.initial_timer_val
748 fraction_by_inc = self.increments / max(1, self.needed_increments)
749 fraction_by_delta = net_increase_max / max(1, self.goal_seconds)
750 progress_fraction = min(1.0, max(fraction_by_inc, fraction_by_delta))
751 reward += 0.8 * progress_fraction
752 tol = max(2, int(self.goal_seconds * 0.05))
753 goal_reached_primary = (
754 self.increments >= self.needed_increments
755 or net_increase_max >= self.goal_seconds - tol
756 )
757 committed = (
758 _is_timer_running(state) or _is_timer_paused(state) or self._countdown_seen
759 )
760 keypad = _timer_keypad_mode(state)
761 secondary_success = (
762 not goal_reached_primary
763 and net_increase_max >= 0.4 * self.goal_seconds
764 and self.increments >= 1
765 and self._countdown_seen
766 and committed
767 and not keypad
768 )
769 if (goal_reached_primary or secondary_success) and committed and not keypad:
770 self.goal_achieved = True
771 return 100.0
772 return min(reward, 0.99)
773
774 def _reward_snooze(self, state: str) -> float:
775 s_low = state.lower()
776 if "select snooze duration" in s_low:
777 self._snooze_dialog_seen = True
778 classic_done = (
779 "alarm snoozed" in s_low
780 or bool(re.search(r"snoozed\s+for\s+\d+", s_low))
781 or bool(re.search(r"\bsnooz(ing|ed)\b", s_low))
782 )
783 row_done = (
784 self._snooze_dialog_seen
785 and "select snooze duration" not in s_low
786 and "snooze" in s_low
787 and bool(re.search(r"\b\d+\s+minutes?\b", s_low))
788 )
789 if classic_done or row_done:
790 self.goal_achieved = True
791 return 100.0
792 reward = 0.0
793 if _alarm_tab_selected(state):
794 reward += 0.2
795 if re.search(r’"(content_description|text)"\s*:\s*"snooze"’, state, re.I):
796 reward += 0.3
797 if "select snooze duration" in s_low:
798 reward += 0.2
799 return min(reward, 0.99)
800
801 # --------------------------------------------------------
802 # Progress-level helpers (stopwatch/timer/alarm)
803 # --------------------------------------------------------
804 def _pl_reset_stopwatch(self, state: str) -> int:
805 if self.restart_mode:
806 if _stopwatch_running(state) and self._reset_seen:
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807 return 3
808 if _stopwatch_time_zero(state):
809 self._reset_seen = True
810 return 2
811 if _button_visible(state, "Reset") and (
812 _stopwatch_tab_selected(state) or "stopwatch" in state.lower()
813 ):
814 return 1
815 return 0
816 if _stopwatch_time_zero(state):
817 return 3
818 if _button_visible(state, "Reset") and (
819 _stopwatch_tab_selected(state) or "stopwatch" in state.lower()
820 ):
821 return 2
822 if _stopwatch_tab_selected(state):
823 return 1
824 return 0
825
826 def _pl_pause_stopwatch(self, state: str) -> int:
827 if not _stopwatch_running(state):
828 return 3
829 if _stopwatch_tab_selected(state):
830 return 1
831 return 0
832
833 def _pl_restart_stopwatch(self, state: str) -> int:
834 running = _stopwatch_running(state)
835 at_zero = _stopwatch_time_zero(state)
836 if running and self._reset_seen:
837 return 3
838 if at_zero:
839 self._reset_seen = True
840 return 2
841 if _stopwatch_tab_selected(state):
842 return 1
843 return 0
844
845 def _pl_start_stopwatch(self, state: str) -> int:
846 if _stopwatch_running(state):
847 return 3
848 if "stopwatch" in state.lower() or _stopwatch_tab_selected(state):
849 return 2
850 if _contains_any(state.lower(), ["the clock", ’"clock"’, "alarms", "timer"]):
851 return 1
852 return 0
853
854 def _pl_pause_timer(self, state: str) -> int:
855 if _is_timer_paused(state):
856 return 3
857 current_val = _extract_timer_value(state)
858 if current_val is not None:
859 if self._prev_timer_val_for_pause == current_val:
860 self._same_val_steps += 1
861 else:
862 self._same_val_steps = 0
863 self._prev_timer_val_for_pause = current_val
864 else:
865 self._same_val_steps = 0
866 stable_and_visible = (
867 _timer_tab_selected(state)
868 and current_val is not None
869 and self._same_val_steps >= 1
870 and not _is_timer_running(state)
871 )
872 if stable_and_visible:
873 return 3
874 if _timer_paused_notification(state) and _timer_tab_selected(state):
875 return 3
876 if _timer_paused_notification(state):
877 return 2
878 if _is_timer_running(state):
879 return 2
880 if _timer_tab_selected(state):
881 return 1
882 return 0
883
884 def _pl_delete_timer(self, state: str) -> int:
885 if _timer_deleted(state):
886 return 3
887 if _contains_any(
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888 state.lower(), ["delete", "remove", "clear", "âŇń", "backspace", "cancel"]
889 ):
890 return 2
891 if _timer_tab_selected(state):
892 return 1
893 return 0
894
895 def _pl_delete_alarm(self, state: str) -> int:
896 s_low = state.lower()
897 had_alarm_before = self._alarm_present_ever
898 alarm_now = _any_alarm_present(state) or _detect_alarm_time(state)
899 if alarm_now:
900 self._alarm_present_ever = True
901 if _is_alarm_deleted(state) and had_alarm_before:
902 return 3
903 if " delete" in s_low or "ð§ŮŚ" in s_low or re.search(r"trash|remove", s_low):
904 return 2
905 if alarm_now:
906 return 1
907 return 0
908
909 def _pl_add_city(self, state: str) -> int:
910 city_seen = self.city_keywords and any(
911 re.search(rf"\b{re.escape(kw)}\b", state, re.I) for kw in self.city_keywords
912 )
913 in_search = (
914 re.search(r"search for a city", state, re.I)
915 or "select time zone" in state.lower()
916 )
917 if city_seen and _clock_tab_selected(state) and not in_search:
918 return 3
919 if city_seen:
920 return 2
921 if _clock_tab_selected(state):
922 return 1
923 return 0
924
925 def _pl_set_alarm(self, state: str) -> int:
926 if self._alarm_goal_met(state):
927 return 3
928 if "select time" in state.lower() or "alarm set for" in state.lower():
929 return 2
930 if _alarm_tab_selected(state):
931 return 1
932 return 0
933
934 def _pl_adjust_alarm(self, state: str) -> int:
935 if not self._orig_seen and _alarm_time_present(
936 state, self.orig_hour24, self.orig_minute, None
937 ):
938 self._orig_seen = True
939 if (
940 _alarm_time_present(state, self.goal_hour24, self.goal_minute, None)
941 and self._orig_seen
942 ):
943 return 3
944 if "select time" in state.lower() or "alarm set for" in state.lower():
945 return 2
946 if _alarm_tab_selected(state) or self._orig_seen:
947 return 1
948 return 0
949
950 def _pl_rename_timer(self, state: str) -> int:
951 dialog_open = _rename_dialog_open(state)
952 label_seen = _timer_label_present(state, self.goal_label)
953 if label_seen and not dialog_open:
954 return 3
955 if dialog_open:
956 return 2
957 if _timer_tab_selected(state):
958 return 1
959 return 0
960
961 # --------------------------------------------------------
962 # Additional parsing / goal-checking helpers
963 # --------------------------------------------------------
964 def _parse_recurrence_days(self, instr_l: str) -> Set[str]:
965 days = {
966 "sunday",
967 "monday",
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968 "tuesday",
969 "wednesday",
970 "thursday",
971 "friday",
972 "saturday",
973 "weekdays",
974 "weekday",
975 "week day",
976 "week days",
977 "weekends",
978 "every day",
979 "everyday",
980 }
981 found: Set[str] = set()
982 for d in days:
983 if d in instr_l:
984 if d in {
985 "weekdays",
986 "weekday",
987 "week day",
988 "week days",
989 "every day",
990 "everyday",
991 }:
992 found.update(
993 {"monday", "tuesday", "wednesday", "thursday", "friday"}
994 )
995 elif d == "weekends":
996 found.update({"saturday", "sunday"})
997 else:
998 found.add(d)
999 return found

1000
1001 def _alarm_goal_met(self, state: str) -> bool:
1002 # time & presence
1003 if self.alarm_any_time:
1004 time_ok = _any_alarm_present(state)
1005 else:
1006 time_ok = _alarm_time_present(
1007 state, self.goal_hour24, self.goal_minute, self.goal_ap
1008 )
1009 if not time_ok or not _alarm_context_present(state):
1010 return False
1011
1012 # recurrence handling
1013 if not self.recurrence_days:
1014 return True
1015
1016 # exact match
1017 if self.recurrence_days.issubset(_selected_weekdays(state)):
1018 return True
1019
1020 # lenient weekday rule
1021 weekdays_set = {"monday", "tuesday", "wednesday", "thursday", "friday"}
1022 if self.recurrence_days == weekdays_set and _day_toggle_buttons_visible(state):
1023 if "not scheduled" not in state.lower(): # ensure days have been picked
1024 return True
1025 return False
1026
1027 def _parse_alarm_goal_time(self):
1028 times = self._extract_times(self.instruction_norm_full)
1029 if not times:
1030 self.goal_hour24, self.goal_minute, self.goal_ap = _parse_alarm_time(
1031 self.instruction_norm_full
1032 )
1033 return
1034 alarm_pos = self.instruction_norm.rfind("alarm")
1035 chosen = next((t[:3] for t in times if t[3] > alarm_pos), times[0][:3])
1036 self.goal_hour24, self.goal_minute, self.goal_ap = chosen
1037
1038 def _parse_adjusted_alarm(self) -> Tuple[int, int]:
1039 base_h, base_m, _ = _parse_alarm_time(self.instruction_norm_full)
1040 m = re.search(
1041 r"\bby\s+(\d+)\s*(hour|hours|minute|minutes)\b", self.instruction_norm
1042 )
1043 if m:
1044 num = int(m.group(1))
1045 unit = m.group(2)
1046 delta = num * (60 if "hour" in unit else 1)
1047 total = (base_h * 60 + base_m + delta) % (24 * 60)
1048 return total // 60, total % 60
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1049 time_tokens: List[Tuple[int, int]] = []
1050 pat = re.compile(r"(\d{1,2})(?:[:.]\s*(\d{2}))?\s*(am|pm)", re.I)
1051 for mt in pat.finditer(self.instruction_norm):
1052 h, mnt, ap = int(mt.group(1)), int(mt.group(2) or 0), mt.group(3).lower()
1053 if ap == "pm" and h != 12:
1054 h += 12
1055 if ap == "am" and h == 12:
1056 h = 0
1057 time_tokens.append((h % 24, mnt))
1058 if len(time_tokens) >= 2:
1059 return time_tokens[1]
1060 return base_h, base_m
1061
1062 @staticmethod
1063 def _parse_city_name(instr_l: str) -> str:
1064 parts = instr_l.split("add", 1)
1065 if len(parts) >= 2:
1066 tokens = parts[1].strip().split()
1067 city = []
1068 for w in tokens:
1069 if w in {"the", "a", "an"}:
1070 continue
1071 if w in {
1072 "time",
1073 "timezone",
1074 "zone",
1075 "city",
1076 "in",
1077 "to",
1078 "for",
1079 "app",
1080 "on",
1081 "world",
1082 "country",
1083 }:
1084 break
1085 city.append(w)
1086 if city:
1087 return " ".join(city).strip()
1088 if " in " in instr_l:
1089 _, after = instr_l.split(" in ", 1)
1090 tokens = after.strip().split()
1091 city = []
1092 for w in tokens:
1093 if w in {"the", "a", "an"}:
1094 continue
1095 wd = w.rstrip(".,;!")
1096 if wd in {
1097 "time",
1098 "timezone",
1099 "zone",
1100 "city",
1101 "for",
1102 "app",
1103 "on",
1104 "world",
1105 "country",
1106 }:
1107 break
1108 city.append(wd)
1109 return " ".join(city).strip()
1110 return ""
1111
1112 @staticmethod
1113 def _extract_times(instr: str) -> List[Tuple[int, int, str, int]]:
1114 instr_n = _normalize_time_text(instr)
1115 pat = re.compile(r"(\d{1,2})(?:[:.]\s*(\d{2}))?\s*(am|pm)", re.I)
1116 res = []
1117 for m in pat.finditer(instr_n):
1118 h, minute, ap = int(m.group(1)), int(m.group(2) or 0), m.group(3).lower()
1119 h24 = h % 12 + (12 if ap == "pm" else 0)
1120 res.append((h24 % 24, minute, ap, m.start()))
1121 return res

Listing 1: Android Control Generated Reward.
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A.9 PROMPTS

Goal Identification Prompt

Given this reward code: {reward_code}

Trajectory:
{trajectory}

Please analyze the state sequence and the agent’s instruction.
Identify the index of the goal state. The state indices are 1-based.

OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Explain your reasoning for choosing the goal state(s).
’goal_state_indexes’: A list of integers representing the 1-based
index of the goal state(s), or -1 if no goal state is present.

Prompt 1: The prompt for identifying the goal state(s) within a trajectory using a given reward
function.
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LLM Initial Reward Generation

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior.

Requirements:

• Write self-contained Python 3.9 code

• Always return rewards >= 0

• Make the function generic enough to handle variations
(different positions, orientations, etc.)

• Design for modularity - you might extend this reward later to
handle multiple goal types

• Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Environment Details:
{env_code}, {import_instructions}, {state_description}

Trajectories
{expert_trajectories}

Key Instructions:

1. Analyze the trajectory to understand what constitutes success

2. Identify intermediate progress that should be rewarded

3. Create utility functions for reusable reward components

The code will be written to a file and then imported.
OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Given the reason for your answer
’reward_class_code’: Code for the Reward function class in the
format:
# imports
<imports_here>
# utils functions
<utils functions here>
# reward function
class Reward:

def __init__(self, extra_info=None):
<code_here>

def reward_fn(self, state):
<code_here>

def debug_fn(self, state):
<code_here>

The Reward class will be initialized with the extra_info argument.
Describe in the comments of the class the behaviour you are trying to
reproduce.
reward_fn and debug_fn receive only state as argument. The debug_fn
should return a string that will be printed and shown to you after
calling reward_fn on each state. You can print internal class
properties to help you debug the function. Extract any needed
information from the state or store it in the class. The Reward
class will be re-initialised at the beginning of each episode.

Prompt 2: Prompt to generate the initial set of rewards
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Evolution Mutation Prompt

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior.

Requirements:

• Write self-contained Python 3.9 code

• Always return rewards >= 0

• Make the function generic enough to handle variations
(different positions, orientations, etc.)

• Design for modularity - you might extend this reward later to
handle multiple goal types

• Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Original Reward Code:
{{code}}

{{import_message}}
{{state_description}}

--
CRITICAL: Incorrect Trajectories
The reward function above FAILED on the following trajectories. It
either assigned a high reward to a failed trajectory or failed to
assign the highest reward to the correct goal state. The predicted
rewards for each step are shown.
Change the reward function to fix these errors. The goal is to
make the reward function correctly identify the goal state (or lack
thereof) in these examples.

Key Instructions:

1. Analyze the trajectory to understand what constitutes success

2. Identify intermediate progress that should be rewarded

3. Create utility functions for reusable reward components

4. Implement goal switching logic using extra_info to determine
which reward function to use

5. Reuse existing utilities where possible

6. Make sure the logic you write generalises to variations in
‘extra_info‘

{incorrect_trajectories}

{expert_traj_str}
--

Now, provide the mutated version of the reward function that
addresses these errors.

OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Briefly explain the corrective change you made.
{REWARD_OUTPUT_FORMAT}
{REWARD_EXTRA_INFO}

Prompt 3: The prompt used for evolutionary mutation, providing feedback on incorrect trajectories.
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Evolution Shaping Prompt

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior. Requirements:

• Write self-contained Python 3.9 code

• Always return rewards >= 0

• Make the function generic enough to handle variations
(different positions, orientations, etc.)

• Design for modularity - you might extend this reward later to
handle multiple goal types

• Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Original Reward Code:
{env_code}

{import_message}
{state_description}

--
CRITICAL: Incorrectly Shaped Trajectories
The reward function above is not shaped optimally on the following
trajectories. This is an expert trajectory, so the reward should
monotonically increase from one state to the next. The predicted
rewards for each step are shown.
Change the reward function to fix these errors.

{incorrect_expert_trajectories}
--

Now, provide the mutated version of the reward function that
addresses these errors.

OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Briefly explain the corrective change you made.
{REWARD_OUTPUT_FORMAT}
{REWARD_EXTRA_INFO}

Prompt 4: The prompt used for refining reward shaping based on expert trajectories.

A.10 LLM USAGE STATEMENT

We wish to disclose the role of LLMs in the preparation of this work to ensure transparency.

Manuscript Writing We employed LLMs to assist in the writing process. This included rephras-
ing sentences and paragraphs to enhance clarity and flow, and checking for grammatical errors and
stylistic consistency. While LLMs helped refine the presentation of our ideas, all core arguments,
scientific claims, and the overall structure of the paper were developed by the human authors.

Code Development and Debugging In the software development process, LLMs were used as
a coding assistant. This involved generating specific utility functions based on detailed prompts,
providing explanations for complex error messages, and suggesting alternative implementations for
performance or readability improvements. The overall software architecture and core algorithms
were designed and implemented by the human authors, who verified and tested all LLM-assisted
code.
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