Under review as a conference paper at ICLR 2026

GRACE: A LANGUAGE MODEL FRAMEWORK FOR
EXPLAINABLE INVERSE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse Reinforcement Learning (IRL) aims to recover Reward Models from ex-
pert demonstrations, but traditional methods yield "black-box" models that are
difficult to interpret and debug. In this work, we introduce GRACE (Generating
Rewards As CodE), a method for using code Large Language Models (LLMs)
within an evolutionary search to reverse-engineer an interpretable, code-based re-
ward function directly from expert trajectories. The resulting reward function is
executable code that can be inspected and verified. We empirically demonstrate
that GRACE can efficiently learn highly accurate rewards in the multi-task setups
as defined by two benchmarks, BabyAl and AndroidWorld. Further, we demon-
strate that the resulting reward leads to strong policies compared to both com-
petitive Imitation Learning and online RL approaches with groundtruth rewards.
Finally, we show that GRACE is able to build complex reward APIs in multi-task
setups.

1 INTRODUCTION

The performance of modern Reinforcement Learning (RL) agents is determined by, among other
factors, the quality of their reward function. Traditionally, reward functions are defined manually as
part of the problem specification. In many real-world settings, however, environments are readily
available while reward functions are absent and must be specified. Manually designing rewards
is often impractical, error-prone, and does not scale, particularly in contemporary multi-task RL
scenarios (Wilson et al., 2007} [Teh et al.l [2017; [Parisotto et al.| [2016).

A natural alternative is to automate reward specification by learning a reward model from data. The
dominant paradigm here is Inverse Reinforcement Learning (IRL), which attempts to infer a reward
model from observations of expert behavior (Ng & Russell, 2000; |Christiano et al., 2017} [Ziebart;
et al., 2008). In the era of Deep RL, approaches such as GAIL (Ho & Ermon, 2016) represent
rewards with deep neural networks. While effective, these reward functions are typically opaque
black boxes, making them difficult to interpret or verify (Molnar, 2020). Moreover, IRL methods
often require substantial amounts of data and often lead to inaccurate rewards (Sapora et al., 2024)).

An alternative representation that has recently gained traction is using code to express reward mod-
els (Venuto et al., [2024a; Ma et al.} [2023)). These approaches leverage code-generating Large Lan-
guage Models (LLMs) and human-provided task descriptions or goal states to generate reward pro-
grams (Venuto et al.,[2024a). Subsequently, the generated rewards are verified (Venuto et al.|[2024a)
or improved using the performance of a trained policy as feedback (Ma et al., [2023). However,
this prior work has not investigated whether it is possible to recover a reward function purely from
human demonstrations in an IRL-style setting, without utilizing any explicit task description or
domain-specific design assumptions.

In this work, we address the question of how to efficiently infer rewards-as-code from expert demon-
strations using Large Language Models (LLMs). We propose an optimization procedure inspired by
evolutionary search (Goldberg, (1989} [Eiben & Smith, 2003} |Salimans et al., |2017; Romera-Paredes
et al.,|2024a};[Novikov et al.,[2025b), in which code LLMs iteratively introspect over demonstrations
to generate and refine programs that serve as reward models. This perspective effectively revisits the
IRL paradigm in the modern context of program synthesis with LLMs.

Under review as a conference paper at ICLR 2026

Our contributions are threefold. We first demonstrate that code LLMs conditioned on expert demon-
strations can produce highly accurate reward models. These rewards generalize well to held-out
demonstrations and are well-shaped, providing informative intermediate signals rather than merely
verifying final success criteria. We further show that the approach is sample-efficient: accurate re-
wards are obtained from relatively few demonstrations, in contrast to IRL methods based on neural
networks that typically require large amounts of training data. More importantly, directly using
demonstrations means no domain knowledge or human-in-the-loop guidance is manually specified
during reward generation.

Second, we show that the learned rewards enable training of strong policies. We perform our eval-
uations in two domains: the procedurally generated navigation environment BabyAl (Chevalier-
Boisvert et al., [2018)) and the real-world device control environment AndroidWorld (Rawles et al.,
2024) demonstrate that GRACE outperforms established IRL approaches such as GAIL (Ho & Er-
monl 2016)) as well as online RL with ground-truth rewards (Schulman et al.,2017). This highlights
both the efficiency of GRACE in learning rewards and its promise for building capable agents across
diverse domains.

Finally, by representing rewards as code, GRACE inherits additional advantages. The resulting re-
wards are interpretable and verifiable by humans, and, when inferred across multiple tasks, naturally
form reusable reward APIs that capture common structure and enable efficient multi-task general-
ization. Our analysis shows that as the evolutionary search progresses, GRACE shifts from creating
new functions to heavily reusing effective, high-level modules it has already discovered, demon-
strating the emergence of a modular code library.

2 RELATED WORKS

LLMs for Rewards A common way to provide verification/reward signals in an automated fashion
is to utilize Foundation Models. LLM-based feedback has been used directly by [Zheng et al.|(2023)
to score a solution. Additionally, an LLM can be used to a critique examples (Zankner et al.| [2024)).
Comparing multiple outputs in a relative manner has been also explored by |Wang et al. (2023).
Note that such approaches use LLM in a zero shot fashion with additional prompting and potential
additional examples. Hence, they can utilize only a small number of demonstrations at best. In
addition to zero shot LLM application, it is also common to train reward models, either from human
feedback (Ouyang et al., 2022) or from Al feedback (Klissarov et al., [2023;|[2024). Note that such
approaches require training a reward model that isn’t interpretable and often times require a larger
number of examples.

Code as Reward As LLMs have emerged with powerful program synthesis capabilities (Chen et al.}
2021;|Austin et al., 2021} |Li et al.| 2023} [Fried et al.|[2022; Nijkamp et al.,[2022) research has turned
towards generating environments for training agents Zala et al.|(2024)); Faldor et al.|(2025) for var-
ious domains and complexities. When it comes to rewards in particular, code-based verifiers use a
language model to generate executable Python code based on a potentially private interface such as
the environment’s full state. Because early language models struggled to reliably generate syntacti-
cally correct code, the first code-based verifiers (Yu et al., 2023 Venuto et al., [2024b) implemented
iterative re-prompting and fault-tolerance strategies. More recent approaches focus on progressively
improving a syntactically correct yet suboptimal reward function, particularly by encouraging ex-
ploration (Romera-Paredes et al.| [2024b; |[Novikov et al., 2025a). Other approaches such as [Zhou
et al.| (2023)); Dainese et al.| (2024) use search in conjunction with self-reflection (Madaan et al.,
2023) to provide feedback.

Inverse Reinforcement Learning (IRL) Early approaches infer a reward function by requiring the
expert policy to outperform all alternatives (Ng & Russell, 2000). While related to our formulation,
our representation (code) and our optimization strategy (evolutionary search) are fundamentally
different. Subsequent works have focused on directly learning policies without explicit reward re-
covery (Abbeel & Ng| [2004), while incorporating entropy regularization (Ziebart et al.l 2008)) or
leveraging convex formulations (Ratliff et al., 2006). In contrast, GRACE benefits from implicit
regularization through its symbolic reward representation, though evolutionary search provides no
optimization guarantees. More recently, Imitation Learning (IL) has achieved considerable practical
success (Ross et al., 2011), often by training a discriminator to distinguish expert from non-expert
trajectories (Ho & Ermon, [2016; Swamy et al., [2021). While such discriminators define implicit
rewards, our approach instead operates with explicit reward representations.

2

Under review as a conference paper at ICLR 2026

3 METHOD

3.1 BACKGROUND

Reinforcement Learning We consider a finite-horizon Markov Decision Process (MDP) (Put-
erman), 2014) parameterized by M = (S, A, T,r) where S, A are the state and action spaces,
T:S x A— A(S) is the transition operator, and R is a reward function. The agent’s behavior is
described by the policy 7 : S — A(A). Starting from a set of initial states Sy C S, the agent takes
the action a ~ m(s) at s, receives a reward r(s) and transitions into state s’ ~ T'(s, a).

The performance of the agent is measured with expected cumulative per-timestep rewards, referred

to as return:
H

J(m,1) =Eren x> r(se)] (1)
t=1
where 7 are trajectory unrolls of horizon H of the policy 7 in M. An optimal agent can be learned
by maximizing Equation (I)) via gradient descent with respect to the policy, also known as policy
gradient (Sutton et al., [1999; |Schulman et al., 2017).

Inverse Reinforcement Learning If the reward r is not specified, it can be learned from demon-
strations of an expert policy wg. In particular, the classical IRL objective learns a reward whose
optimal return is attained by the expert (Ng & Russell, 2000; |Syed & Schapire,, [2007)):

minmgx J(rg,r)—J(m, 1) ()

More recent Imitation Learning (IL) approaches learn a discriminator that distinguishes between
expert and non-expert demonstrations (Ho & Ermon| 2016; |[Swamy et al., 2021). The likelihood
of the agent’s data under the trained discriminator can be implicitly thought of as a reward. These
approaches utilize gradient based methods to optimize their objectives.

Evolutionary search As an alternative for cases where the objective is not readily differentiable,
gradient-free methods can be employed. One such method is evolutionary search, which maintains a
set of candidate solutions (called a population) and applies variation operators to improve it. These
operators include mutation, where a hypothesis is partially modified, and recombination, where
two hypotheses are combined to produce a new one. Each variation is evaluated using a fitness
function, which measures the quality of a given hypothesis. Starting with an initial population,
evolutionary search repeatedly applies these variation operators, replacing hypotheses with higher-
fitness alternatives.

In this work, we focus on inferring reward functions, represented as Python code, from a set of
demonstrations. While this setup is related to IRL, representing rewards as code prevents us from
applying gradient-based methods commonly used in IRL. For this reason, we adopt evolutionary
search as our optimization method.

3.2 GRACE

We propose GRACE - Generating Rewards As CodE, an interpretable IRL framework that gener-
ates a reward function as executable Python code. Initially, an LLM analyzes expert and random
trajectories to optionally identify goal states (Phase 1) and generates a preliminary set of reward
programs. The step of goal identification is optional and can be skipped in favor of directly querying
the LLM for a reward function which best matches the expert trajectories. This initial set is then
iteratively improved through evolutionary search, where the LLM mutates the code based on mis-
classified examples to maximize a fitness function (Phase 2). Finally, an RL agent is trained using
the refined reward, and the new trajectories it generates are used to further expand the dataset and
further improve the reward function (Phase 3). The overall process is illustrated in Figure [T] and
detailed below and in Algorithm|T]

Phase 1: Initialization The initial reward code generation by GRACE is based on a set of demon-
stration trajectories DT and a set of random trajectories D~. The former is generated using an expert
policy or human demonstrations depending on the concrete setup, while the latter is produced by a
random policy. Note that with a slight abuse of notation we will use D to denote interchangebly a
set of trajectories as well the set of all states from these trajectories.

Under review as a conference paper at ICLR 2026

Initialisation - Phase 1 Reward Refinement - Phase 2 RL Training - Phase 3

y,
~N
J

(i{ewan’i‘ \‘\

r Expert (Negative ('Exitra\\\) C .
Data Data Data H —
N v (Reward Yy ‘ Function é >
. H -° Functions f‘ |—— |
\) \ <& i—]]T; — N | (I S
= i ¢ <>l) RL
: Evaluation /

LLM | <P \
Function

AN
repeat until convergence @
P L Fitness

Goal Not Goal ’ Goal

States States States

@ @ Initialised with @
_ = = J\

Figure 1: Overview of the GRACE framework. (a) The expert, negative and extra data (if any) is
used to identify goal states. By default, all expert states are classified as goal states and all negative
states as non-goal states (b) The goal and non-goal states are used to generate reward functions
through an evolutionary procedure. The rewards are iteratively refined by feeding the examples
misclassified by the reward. (¢) An agent is trained with online RL using the converged reward; the
data it sees during the training is classified by the LLM into D", D~ and used to further improve
the reward.

(Reward ‘:'w States

Template
AN
Y,

r
.

The language model is prompted with a random subset of D+ and, optionally, extra information
available about the environment (e.g. its Python code or tool signature), to produce two artifacts:

Initial rewards: The LLM generates an initial set RNt of reward functions. Each function
r € RM? is represented as Python code:

def reward(state: string) -> float:
<LLM produced code>

(Optional) Goal states: The LLM analyzes the states from expert demonstrations to identify the
subset of goal states S, C D™ that solve the task - these are positive samples. All remaining
non-goal states S,,;, = {D* \ S,;} UD™ are initially treated as negative samples.

designed to assign high values to goal states S, and low values to non goal ones S,,4. This set of
rewards is treated as the population in the subsequent evolution phase.

Phase 2: Reward Refinement through Evolutionary Search GRACE uses Evolutionary Search
to obtain rewards that best explain the current set of goal and non goal states. This is achieved by
mutating the current reward population R using a code LLM and retaining rewards with high fitness.

The fitness f of a reward function r measures how well this function assigns large values to goal and
small values to non-goal states, akin to what would be expected from a meaningful reward:

f(r) = Esus, [r(s)] = Esns,,, [1(s)] 3)

The mutation operator m of a reward, that is used to improve the current reward population, is
based on an LLM that is prompted to introspect the reward code and address failures. To do so it is
provided with several inputs pertaining to the source code of the reward (if available), misclassified
states, and additional debugging information:

m(r) = LLM(source(r), info, prompt) 4)

In more detail, source(r) is the Python code for the reward. The info = (s4,7(sg), s, debug(r, s4))
is intended to focus the model on failures by honing onto states misclassified by the reward. It con-
sists of a sequence of misclassified states s € S, their reward value r(s), as well as a debugging info
debug(r, s) produced by printing intermediate values during the execution of on the misclassified
state s. The composition of this feedback is intentionally varied; each prompt contains a different

Under review as a conference paper at ICLR 2026

number of examples, presented as either individual states or full trajectories. To help the model dis-
criminate between true and false positives, prompts containing a false positive are augmented with
an expert state s, ~ DT,

We repeatedly apply the above mutation operation to modify the reward population R to improve

its fitness. In more detail, we repeatedly sample a reward r € R with probability %.
r'€RY,

Subsequently, we apply the mutation and keep the new reward function only if it has a higher fitness
than other already created rewards. After K mutations, we return the reward function with highest
fitness 7* = arg max,er{f(r)}. This phase is presented as function EVOSEARCH in Algorithm|I]

Phase 3: Training Trajectory Expansion via Reinforcement Learning The optimal reward r*
above is obtained by inspecting existing demonstrations. In order to further improve the reward, we
ought to collect further demonstrations by training a policy 7, using the current optimal reward r*;
and use this policy to collect additional data D,..

In more detail, we employ PPO (Schulman et al.| 2017) to train a policy in the environment of
interest. As this process can be expensive, we use a predefined environment interaction budget N
instead of training to convergence. After obtaining these additional trajectories, we use the same
process as described in Sec. Phase 1) to identify goal Sy« and non-goal states S,,4+. The new
trajectories are likely to contain new edge cases and examples of reward hacking, if any. These are
used to further refine the reward population as described in the preceeding Sec. (3.2] Phase 2.1).
The process terminates when the RL agent achieves a desired level of performance. This phase is
presented as function DATAEXPAND in Algorithm [T}

The final algorithm, presented in Algorithm [I] consists of repeatedly performing Evolutionary
Search over reward population R followed by data expansion using RL-trained policy. Each it-
eration is called a generation.

Additional reward shaping When the reward function offline performance on D doesn’t translate
to good online RL performance, we assume that the reward signal is poorly shaped, and additional
refinement is required. In these cases, the LLM’s info in Eq. d]is augmented beyond misclassified
states to include failed trajectory examples from D,-. To achieve this, we instruct the LLM to
reshape the reward function, using expert trajectories as a reference, so that it provides a signal that
increases monotonically towards the goal.

Discussion The above algorithm iterates between policy optimization and reward optimization.
The objective for the latter is the fitness function from Eq.[3] If one flips the reward on non-goal
states of positive demonstrations or goal states in learned policy demonstrations, it is straightforward
to show that GRACE optimizes the canonical IRL objective using Evolutionary Search.

Proposition 1. Suppose m(s) = 1 iff s € S,, else m(s) = —1, then GRACE optimizes,
min, max, J(wg,mor) — J(w,—mor), which is a variation of Eq. (2).

The proof can be found in Appendix [A.T]

4 EXPERIMENTS

We empirically evaluate GRACE with respect to its ability to generate rewards that lead to effective
policy learning. Specifically, we aim to address the following questions:

Accuracy and Generalization: Can GRACE recover correct rewards, and how much supervi-
sion is required to do so?

Policy Learning Performance: How does GRACE compare to other IRL methods or to online
RL trained with ground-truth rewards?

Qualitative Properties: How well-shaped are the rewards produced by GRACE?

Interpretability and Multi-Task Efficacy: Does GRACE produce reward APIs that can be
shared across tasks?

Under review as a conference paper at ICLR 2026

Algorithm 1 GRACE: Generating Rewards As CodE

Inputs:
D™ expert trajectories
D~ : random trajectories
Parameters:
P: reward population size
K': mutation steps
M number of generations

// Phase 2: Refinement via Evolution.
function EVOSEARCH(R, Sy, Spg)
fork=1...Kdo
Sample r ~ exp(f(r)),r € R
r’ < m(r) // See Eq.
if f(r') > min,.cx f(r) then
r" = argmin,cr f(r)

N: RL budget R=R/{r"}U{r'}
end if
procedure GRACE(D™, D7) end for
// Phase 1: Initialization. return R

Sy = {s € D™ | LLM(s, goal_prompt)}
Sng =DTUD/S,
R = {LLM(S,,, Snq,reward_prompt) }

end function

// Phase 3: Trajectory expansion via RL.
function DATAEXPANDRL(R)
r* < argmax,cr f(r)
Train 7,~ with PPO under budget N
Collect new trajectories D,.«
Sy = {s € D, | LLM(s, goal_prompt) }
Sng = Dr+ /S,
return S;, S,
end function

/l Reward Refinement.

fori=1...M do
R <= EVOSEARCH(R, Sy, Sng)
D,S;,S,,, + DATAEXPANDRL(R)
Sg=8,U8y,8ng =85,y USny

end for

return r* = arg max,cr f(r)

end procedure

4.1 EXPERIMENTAL SETUP

To evaluate GRACE, we conduct experiments in two distinct domains: the procedurally generated
maze environment BabyAl (Chevalier-Boisvert et al., |2018)), which tests reasoning and generaliza-
tion, and the Android-based UI simulator AndroidWorld (Rawles et al.,|2024), which tests control in
high-dimensional action spaces.

BabyAlI Our BabyAl evaluation suite comprises 20 levels, including 3 custom levels designed to
test zero-shot reasoning on tasks not present in public datasets, thereby mitigating concerns of data
contamination. Expert demonstrations are generated using the BabyAI-Bot (Farama Foundation
et al., 2025)), which algorithmically solves BabyAl levels optimally. We extend the bot to support
our custom levels as well. For each level, we gather approximately 500 expert trajectories. Another
500 negative trajectories are collected by running a randomly initialized agent in the environment.
The training dataset consists of up to 16 trajectories, including both expert and negative examples.
All remaining trajectories constitute the test set. For each dataset, we evolve the reward on the train
trajectories and report both train and test fitness from Eq. (3).

The state is represented by a (h,w, 3) array. The state is fully observable, with the first channel
containing information about the object type (with each integer corresponding to a different object,
such as box, key, wall, or agent), the second channel contains information about the object’s color
and the third any extra information (e.g. agent direction, if is the door locked).

Android To assess GRACE in a high-dimensional, real-world setting, we use the AndroidControl
dataset (Rawles et al., 2023} |L1 et al.||2024), which provides a rich collection of complex, multi-step
human interactions across standard Android applications. The state space includes both raw screen
pixels and the corresponding XML view hierarchy.

From this dataset, we curate a subset of trajectories focused on the Clock application, where users
successfully complete tasks such as "set an alarm for 6AM." These serve as our positive exam-
ples. Negative samples are drawn from trajectories in other applications (e.g., Calculator, Calendar,
Settings). For each negative trajectory, we randomly assign an instruction from the positive set,
ensuring the instruction is clock-related but the trajectory completes a task in an unrelated app. We
use 80% of trajectories in the train set and the remaining for the test set.

Under review as a conference paper at ICLR 2026

o Iy
© o

Test Fitness
o o
S o
Negative Trajectories
Test Fitness

o
N

o
o

Expert Trajectories Expert Trajectories
(a) (b)

Figure 2: Fitness vs Number of Expert Trajectories. The fitness is computed on test dataset after
obtaining maximum fitness on training data with corresponding number of expert and negative train-
ing trajectories. (a) Performance on all 20 BabyAl tasks. (b) Aggregate fitness across 20 BabyAl
tasks.

MuJoCo We finally conduct additional experiments on 4 challenging tasks from the classical Mu-
JoCo continuous control suite (Todorov et al, 2012): Hopper, Walker, Ant, Humanoid.
These tasks demonstrate that GRACE also excels at reward design in continuous action and state
spaces. In these experiments, we don’t perform the goal identification step and simply classify all
expert states as Goal states and all learner states as Non-Goal states. We run all our MuJoCo experi-
ments using the fully differentiable physics engine Brax (Freeman et al} 2021)) to speed up learning.
Unlike the BabyAI and Android experiments, in MuJoCo we update the dataset 5 times (M = 5)
with new trajectories coming from the learner policy. The reward is only updated if the fitness is
low on the newly added trajectories.

GRACE Parameters All parameters of our approach used across our experiments can be found in
Appendix [A26]

4.2 ANALYSIS

GRACE recovers rewards with high accuracy. We first examine whether GRACE evolutionary
search (Phase 1) can successfully recover the underlying task reward from demonstrations alone.
We evaluate this in two settings using BabyAl: (i) a single-level setting, where the model infers a
task-specific reward, and (ii) a more challenging multi-level setting, where GRACE must learn a
single, general reward function conditioned on both state and a language goal.

In Figures 2] and 3] we show that the fitness consistently reaches 1.0 across all BabyAl tasks in
both single- and multi-level settings, as well as on AndroidControl. A fitness of 1.0 corresponds to
assigning higher values to all goal states than to non-goal states.

We further ablate two aspects of the algorithm. First, we analyze sample efficiency by varying the
number of expert and negative demonstrations. Results on BabyAlI (Figure[2a) show non-trivial per-
formance even with a single demonstration, with gradual improvement and perfect scores achieved
using only eight expert trajectories. The number of negative trajectories also plays a role, though
to a lesser degree: for example, fitness of 0.95 is achieved with just a single negative trajectory,
provided that sufficient expert trajectories are available (Figure 2b).

Finally, we assess the robustness and efficiency of the evolutionary process. As shown in Figure 3]
in the multi-task setting GRACE reliably converges to a high-fitness reward function in fewer than
100 generations (i.e., evolutionary search steps), demonstrating the effectiveness of our LLM-driven
refinement procedure.

GRACE outperforms other IRL and online RL: To validate the quality of the inferred reward
model, we compare against two approaches. First, we employ PPO [Schulman et al.| (2017), as a
representative algorithm for online RL, with both GRACE as a reward as well as a groundtruth

Under review as a conference paper at ICLR 2026

Train Test

1.0 EEeE— 1.0

0.8 0.8
[%] [%)]
(%] (%]
2 2
+ 0.6 + 0.6
[T [

0.4 0.4

20 40 60 80 20 40 60 80
Generations Generations
e AndroidControl BabyAl

Figure 3: Fitness vs Number of generations. Evolution of train and test fitness across evolution
generations, as defined by Algorithm |I|, for BabyAl (multi-level settings) and AndroidControl (bot-
tom) for "set alarm" task. For BabyAl, we provide 8 expert trajectories and 8 negative trajectories
for each task. Shading is standard deviation across 3 seeds. For these experiments, no online data is
added beyond the initial trajectories provided (M = 1).

sparse success reward. Clearly, the latter should serve as an oracle, while it does not benefit from
dense rewards.

As an IRL baseline, we compare against GAIL (Ho & Ermonl 2016)), that trains a policy whose
behavior is indiscriminable from the expert data, as judged by a learned discriminator. GAIL is
trained with a large dataset of 2,000 expert trajectories per task, substantially larger than our train
data of 8 expert trajectories.

As shown in Table [T] and 2] GRACE consistently matches or outperforms GAIL across all tasks
with lesser training data. On several BabyAl tasks, GRACE matches Oracle PPO with ground-
truth rewards, whereas GAIL completely fails. This demonstrates that the interpretable, code-based
rewards from GRACE are practically effective, enabling successful downstream policy learning. To
ensure a fair comparison, the agents for the GAIL baseline and GRACE are trained using the same
underlying PPO implementation, agent architecture and hyperparameters as the oracle. Performance
is measured by the final task success rate after le7 environment steps. No extra information or
environment code is provided in context to GRACE.

Similarly, we use the evolved reward function on the AndroidControl dataset to finetune our agent on
the Clock AndroidWorld tasks: ClockStopWatchPaused Verify, ClockStopWatchRunning and Clock-
TimerEntry. The agent obtains near perfect performance on the Stopwatch tasks zero-shot, but learn-
ing on our reward doesn’t decrease performance. The training curves for all tasks are reported in

Figure[d]

PPO GRACE w/ GRACE w/ GAIL w/ GAIL w/

GPT-40 Qwen3-Coder-30B 10 traj 200 traj

Hopper 2212 +54 2143+£80 2106 4+ 76 1902 + 183 2056 + 92
Walker 2675 +292 2072 £ 576 2229 4+ 600 79090 1982 4+ 101
Ant 6239 + 237 5707 £ 210 6085 + 804 3871 £408 5521 +674
Humanoid 6455+ 302 5809 + 106 5921 + 301 4772 £ 251 6521 £ 337

Table 1: Average returns on 4 MuJoCo (BRAX) continuous control tasks. Average and standard
deviation is reported across 5 different seeds. The total number of required LLM calls to recover a
reward for each task averages at 200 for both GPT-40 and Qwen3-Coder-30B.

Under review as a conference paper at ICLR 2026

1.0 Reward on Expert Trajectory

%]
§ 150 | oo Gen 1
S 08 1.25 Gen 2
%] 06 e (Gen 3
L g 1.00 | —— Gen4
o
a 20.75
504 — Genl 2
w
c Gen 2 0.50
] 0.2 e Gen 3 025
= 0.0 —— Gen 4 :

: 0.00

0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12
Total Timesteps le7 Timestep

Figure 5: Shaping Using the default reward recovered by GRACE occasionally leads to failure in
learning the correct behavior due to poor shaping. Through the targeted shaping in Phase 3, we
significantly improve final performance and speed of learning.

Task PPO GAIL GRACE g0.72

GoToRedBallNoDist 1.00 1.00 1.00 g 071 /\/
GoToRedBall .00 035 1.00 ©

PickupDist 0.31 0.15 0.32 2070

PickupLoc 0.21 0.00 0.26 2

GoToObj .00 0.92 1.00 S 069 . Ground Truth Reward
OpenDoorColor 1.00 0.98 1.00 s 0.68 GRACE Reward
OpenTwoDoors 1.00 0.37 1.00 ’

PlaceBetween (new) 0.09 0.0l 0.09 00 O otal Timesteps - 1e8
OpenMatchingDoor (new) 0.79 0.20 0.35

Multi-task 0.95 0.31 0.92

Figure 4: Training Curves for An-

. droidWorld Clock Tasks. Mean episode
Table 2: Success rates on selected BabyAl environ- (.« ver the 3 AndroidWorld clock

ments. GRACE compared against PPO and GAIL. (.. ClockStopWatchPaused Verify
GRACE uses 8 expert trajectories per task, while GAIL ClockStopWatchRunning, and Clock:
uses 2000. ’

TimerEntry.

GRACE generates well shaped rewards: We demonstrate GRACE’s ability to produce well-
shaped rewards that accelerate learning. For challenging, long-horizon tasks like OpenTwoDoors,
a correct but unshaped reward can lead to local optima where the agent gets stuck (Figure 3} "Gen
1"). By explicitly tasking the LLM to introduce shaping terms during Phase 3, GRACE refines the
reward to provide a denser learning signal. As shown in Figure[5] this targeted shaping dramatically
improves both the final performance and the speed of learning, allowing the agent to solve the task
efficiently. This confirms that GRACE not only finds what the goal is but also learns how to guide
an agent towards it.

GRACE Code Reuse: A key advantage of representing rewards as code is the natural emergence
of reusable functions that collectively form a domain-specific reward library. We study this phe-
nomenon in the multi-task BabyAl setting (Figure[6). In the early generations of evolutionary search,
GRACE actively generates many new modules to explore alternative reward structures. After gener-
ation 10, the rate of new module creation drops sharply. At this point, GRACE shifts toward reusing
the most effective, high-level modules it has already discovered.

To further illustrate this reuse, Figure[6] (right) shows call counts for a selected set of modules within
the evolving reward API. For instance, the Goal module, which summarizes a set of goals, is initially
used sparingly but becomes heavily invoked following a code refactor at generation 30. Likewise,
the agent_pos function is reused at least five times after its introduction. These trends demonstrate
that GRACE progressively builds a reward library that supports efficient multi-task generalization.

Under review as a conference paper at ICLR 2026

25
= agent_pos

15 20 go_to_reward
5 5 = |s_target
Q
c —g 15 | = Goal
2 104 2
% % 10
O 5 (@}

) = Reused Modules 5 \
. New Modules Lo6 o
10 20 30 40 50 60 10 20 30 40 50 60
Generations Generations

Figure 6: Module and function reuse across generations On the left, we show at each generation
step the number of newly created modules and the number of existing and thus reused modules from
prior rewards, contrasted with the fitness in the reward population. On the right, we show number of
times a module are being re-used, for a select set of modules.

5 DISCUSSION

Limitations A key limitation of GRACE is its limited scalability to high-dimensional state spaces
for evolving reward functions. First, generating a reward from high-dimensional observations (such
as pixels or waveform audio) directly requires the model to perform symbolic feature extraction.
Second, the amount of expert and suboptimal trajectories that can be passed to the LLM is limited
by its context length, which makes learning GRACE rewards from large datasets challenging.

Conclusion We introduce GRACE, a novel framework that leverages LLMs within an evolution-
ary search to address the critical challenge of interpretability in IRL. Our empirical results demon-
strate that by representing reward functions as executable code, we can move beyond the "black-box"
models of traditional IRL and produce rewards that are transparent, verifiable, and effective in RL
learning. We show that GRACE successfully recovers accurate and generalizable rewards from few
expert trajectories, in stark contrast to deep IRL methods like GAIL. This sample efficiency suggests
that the strong priors and reasoning capabilities of LLMs provide a powerful inductive bias. Further-
more, we demonstrate the framework’s practical utility by applying it to the complex AndroidWorld
environment, showing that GRACE can learn rewards for a variety of tasks directly from unlabeled
user interaction data with real-world applications.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we commit to making our code, datasets, and exper-
imental configurations publicly available upon acceptance of this paper. We have already included
extensive details within the paper itself. The appendix provides the full prompts used to interact
with the LLM for goal identification, initial reward generation, evolutionary mutation, and reward
shaping (Appendix . Furthermore, all hyperparameters required to reproduce our results are
listed in Appendix @

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning (ICML), pp. 1-8.
ACM, 2004.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,

10

Under review as a conference paper at ICLR 2026

Scott Gray, Nick Ryder, Michael Pavlov, Alethea Power, Lukasz Kaiser, Miljan Bavarian,
Clemens Winter, Phil Tillet, Felipe Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Guss, Alex Nichol, Igor Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Suyog Jain, William Saunders, Christopher Hesse,
Mark Carr, Aitor Lewkowycz, David Dohan, Howard Mao, Lily Thompson, Erica Frank, Joshua
Chen, Victor Butoi, David Hernandez, Liane DasSarma, Maxwell Chan, Mateusz Litwin, Scott
Gray, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 4299-4307, 2017.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and Pekka Marttinen. Generating code world
models with large language models guided by monte carlo tree search. Advances in Neural Infor-
mation Processing Systems, 37:60429-60474, 2024.

Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code. In Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=Y1XkzMJpPd.

Farama Foundation, Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente,
Lucas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Mini-
grid: Modular customizable reinforcement learning environments. https://github.com/
Farama-Foundation/Minigrid, 2025. Accessed: 2025-09-24.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/braxl

Daniel Fried, Joshua Ainslie, David Grangier, Tal Linzen, and Dani Yogatama. Incoder: A genera-
tive model for code infilling and synthesis. In International Conference on Learning Representa-
tions (ICLR), 2022.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, 1989.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, volume 29, 2016.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Martin Klissarov, Devon Hjelm, Alexander Toshev, and Bogdan Mazoure. On the modeling capabil-
ities of large language models for sequential decision making. arXiv preprint arXiv:2410.05656,
2024.

Raymond Li, Loubna Ben Allal, Yacine Jernite Zi, Denis Kocetkov, Chenxi Mou, Aleksandra Piktus,
Laura Weber, Wenhao Xiao, Jihad Bibi, Stella Biderman, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv e-prints, pp.
arXiv-2406, 2024.

11

https://openreview.net/forum?id=Y1XkzMJpPd
https://openreview.net/forum?id=Y1XkzMJpPd
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
http://github.com/google/brax
http://github.com/google/brax

Under review as a conference paper at ICLR 2026

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning (ICML), pp. 663—-670. Morgan
Kaufmann, 2000.

Erik Nijkamp, Richard Pang, Hiroaki Hayashi, Tian He, Baptiste Roziere, Canwen Xu, Susan Li,
Dan Jurafsky, Luke Zettlemoyer, Veselin Stoyanov, and Hyung Won Chung. Codegen: An open
large language model for code with multi-turn program synthesis. In International Conference on
Learning Representations (ICLR), 2022.

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025a.

Alexander Novikov, NgAén VAT , Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery, 2025b. URL https://arxiv.org/abs/2506.13131}

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander MAEdry, Alex
Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
loch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,
Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim
Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe

12

https://arxiv.org/abs/2506.13131

Under review as a conference paper at ICLR 2026

Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel
Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Work-
man, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas
Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail
Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Ran-
dall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmat-
ullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino,
Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez
Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia,
Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir
Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal
Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom
Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi,
Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276,

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and trans-
fer reinforcement learning. In International Conference on Learning Representations (ICLR),
2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Nathan Ratliff, J. Andrew Bagnell, and Martin Zinkevich. Maximum margin planning. In Proceed-
ings of the 23rd International Conference on Machine Learning (ICML), pp. 729-736. ACM,
2006.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/
abs/2307.10088.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A

13

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088

Under review as a conference paper at ICLR 2026

dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from pro-
gram search with large language models. Nature, 625(7995):468—475, 2024a. doi: 10.1038/
s41586-023-06924-6.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024b.

StAl'phane Ross, Geoffrey Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS), pp. 627-635, 2011.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML), 2017.

Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, and Jakob Nicolaus Foerster. Evil: Evolution
strategies for generalisable imitation learning, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems (NeurIPS), volume 12, pp. 1057-1063, 1999.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and match-
ing: A game-theoretic framework for closing the imitation gap. In International Conference on
Machine Learning, pp. 10022-10032. PMLR, 2021.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Had-
sell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 4499-4509, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 50265033,
2012. doi: 10.1109/IROS.2012.6386109.

David Venuto, Mohammad Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and
Ankit Anand. Code as reward: Empowering reinforcement learning with VLMs. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 49368-49387. PMLR, 21-27 Jul
2024a. URL https://proceedings.mlr.press/v235/venuto24a.html.

David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit
Anand. Code as reward: Empowering reinforcement learning with vims. arXiv preprint
arXiv:2402.04764, 2024b.

Yuxiang Wang, Yuchen Lin, Dongfu Jiang, Bill Y. Chen, Xiang Shen, Jidong Zhao, Xiang Yu, Chen
Li, Xiao Qin, and Jie Sun. LIm-blender: Ensembling large language models with pairwise ranking
and generation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2023.

14

https://proceedings.mlr.press/v235/venuto24a.html

Under review as a conference paper at ICLR 2026

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Multi-task reinforcement learning: A hierarchical
bayesian approach. In Proceedings of the 24th International Conference on Machine Learning
(ICML), pp. 1015-1022. ACM, 2007.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Abhay Zala, Jaemin Cho, Han Lin, Jachong Yoon, and Mohit Bansal. Envgen: Generating and
adapting environments via llms for training embodied agents. In Conference on Language Mod-
eling (CoLM), 2024.

William Zankner, Rohan Mehta, Eric Wallace, Jack Fitzsimons, Y. Yang, Alex Mei, Daniel Levy,
William S. Moses, and Joseph E. Gonzalez. Critique-out-loud reward models. 2024. URL
https://arxiv.org/abs/2408.11791l

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI), pp. 1433-1438. AAAI Press, 2008.

A APPENDIX

A.1 RELATIONS TO INVERSE REINFORCEMENT LEARNING

Proposition 2. Suppose m(s) = 1 iff s € Sy else m(s) = —1, then GRACE optimizes,
min, max, J(7g,mor) — J(mw, —m or), which is a variation of Eq.
Proof. Suppose m(s) = 1iff s € S, else m(s) = —1 is a mask over goal states. Then, the fitness
function from Eq. [3]can be re-written in terms of the policy return akin to Eq.[T}
f(r) = Eons, [r(s)] = Esns,, [r(s)] (5)
= ET~D+,SET[m(5)T(S)] - ET~D*,S€T[7m(S)T(S)] (6)
=J(mrg,mor)—J(m,—mor) 7

where m flips the reward value either if the state is non-goal and generated by the expert or it is a
goal and generated by the learned policy.

The operator m can either be defined in Phase 1 by the LLM, or it can default to m(s) = 1 iff
s € Sg (expert states) or m(s) = —1iff s € Sy, (learner states). Phase 2, the reward refinement
stage is maximizing f w.r.t the reward. Phase 3, on the other side, is maximizing the return of 7, or
minimizing its negative. Thus, GRACE attempts to solve:

minmax J(rg,mor) — J(m,—mor)
s T

A.2 GOAL IDENTIFICATION

Goal identification is the critical first step (Phase 1) of the GRACE framework, where an LLM
automatically labels states from expert demonstration trajectories (D) as either goal states (s,) or
non-goal states (s,4). This process creates the initial dataset that the evolutionary search uses to
refine the reward functions. We evaluated the effectiveness of this automated approach using gpt-4o

15

https://arxiv.org/abs/2408.11791

Under review as a conference paper at ICLR 2026

(OpenAT et al., [2024), with the results presented in Table [3] The findings show that providing the
model with textual representations of states is highly effective, achieving 94% accuracy. In contrast,
relying on image-based input alone was significantly less effective, with accuracy dropping to 49%.
However, it is likely that models with more comprehensive visual pre-training would be substantially
better at identifying goal states from image-only inputs. This is still much better than chance, as the
trajectories average around 20 steps. The experiment also tested performance on shuffled trajectories
to see if the model relied on temporal order. Accuracy with text input saw a minor drop to 88%,
indicating that while the model leverages the sequence of events, it is not entirely dependent on it to
identify goal states.

Table 3: Model Accuracy Comparison

gpt-4o w/
Metric Text Images Text and Images
Accuracy 0.94+0.24 0.49+0.38 0.88£0.34

Accuracy on Shuffled 0.88 +0.48 0.49 £ 0.50 0.75+0.43

In the more complex AndroidControl domain, GRACE showed a remarkable ability not only to
identify the goal state within a trajectory but also to refine the task’s textual instruction to accurately
reflect the demonstrated behavior. A few examples highlight this robustness:

* Refining Instructions to Match Behavior: GRACE resolves ambiguities between an in-
struction and the corresponding trajectory. For instance, in a trajectory where the user was
instructed to "set a timer" but did not start it, GRACE updated the instruction to explicitly
include a "don’t start the timer" clause. Similarly, when a user was asked to "set an alarm
for 9am" but also performed the extra step of naming the alarm, GRACE appended the
instruction to include the naming step, ensuring the final instruction precisely matched the
expert demonstration.

* Discarding Irrelevant Trajectories: The system correctly identifies and filters out trajec-
tories where the user’s actions are inconsistent with the instruction’s domain. When a user
was instructed to perform a task in the *Clock’ app but completed it in the *ClockBuddy’
app, GRACE identified the application mismatch. This allowed the trajectory to be filtered
from the dataset for the intended *Clock’ app task. A similar process occurred when a user
was given a nonsensical instruction like "give me directions for X in the clock app" and
then used Google Maps.

16

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL ONLINE RESULTS

Task PPO GAIL GRACE
OpenRedDoor 1.00 1.00 1.00
GoToObjS4 1.00 1.00 1.00

GoToRedBlueBall 0.96 0.40 0.99
GoToRedBallGrey 0.97 0.77 0.99

Pickup 0.10 0.00 0.09
Open 0.30 0.18 0.22
OpenRedBlueDoors 1.00 0.96 0.98
OpenDoorLoc 0.39 040 1.00
GoToLocalS8N7 0.64 0.39 0.97
GoToDoor 0.74 037 0.99

SortColors (new) 0.00 0.00 0.00

Table 4: Success rates on additional BabyAlI environments. The performance of our method,
GRACE, is compared against two key baselines: PPO, trained on the ground-truth reward, and
GAIL, trained using 2000 expert trajectories per task. GRACE’s performance is evaluated with 8
expert trajectories per task to demonstrate its high sample efficiency. All values represent the final
success rate at the end of training.

A.4 EXTENDED DISCUSSION AND FUTURE WORK

GRACE’s reliance on programmatic reward functions introduces several limitations, particularly
when compared to traditional deep neural network based approaches. These limitations also point
toward promising directions for future research.

Input modality While generating rewards as code offers interpretability and sample efficiency, it
struggles in domains where the reward depends on complex, high-dimensional perceptual inputs.
Code is inherently symbolic and structured, making it less suited for interpreting raw sensory data
like images or audio. For instance, creating a programmatic reward for a task like "navigate to the
object that looks most fragile" is non-trivial, as "fragility" is a nuanced visual concept. NN, in
contrast, excel at learning features directly from this kind of data. Programmatic rewards can also
be brittle: a small, unforeseen perturbation in the environment that violates a hard-coded assumption
could cause the reward logic to fail completely, whereas NNs often degrade more gracefully.

Data Quantity GRACE demonstrates remarkable performance with very few demonstrations.
This is a strength in data-scarce scenarios. However, it is a limitation when vast amounts of data are
available. Deep IRL methods like GAIL are designed to scale with data and may uncover subtle,
complex patterns from millions of demonstrations that would be difficult to capture in an explicit
program. While GRACE’s evolutionary search benefits from tight feedback on a small dataset, it is
not clear how effectively it could learn from a massive dataset.

Failure Cases Although GRACE is highly sample-efficient, it is not a magic bullet. For example,
in the BabyAI-OpenTwoDoors task, GRACE often proposed a reward that didn’t take into account
the order in which the doors were being opened. Similarly, in the new BabyAlI-SortColors task,
it would sometimes return a reward that only accounted for picking up and dropping both objects,
without paying attention to where they were being dropped. While these errors can be easily fixed
by providing a relevant negative trajectory or by treating all learner-generated states as negative
trajectories, they highlight that GRACE can still misinterpret an agent’s true intent based on expert
demonstrations alone.

Hybrid Approaches These limitations can be substantially mitigated by extending the GRACE
framework to incorporate tool use, combining the strengths of both systems. The LLM could be
granted access to a library of pre-trained models (e.g., object detectors, image classifiers, or seg-
mentation models). The LLM’s task would then shift from writing low-level image processing code

17

Under review as a conference paper at ICLR 2026

to writing high-level logic that calls these tools and reasons over their outputs. A final direction
involves generating hybrid reward functions that are part code and part neural network. The LLM
could define the overall structure, logic, and shaping bonuses in code, but instantiate a small, learn-
able NN module for a specific, difficult-to-program component of the reward. This module could
then be fine-tuned using the available demonstrations, creating a reward function that is both largely
interpretable and capable of handling perceptual nuance. By exploring these hybrid approaches,
future iterations of GRACE could retain the benefits of interpretability and sample efficiency while
overcoming the inherent limitations of purely programmatic solutions in complex, perception-rich
environments.

18

Under review as a conference paper at ICLR 2026

A.5 NEW BABYAI LEVELS

To evaluate the generalization and reasoning capabilities of GRACE and mitigate concerns of data
contamination from pre-existing benchmarks, we designed three novel BabyAl levels.

PlaceBetween The agent is placed in a single room with three distinct objects (e.g., a red ball, a
green ball, and a blue ball). The instruction requires the agent to pick up a specific target object
and place it on an empty cell that is strictly between the other two anchor objects. Success requires
being on the same row or column as the two anchors, creating a straight line. This task moves
beyond simple navigation, demanding that the agent understand the spatial relationship "between"
and act upon a configuration of three separate entities.

OpenMatchingDoor This level is designed to test indirect object identification and chained infer-
ence. The environment consists of a single room containing one key and multiple doors of different
colors. The instruction is to "open the door matching the key". The agent cannot solve the task by
simply parsing an object and color from the instruction. Instead, it must first locate the key, visually
identify its color, and then find and open the door of the corresponding color. This task assesses the
agent’s ability to perform a simple chain of reasoning: find object A, infer a property from it, and
then use that property to identify and interact with target object B.

SortColors The environment consists of two rooms connected by a door, with a red ball in one
room and a blue ball in the other. The instruction is a compound goal: "put the red ball in the
right room and put the blue ball in the left room". To make the task non-trivial, the objects’ initial
positions are swapped relative to their goal locations. The agent must therefore execute a sequence
of sub-tasks for each object: pick up the object, navigate to the other room, and drop it. This level
tests the ability to decompose a complex language command and carry out a plan to satisfy multiple,
distinct objectives.

19

Under review as a conference paper at ICLR 2026

A.6 HYPERPARAMETERS

Table 5: Hyperparameters for Training Baby Al with PPO

Parameter Value

Base Model Ilava-onevision-qwen2-0.5b-ov-hf
Gamma 0.999

Learning Rate 3e-5

Entropy Coef le-5

Num Envs 10

Num Steps 64

Episode Length | 100

PPO Epochs 2

Num Minibatch | 6

Table 6: Hyperparameters for Training AndroidWorld

Parameter Value
Base Model Qwen2.5-VL-3B-Instruct
LoRA Rank 512
LoRA Alpha 32
LoRA Dropout 0.1
Critic Hidden Size | 2048
Critic Depth 4
Gamma 0.999
Learning Rate 3e-5
Entropy Coef 0.0
Num Envs 16
Num Steps 16
Episode Length 20
PPO Epochs 2
Num Minibatch 2

Table 7: Hyperparameters for GRACE Evolution

Parameter Value
Population Size 20
Elite 4
Num Generations 100
Include expert trajectory chance | 0.25
Incorrect state only chance 0.5
Expert state only chance 0.75
Model gpt-4o

20

W =

(TS

16

18

28

28

29

30

@

1
32
33

34

Under review as a conference paper at ICLR 2026

A.7 EVOLUTION EXAMPLES

def _parse_colour_from_text (text: Optional[str]) -> Optional[int]:
if text is None:
return None

colour_words: Dict[str, int] = {
"red": O,
"green": 1,
"blue": 2,
B e "purple": 3,

"yellow": 4,
"orange": 5, # keep old mapping
"grey": 5, # alias for the observed colour code in the trajectory
"gray": 5,
}
lower = text.lower ()
for word, code in colour_words.items () :
if word in +exttoewer{r+ lower:

return code
return None

def _parse_goal_type (text: Optional[str]) -> str:
if text is None:
return "key"
txt = text.lower ()
if "ball" in txt:
return "ball"
if "box" in txt:
return "box"
return "key"

Figure 7: GRACE iteratively refines the initial BabyAlI reward function (iteration 0) to handle
unseen entities (iteration 10). Using execution traces, the agent fixes its color code mistake and
adds a new box entity.

from __ future__ import annotations

import re
from typing import Optional, Tuple

import numpy as np

COLOR2ID = {
"red": O,
"green": 1,
"blue": 2,

"purple": 3,

"yellow": 4,

"grey": 5,

"gray": 5, # US spelling

}

OBJECT2ID = {

"empty": O,
"wall": 1,
"floor": 2,
"door": 3,
"key": 5,
"ball": 6,
"box": 8,

"agent": 10,

Map MiniGrid direction codes (stored in the 3-rd channel of the agent cell)
to row/col deltas. Empirically direction 0 points *down/southx in the

provided trajectories.

DIR2VEC: dict[int, Tuple[int, int]] ={
0: (1, 0), # south
1: (0, 1), # east

21

Under review as a conference paper at ICLR 2026

35 ‘ 23 (-1, 0), # north

36 3 (0, -1), # west

37 1y

38

39 def _parse_goal (extra_info: str) -> Tuple[int, Optional[int]]:
40 ‘ """Return *(object_id, colour_id)* parsed from xextra_infox."""
41 if not extra_info:

42 raise ValueError ("extra_info must specify the target, e.g. ’'the red ball’.")
43

44 tokens = re.findall (r"[a-zA-Z]+", extra_info.lower())

45 obj_id: Optional[int] = None

46 col_id: Optional[int] = None

47 for tok in tokens:

48 +f—ebj—td—isNeomre—and—teok—3n—OBIECT2 TP

49 if tok in COLOR2ID and col_id is None:

col_id = COLOR2ID[tok]
tok in OBJECT2ID and obj_id is None:

w
.
h

52 obj_id = OBJECT2ID[tok]

53 =2 +—itd—isNeore—and—tok—in EORZ2ED

54 1+t LOR2EB{+eid

55 if obj_id is None:

56 raise ValueError (

57 f"Could not parse target object from extra_info=’{extra_info}’."
58)

59 return obj_id, col_id # colour may be None (wild-card)

60

61
62 | class Reward:

63 """Success whem definition (single-step, dense reward):

64 ‘ 100.0 4AS the xxfirstxx cell in front of the agent “s—either+

65 | —a&kS—em—rF—eadjacent (according to the

66 | L e e s L !

67 ‘ —&4&S direction stored in the third observation channel) contains a

68 | matching target hes—disappeared—fromthe observable grid(pickedup)-

69 |

70 | —Shepingr—e—73 He—withdthe Manhattan distancetothe eclosest

7 s e gt e e OF Joot L

72 ‘ <1.0 aAS shaping reward 1/(d+l) otherwise.

73 ‘ 0.0 4AS if either the agent or (a matching) ta s ewt—ef—views- not visible.

74

75 ‘ The implementation is modular so new goal

6 es can be handle extendin e ooku ables or

76 typ be handled by tending the OBJECT/COLOR lookup tabl by

77 ‘ replacing the xsuccess predicatex.

78 o

79

80 | SUCCESS—REWARD—100-0

81 ‘ def __init__ (self, extra_info: ©ptiematfstr} str = None):

82 ‘ seltftgt—ebi—id——setftgt—eceot—+d self._target_obj_id, self._target_colour_id =
_parse_goal (extra_info)

83

84 | def —eatl—{setf —state:r—np-ndarray) £loat & ble direct—eatl

85 | —return—self reward_fn{state’

86

87 def reward_fn(self, state: np.ndarray) -> float:

38 ‘ nwnstate: (H, W, 3) """

89 agent_pos = self._find_agent (state)

90 if agent_pos is None:

91 return 0.0

92

93 | $—mesk—of ot —target—objects—stitt—visibt

94 | tgt—mask = {stateft— 0} == self tgtobiidl s+

95 | tetef——t——selftgt—ecot—td

96 ‘ +

97 |

98 | if mot tagt maskanyi

9 | $—obtect—gon pteked—op arried

22

Under review as a conference paper at ICLR 2026

+ 1£ cycomoc pomann
retarh imEg ESS—REWARD

4 3o PEPSN Al n S

T—erstan Ehr 2 t—vistbt arget

P L s i = 1)

tgt—posttion Ap—argwheretegt—masky

Sl sy Has s + 5 1y

S=ocac) Ap-—abstEgt—posttions SFEeRE—POS) - Es=1

target_positions =

if target_positions.size ==

self._find_targets (state)

No matching target in view -> no shaping.

return 0.0

__
Success predicate &AS target must be

______ —_ R R —
if self. is_target_in_front (agent_pos, state)
return 100.0

______ — ———— J— _ —_—
Shaping: inverse Manhattan distance (< 1.0)
__

dists = np.abs(target_positions - agent_pos).sum(axis=1)

min_dist = int (dists.min())

HEmin—digt—<=—7dir

FCoC DomADD

return 1.0 / (1.0 + min_dist)

@staticmethod
def _find_agent (state: np.ndarray)
LU Rettrrr—(rowy H—of

locs = np.argwhere (statel:, :,
if locs.size ==

return None
return locs[0]

def _find _targets(self, state: np

"""Return an (N, 2) array of

obj_mask = state[:, :, 0] ==

if self._target_colour_id is not None

col_mask = state[:, :, 1]
mask = obj_mask & col_mask
else:

mask = obj_mask

return np.argwhere (mask)

def _is_target_in_front (self,

agent_pos:

-> Optional[np.ndarray]:

"""Locate the first agent
pixel—found; in the observation

(row, col)

0] == OBJECT2ID["agent"])

.ndarray) -> np.ndarray:

row/col positions of matching targets.

self._target_obj_id

== self._target_colour_id

np.ndarray, state:

or Nepe it

np.ndarray)

to the *nearestx target.

*Nonex if absent.

—> bool:

"""Return *Truex iff the cell directly in front of the agent matches target."""

row, col = agent_pos
agent_dir =
dcol =

f_col =

int (state[row, col, 2])
drow,
col + dcol

f_row, row + drow,

Out of bounds &ES cannot be success
if not (0 <= f_row < state.shape[0]

return False

Check object id
if state[f_row, f_col, 0]

return False

DIR2VEC.get (agent_dir, (1,

0))

!= self. target_obj_id:

Check colour if colour was specified.

23

default to south if unknown

and 0 <= f_col < state.shape[l]):

Under review as a

conference paper at ICLR 2026

if (

self._target_colour_id is not None

and state[f_row,
) g

return False

return True

f _col, 1] !'= self._target_colour_id

Figure 8: Example of code evolution across many generations.

24

Under review as a conference paper at ICLR 2026

A.8 GENERATED REWARDS

import json
import math
6 import re
7 from typing import Callable, List, Optional, Set, Tuple

8

9 # 77
10 # GENERIC & NORMALISATION HELPERS

Il ———=—=—===========================—-===—======o==============
12

13

14 def _contains_any (text: str, keywords) -> bool:

15 text_1 = text.lower ()

16 return any (k.lower() in text_1 for k in keywords)

17

18

19 def _has_stopwatch(text: str) —-> bool:

20 t = text.lower()

21 return any(p in t for p in ("stopwatch", "stop watch", "stop-watch"))
22

23

24 Tab-selection helpers ————————-————-————————
25

26

27 def _tab_selected(state: str, label: str) -> bool:

28 pattern = (

29 rf’ " (content_description|text) "\sx:\s*x"{label}" [*\n]*2?"is_selected"\sx:\s*true’
30)

31 return bool (re.search(pattern, state, re.I))

32

33

34 def _alarm_tab_selected(state: str) -> bool:

35 return _tab_selected(state, "Alarm") or _tab_selected(state, "Alarms")
36

37

38 def _timer_tab_selected(state: str) —-> bool:

39 return _tab_selected(state, "Timer")

40

41

42 def _stopwatch_tab_selected(state: str) -> bool:

43 return _tab_selected(state, "Stopwatch")

44

45

46 def _clock_tab_selected(state: str) —-> bool:

47 return _tab_selected(state, "Clock")

48

49

50 # ——————————————— Text normalisation helper —-————-----—-—--———-
51

52

53 def _normalize_time_text (txt: str) —-> str:

54 txt2 = txt.replace(";", ":")

55 txt2 = re.sub(r"\b([ap])\s* (?2:\.m\.[\.m|m)\b", r"\1lm", txt2, flags=re.I)
56 return txt2

57

58

Ll —======c==o=========
60 # TIMER / DURATION PARSING

6l

62
63
64 def _parse_requested_time(text: str) -> int:

65 text = text.replace("-", " ")

66 hours = minutes = seconds = 0

67 for patt, mult in (

68 (r" (\d+) \sxhour", 3600),

69 (r" (\d+) \s*xminute", 60),

70 (r" (\d+) \s*second", 1),

71) :

72 m = re.search(patt, text, re.I)
73 if m:

74 val = int (m.group(l)) % mult
75 if mult == 3600:

76 hours = val // 3600

71 elif mult == 60:

78 minutes = val // 60

79 elisel

25

Under review as a conference paper at ICLR 2026

80 seconds = val

81 if hours == minutes == seconds ==

82 m = re.search (r" (\d+)\s*-?\s*xmin", text, re.I)

83 if m:

84 minutes = int (m.group(1l))

85 else:

86 m = re.search(r" (\d+)", text)

87 if m:

88 minutes = int (m.group (1))

89 total = hours » 3600 + minutes * 60 + seconds

90 return total if total > 0 else 60

91

92

03
94 # ADDITIONAL HELPERS

[Mlli —======c==========c==========—==================—-=o=========

96
97
98 def _parse_adjust_timer_amount (instr: str) -> Optional[int]:

99 instr_1 = instr.lower ()

100 verb = r" (?:add|increase|extend|plus|up|extra|more|additional)"
101 unit = r" (hours?|minutes?|seconds?)"

102 patl = re.compile (rf"{verb}\s+ (\d+)\sx (?:more\s+) ?{unit}")
103 pat2 = re.compile (rf"by\s+ (\d+) \s*{unit}")

104 seconds: List[int] = []

105 for pat in (patl, pat2):

106 for m in pat.finditer (instr_1):

107 num = int (m.group (1))

108 u = m.group (2)

109 if u.startswith("hour"):

110 seconds.append (num * 3600)
111 elif u.startswith ("minute") :

112 seconds.append (num * 60)
113 else:

114 seconds.append (num)

115 if seconds:

116 return max(1l, min (seconds))

117 return None

118

119
120 def _parse_alarm_time (instr: str) -> Tuple[int, int, Optional[str]]:

121 instr_n = _normalize_time_text (instr)

122 instr_1 = instr_n.lower ()

123 m = re.search(r" (\d{1,2})\s*[:.]1\sx(\d{2})\s* (am|pm)?", instr_1)

124 if m:

125 h, minute, ap = int (m.group(l)), int (m.group(2)), m.group (3)

126 else:

127 m = re.search(r"\b(\d{1,2})\s* (am|pm) \b", instr_1)

128 if m:

129 h, minute, ap = int (m.group(l)), 0, m.group(2)

130 elsek

131 return 7, 0, "am"

132 if ap:

133 ap = ap.lower ()

134 if ap == "pm" and h != 12:

135 h += 12

136 if ap == "am" and h == 12:

137 h =0

138 return h % 24, minute, ap

139

140

141 def _extract_timer_components (state: str) -> Optional[Tuple[int, int, int]]:
142 m = re.search (r" (\d+) \s*xminutes?\s* (\d+) \s*xseconds", state, re.IGNORECASE)
143 if m:

144 minutes = int (m.group(1l))

145 seconds = int (m.group(2))

146 return (0, minutes, seconds)

147

148 m = re.search (r" (\d+)h\s* (\d+)m\s* (\d+)s", state, re.IGNORECASE)

149 if m:

150 hours = int (m.group (1))

151 minutes = int (m.group(2))

152 seconds = int (m.group(3))

153 return (hours, minutes, seconds)

154

155 # Case 3: "MM:SS" format, ensuring it’s not part of a timestamp (like 12:30 PM)
156 for mm_match in re.finditer (r" (\d{1,2}):(\d{2}) (?2!\s*[AaPp] [Mm])", state):
157 mm, ss = int (mm_match.group(l)), int (mm_match.group(2))

158 if not (0 <= ss < 60):

159 continue

160 context = state[mm_match.end() : mm_match.end() + 80].lower ()

26

229
230
231
232
233
234
235
236
237
238

239

Under review as a conference paper at ICLR 2026

if "minu
retu

te"
rn

(

in context or "timer" in context or "remaining"

0, mm, ss)

if not _timer_tab_selected(state):
return None

tokens = re.findall (r’"text"\s*:\sx" ([""]+)"",
tokens = [t.strip() for t in tokens]
for 1 in range(len(tokens) - 4):

if (

re.fullmatch (r"\d{1,2}",
and tokens[i + 1] == ":
and re.fullmatch(r"\d{2}",
and tokens[i + 3] == ":
and re.fullmatch(r"\d{2}",

s)

tokens[i])
tokens[i + 2])

tokens[i + 4])

h = int (tokens[i])
m_val = int (tokens[i + 2])
s = int (tokens[i + 4])
if 0 <= m_val < 60 and 0 <= s < 60:
return (h, m_val,
for 1 in range(len(tokens) - 2

if |

re.fullmatch (r"\d{1,2}",
and tokens[i + 1] == ":
and re.fullmatch (r"\d{2}",

m_va
s_va
if 0

return None

1 =
1 =
<=

int (tokens[1])

)3

int (tokens[i + 2])

s_val < 60:

return (0, m_val,

def _extract_timer_value(state: st
timer_components
if timer_ components:
timer_components

hh, mm,

return int (hh)

else:

SSs

return None

——— UI helpers

s_val)

r) —> int:

tokens[i])

tokens[i + 2])

state)

= _extract_timer_components (state)

* 3600 + int (mm)

* 60 + int (ss)

in context:

def _button_visible (state: str, label: str)

return bool (

re.search (rf’ " (content_description|text) "\sx:\sx"{label}"’,

def _timer_screen_visible (state: s
if _timer_tab_selected(state):

return T

rue

s = state.lower ()
return "remaining” in s or "minutes timer" in s

def _is_timer_running(state: str)
return _button_visible (state,

def _timer_keypad _mode (state: str)

return bool (re.search (r"\b\d{1l,2}h\s*\d{1,2}m\sx\d{1,2}s\b",

—> bool:

tr) —> bool:

—-> bool:
"Pause")

—> bool:

def _is_timer_ paused(state: str) -> bool:
if _timer_keypad_mode (state) :
return False

if _button_visible (state,

return T

rue

"Start")

if not _timer_screen_visible (state):

return False
s = state.lower ()
return "timer paused" in s or

240 def _timer_keypad_zero(state: str)

241

if not all(

("paused"

-> bool:

in s and

27

"timer"

in s)

state, re.I)

state))

and not _button_visible (state, "Pause"):

Under review as a conference paper at ICLR 2026

242 re.search (rf’ "text"\s+:\sx"{1bl}"’, state, re.I)

243 for 1lbl in ("hour", "min", "sec")

244)

245 return False

246 return len(re.findall (r’"text"\sx:\sx"0{2}"’, state)) >= 3
247

248

249 def _timer_deleted(state: str) —-> bool:

250 s = state.lower ()

251 if "no timers" in s:

252 return True

253 val = _extract_timer_value (state)

254 if val == 0 and not _is_timer_running(state):

255 return True

256 return _timer_keypad_zero (state)

257

258

259 def _stopwatch_running(state: str) -> bool:

260 return (

261 _button_visible (state, "Pause")

262 or _button_visible (state, "Stop")

263 or "stopwatch running" in state.lower ()

264)

265

266

267 def _stopwatch_time_zero(state: str) -> bool:

268 if re.search(r"\bO0{1,2}(?::0{2}){1,3}\b(?!:\d{2})", state):
269 return True

270 nums = re.findall (r’"text"\s*:\s*" (\d{2})"’, state)

271 return bool (nums) and all(n == "00" for n in nums)

272

273

274 def _timer_paused_notification(state: str) -> bool:

275 return bool (

276 re.search (r"the\s+clock\s+notification:\sxtimer", state, re.I)
277 or re.search(r"timer\s+paused", state, re.I)

278)

279

280

281 def _alarm_context_present (state: str) -> bool:

282 return _alarm_tab_selected(state) or bool (re.search(r"\balarm\b", state, re.I))
283

284

285 def _parse_new_timer_label (instr_1l: str) -> str:

286 for kw in (" as ", " named ", " called ", " name "):

287 if kw in instr_1:

288 part = instr_l.split (kw, 1) [1]

289 part = re.split(r"[.,;]|\bfor\b|\btimer\b", part, flags=re.I) [0]
290 return part.strip()

291 return ""

292
293
294 def _timer_label_ present (state: str, label: str) -> bool:

295 if not label:

296 return False

297 return bool (

298 re.search (

299 rf’ " (text|content_description) "\s*:\s*x"{re.escape(label)}"’, state, re.I
300)

301)

302

303

304 def _safe_json_dumps (obj) —-> str:

305 try:

306 return json.dumps(obj, ensure_ascii=False)

307 except Exception:

308 return json.dumps ({"error": "debug-serialization failed"})
309

310

311 def _any_alarm present (state: str) -> bool:

312 sl = state.lower ()

313 if "alarm set" in sl:

314 return True

315 if _alarm_tab_selected(state) and re.search(r"\b\d{1l,2}:\d{2}\s* (2:am|pm)\b", sl):
316 return True

317 return False

318

319

320 def _is_alarm_deleted(state: str) -> bool:

321 s = state.lower ()

322 return any (

28

Under review as a conference paper at ICLR 2026

323 re.search(p, s)

324 for p in (

325 r"alarm (deleted|removed|dismissed)",
326 r"\bno (active)?alarms?\b",

327 r"tap here to create an alarm",

328 r"alarm deleted",

329)

330)

331

332

333 def _snooze_completed(state: str) -> bool:

334 s_low = state.lower ()

335 if "alarm snoozed" in s_low:

336 return True

337 if re.search(r"snoozed\s+for\s+\d+", s_low):
338 return True

339 if re.search(r"\bsnooz (ing|ed)\b", s_low):
340 return True

341 if "select snooze duration" in s_low:

342 return True

343 return False

344

345

346 def _rename_dialog_open (state: str) -> bool:

347 s = state.lower ()

348 if "enter timer name" in s:

349 return True

350 has_buttons = re.search(r’"text"\s*:\s*" (ok|cancel)"’, state, re.I)
351 has_edit = re.search(r’"is_editable"\s*:\sxtrue’, state, re.I)
352 return bool (has_buttons and has_edit)

353

354

355 def _detect_alarm_time (state: str) —-> bool:

356 return bool (re.search (r"\b\d{1l,2}\s*:\s*\d{2} (?:\s*[ap]lm)?\b", state, re.I))
357

358

359 def _selected_weekdays(state: str) —-> Set[str]:
360 selected = set()

361 for key, full, abbrev in (

362 ("sunday", "Sunday", "S"),

363 "monday", "Monday", "M"),

364 "tuesday", "Tuesday", "T"),

365
366
367

"wednesday", "Wednesday", "W"),
"thursday", "Thursday", "T"),

(
(
(
(
("friday", "Friday", "E"),
(

368 "saturday", "Saturday", "S"),

369)8

370 patt = rf’ ("content_description"|"text")\s*:\sx" (?2:{full}|{abbrev})"[*\n]x2 ("
is_selected" |"is_checked") \sx*:\s*xtrue’

371 if re.search(patt, state, re.I):

372 selected.add (key)

373 return selected

374

375

376 def _alarm_time_present (state: str, hour24: int, minute: int, ap: Optional[str]):

377 s = state.lower () .replace("\u200a", "")

378 hl2 = hour24 % 12 or 12

379 patterns = [rf"\bO0*{hl2}:{minute:02d}\s* (?2:am|pm)2\b"]

380 if minute ==

381 patterns.append (rf"\b0*{hl12}\s* (?:am|pm) \b")

382 patterns.append (rf"\bOx {hour24}: {minute:02d}\b")

383 for p in patterns:

384 if re.search(p, s):

385 if ap and not re.search(rf"{ap}\b", s):

386 continue

387 return True

388 return False

389

390

391 # ———————————— NI BIRLPIR, oo e e e e e e e e e

392

393

394 def _day_toggle_buttons_visible (state: str) -> bool:

395 """Detect if the row of weekday toggle buttons is visible."""

396 matches = re.findall (r’"text"\sx:\s«"(S|M|T|W|F)"’, state)

397 unique = set (matches)

398 return len(matches) >= 5 and len(unique.intersection({"M", "T", "W", "F"})) >= 3

399

400

401 mm

402 # REWARD CLASS

29

Under review as a conference paper at ICLR 2026

403 F e
404

405

406 class Reward:

407 """Dense reward function for Google Clock tasks."""
408

409 _SHAPING_INC = 0.3

410 _ADJ_INC_THRESHOLD = 10

411

412 B
413 # INIT

414 e
415 def __init__ (self, extra_info: Optional[str] = None):
416 self.raw_instr: str = extra_info or ""

417 self.instruction: str = self.raw_instr.lower ()
418 self.instruction_norm_full = _normalize_time_text (self.raw_instr)
419 self.instruction_norm = self.instruction_norm_full.lower ()
420

421 # Task detection

422 self.task_type = self._infer task()

423

424 # Stopwatch flags

425 self.restart_mode = False

426 self._reset_seen = False

427

428 # Goal parsing / bookkeeping

429 self.goal_seconds = 0

430 self.goal_label = ""

431 self.goal_hour24 = 0

432 self.goal_minute = 0

433 self.goal_hms = (0, 0, 0)

434 self.goal_ap: Optional[str] = None

435 self.city_keyword = ""

436 self.city_keywords: List([str] = []

437 self.recurrence_days: Set[str] = set()

438 self.alarm any_time = False

439

440 # Timer-adjust bookkeeping

441 self.initial_timer_val: Optional[int] = None

442 self.prev_timer_val: Optional[int] = None

443 self.max_timer_val: Optional[int] = None

444 self.increments = 0

445 self.needed_increments = 0

446 self._countdown_seen = False

447

448 # Alarm creation flag

449 self._alarm_creation_seen = False

450

451 # delete-alarm bookkeeping

452 self._alarm _present_ever = False

453

454 # adjust-alarm bookkeeping

455 self.orig_hour24 = 0

456 self.orig _minute = 0

457 self._orig_seen = False

458

459 # pause-timer stability tracking

460 self._prev_timer_val_ for_ pause: Optional[int] = None
461 self._same_val_steps: int = 0

462

463 # snooze-specific

464 self._snooze_dialog_seen = False

465

466 # Generic bookkeeping

467 self.goal_achieved = False

468 self._best_level = 0

469 self._t =0

470 self._confirm _goal_seen False

471

472 # Map tasks to progress—functions

473 self._progress_fns: dict[str, Callable[[str], int]] = {
474 "reset_stopwatch": self._pl_reset_stopwatch,
475 "restart_stopwatch": self._pl restart_stopwatch,
476 "start_stopwatch": self._pl_start_stopwatch,
477 "pause_stopwatch": self._pl pause_stopwatch,
478 "pause_timer": self._pl pause_timer,

479 "delete_timer": self._pl delete_timer,

480 "delete_alarm": self._pl delete_alarm,

481 "add_city": self._pl_add_city,

482 "set_alarm": self._pl set_alarm,

483 "adjust_alarm": self._pl adjust_alarm,

30

Under review as a conference paper at ICLR 2026

484 "rename_timer": self._pl rename_timer,
485 }
486
487 # Goal-specific parsing / bookkeeping
488 if self.task_type == "set_timer" or self.task_type == "run_timer":
489 self.goal_seconds = _parse_requested_time (self.instruction)
490 h = self.goal_seconds // 3600
491 rem = self.goal_seconds % 3600
492 m = rem // 60
493 s = rem % 60
494 self.goal_hms = (h, m, s)
495 if self.task type == "adjust_timer":
496 inc_secs = _parse_adjust_timer_amount (
497 self.instruction_norm_full
498) or _parse_requested_time (self.instruction)
499 self.goal_seconds = max(l, inc_secs)
500 self.needed_increments = max(l, math.ceil (self.goal_seconds / 60)
501 if self.task_type == "rename_timer":
502 self.goal_seconds = _parse_requested_time (self.instruction)
503 self.goal_label = _parse_new_timer_label (self.instruction)
504 if self.task_type == "set_alarm":
505 explicit = re.search(
506 r"\d{1,2}(:\d{2})?\s*(am|pm)", self.instruction_norm_full, re.I
507)
508 if explicit:
509 self.alarm_any_time = False
510 self._parse_alarm_goal_time ()
511 else:
512 self.alarm_any_time = True
513 self.recurrence_days = self. parse_recurrence_days (self.instruction_norm)
514 if self.task_type == "adjust_alarm":
515 self.goal_hour24, self.goal_minute = self._parse_adjusted_alarm()
516 self.goal_ap = None
517 self.orig_hour24, self.orig_minute, _ = _parse_alarm_time (
518 self.instruction_norm_full
519)
520 if self.task_type == "add_city":
521 self.city_keyword = self._parse_city name(self.instruction) or "italy"
522 self.city_keywords = [self.city_keyword]
523 first = self.city_keyword.split () [0] if self.city_keyword else ""
524 if first and first not in self.city_keywords:
525 self.city_keywords.append (first)
526 if self.task_type == "reset_stopwatch":
527 if re.search(r"\brestart\b", self.instruction) or re.search(
528 r"start\s+(?:over|again)", self.instruction
529)8
530 self.restart_mode = True
531
532 I
533 # PUBLIC API
‘; # ,,
3s def reward_fn(self, state: str) -> float:
3 self. t += 1
if self.task_type == "set_alarm":

self._update_alarm creation_seen (state)
if self.goal_achieved:

return 100.0
if self.task_type in self._progress_fns:

return self._reward_ from_progress(self._progress_fns[self.task_typel, state)
if self.task_type == "set_timer" or self.task type == "run_timer":

return self._reward_timer (state, self.task_type == "set_timer")
if self.task_type == "adjust_timer":

return self._reward adjust_timer (state)
if self.task_type == "snooze_alarm":

return self._reward_snooze (state)
return 0.0

def debug_fn(self, state: str) -> str:
dbg = {
"step": self._t,
"task_type": self.task_type,
"goal_achieved": self.goal_achieved,
"best_level": self._best_level,

}

if self.task _type in {"set_timer", "run_timer", "adjust_timer"}:

dbg.update (
{
"goal_ seconds": self.goal_seconds,
"increments": self.increments,
"countdown_seen": self._countdown_seen,

31

Under review as a conference paper at ICLR 2026

565)

566 if self.task_type == "rename_timer":

567 dbg["goal label"] = self.goal_label

568 if self.task_type == "snooze_alarm":

569 dbg["dialog_seen"] = self._snooze_dialog_seen

570 return _safe_json_dumps (dbg)

571

572 R St

573 # TASK INFERENCE

574 B

575 def _infer_task(self) -> str:

576 instr = self.instruction

577 has_sw = _has_stopwatch (instr)

578

579 if has_sw and _contains_any(instr, ["pause", "stop"]):

580 return "pause_stopwatch"

581 elif has_sw and _contains_any (

582 instr, ["restart", "start over", "start again", "begin again"]
583) 8

584 return "restart_stopwatch"

585 if has_sw and _contains_any (instr, ["reset", "zero", "set to zero", "clear"]):
586 return "reset_stopwatch"

587 if has_sw:

588 return "start_stopwatch"

589

590 if |

591 (re.search(r"\btime\b", instr) or "clock" in instr)

592 and re.search(r"\bin\s+\w+", instr)

593 and not _contains_any (instr, ["timer", "alarm"])

594) 8

595 return "add_city"

596

597 if "timer" in instr:

598 if _contains_any (instr, ["delete", "remove", "clear"]):
599 return "delete_timer"

600 if _contains_any (instr, ["pause", "stop", "cancel"]):
601 return "pause_timer"

602 if _contains_any (instr, ["rename", "name", "called", "label"]):
603 return "rename_timer"

604 if re.search(

605 r"\badd\b[~*\n] *?\b\d+\s* (? :hour |minute|second) s?\s+timer", instr
606) :

607 dont_start_req = bool (

608 re.search (

609 r" (?:\b(?:don’ 2t |do\s+not) \s+ (?:start |run) \b) "
610 r"| (?:\bwithout\s+starting\b)"

611 r"| (?:\b(?:but|and) \s+don’ ?t\s+start\b)"

612 r"| (?:\bleave\s+it\s+paused\b)"

613 r"| (?:\bkeep\s+it\s+paused\b)",

614 instr,

615)

616)

617 if dont_start_req:

618 return "set_timer"

619 else:

620 return "run_timer"

621 if _contains_any(instr, ["increase", "extend", "more", "up"]):
622 return "adjust_timer"

623 if re.search(

624 r"\badd\b[*\n] *?\b (minutes? |hours?|seconds?)\b[*\n]*x?\bto\b[*\n]*?\btimer\b",
625 instr,

626) 8

627 return "adjust_timer"

628 return "run_timer"

629

630 if "snooze" in instr:

631 return "snooze_alarm"

632 if _contains_any(instr, ["delete", "remove"]) and "alarm" in instr:
633 return "delete_alarm"

634 if "alarm" in instr and _contains_any (

635 instr,

636 [

637 "delay",

638 "resched",

639 "push",

640 "move",

641 "change",

642 "shift",

643 "defer",

644 "later",

645 "increase",

32

Under review as a conference paper at ICLR 2026

646 1,

647) 8

648 return "adjust_alarm"

649 if "alarm" in instr:

650 return "set_alarm"

651

652 if _contains_any(

653 instr, ["add", "timezone", "time zone", "city", "world clock"]

654)z

655 return "add_city"

656 return "none"

657

658 def _update_alarm_creation_seen(self, state: str):

659 s = state.lower ()

660 if any(kw in s for kw in ("add alarm", "alarm time", "select time")):

661 self._alarm creation_seen = True

662

663 i ==m====m==s===s===ss==ss==sssss=s=s=sossssssssssssss=o==

664 # GENERIC reward helpers

665 i SEmeee e e e e e e e e e e e e e e e e S e e e e e e

666 def _reward_from_progress(self, fn: Callable[[str], int], state: str) -> float:

667 1lvl = fn(state)

668 if self.task_type == "set_alarm":

669 if 1vl >= 3:

670 if self._alarm_creation_seen:

671 self.goal_achieved = True

672 return 100.0

673 if self._confirm goal_seen or self._best_level >= 2:

674 self.goal_achieved = True

675 return 100.0

676 self._confirm_goal_seen = True

677 self._best_level = max(self._best_level, 2)

678 return 0.99

679 self._confirm goal_seen = False

680 if 1vl >= 3:

681 self.goal_achieved = True

682 return 100.0

683 if 1vl > self._best_level:

684 inc = (lvl - self._best_level) x self._ SHAPING_INC

685 self._best_level = 1lvl

686 return min(inc, 0.99)

687 return 0.0

688

689 e D D D IS e

690 # TIMER-specific dense reward

691 i Se=m===

692 def _reward_timer(self, state: str, start_req: bool) -> float:

693 reward = 0.0

694 if _timer_tab_selected(state):

695 reward += 0.2

696 current_val = _extract_timer_ components (state)

697 if current_val is None:

698 return min (reward, 0.99)

699 cur_hh, cur_mm, cur_ss = current_val

700 current_digit_string = f£"{cur_hh:02d}{cur_mm:02d}{cur_ss:02d}".1lstrip("0")

701 if current_digit_string == "":

702 current_digit_string = "0O"

703 goal_digit_string = f"{self.goal_hms[0]:02d}{self.goal_hms[1l]:02d}{self.goal_hms[2]:02
d}".lstrip("0")

704 if goal_digit_string == "":

705 goal_digit_string = "0"

706 running = _is_timer_ running(state)

707 if current_digit_string == goal_digit_string and running:

708 if start_req and running:

709 self.goal_achieved = True

710 return 100.0

711 if not start_req and not running:

712 self.goal_achieved = True

713 return 100.0

714 matching _digits = 0

715 for i in range (0, min(len(current_digit_string), len(goal_digit_string))):

716 if goal_digit_string[i] == current_digit_string[i]:

717 matching _digits += 1

718 elisek

719 # Stop counting as soon as a mismatch occurs

720 break

721 reward += (matching_digits / len(goal_digit_string)) * 0.7

722 return min (reward, 0.99)

723

724 e

725 # Other dense rewards (adjust_timer, snooze)

33

Under review as a conference paper at ICLR 2026

726 oo

727 def _reward_adjust_timer (self, state: str) -> float:

728 reward = 0.0

729 if _timer_screen_visible (state) :

730 reward += 0.2

731 current_val = _extract_timer_value (state)

732 if current_val is None:

733 return min (reward, 0.99)

734 if self.initial _timer_val is None:

735 self.initial_timer_val = self.prev_timer_val = self.max_timer_val = (
736 current_val

737)

738 return min (reward, 0.99)

739 if current_val > (self.max_timer_val or 0):

740 self.max_timer_val = current_val

741 diff_step = current_val - (self.prev_timer_val or current_val)
742 if diff_step > self._ADJ_INC_THRESHOLD:

743 self.increments += max(l, int (round(diff_step / 60.0)))
744 elif diff step < -1:

745 self._countdown_seen = True

746 self.prev_timer_val = current_val

747 net_increase_max = (self.max_timer_val or current_val) - self.initial_timer_val
748 fraction_by_inc = self.increments / max(l, self.needed_increments)
749 fraction_by_delta = net_increase_max / max(l, self.goal_seconds)
750 progress_fraction = min(1.0, max(fraction_by_inc, fraction_by_delta))
751 reward += 0.8 % progress_fraction

752 tol = max (2, int(self.goal_seconds x 0.05))

753 goal_reached_primary = (

754 self.increments >= self.needed_increments

755 or net_increase_max >= self.goal_seconds - tol

756)

757 committed = (

758 _is_timer_running(state) or _is_timer_ paused(state) or self._countdown_seen
759)

760 keypad = _timer_keypad_mode (state)

761 secondary_success = (

762 not goal_reached_primary

763 and net_increase_max >= 0.4 x self.goal_seconds

764 and self.increments >= 1

765 and self._countdown_seen

766 and committed

767 and not keypad

768)

769 if (goal_reached_primary or secondary_success) and committed and not keypad:
770 self.goal_achieved = True

771 return 100.0

772 return min (reward, 0.99)

773

774 def _reward_snooze (self, state: str) -> float:

775 s_low = state.lower ()

776 if "select snooze duration" in s_low:

777 self._snooze_dialog_seen = True

778 classic_done = (

779 "alarm snoozed" in s_low

780 or bool (re.search(r"snoozed\s+for\s+\d+", s_low))

781 or bool (re.search(r"\bsnooz (ing|ed)\b", s_low))

782)

783 row_done = (

784 self._snooze_dialog_seen

785 and "select snooze duration" not in s_low

786 and "snooze" in s_low

787 and bool (re.search (r"\b\d+\s+minutes?\b", s_low))

788)

789 if classic_done or row_done:

790 self.goal_achieved = True

791 return 100.0

792 reward = 0.0

793 if _alarm_tab_selected(state):

794 reward += 0.2

795 if re.search(r’" (content_description|text)"\sx:\sx"snooze"’, state, re.I):
796 reward += 0.3

797 if "select snooze duration" in s_low:

798 reward += 0.2

799 return min (reward, 0.99)

800

801 i ==m====mm=e=s=ssssss=sssssssss=osssssssssssesssosss ===

802 # Progress-level helpers (stopwatch/timer/alarm)

803 o

804 def _pl_reset_stopwatch(self, state: str) -> int:

805 if self.restart_mode:

806 if _stopwatch_running(state) and self._reset_seen:

34

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

875
876
877
878
879
880
881
882
883
884
885
886
887

Under review as a conference paper at ICLR 2026

return 3

if _stopwatch_time_zero (state):
self._reset_seen = True
return 2

if _button_visible (state, "Reset") and (

_stopwatch_tab_selected(state) or "stopwatch" in state.lower ()

return 1
return 0
if _stopwatch_time_zero (state) :
return 3
if _button_visible (state, "Reset") and (

_stopwatch_tab_selected(state) or "stopwatch" in state.lower ()

return 2

if _stopwatch_tab_selected(state) :
return 1

return 0

def _pl_pause_stopwatch(self, state: str) -> int:
if not _stopwatch_running(state):
return 3
if _stopwatch_tab_selected(state):
return 1
return 0

def _pl_restart_stopwatch(self, state: str) -> int:
running = _stopwatch_running(state)
at_zero = _stopwatch_time_zero (state)
if running and self._reset_seen:
return 3
if at_zero:
self._reset_seen = True
return 2
if _stopwatch_tab_selected(state):
return 1
return 0

def _pl_ start_stopwatch(self, state: str) -> int:
if _stopwatch_running(state):
return 3

if "stopwatch" in state.lower() or _stopwatch_tab_selected(state):

return 2

if _contains_any(state.lower(), ["the clock", ’"clock"’,
return 1

return 0

def _pl pause_timer(self, state: str) -> int:
if _is_timer_ paused(state):

return 3
current_val = _extract_timer_value (state)
if current_val is not None:
if self._ prev_timer_val_ for_pause == current_val:
self._same_val_steps += 1
elisekl
self._same_val_steps = 0
self._prev_timer_val_for_pause = current_val
else:
self._same_val_steps = 0

stable_and_visible = (
_timer_tab_selected(state)
and current_val is not None
and self._same_val_steps >= 1
and not _is_timer_running(state)
)
if stable_and_visible:
return 3

if _timer_paused_notification(state) and _timer_tab_selected(state)

return 3
if _timer_paused_notification(state):
return 2
if _is_timer_running(state):
return 2
if _timer_tab_selected(state) :
return 1
return 0

def _pl delete_timer (self, state: str) -> int:
if _timer_deleted(state):
return 3
if _contains_any (

35

"timer"]) :

Under review as a conference paper at ICLR 2026

888 state.lower (), ["delete", "remove", "clear", "aNAa", "backspace"”, "cancel"]
889) 8

890 return 2

891 if _timer_tab_selected(state) :

892 return 1

893 return 0

894

895 def _pl_delete_alarm(self, state: str) -> int:

896 s_low = state.lower ()

897 had_alarm _before = self._alarm present_ever

898 alarm_now = _any_alarm present (state) or _detect_alarm_time (state)
899 if alarm_now:

900 self._alarm_present_ever = True

901 if _is_alarm_deleted(state) and had_alarm_before:

902 return 3

903 if " delete" in s_low or "8SUS" in s_low or re.search(r"trash|remove", s_low):
904 return 2

905 if alarm_now:

906 return 1

907 return 0

908

909 def _pl_add_city(self, state: str) -> int:

910 city_seen = self.city_keywords and any (

911 re.search (rf"\b{re.escape (kw) } \b", state, re.I) for kw in self.city_keywords
912)

913 in_search = (

914 re.search(r"search for a city", state, re.I)

915 or "select time zone" in state.lower ()

916)

917 if city_seen and _clock_tab_selected(state) and not in_search:
918 return 3

919 if city_seen:

920 return 2

921 if _clock_tab_selected(state):

922 return 1

923 return 0

924

925 def _pl_set_alarm(self, state: str) -> int:

926 if self._alarm_goal_ met (state):

927 return 3

928 if "select time" in state.lower () or "alarm set for" in state.lower():
929 return 2

930 if _alarm_tab_selected(state) :

931 return 1

932 return 0

933

934 def _pl_adjust_alarm(self, state: str) -> int:

935 if not self._orig_seen and _alarm_time_present (

936 state, self.orig_hour24, self.orig_minute, None

937) 8

938 self._orig_seen = True

939 if (

940 _alarm_time_present (state, self.goal_hour24, self.goal_minute, None)
941 and self. orig_seen

942) 8

943 return 3

944 if "select time" in state.lower() or "alarm set for" in state.lower():
945 return 2

946 if _alarm_tab_selected(state) or self._orig_seen:

947 return 1

948 return 0

949

950 def _pl_rename_timer (self, state: str) -> int:

951 dialog_open = _rename_dialog_open (state)

952 label_seen = _timer_ label_present (state, self.goal_label)

953 if label_seen and not dialog_open:

954 return 3

955 if dialog_open:

956 return 2

957 if _timer_tab_selected(state):

958 return 1

959 return 0

960

961 i} ======ssssss=s==ssss=ss=================================

962 # Additional parsing / goal-checking helpers

963 i TEmmmmmemss—s—sssssss s ss s s sss s sssssssssss==

964 def _parse_recurrence_days(self, instr_1l: str) -> Set([str]:

965 days = {

966 "sunday",

967 "monday",

36

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

Under review as a conference paper at ICLR 2026

def

def

def

"tuesday",
"wednesday",
"thursday",
"friday",
"saturday",
"weekdays",
"weekday",
"week day",
"week days",
"weekends",
"every day",
"everyday",
}
found: Set[str] = set ()
for d in days:
if d in instr_1:
if d in {
"weekdays",
"weekday",
"week day",
"week days",
"every day",
"everyday",

found.update (

{"monday", "tuesday", "wednesday", "thursday", "friday"}
)
elif == "weekends":
found.update ({"saturday", "sunday"})

else:
found.add (d)
return found

_alarm_goal_met (self, state: str) —-> bool:
time & presence
if self.alarm_any_ time:
time_ok = _any_alarm_present (state)
elses
time_ok = _alarm_time_present (
state, self.goal_hour24, self.goal _minute, self.goal_ap
)
if not time_ok or not _alarm_context_present (state):
return False
recurrence handling
if not self.recurrence_days:
return True
exact match
if self.recurrence_days.issubset (_selected_weekdays (state)):
return True
lenient weekday rule
weekdays_set = {"monday", "tuesday", "wednesday", "thursday", "friday"}
if self.recurrence_days == weekdays_set and _day_toggle_buttons_visible (state):
if "not scheduled" not in state.lower(): # ensure days have been picked
return True
return False
_parse_alarm_goal_time (self) :
times = self._extract_times (self.instruction_norm_full)
if not times:
self.goal_hour24, self.goal_minute, self.goal_ap = _parse_alarm_time (
self.instruction_norm_full
)
return
alarm_pos = self.instruction norm.rfind("alarm")
chosen = next ((t[:3] for t in times if t[3] > alarm pos), times[0][:3])
self.goal_hour24, self.goal_minute, self.goal_ap = chosen
_parse_adjusted_alarm(self) -> Tuple([int, int]:

base_h, base_m, _ = _parse_alarm time(self.instruction_norm_full)
m = re.search(
r"\bby\s+ (\d+) \s* (hour |hours |minute |minutes) \b", self.instruction_norm
)
if m:
num = int (m.group (1))
unit = m.group (2)
delta = num x (60 if "hour" in unit else 1)
total = (base_h » 60 + base_m + delta) % (24 * 60)
return total // 60, total % 60

37

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

Under review as a conference paper at ICLR 2026

time_tokens:

pat = re.compile (r" (\d{1,2}) (2:[:.1\sx(\d{2})) ?\s* (am|pm) "
for mt in pat.finditer(self.instruction_norm) :
h, mnt, ap = int(mt.group(l)), int (mt.group(2)
if ap == "pm" and h != 12:
12
"am" and h == 12:
time_tokens.append((h % 24, mnt))
if len(time_tokens) >= 2:
return time_tokens[1]
return base_h, base_m
@staticmethod
def _parse_city name (instr_1l: str) -> str:

List [Tuple[int,

int]]

[

parts = instr_1l.split ("add", 1)

if len(parts) >= 2:
tokens =
city [1
for w in tokens:
if w in {"the",
continue
if w in {
"time",
"timezone",
"zone",
neity",
"in",
"to",
"for",
"app",
"ont,
"world",
"country",

break
city.append (w)
if city:
return "
in " in instr_1:
_, after
tokens =
city []
for w in tokens:
if w in {"the",
continue
wd w.rstrip(".,;
if wd in {
"time",
"timezone",
"zone",
"city",
"for",
"app",
"on",
"world",
"country",

if M

after.strip()

break
city.append (wd)
return " ".join(city) .
return ""

@staticmethod

def _extract_times (instr:
instr_n
pat
res
for

str)

[]
m
h, minute, ap
h24 = h % 12 + (12 if
res.append ((h24 % 24,
return res

wan
a’y

instr_1l.split ("

nan
aty

minute,

parts[1l].strip().split ()

"an"}:

".Jjoin(city) .strip()

in
.split ()

"1

"an"}:

)

strip()

—> List[Tuple[int, int,

_normalize_time_text (instr)
re.compile (r" (\d{1,2}) (2:[:.1\sx(\d{2})) ?\s* (am|pm) ",

in pat.finditer (instr_n):
int (m.group(l)),

int (m.group (2)
ap == "pm" else 0)
ap, m.start()))

or 0),

str,

or 0),

re.I)

mt .group (3) . lower ()

int]]:

re.I)

m.group (3) . lower ()

Listing 1: Android Control Generated Reward.

38

Under review as a conference paper at ICLR 2026

A.9 PROMPTS

Goal Identification Prompt

Given this reward code: {reward_code}

Trajectory:
{trajectory}

Please analyze the state sequence and the agent’s instruction.
Identify the index of the goal state. The state indices are l-based.

OUTPUT FORMAT:

Answer in a json format as follows:

"reasoning’: Explain your reasoning for choosing the goal state(s).
"goal_state_indexes’: A list of integers representing the l-based
index of the goal state(s), or -1 if no goal state is present.

Prompt 1: The prompt for identifying the goal state(s) within a trajectory using a given reward
function.

39

Under review as a conference paper at ICLR 2026

LLM Initial Reward Generation

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior.

Requirements:
* Write self-contained Python 3.9 code
* Always return rewards >= 0

* Make the function generic enough to handle variations
(different positions, orientations, etc.)

* Design for modularity - you might extend this reward later to
handle multiple goal types

* Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Environment Details:
{env_code}, {import_instructions}, {state_description}

Trajectories
{expert_trajectories}

Key Instructions:
1. Analyze the trajectory to understand what constitutes success
2. Identify intermediate progress that should be rewarded

3. Create utility functions for reusable reward components

The code will be written to a file and then imported.
OUTPUT FORMAT:
Answer in a json format as follows:

"reasoning’: Given the reason for your answer
"reward_class_code’: Code for the Reward function class in the
format:

imports
<imports_here>
utils functions
<utils functions here>
reward function
class Reward:
def _ _init_ (self, extra_info=None) :
<code_here>

def reward_fn(self, state):
<code_here>

def debug_fn(self, state):
<code_here>

The Reward class will be initialized with the extra_info argument.
Describe in the comments of the class the behaviour you are trying to
reproduce.
reward_fn and debug_fn receive only state as argument. The debug_fn
should return a string that will be printed and shown to you after
calling reward_fn on each state. You can print internal class
properties to help you debug the function. Extract any needed
information from the state or store it in the class. The Reward
class will be re-initialised at the beginning of each episode.

Prompt 2: Prompt to generate the initial set of rewards

40

Under review as a conference paper at ICLR 2026

Evolution Mutation Prompt

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior.

Requirements:

* Write self-contained Python 3.9 code

* Always return rewards >= 0

* Make the function generic enough to handle variations
(different positions, orientations, etc.)

* Design for modularity - you might extend this reward later to
handle multiple goal types

* Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Original Reward Code:
{{code}}

{{import_message}}
{{state_description}}

CRITICAL: Incorrect Trajectories

The reward function above FAILED on the following trajectories. It
either assigned a high reward to a failed trajectory or failed to
assign the highest reward to the correct goal state. The predicted
rewards for each step are shown.

Change the reward function to fix these errors. The goal is to
make the reward function correctly identify the goal state (or lack
thereof) in these examples.

Key Instructions:
1. Analyze the trajectory to understand what constitutes success
2. Identify intermediate progress that should be rewarded
3. Create utility functions for reusable reward components
4

Implement goal switching logic using extra_info to determine
which reward function to use

al

Reuse existing utilities where possible

6. Make sure the logic you write generalises to variations in
‘extra_info?

{incorrect_trajectories}

{expert_traj_str}

Now, provide the mutated version of the reward function that
addresses these errors.

OUTPUT FORMAT:

Answer in a json format as follows:

"reasoning’: Briefly explain the corrective change you made.
{REWARD_OUTPUT_FORMAT}

{REWARD_EXTRA_INFO}

Prompt 3: The prompt used for evolutionary mutation, providing feedback on incorrect trajectories.

41

Under review as a conference paper at ICLR 2026

Evolution Shaping Prompt

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior. Requirements:

* Write self-contained Python 3.9 code
* Always return rewards >= 0

* Make the function generic enough to handle variations
(different positions, orientations, etc.)

* Design for modularity - you might extend this reward later to
handle multiple goal types

* Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Original Reward Code:
{env_code}

{import_message}
{state_description}

CRITICAL: Incorrectly Shaped Trajectories

The reward function above is not shaped optimally on the following
trajectories. This is an expert trajectory, so the reward should
monotonically increase from one state to the next. The predicted
rewards for each step are shown.

Change the reward function to fix these errors.

{incorrect_expert_trajectories}

Now, provide the mutated version of the reward function that
addresses these errors.

OUTPUT FORMAT:

Answer in a json format as follows:

"reasoning’: Briefly explain the corrective change you made.
{REWARD_OUTPUT_FORMAT}

{REWARD_EXTRA_INFO}

Prompt 4: The prompt used for refining reward shaping based on expert trajectories.

A.10 LLM USAGE STATEMENT

We wish to disclose the role of LLMs in the preparation of this work to ensure transparency.

Manuscript Writing We employed LLMs to assist in the writing process. This included rephras-
ing sentences and paragraphs to enhance clarity and flow, and checking for grammatical errors and
stylistic consistency. While LLMs helped refine the presentation of our ideas, all core arguments,
scientific claims, and the overall structure of the paper were developed by the human authors.

Code Development and Debugging In the software development process, LLMs were used as
a coding assistant. This involved generating specific utility functions based on detailed prompts,
providing explanations for complex error messages, and suggesting alternative implementations for
performance or readability improvements. The overall software architecture and core algorithms
were designed and implemented by the human authors, who verified and tested all LLM-assisted
code.

42

	Introduction
	Related Works
	Method
	Background
	GRACE

	Experiments
	Experimental Setup
	Analysis

	Discussion
	Reproducibility Statement
	Appendix
	Relations to Inverse Reinforcement Learning
	Goal Identification
	Additional Online Results
	Extended Discussion and Future Work
	New BabyAI Levels
	Hyperparameters
	Evolution Examples
	Generated Rewards
	Prompts
	LLM Usage Statement

