
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRACE: A LANGUAGE MODEL FRAMEWORK FOR
EXPLAINABLE INVERSE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse Reinforcement Learning (IRL) aims to recover Reward Models from ex-
pert demonstrations, but traditional methods yield "black-box" models that are
difficult to interpret and debug. In this work, we introduce GRACE (Generating
Rewards As CodE), a method for using code Large Language Models (LLMs)
within an evolutionary search to reverse-engineer an interpretable, code-based re-
ward function directly from expert trajectories. The resulting reward function is
executable code that can be inspected and verified. We empirically demonstrate
that GRACE can efficiently learn highly accurate rewards in the multi-task setups
as defined by two benchmarks, BabyAI and AndroidWorld. Further, we demon-
strate that the resulting reward leads to strong policies compared to both com-
petitive Imitation Learning and online RL approaches with groundtruth rewards.
Finally, we show that GRACE is able to build complex reward APIs in multi-task
setups.

1 INTRODUCTION

The performance of modern Reinforcement Learning (RL) agents is determined by, among other
factors, the quality of their reward function. Traditionally, reward functions are defined manually as
part of the problem specification. In many real-world settings, however, environments are readily
available while reward functions are absent and must be specified. Manually designing rewards
is often impractical, error-prone, and does not scale, particularly in contemporary multi-task RL
scenarios (Wilson et al., 2007; Teh et al., 2017; Parisotto et al., 2016).

A natural alternative is to automate reward specification by learning a reward model from data. The
dominant paradigm here is Inverse Reinforcement Learning (IRL), which attempts to infer a reward
model from observations of expert behavior (Ng & Russell, 2000; Christiano et al., 2017; Ziebart
et al., 2008). In the era of Deep RL, approaches such as GAIL (Ho & Ermon, 2016) represent
rewards with deep neural networks. While effective, these reward functions are typically opaque
black boxes, making them difficult to interpret or verify (Molnar, 2020). Moreover, IRL methods
often require substantial amounts of data and often lead to inaccurate rewards (Sapora et al., 2024).

An alternative representation that has recently gained traction is using code to express reward mod-
els (Venuto et al., 2024a; Ma et al., 2023). These approaches leverage code-generating Large Lan-
guage Models (LLMs) and human-provided task descriptions or goal states to generate reward pro-
grams (Venuto et al., 2024a). Subsequently, the generated rewards are verified (Venuto et al., 2024a)
or improved using the performance of a trained policy as feedback (Ma et al., 2023). However,
this prior work has not investigated whether it is possible to recover a reward function purely from
human demonstrations in an IRL-style setting, without utilizing any explicit task description or
domain-specific design assumptions.

In this work, we address the question of how to efficiently infer rewards-as-code from expert demon-
strations using Large Language Models (LLMs). We propose an optimization procedure inspired by
evolutionary search (Goldberg, 1989; Eiben & Smith, 2003; Salimans et al., 2017; Romera-Paredes
et al., 2024a; Novikov et al., 2025b), in which code LLMs iteratively introspect over demonstrations
to generate and refine programs that serve as reward models. This perspective effectively revisits the
IRL paradigm in the modern context of program synthesis with LLMs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our contributions are threefold. We first demonstrate that code LLMs conditioned on expert demon-
strations can produce highly accurate reward models. These rewards generalize well to held-out
demonstrations and are well-shaped, providing informative intermediate signals rather than merely
verifying final success criteria. We further show that the approach is sample-efficient: accurate re-
wards are obtained from relatively few demonstrations, in contrast to IRL methods based on neural
networks that typically require large amounts of training data. More importantly, directly using
demonstrations means no domain knowledge or human-in-the-loop guidance is manually specified
during reward generation.

Second, we show that the learned rewards enable training of strong policies. We perform our eval-
uations in two domains: the procedurally generated navigation environment BabyAI (Chevalier-
Boisvert et al., 2018) and the real-world device control environment AndroidWorld (Rawles et al.,
2024) demonstrate that GRACE outperforms established IRL approaches such as GAIL (Ho & Er-
mon, 2016) as well as online RL with ground-truth rewards (Schulman et al., 2017). This highlights
both the efficiency of GRACE in learning rewards and its promise for building capable agents across
diverse domains.

Finally, by representing rewards as code, GRACE inherits additional advantages. The resulting re-
wards are interpretable and verifiable by humans, and, when inferred across multiple tasks, naturally
form reusable reward APIs that capture common structure and enable efficient multi-task general-
ization. Our analysis shows that as the evolutionary search progresses, GRACE shifts from creating
new functions to heavily reusing effective, high-level modules it has already discovered, demon-
strating the emergence of a modular code library.

2 RELATED WORKS

LLMs for Rewards A common way to provide verification/reward signals in an automated fashion
is to utilize Foundation Models. LLM-based feedback has been used directly by Zheng et al. (2023)
to score a solution. Additionally, an LLM can be used to a critique examples (Zankner et al., 2024).
Comparing multiple outputs in a relative manner has been also explored by Wang et al. (2023).
Note that such approaches use LLM in a zero shot fashion with additional prompting and potential
additional examples. Hence, they can utilize only a small number of demonstrations at best. In
addition to zero shot LLM application, it is also common to train reward models, either from human
feedback (Ouyang et al., 2022) or from AI feedback (Klissarov et al., 2023; 2024). Note that such
approaches require training a reward model that isn’t interpretable and often times require a larger
number of examples.

Code as Reward As LLMs have emerged with powerful program synthesis capabilities (Chen et al.,
2021; Austin et al., 2021; Li et al., 2023; Fried et al., 2022; Nijkamp et al., 2022) research has turned
towards generating environments for training agents Zala et al. (2024); Faldor et al. (2025) for var-
ious domains and complexities. When it comes to rewards in particular, code-based verifiers use a
language model to generate executable Python code based on a potentially private interface such as
the environment’s full state. Because early language models struggled to reliably generate syntacti-
cally correct code, the first code-based verifiers (Yu et al., 2023; Venuto et al., 2024b) implemented
iterative re-prompting and fault-tolerance strategies. More recent approaches focus on progressively
improving a syntactically correct yet suboptimal reward function, particularly by encouraging ex-
ploration (Romera-Paredes et al., 2024b; Novikov et al., 2025a). Other approaches such as Zhou
et al. (2023); Dainese et al. (2024) use search in conjunction with self-reflection (Madaan et al.,
2023) to provide feedback.

Inverse Reinforcement Learning (IRL) Early approaches infer a reward function by requiring the
expert policy to outperform all alternatives (Ng & Russell, 2000). While related to our formulation,
our representation (code) and our optimization strategy (evolutionary search) are fundamentally
different. Subsequent works have focused on directly learning policies without explicit reward re-
covery (Abbeel & Ng, 2004), while incorporating entropy regularization (Ziebart et al., 2008) or
leveraging convex formulations (Ratliff et al., 2006). In contrast, GRACE benefits from implicit
regularization through its symbolic reward representation, though evolutionary search provides no
optimization guarantees. More recently, Imitation Learning (IL) has achieved considerable practical
success (Ross et al., 2011), often by training a discriminator to distinguish expert from non-expert
trajectories (Ho & Ermon, 2016; Swamy et al., 2021). While such discriminators define implicit
rewards, our approach instead operates with explicit reward representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHOD

3.1 BACKGROUND

Reinforcement Learning We consider a finite-horizon Markov Decision Process (MDP) (Put-
erman, 2014) parameterized by M = ⟨S,A, T, r⟩ where S, A are the state and action spaces,
T : S × A → ∆(S) is the transition operator, and R is a reward function. The agent’s behavior is
described by the policy π : S → ∆(A). Starting from a set of initial states S0 ⊂ S, the agent takes
the action a ∼ π(s) at s, receives a reward r(s) and transitions into state s′ ∼ T (s, a).

The performance of the agent is measured with expected cumulative per-timestep rewards, referred
to as return:

J(π, r) = Eτ∼π,T [

H∑
t=1

r(st)] (1)

where τ are trajectory unrolls of horizon H of the policy π inM. An optimal agent can be learned
by maximizing Equation (1) via gradient descent with respect to the policy, also known as policy
gradient (Sutton et al., 1999; Schulman et al., 2017).

Inverse Reinforcement Learning If the reward r is not specified, it can be learned from demon-
strations of an expert policy πE . In particular, the classical IRL objective learns a reward whose
optimal return is attained by the expert (Ng & Russell, 2000; Syed & Schapire, 2007):

min
π

max
R

J(πE , r)− J(π, r) (2)

More recent Imitation Learning (IL) approaches learn a discriminator that distinguishes between
expert and non-expert demonstrations (Ho & Ermon, 2016; Swamy et al., 2021). The likelihood
of the agent’s data under the trained discriminator can be implicitly thought of as a reward. These
approaches utilize gradient based methods to optimize their objectives.

Evolutionary search As an alternative for cases where the objective is not readily differentiable,
gradient-free methods can be employed. One such method is evolutionary search, which maintains a
set of candidate solutions (called a population) and applies variation operators to improve it. These
operators include mutation, where a hypothesis is partially modified, and recombination, where
two hypotheses are combined to produce a new one. Each variation is evaluated using a fitness
function, which measures the quality of a given hypothesis. Starting with an initial population,
evolutionary search repeatedly applies these variation operators, replacing hypotheses with higher-
fitness alternatives.

In this work, we focus on inferring reward functions, represented as Python code, from a set of
demonstrations. While this setup is related to IRL, representing rewards as code prevents us from
applying gradient-based methods commonly used in IRL. For this reason, we adopt evolutionary
search as our optimization method.

3.2 GRACE

We propose GRACE - Generating Rewards As CodE, an interpretable IRL framework that gener-
ates a reward function as executable Python code. Initially, an LLM analyzes expert and random
trajectories to optionally identify goal states (Phase 1) and generates a preliminary set of reward
programs. The step of goal identification is optional and can be skipped in favor of directly querying
the LLM for a reward function which best matches the expert trajectories. This initial set is then
iteratively improved through evolutionary search, where the LLM mutates the code based on mis-
classified examples to maximize a fitness function (Phase 2). Finally, an RL agent is trained using
the refined reward, and the new trajectories it generates are used to further expand the dataset and
further improve the reward function (Phase 3). The overall process is illustrated in Figure 1 and
detailed below and in Algorithm 1

Phase 1: Initialization The initial reward code generation by GRACE is based on a set of demon-
stration trajectoriesD+ and a set of random trajectoriesD−. The former is generated using an expert
policy or human demonstrations depending on the concrete setup, while the latter is produced by a
random policy. Note that with a slight abuse of notation we will use D to denote interchangebly a
set of trajectories as well the set of all states from these trajectories.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the GRACE framework. (a) The expert, negative and extra data (if any) is
used to identify goal states. By default, all expert states are classified as goal states and all negative
states as non-goal states (b) The goal and non-goal states are used to generate reward functions
through an evolutionary procedure. The rewards are iteratively refined by feeding the examples
misclassified by the reward. (c) An agent is trained with online RL using the converged reward; the
data it sees during the training is classified by the LLM into D+,D− and used to further improve
the reward.

The language model is prompted with a random subset of D+ and, optionally, extra information
available about the environment (e.g. its Python code or tool signature), to produce two artifacts:

Initial rewards: The LLM generates an initial set Rinit of reward functions. Each function
r ∈ Rinit is represented as Python code:

def reward(state: string) -> float:
<LLM produced code>

(Optional) Goal states: The LLM analyzes the states from expert demonstrations to identify the
subset of goal states Sg ⊆ D+ that solve the task - these are positive samples. All remaining
non-goal states Sng = {D+ \ Sg} ∪ D− are initially treated as negative samples.
designed to assign high values to goal states Sg and low values to non goal ones Sng . This set of
rewards is treated as the population in the subsequent evolution phase.

Phase 2: Reward Refinement through Evolutionary Search GRACE uses Evolutionary Search
to obtain rewards that best explain the current set of goal and non goal states. This is achieved by
mutating the current reward populationR using a code LLM and retaining rewards with high fitness.

The fitness f of a reward function r measures how well this function assigns large values to goal and
small values to non-goal states, akin to what would be expected from a meaningful reward:

f(r) = Es∼Sg
[r(s)]− Es∼Sng

[r(s)] (3)

In practice, to normalize the fitness computation, we bound the reward signal. Any reward value
greater than or equal to a predefined r(s) ≥ τ is treated as 1, and any value below is treated as 0 for
the purpose of this calculation.

The mutation operator m of a reward, that is used to improve the current reward population, is
based on an LLM that is prompted to introspect the reward code and address failures. To do so it is
provided with several inputs pertaining to the source code of the reward (if available), misclassified
states, and additional debugging information:

m(r) = LLM(source(r), info, prompt) (4)

In more detail, source(r) is the Python code for the reward. The info = (sg, r(sg), se, debug(r, sg))
is intended to focus the model on failures by honing onto states misclassified by the reward. It con-
sists of a sequence of misclassified states s ∈ S, their reward value r(s), as well as a debugging info
debug(r, s) produced by printing intermediate values during the execution of r on the misclassified
state s. The composition of this feedback is intentionally varied; each prompt contains a different

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

number of examples, presented as either individual states or full trajectories. To help the model dis-
criminate between true and false positives, prompts containing a false positive are augmented with
an expert state se ∼ D+.

We repeatedly apply the above mutation operation to modify the reward population R to improve
its fitness. In more detail, we repeatedly sample a reward r ∈ R with probability expF (r)∑

r′∈Ri
P

exp(F (r′)) .

Subsequently, we apply the mutation and keep the new reward function only if it has a higher fitness
than other already created rewards. After K mutations, we return the reward function with highest
fitness r∗ = argmaxr∈R{f(r)}. This phase is presented as function EVOSEARCH in Algorithm 1.

Phase 3: Training Trajectory Expansion via Reinforcement Learning The optimal reward r∗

above is obtained by inspecting existing demonstrations. In order to further improve the reward, we
ought to collect further demonstrations by training a policy πr∗ using the current optimal reward r∗;
and use this policy to collect additional data Dr∗ .

In more detail, we employ PPO (Schulman et al., 2017) to train a policy in the environment of
interest. As this process can be expensive, we use a predefined environment interaction budget N
instead of training to convergence. After obtaining these additional trajectories, we use the same
process as described in Sec. (3.2, Phase 1) to identify goal Sg∗ and non-goal states Sng∗ . The new
trajectories are likely to contain new edge cases and examples of reward hacking, if any. These are
used to further refine the reward population as described in the preceeding Sec. (3.2, Phase 2.1).
The process terminates when the RL agent achieves a desired level of performance. This phase is
presented as function DATAEXPAND in Algorithm 1.

The final algorithm, presented in Algorithm 1, consists of repeatedly performing Evolutionary
Search over reward population R followed by data expansion using RL-trained policy. Each it-
eration is called a generation.

Additional reward shaping When the reward function offline performance onD doesn’t translate
to good online RL performance, we assume that the reward signal is poorly shaped, and additional
refinement is required. In these cases, the LLM’s info in Eq. 4 is augmented beyond misclassified
states to include failed trajectory examples from Dr∗ . To achieve this, we instruct the LLM to
reshape the reward function, using expert trajectories as a reference, so that it provides a signal that
increases monotonically towards the goal.

Discussion The above algorithm iterates between policy optimization and reward optimization.
The objective for the latter is the fitness function from Eq. 3. If one flips the reward on non-goal
states of positive demonstrations or goal states in learned policy demonstrations, it is straightforward
to show that GRACE optimizes the canonical IRL objective using Evolutionary Search.

Proposition 1. Suppose m(s) = 1 iff s ∈ Sg , else m(s) = −1, then GRACE optimizes,
minπ maxr J(πE ,m ◦ r)− J(π,−m ◦ r), which is a variation of Eq. (2).

The proof can be found in Appendix A.1.

4 EXPERIMENTS

We empirically evaluate GRACE with respect to its ability to generate rewards that lead to effective
policy learning. Specifically, we aim to address the following questions:

Accuracy and Generalization: Can GRACE recover correct rewards, and how much supervi-
sion is required to do so?

Policy Learning Performance: How does GRACE compare to other IRL methods or to online
RL trained with ground-truth rewards?

Qualitative Properties: How well-shaped are the rewards produced by GRACE?

Interpretability and Multi-Task Efficacy: Does GRACE produce reward APIs that can be
shared across tasks?

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 GRACE: Generating Rewards As CodE
Inputs:
D+: expert trajectories
D−: random trajectories

Parameters:
P : reward population size
K: mutation steps
M number of generations
N : RL budget

procedure GRACE(D+, D−)
// Phase 1: Initialization.
Sg = {s ∈ D+ | LLM(s, goal_prompt)}
Sng = D+ ∪ D−/Sg
R = {LLM(Sn, Sng, reward_prompt)}

// Reward Refinement.
for i = 1 . . .M do
R ← EVOSEARCH(R,Sg,Sng)
D,S∗g ,S∗ng ← DATAEXPANDRL(R)
Sg = S∗g ∪ Sg,Sng = S∗ng ∪ Sng

end for
return r∗ = argmaxr∈R f(r)

end procedure

// Phase 2: Refinement via Evolution.
function EVOSEARCH(R,Sg,Sng)

for k = 1 . . .K do
Sample r ∼ exp(f(r)), r ∈ R
r′ ← m(r) // See Eq. 4
if f(r′) > minr∈R f(r) then

r′′ = argminr∈R f(r)
R = R/{r′′} ∪ {r′}

end if
end for
returnR

end function

// Phase 3: Trajectory expansion via RL.
function DATAEXPANDRL(R)

r∗ ← argmaxr∈R f(r)
Train πr∗ with PPO under budget N
Collect new trajectories Dr∗

Sg = {s ∈ Dr∗ | LLM(s, goal_prompt)}
Sng = Dr∗/Sg
return Sg,Sng

end function

4.1 EXPERIMENTAL SETUP

To evaluate GRACE, we conduct experiments in two distinct domains: the procedurally generated
maze environment BabyAI (Chevalier-Boisvert et al., 2018), which tests reasoning and generaliza-
tion, and the Android-based UI simulator AndroidWorld (Rawles et al., 2024), which tests control in
high-dimensional action spaces.

BabyAI Our BabyAI evaluation suite comprises 20 levels, including 3 custom levels designed to
test zero-shot reasoning on tasks not present in public datasets, thereby mitigating concerns of data
contamination. Expert demonstrations are generated using the BabyAI-Bot (Farama Foundation
et al., 2025), which algorithmically solves BabyAI levels optimally. We extend the bot to support
our custom levels as well. For each level, we gather approximately 500 expert trajectories. Another
500 negative trajectories are collected by running a randomly initialized agent in the environment.
The training dataset consists of up to 16 trajectories, including both expert and negative examples.
All remaining trajectories constitute the test set. For each dataset, we evolve the reward on the train
trajectories and report both train and test fitness from Eq. (3).

The state is represented by a (h,w, 3) array. The state is fully observable, with the first channel
containing information about the object type (with each integer corresponding to a different object,
such as box, key, wall, or agent), the second channel contains information about the object’s color
and the third any extra information (e.g. agent direction, if is the door locked).

Android To assess GRACE in a high-dimensional, real-world setting, we use the AndroidControl
dataset (Rawles et al., 2023; Li et al., 2024), which provides a rich collection of complex, multi-step
human interactions across standard Android applications. The state space includes both raw screen
pixels and the corresponding XML view hierarchy.

From this dataset, we curate a subset of trajectories focused on the Clock application, where users
successfully complete tasks such as "set an alarm for 6AM." These serve as our positive exam-
ples. Negative samples are drawn from trajectories in other applications (e.g., Calculator, Calendar,
Settings). For each negative trajectory, we randomly assign an instruction from the positive set,
ensuring the instruction is clock-related but the trajectory completes a task in an unrelated app. We
use 80% of trajectories in the train set and the remaining for the test set.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 4 8
Expert Trajectories

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 Fi

tn
es

s

(a)

1 2 4 8
Expert Trajectories

8
4

2
1Ne

ga
tiv

e
Tr

aj
ec

to
rie

s 0.59 0.70 0.81 1.00

0.46 0.69 0.88 0.99

0.46 0.69 0.89 0.97

0.61 0.73 0.86 0.95
0.5

0.6

0.7

0.8

0.9

Te
st

 Fi
tn

es
s

(b)

Figure 2: Fitness vs Number of Expert Trajectories. The fitness is computed on test dataset after
obtaining maximum fitness on training data with corresponding number of expert and negative train-
ing trajectories. (a) Performance on all 20 BabyAI tasks. (b) Aggregate fitness across 20 BabyAI
tasks.

MuJoCo We finally conduct additional experiments on 4 challenging tasks from the classical Mu-
JoCo continuous control suite (Todorov et al., 2012): Hopper, Walker, Ant, Humanoid.
These tasks demonstrate that GRACE also excels at reward design in continuous action and state
spaces. In these experiments, we don’t perform the goal identification step and simply classify all
expert states as Goal states and all learner states as Non-Goal states. We run all our MuJoCo experi-
ments using the fully differentiable physics engine Brax (Freeman et al., 2021) to speed up learning.
Unlike the BabyAI and Android experiments, in MuJoCo we update the dataset 5 times (M = 5)
with new trajectories coming from the learner policy. The reward is only updated if the fitness is
low on the newly added trajectories.

GRACE Parameters All parameters of our approach used across our experiments can be found in
Appendix A.6.

4.2 ANALYSIS

GRACE recovers rewards with high accuracy. We first examine whether GRACE evolutionary
search (Phase 1) can successfully recover the underlying task reward from demonstrations alone.
We evaluate this in two settings using BabyAI: (i) a single-level setting, where the model infers a
task-specific reward, and (ii) a more challenging multi-level setting, where GRACE must learn a
single, general reward function conditioned on both state and a language goal.

In Figures 2 and 3, we show that the fitness consistently reaches 1.0 across all BabyAI tasks in
both single- and multi-level settings, as well as on AndroidControl. A fitness of 1.0 corresponds to
assigning higher values to all goal states than to non-goal states.

We further ablate two aspects of the algorithm. First, we analyze sample efficiency by varying the
number of expert and negative demonstrations. Results on BabyAI (Figure 2a) show non-trivial per-
formance even with a single demonstration, with gradual improvement and perfect scores achieved
using only eight expert trajectories. The number of negative trajectories also plays a role, though
to a lesser degree: for example, fitness of 0.95 is achieved with just a single negative trajectory,
provided that sufficient expert trajectories are available (Figure 2b).

Finally, we assess the robustness and efficiency of the evolutionary process. As shown in Figure 3,
in the multi-task setting GRACE reliably converges to a high-fitness reward function in fewer than
100 generations (i.e., evolutionary search steps), demonstrating the effectiveness of our LLM-driven
refinement procedure.

GRACE outperforms other IRL and online RL: To validate the quality of the inferred reward
model, we compare against two approaches. First, we employ PPO Schulman et al. (2017), as a
representative algorithm for online RL, with both GRACE as a reward as well as a groundtruth

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 40 60 80
Generations

0.4

0.6

0.8

1.0

Fit
ne

ss

Train

20 40 60 80
Generations

0.4

0.6

0.8

1.0

Fit
ne

ss

Test

AndroidControl BabyAI

Figure 3: Fitness vs Number of generations. Evolution of train and test fitness across evolution
generations, as defined by Algorithm 1, for BabyAI (multi-level settings) and AndroidControl (bot-
tom) for "set alarm" task. For BabyAI, we provide 8 expert trajectories and 8 negative trajectories
for each task. Shading is standard deviation across 3 seeds. For these experiments, no online data is
added beyond the initial trajectories provided (M = 1).

sparse success reward. Clearly, the latter should serve as an oracle, while it does not benefit from
dense rewards.

As an IRL baseline, we compare against GAIL (Ho & Ermon, 2016), that trains a policy whose
behavior is indiscriminable from the expert data, as judged by a learned discriminator. GAIL is
trained with a large dataset of 2, 000 expert trajectories per task, substantially larger than our train
data of 8 expert trajectories.

As shown in Table 1 and 2, GRACE consistently matches or outperforms GAIL across all tasks
with lesser training data. On several BabyAI tasks, GRACE matches Oracle PPO with ground-
truth rewards, whereas GAIL completely fails. This demonstrates that the interpretable, code-based
rewards from GRACE are practically effective, enabling successful downstream policy learning. To
ensure a fair comparison, the agents for the GAIL baseline and GRACE are trained using the same
underlying PPO implementation, agent architecture and hyperparameters as the oracle. Performance
is measured by the final task success rate after 1e7 environment steps. No extra information or
environment code is provided in context to GRACE.

Similarly, we use the evolved reward function on the AndroidControl dataset to finetune our agent on
the Clock AndroidWorld tasks: ClockStopWatchPausedVerify, ClockStopWatchRunning and Clock-
TimerEntry. The agent obtains near perfect performance on the Stopwatch tasks zero-shot, but learn-
ing on our reward doesn’t decrease performance. The training curves for all tasks are reported in
Figure 4.

PPO GRACE w/ GRACE w/ GAIL w/ GAIL w/
GPT-4o Qwen3-Coder-30B 10 traj 200 traj

Hopper 2212± 54 2143± 80 2106± 76 1902± 183 2056± 92

Walker 2675± 292 2072± 576 2229± 600 790± 90 1982± 101

Ant 6239± 237 5707± 210 6085± 804 3871± 408 5521± 674

Humanoid 6455± 302 5809± 106 5921± 301 4772± 251 6521± 337

Table 1: Average returns on 4 MuJoCo (BRAX) continuous control tasks. Average and standard
deviation is reported across 5 different seeds. The total number of required LLM calls to recover a
reward for each task averages at 200 for both GPT-4o and Qwen3-Coder-30B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Total Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ep

iso
de

 S
uc

ce
ss

Gen 1
Gen 2
Gen 3
Gen 4

0 2 4 6 8 10 12
Timestep

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Re
wa

rd

Reward on Expert Trajectory
Gen 1
Gen 2
Gen 3
Gen 4

Figure 5: Shaping Using the default reward recovered by GRACE occasionally leads to failure in
learning the correct behavior due to poor shaping. Through the targeted shaping in Phase 3, we
significantly improve final performance and speed of learning.

Task PPO GAIL GRACE

GoToRedBallNoDist 1.00 1.00 1.00
GoToRedBall 1.00 0.35 1.00
PickupDist 0.31 0.15 0.32
PickupLoc 0.21 0.00 0.26
GoToObj 1.00 0.92 1.00
OpenDoorColor 1.00 0.98 1.00
OpenTwoDoors 1.00 0.37 1.00
PlaceBetween (new) 0.09 0.01 0.09
OpenMatchingDoor (new) 0.79 0.20 0.35
Multi-task 0.95 0.31 0.92

Table 2: Success rates on selected BabyAI environ-
ments. GRACE compared against PPO and GAIL.
GRACE uses 8 expert trajectories per task, while GAIL
uses 2000.

0.0 0.5 1.0 1.5 2.0
Total Timesteps 1e5

0.68

0.69

0.70

0.71

0.72
M

ea
n

Ep
iso

de
 S

uc
ce

ss

Ground Truth Reward
GRACE Reward

Figure 4: Training Curves for An-
droidWorld Clock Tasks. Mean episode
success over the 3 AndroidWorld clock
tasks: ClockStopWatchPausedVerify,
ClockStopWatchRunning, and Clock-
TimerEntry.

GRACE generates well shaped rewards: We demonstrate GRACE’s ability to produce well-
shaped rewards that accelerate learning. For challenging, long-horizon tasks like OpenTwoDoors,
a correct but unshaped reward can lead to local optima where the agent gets stuck (Figure 5, "Gen
1"). By explicitly tasking the LLM to introduce shaping terms during Phase 3, GRACE refines the
reward to provide a denser learning signal. As shown in Figure 5, this targeted shaping dramatically
improves both the final performance and the speed of learning, allowing the agent to solve the task
efficiently. This confirms that GRACE not only finds what the goal is but also learns how to guide
an agent towards it.

GRACE Code Reuse: A key advantage of representing rewards as code is the natural emergence
of reusable functions that collectively form a domain-specific reward library. We study this phe-
nomenon in the multi-task BabyAI setting (Figure 6). In the early generations of evolutionary search,
GRACE actively generates many new modules to explore alternative reward structures. After gener-
ation 10, the rate of new module creation drops sharply. At this point, GRACE shifts toward reusing
the most effective, high-level modules it has already discovered.

To further illustrate this reuse, Figure 6 (right) shows call counts for a selected set of modules within
the evolving reward API. For instance, the Goal module, which summarizes a set of goals, is initially
used sparingly but becomes heavily invoked following a code refactor at generation 30. Likewise,
the agent_pos function is reused at least five times after its introduction. These trends demonstrate
that GRACE progressively builds a reward library that supports efficient multi-task generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60
Generations

0

5

10

15
Ca

ll
Nu

m
be

r

Reused Modules
New Modules 0.6

0.7

0.8

0.9

1.0

Fit
ne

ss

10 20 30 40 50 60
Generations

0

5

10

15

20

25

Ca
ll

Nu
m

be
r

agent_pos
go_to_reward
is_target
Goal

Figure 6: Module and function reuse across generations On the left, we show at each generation
step the number of newly created modules and the number of existing and thus reused modules from
prior rewards, contrasted with the fitness in the reward population. On the right, we show number of
times a module are being re-used, for a select set of modules.

5 DISCUSSION

Limitations A key limitation of GRACE is its limited scalability to high-dimensional state spaces
for evolving reward functions. First, generating a reward from high-dimensional observations (such
as pixels or waveform audio) directly requires the model to perform symbolic feature extraction.
Second, the amount of expert and suboptimal trajectories that can be passed to the LLM is limited
by its context length, which makes learning GRACE rewards from large datasets challenging.

Conclusion We introduce GRACE, a novel framework that leverages LLMs within an evolution-
ary search to address the critical challenge of interpretability in IRL. Our empirical results demon-
strate that by representing reward functions as executable code, we can move beyond the "black-box"
models of traditional IRL and produce rewards that are transparent, verifiable, and effective in RL
learning. We show that GRACE successfully recovers accurate and generalizable rewards from few
expert trajectories, in stark contrast to deep IRL methods like GAIL. This sample efficiency suggests
that the strong priors and reasoning capabilities of LLMs provide a powerful inductive bias. Further-
more, we demonstrate the framework’s practical utility by applying it to the complex AndroidWorld
environment, showing that GRACE can learn rewards for a variety of tasks directly from unlabeled
user interaction data with real-world applications.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we commit to making our code, datasets, and exper-
imental configurations publicly available upon acceptance of this paper. We have already included
extensive details within the paper itself. The appendix provides the full prompts used to interact
with the LLM for goal identification, initial reward generation, evolutionary mutation, and reward
shaping (Appendix A.9). Furthermore, all hyperparameters required to reproduce our results are
listed in Appendix A.6.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning (ICML), pp. 1–8.
ACM, 2004.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Scott Gray, Nick Ryder, Michael Pavlov, Alethea Power, Lukasz Kaiser, Miljan Bavarian,
Clemens Winter, Phil Tillet, Felipe Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Guss, Alex Nichol, Igor Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Suyog Jain, William Saunders, Christopher Hesse,
Mark Carr, Aitor Lewkowycz, David Dohan, Howard Mao, Lily Thompson, Erica Frank, Joshua
Chen, Victor Butoi, David Hernandez, Liane DasSarma, Maxwell Chan, Mateusz Litwin, Scott
Gray, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 4299–4307, 2017.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and Pekka Marttinen. Generating code world
models with large language models guided by monte carlo tree search. Advances in Neural Infor-
mation Processing Systems, 37:60429–60474, 2024.

Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code. In Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=Y1XkzMJpPd.

Farama Foundation, Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente,
Lucas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Mini-
grid: Modular customizable reinforcement learning environments. https://github.com/
Farama-Foundation/Minigrid, 2025. Accessed: 2025-09-24.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Daniel Fried, Joshua Ainslie, David Grangier, Tal Linzen, and Dani Yogatama. Incoder: A genera-
tive model for code infilling and synthesis. In International Conference on Learning Representa-
tions (ICLR), 2022.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, 1989.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, volume 29, 2016.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Martin Klissarov, Devon Hjelm, Alexander Toshev, and Bogdan Mazoure. On the modeling capabil-
ities of large language models for sequential decision making. arXiv preprint arXiv:2410.05656,
2024.

Raymond Li, Loubna Ben Allal, Yacine Jernite Zi, Denis Kocetkov, Chenxi Mou, Aleksandra Piktus,
Laura Weber, Wenhao Xiao, Jihad Bibi, Stella Biderman, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv e-prints, pp.
arXiv–2406, 2024.

11

https://openreview.net/forum?id=Y1XkzMJpPd
https://openreview.net/forum?id=Y1XkzMJpPd
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
http://github.com/google/brax
http://github.com/google/brax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning (ICML), pp. 663–670. Morgan
Kaufmann, 2000.

Erik Nijkamp, Richard Pang, Hiroaki Hayashi, Tian He, Baptiste Roziere, Canwen Xu, Susan Li,
Dan Jurafsky, Luke Zettlemoyer, Veselin Stoyanov, and Hyung Won Chung. Codegen: An open
large language model for code with multi-turn program synthesis. In International Conference on
Learning Representations (ICLR), 2022.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025a.

Alexander Novikov, NgÃćn VÅl’, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery, 2025b. URL https://arxiv.org/abs/2506.13131.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander MÄĚdry, Alex
Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
loch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,
Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim
Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe

12

https://arxiv.org/abs/2506.13131

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel
Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Work-
man, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas
Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail
Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Ran-
dall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmat-
ullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino,
Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez
Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia,
Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir
Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal
Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom
Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi,
Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and trans-
fer reinforcement learning. In International Conference on Learning Representations (ICLR),
2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Nathan Ratliff, J. Andrew Bagnell, and Martin Zinkevich. Maximum margin planning. In Proceed-
ings of the 23rd International Conference on Machine Learning (ICML), pp. 729–736. ACM,
2006.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/
abs/2307.10088.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A

13

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from pro-
gram search with large language models. Nature, 625(7995):468–475, 2024a. doi: 10.1038/
s41586-023-06924-6.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024b.

StÃl’phane Ross, Geoffrey Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS), pp. 627–635, 2011.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML), 2017.

Silvia Sapora, Gokul Swamy, Chris Lu, Yee Whye Teh, and Jakob Nicolaus Foerster. Evil: Evolution
strategies for generalisable imitation learning, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems (NeurIPS), volume 12, pp. 1057–1063, 1999.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and match-
ing: A game-theoretic framework for closing the imitation gap. In International Conference on
Machine Learning, pp. 10022–10032. PMLR, 2021.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Had-
sell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 4499–4509, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

David Venuto, Mohammad Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and
Ankit Anand. Code as reward: Empowering reinforcement learning with VLMs. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 49368–49387. PMLR, 21–27 Jul
2024a. URL https://proceedings.mlr.press/v235/venuto24a.html.

David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit
Anand. Code as reward: Empowering reinforcement learning with vlms. arXiv preprint
arXiv:2402.04764, 2024b.

Yuxiang Wang, Yuchen Lin, Dongfu Jiang, Bill Y. Chen, Xiang Shen, Jidong Zhao, Xiang Yu, Chen
Li, Xiao Qin, and Jie Sun. Llm-blender: Ensembling large language models with pairwise ranking
and generation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2023.

14

https://proceedings.mlr.press/v235/venuto24a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Multi-task reinforcement learning: A hierarchical
bayesian approach. In Proceedings of the 24th International Conference on Machine Learning
(ICML), pp. 1015–1022. ACM, 2007.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Abhay Zala, Jaemin Cho, Han Lin, Jaehong Yoon, and Mohit Bansal. Envgen: Generating and
adapting environments via llms for training embodied agents. In Conference on Language Mod-
eling (CoLM), 2024.

William Zankner, Rohan Mehta, Eric Wallace, Jack Fitzsimons, Y. Yang, Alex Mei, Daniel Levy,
William S. Moses, and Joseph E. Gonzalez. Critique-out-loud reward models. 2024. URL
https://arxiv.org/abs/2408.11791.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI), pp. 1433–1438. AAAI Press, 2008.

A APPENDIX

A.1 RELATIONS TO INVERSE REINFORCEMENT LEARNING

Proposition 2. Suppose m(s) = 1 iff s ∈ Sg else m(s) = −1, then GRACE optimizes,
minπ maxr J(πE ,m ◦ r)− J(π,−m ◦ r), which is a variation of Eq. (2)

Proof. Suppose m(s) = 1 iff s ∈ Sg else m(s) = −1 is a mask over goal states. Then, the fitness
function from Eq. 3 can be re-written in terms of the policy return akin to Eq. 1:

f(r) = Es∼Sg [r(s)]− Es∼Sng [r(s)] (5)

= Eτ∼D+,s∈τ [m(s)r(s)]− Eτ∼D−,s∈τ [−m(s)r(s)] (6)
= J(πE ,m ◦ r)− J(π,−m ◦ r) (7)

where m flips the reward value either if the state is non-goal and generated by the expert or it is a
goal and generated by the learned policy.

The operator m can either be defined in Phase 1 by the LLM, or it can default to m(s) = 1 iff
s ∈ SE (expert states) or m(s) = −1 iff s ∈ SL (learner states). Phase 2, the reward refinement
stage is maximizing f w.r.t the reward. Phase 3, on the other side, is maximizing the return of π, or
minimizing its negative. Thus, GRACE attempts to solve:

min
π

max
r

J(πE ,m ◦ r)− J(π,−m ◦ r)

A.2 GOAL IDENTIFICATION

Goal identification is the critical first step (Phase 1) of the GRACE framework, where an LLM
automatically labels states from expert demonstration trajectories (D+) as either goal states (sg) or
non-goal states (sng). This process creates the initial dataset that the evolutionary search uses to
refine the reward functions. We evaluated the effectiveness of this automated approach using gpt-4o

15

https://arxiv.org/abs/2408.11791

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(OpenAI et al., 2024), with the results presented in Table 3. The findings show that providing the
model with textual representations of states is highly effective, achieving 94% accuracy. In contrast,
relying on image-based input alone was significantly less effective, with accuracy dropping to 49%.
However, it is likely that models with more comprehensive visual pre-training would be substantially
better at identifying goal states from image-only inputs. This is still much better than chance, as the
trajectories average around 20 steps. The experiment also tested performance on shuffled trajectories
to see if the model relied on temporal order. Accuracy with text input saw a minor drop to 88%,
indicating that while the model leverages the sequence of events, it is not entirely dependent on it to
identify goal states.

Table 3: Model Accuracy Comparison

gpt-4o w/

Metric Text Images Text and Images

Accuracy 0.94± 0.24 0.49± 0.38 0.88± 0.34
Accuracy on Shuffled 0.88± 0.48 0.49± 0.50 0.75± 0.43

In the more complex AndroidControl domain, GRACE showed a remarkable ability not only to
identify the goal state within a trajectory but also to refine the task’s textual instruction to accurately
reflect the demonstrated behavior. A few examples highlight this robustness:

• Refining Instructions to Match Behavior: GRACE resolves ambiguities between an in-
struction and the corresponding trajectory. For instance, in a trajectory where the user was
instructed to "set a timer" but did not start it, GRACE updated the instruction to explicitly
include a "don’t start the timer" clause. Similarly, when a user was asked to "set an alarm
for 9am" but also performed the extra step of naming the alarm, GRACE appended the
instruction to include the naming step, ensuring the final instruction precisely matched the
expert demonstration.

• Discarding Irrelevant Trajectories: The system correctly identifies and filters out trajec-
tories where the user’s actions are inconsistent with the instruction’s domain. When a user
was instructed to perform a task in the ’Clock’ app but completed it in the ’ClockBuddy’
app, GRACE identified the application mismatch. This allowed the trajectory to be filtered
from the dataset for the intended ’Clock’ app task. A similar process occurred when a user
was given a nonsensical instruction like "give me directions for X in the clock app" and
then used Google Maps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL ONLINE RESULTS

Task PPO GAIL GRACE
OpenRedDoor 1.00 1.00 1.00
GoToObjS4 1.00 1.00 1.00
GoToRedBlueBall 0.96 0.40 0.99
GoToRedBallGrey 0.97 0.77 0.99
Pickup 0.10 0.00 0.09
Open 0.30 0.18 0.22
OpenRedBlueDoors 1.00 0.96 0.98
OpenDoorLoc 0.39 0.40 1.00
GoToLocalS8N7 0.64 0.39 0.97
GoToDoor 0.74 0.37 0.99
SortColors (new) 0.00 0.00 0.00

Table 4: Success rates on additional BabyAI environments. The performance of our method,
GRACE, is compared against two key baselines: PPO, trained on the ground-truth reward, and
GAIL, trained using 2000 expert trajectories per task. GRACE’s performance is evaluated with 8
expert trajectories per task to demonstrate its high sample efficiency. All values represent the final
success rate at the end of training.

A.4 EXTENDED DISCUSSION AND FUTURE WORK

GRACE’s reliance on programmatic reward functions introduces several limitations, particularly
when compared to traditional deep neural network based approaches. These limitations also point
toward promising directions for future research.

Input modality While generating rewards as code offers interpretability and sample efficiency, it
struggles in domains where the reward depends on complex, high-dimensional perceptual inputs.
Code is inherently symbolic and structured, making it less suited for interpreting raw sensory data
like images or audio. For instance, creating a programmatic reward for a task like "navigate to the
object that looks most fragile" is non-trivial, as "fragility" is a nuanced visual concept. NNs, in
contrast, excel at learning features directly from this kind of data. Programmatic rewards can also
be brittle: a small, unforeseen perturbation in the environment that violates a hard-coded assumption
could cause the reward logic to fail completely, whereas NNs often degrade more gracefully.

Data Quantity GRACE demonstrates remarkable performance with very few demonstrations.
This is a strength in data-scarce scenarios. However, it is a limitation when vast amounts of data are
available. Deep IRL methods like GAIL are designed to scale with data and may uncover subtle,
complex patterns from millions of demonstrations that would be difficult to capture in an explicit
program. While GRACE’s evolutionary search benefits from tight feedback on a small dataset, it is
not clear how effectively it could learn from a massive dataset.

Failure Cases Although GRACE is highly sample-efficient, it is not a magic bullet. For example,
in the BabyAI-OpenTwoDoors task, GRACE often proposed a reward that didn’t take into account
the order in which the doors were being opened. Similarly, in the new BabyAI-SortColors task,
it would sometimes return a reward that only accounted for picking up and dropping both objects,
without paying attention to where they were being dropped. While these errors can be easily fixed
by providing a relevant negative trajectory or by treating all learner-generated states as negative
trajectories, they highlight that GRACE can still misinterpret an agent’s true intent based on expert
demonstrations alone.

Hybrid Approaches These limitations can be substantially mitigated by extending the GRACE
framework to incorporate tool use, combining the strengths of both systems. The LLM could be
granted access to a library of pre-trained models (e.g., object detectors, image classifiers, or seg-
mentation models). The LLM’s task would then shift from writing low-level image processing code

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

to writing high-level logic that calls these tools and reasons over their outputs. A final direction
involves generating hybrid reward functions that are part code and part neural network. The LLM
could define the overall structure, logic, and shaping bonuses in code, but instantiate a small, learn-
able NN module for a specific, difficult-to-program component of the reward. This module could
then be fine-tuned using the available demonstrations, creating a reward function that is both largely
interpretable and capable of handling perceptual nuance. By exploring these hybrid approaches,
future iterations of GRACE could retain the benefits of interpretability and sample efficiency while
overcoming the inherent limitations of purely programmatic solutions in complex, perception-rich
environments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 NEW BABYAI LEVELS

To evaluate the generalization and reasoning capabilities of GRACE and mitigate concerns of data
contamination from pre-existing benchmarks, we designed three novel BabyAI levels.

PlaceBetween The agent is placed in a single room with three distinct objects (e.g., a red ball, a
green ball, and a blue ball). The instruction requires the agent to pick up a specific target object
and place it on an empty cell that is strictly between the other two anchor objects. Success requires
being on the same row or column as the two anchors, creating a straight line. This task moves
beyond simple navigation, demanding that the agent understand the spatial relationship "between"
and act upon a configuration of three separate entities.

OpenMatchingDoor This level is designed to test indirect object identification and chained infer-
ence. The environment consists of a single room containing one key and multiple doors of different
colors. The instruction is to "open the door matching the key". The agent cannot solve the task by
simply parsing an object and color from the instruction. Instead, it must first locate the key, visually
identify its color, and then find and open the door of the corresponding color. This task assesses the
agent’s ability to perform a simple chain of reasoning: find object A, infer a property from it, and
then use that property to identify and interact with target object B.

SortColors The environment consists of two rooms connected by a door, with a red ball in one
room and a blue ball in the other. The instruction is a compound goal: "put the red ball in the
right room and put the blue ball in the left room". To make the task non-trivial, the objects’ initial
positions are swapped relative to their goal locations. The agent must therefore execute a sequence
of sub-tasks for each object: pick up the object, navigate to the other room, and drop it. This level
tests the ability to decompose a complex language command and carry out a plan to satisfy multiple,
distinct objectives.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6 HYPERPARAMETERS

Table 5: Hyperparameters for Training BabyAI with PPO

Parameter Value
Base Model llava-onevision-qwen2-0.5b-ov-hf
Gamma 0.999
Learning Rate 3e-5
Entropy Coef 1e-5
Num Envs 10
Num Steps 64
Episode Length 100
PPO Epochs 2
Num Minibatch 6

Table 6: Hyperparameters for Training AndroidWorld

Parameter Value
Base Model Qwen2.5-VL-3B-Instruct
LoRA Rank 512
LoRA Alpha 32
LoRA Dropout 0.1
Critic Hidden Size 2048
Critic Depth 4
Gamma 0.999
Learning Rate 3e-5
Entropy Coef 0.0
Num Envs 16
Num Steps 16
Episode Length 20
PPO Epochs 2
Num Minibatch 2

Table 7: Hyperparameters for GRACE Evolution

Parameter Value
Population Size 20
Elite 4
Num Generations 100
Include expert trajectory chance 0.25
Incorrect state only chance 0.5
Expert state only chance 0.75
Model gpt-4o

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.7 EVOLUTION EXAMPLES

1 def _parse_colour_from_text(text: Optional[str]) -> Optional[int]:
2 if text is None:
3 return None
4
5 colour_words: Dict[str, int] = {
6 "red": 0,
7 "green": 1,
8 "blue": 2,

9 "yellow": 3, "purple": 3,

10 "yellow": 4,

11 "orange": 5, # keep old mapping

12 "grey": 5, # alias for the observed colour code in the trajectory

13 "gray": 5,

14 }

15 lower = text.lower()

16 for word, code in colour_words.items():

17 if word in text.lower(): lower:

18 return code
19 return None
20
21
22 def _parse_goal_type(text: Optional[str]) -> str:
23 if text is None:
24 return "key"
25 txt = text.lower()
26 if "ball" in txt:
27 return "ball"

28 if "box" in txt:

29 return "box"
30 return "key"

Figure 7: GRACE iteratively refines the initial BabyAI reward function (iteration 0) to handle
unseen entities (iteration 10). Using execution traces, the agent fixes its color code mistake and
adds a new box entity.

1 from __future__ import annotations
2
3 import re
4 from typing import Optional, Tuple
5
6 import numpy as np
7
8 COLOR2ID = {
9 "red": 0,

10 "green": 1,
11 "blue": 2,
12 "purple": 3,
13 "yellow": 4,
14 "grey": 5,
15 "gray": 5, # US spelling
16 }
17
18 OBJECT2ID = {
19 "empty": 0,
20 "wall": 1,
21 "floor": 2,
22 "door": 3,
23 "key": 5,
24 "ball": 6,
25 "box": 8,
26 "agent": 10,
27 }
28

29 # Map MiniGrid direction codes (stored in the 3-rd channel of the agent cell)

30 # to row/col deltas. Empirically direction 0 points *down/south* in the

31 # provided trajectories.

32 DIR2VEC: dict[int, Tuple[int, int]] ={

33 0: (1, 0), # south

34 1: (0, 1), # east

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

35 2: (-1, 0), # north

36 3: (0, -1), # west

37 }
38
39 def _parse_goal(extra_info: str) -> Tuple[int, Optional[int]]:

40 """Return *(object_id, colour_id)* parsed from *extra_info*."""

41 if not extra_info:
42 raise ValueError("extra_info must specify the target, e.g. ’the red ball’.")
43
44 tokens = re.findall(r"[a-zA-Z]+", extra_info.lower())
45 obj_id: Optional[int] = None
46 col_id: Optional[int] = None
47 for tok in tokens:

48 if obj_id is None and tok in OBJECT2ID:

49 if tok in COLOR2ID and col_id is None:

50 col_id = COLOR2ID[tok]

51 if tok in OBJECT2ID and obj_id is None:

52 obj_id = OBJECT2ID[tok]

53 if col_id is None and tok in COLOR2ID:

54 col_id = COLOR2ID[tok]

55 if obj_id is None:
56 raise ValueError(
57 f"Could not parse target object from extra_info=’{extra_info}’."
58)
59 return obj_id, col_id # colour may be None (wild-card)
60
61
62 class Reward:

63 """Success when definition (single-step, dense reward):

64 100.0 âĂŞ the **first** cell in front of the agent is *either*

65 âĂŞ on / adjacent (according to the

66 closest target object (Manhattan distance âL’d’ 1), OR

67 âĂŞ direction stored in the third observation channel) contains a

68 matching target has disappeared from the observable grid (picked up).

69

70 Shaping: r = 1 / (1+d) with d the Manhattan distance to the closest

71 still-visible target, clipped at 0 object.

72 <1.0 âĂŞ shaping reward 1/(d+1) otherwise.

73 0.0 âĂŞ if either the agent or (a matching) target is out of view. not visible.

74

75 The implementation is modular so new goal

76 types can be handled by extending the OBJECT/COLOR lookup tables or by

77 replacing the *success predicate*.

78 """
79

80 SUCCESS_REWARD = 100.0

81 def __init__(self, extra_info: Optional[str] str = None):

82 self.tgt_obj_id, self.tgt_col_id self._target_obj_id, self._target_colour_id =

_parse_goal(extra_info)
83

84 def __call__(self, state: np.ndarray) -> float: # enable direct call

85 return self.reward_fn(state)

86
87 def reward_fn(self, state: np.ndarray) -> float:

88 """state: (H, W, 3) """

89 agent_pos = self._find_agent(state)
90 if agent_pos is None:
91 return 0.0
92

93 # mask of all target objects still visible

94 tgt_mask = (state[:, :, 0] == self.tgt_obj_id) & (

95 state[:, :, 1] == self.tgt_col_id

96)

97

98 if not tgt_mask.any():

99 # object gone -> picked up / carried

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

100 return self.SUCCESS_REWARD

101

102 # distance to the closest visible target

103 tgt_positions = np.argwhere(tgt_mask)

104 dists = np.abs(tgt_positions - agent_pos).sum(axis=1)

105

106 target_positions = self._find_targets(state)

107 if target_positions.size == 0:

108 # No matching target in view -> no shaping.

109 return 0.0
110

111 # --

112 # Success predicate âĂŞ target must be directly in front of the agent.

113 # --

114 if self._is_target_in_front(agent_pos, state):

115 return 100.0
116

117 # --

118 # Shaping: inverse Manhattan distance (< 1.0) to the *nearest* target.

119 # --

120 dists = np.abs(target_positions - agent_pos).sum(axis=1)

121 min_dist = int(dists.min())

122 if min_dist <= 1:

123 return self.SUCCESS_REWARD

124
125 return 1.0 / (1.0 + min_dist)
126
127 @staticmethod
128 def _find_agent(state: np.ndarray) -> Optional[np.ndarray]:

129 """Return (row, col) of """Locate the first agent

pixel found, in the observation (row, col) or None.""" *None* if absent."""

130 locs = np.argwhere(state[:, :, 0] == OBJECT2ID["agent"])
131 if locs.size == 0:
132 return None
133 return locs[0]
134

135 def _find_targets(self, state: np.ndarray) -> np.ndarray:

136 """Return an (N, 2) array of row/col positions of matching targets."""

137 obj_mask = state[:, :, 0] == self._target_obj_id

138 if self._target_colour_id is not None:

139 col_mask = state[:, :, 1] == self._target_colour_id

140 mask = obj_mask & col_mask

141 else:

142 mask = obj_mask

143 return np.argwhere(mask)

144

145 def _is_target_in_front(self, agent_pos: np.ndarray, state: np.ndarray) -> bool:

146 """Return *True* iff the cell directly in front of the agent matches target."""

147 row, col = agent_pos

148 agent_dir = int(state[row, col, 2])

149 drow, dcol = DIR2VEC.get(agent_dir, (1, 0)) # default to south if unknown

150 f_row, f_col = row + drow, col + dcol

151

152 # Out of bounds âĘŠ cannot be success.

153 if not (0 <= f_row < state.shape[0] and 0 <= f_col < state.shape[1]):

154 return False
155

156 # Check object id

157 if state[f_row, f_col, 0] != self._target_obj_id:

158 return False
159

160 # Check colour if colour was specified.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

161 if (

162 self._target_colour_id is not None

163 and state[f_row, f_col, 1] != self._target_colour_id

164):

165 return False
166

167 return True

Figure 8: Example of code evolution across many generations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.8 GENERATED REWARDS

1 # --
2 # IMPORTS
3 # --
4 import json
5 import math
6 import re
7 from typing import Callable, List, Optional, Set, Tuple
8
9 # --

10 # GENERIC & NORMALISATION HELPERS
11 # --
12
13
14 def _contains_any(text: str, keywords) -> bool:
15 text_l = text.lower()
16 return any(k.lower() in text_l for k in keywords)
17
18
19 def _has_stopwatch(text: str) -> bool:
20 t = text.lower()
21 return any(p in t for p in ("stopwatch", "stop watch", "stop-watch"))
22
23
24 # ---------------- Tab-selection helpers ---------------------
25
26
27 def _tab_selected(state: str, label: str) -> bool:
28 pattern = (
29 rf’"(content_description|text)"\s*:\s*"{label}"[^\n]*?"is_selected"\s*:\s*true’
30)
31 return bool(re.search(pattern, state, re.I))
32
33
34 def _alarm_tab_selected(state: str) -> bool:
35 return _tab_selected(state, "Alarm") or _tab_selected(state, "Alarms")
36
37
38 def _timer_tab_selected(state: str) -> bool:
39 return _tab_selected(state, "Timer")
40
41
42 def _stopwatch_tab_selected(state: str) -> bool:
43 return _tab_selected(state, "Stopwatch")
44
45
46 def _clock_tab_selected(state: str) -> bool:
47 return _tab_selected(state, "Clock")
48
49
50 # ---------------- Text normalisation helper -----------------
51
52
53 def _normalize_time_text(txt: str) -> str:
54 txt2 = txt.replace(";", ":")
55 txt2 = re.sub(r"\b([ap])\s*(?:\.m\.|\.m|m)\b", r"\1m", txt2, flags=re.I)
56 return txt2
57
58
59 # --
60 # TIMER / DURATION PARSING
61 # --
62
63
64 def _parse_requested_time(text: str) -> int:
65 text = text.replace("-", " ")
66 hours = minutes = seconds = 0
67 for patt, mult in (
68 (r"(\d+)\s*hour", 3600),
69 (r"(\d+)\s*minute", 60),
70 (r"(\d+)\s*second", 1),
71):
72 m = re.search(patt, text, re.I)
73 if m:
74 val = int(m.group(1)) * mult
75 if mult == 3600:
76 hours = val // 3600
77 elif mult == 60:
78 minutes = val // 60
79 else:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

80 seconds = val
81 if hours == minutes == seconds == 0:
82 m = re.search(r"(\d+)\s*-?\s*min", text, re.I)
83 if m:
84 minutes = int(m.group(1))
85 else:
86 m = re.search(r"(\d+)", text)
87 if m:
88 minutes = int(m.group(1))
89 total = hours * 3600 + minutes * 60 + seconds
90 return total if total > 0 else 60
91
92
93 # --
94 # ADDITIONAL HELPERS
95 # --
96
97
98 def _parse_adjust_timer_amount(instr: str) -> Optional[int]:
99 instr_l = instr.lower()

100 verb = r"(?:add|increase|extend|plus|up|extra|more|additional)"
101 unit = r"(hours?|minutes?|seconds?)"
102 pat1 = re.compile(rf"{verb}\s+(\d+)\s*(?:more\s+)?{unit}")
103 pat2 = re.compile(rf"by\s+(\d+)\s*{unit}")
104 seconds: List[int] = []
105 for pat in (pat1, pat2):
106 for m in pat.finditer(instr_l):
107 num = int(m.group(1))
108 u = m.group(2)
109 if u.startswith("hour"):
110 seconds.append(num * 3600)
111 elif u.startswith("minute"):
112 seconds.append(num * 60)
113 else:
114 seconds.append(num)
115 if seconds:
116 return max(1, min(seconds))
117 return None
118
119
120 def _parse_alarm_time(instr: str) -> Tuple[int, int, Optional[str]]:
121 instr_n = _normalize_time_text(instr)
122 instr_l = instr_n.lower()
123 m = re.search(r"(\d{1,2})\s*[:.]\s*(\d{2})\s*(am|pm)?", instr_l)
124 if m:
125 h, minute, ap = int(m.group(1)), int(m.group(2)), m.group(3)
126 else:
127 m = re.search(r"\b(\d{1,2})\s*(am|pm)\b", instr_l)
128 if m:
129 h, minute, ap = int(m.group(1)), 0, m.group(2)
130 else:
131 return 7, 0, "am"
132 if ap:
133 ap = ap.lower()
134 if ap == "pm" and h != 12:
135 h += 12
136 if ap == "am" and h == 12:
137 h = 0
138 return h % 24, minute, ap
139
140
141 def _extract_timer_components(state: str) -> Optional[Tuple[int, int, int]]:
142 m = re.search(r"(\d+)\s*minutes?\s*(\d+)\s*seconds", state, re.IGNORECASE)
143 if m:
144 minutes = int(m.group(1))
145 seconds = int(m.group(2))
146 return (0, minutes, seconds)
147
148 m = re.search(r"(\d+)h\s*(\d+)m\s*(\d+)s", state, re.IGNORECASE)
149 if m:
150 hours = int(m.group(1))
151 minutes = int(m.group(2))
152 seconds = int(m.group(3))
153 return (hours, minutes, seconds)
154
155 # Case 3: "MM:SS" format, ensuring it’s not part of a timestamp (like 12:30 PM)
156 for mm_match in re.finditer(r"(\d{1,2}):(\d{2})(?!\s*[AaPp][Mm])", state):
157 mm, ss = int(mm_match.group(1)), int(mm_match.group(2))
158 if not (0 <= ss < 60):
159 continue
160 context = state[mm_match.end() : mm_match.end() + 80].lower()

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

161 if "minute" in context or "timer" in context or "remaining" in context:
162 return (0, mm, ss)
163
164 if not _timer_tab_selected(state):
165 return None
166
167 tokens = re.findall(r’"text"\s*:\s*"([^"]+)"’, state)
168 tokens = [t.strip() for t in tokens]
169
170 for i in range(len(tokens) - 4):
171 if (
172 re.fullmatch(r"\d{1,2}", tokens[i])
173 and tokens[i + 1] == ":"
174 and re.fullmatch(r"\d{2}", tokens[i + 2])
175 and tokens[i + 3] == ":"
176 and re.fullmatch(r"\d{2}", tokens[i + 4])
177):
178 h = int(tokens[i])
179 m_val = int(tokens[i + 2])
180 s = int(tokens[i + 4])
181 if 0 <= m_val < 60 and 0 <= s < 60:
182 return (h, m_val, s)
183
184 for i in range(len(tokens) - 2):
185 if (
186 re.fullmatch(r"\d{1,2}", tokens[i])
187 and tokens[i + 1] == ":"
188 and re.fullmatch(r"\d{2}", tokens[i + 2])
189):
190 m_val = int(tokens[i])
191 s_val = int(tokens[i + 2])
192 if 0 <= s_val < 60:
193 return (0, m_val, s_val)
194
195 return None
196
197 def _extract_timer_value(state: str) -> int:
198 timer_components = _extract_timer_components(state)
199 if timer_components:
200 hh, mm, ss = timer_components
201 return int(hh) * 3600 + int(mm) * 60 + int(ss)
202 else:
203 return None
204
205 # --- UI helpers --
206
207
208 def _button_visible(state: str, label: str) -> bool:
209 return bool(
210 re.search(rf’"(content_description|text)"\s*:\s*"{label}"’, state, re.I)
211)
212
213
214 def _timer_screen_visible(state: str) -> bool:
215 if _timer_tab_selected(state):
216 return True
217 s = state.lower()
218 return "remaining" in s or "minutes timer" in s
219
220
221 def _is_timer_running(state: str) -> bool:
222 return _button_visible(state, "Pause")
223
224
225 def _timer_keypad_mode(state: str) -> bool:
226 return bool(re.search(r"\b\d{1,2}h\s*\d{1,2}m\s*\d{1,2}s\b", state))
227
228
229 def _is_timer_paused(state: str) -> bool:
230 if _timer_keypad_mode(state):
231 return False
232 if _button_visible(state, "Start") and not _button_visible(state, "Pause"):
233 return True
234 if not _timer_screen_visible(state):
235 return False
236 s = state.lower()
237 return "timer paused" in s or ("paused" in s and "timer" in s)
238
239
240 def _timer_keypad_zero(state: str) -> bool:
241 if not all(

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

242 re.search(rf’"text"\s*:\s*"{lbl}"’, state, re.I)
243 for lbl in ("hour", "min", "sec")
244):
245 return False
246 return len(re.findall(r’"text"\s*:\s*"0{2}"’, state)) >= 3
247
248
249 def _timer_deleted(state: str) -> bool:
250 s = state.lower()
251 if "no timers" in s:
252 return True
253 val = _extract_timer_value(state)
254 if val == 0 and not _is_timer_running(state):
255 return True
256 return _timer_keypad_zero(state)
257
258
259 def _stopwatch_running(state: str) -> bool:
260 return (
261 _button_visible(state, "Pause")
262 or _button_visible(state, "Stop")
263 or "stopwatch running" in state.lower()
264)
265
266
267 def _stopwatch_time_zero(state: str) -> bool:
268 if re.search(r"\b0{1,2}(?::0{2}){1,3}\b(?!:\d{2})", state):
269 return True
270 nums = re.findall(r’"text"\s*:\s*"(\d{2})"’, state)
271 return bool(nums) and all(n == "00" for n in nums)
272
273
274 def _timer_paused_notification(state: str) -> bool:
275 return bool(
276 re.search(r"the\s+clock\s+notification:\s*timer", state, re.I)
277 or re.search(r"timer\s+paused", state, re.I)
278)
279
280
281 def _alarm_context_present(state: str) -> bool:
282 return _alarm_tab_selected(state) or bool(re.search(r"\balarm\b", state, re.I))
283
284
285 def _parse_new_timer_label(instr_l: str) -> str:
286 for kw in (" as ", " named ", " called ", " name "):
287 if kw in instr_l:
288 part = instr_l.split(kw, 1)[1]
289 part = re.split(r"[.,;]|\bfor\b|\btimer\b", part, flags=re.I)[0]
290 return part.strip()
291 return ""
292
293
294 def _timer_label_present(state: str, label: str) -> bool:
295 if not label:
296 return False
297 return bool(
298 re.search(
299 rf’"(text|content_description)"\s*:\s*"{re.escape(label)}"’, state, re.I
300)
301)
302
303
304 def _safe_json_dumps(obj) -> str:
305 try:
306 return json.dumps(obj, ensure_ascii=False)
307 except Exception:
308 return json.dumps({"error": "debug-serialization failed"})
309
310
311 def _any_alarm_present(state: str) -> bool:
312 sl = state.lower()
313 if "alarm set" in sl:
314 return True
315 if _alarm_tab_selected(state) and re.search(r"\b\d{1,2}:\d{2}\s*(?:am|pm)\b", sl):
316 return True
317 return False
318
319
320 def _is_alarm_deleted(state: str) -> bool:
321 s = state.lower()
322 return any(

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

323 re.search(p, s)
324 for p in (
325 r"alarm (deleted|removed|dismissed)",
326 r"\bno (active)?alarms?\b",
327 r"tap here to create an alarm",
328 r"alarm deleted",
329)
330)
331
332
333 def _snooze_completed(state: str) -> bool:
334 s_low = state.lower()
335 if "alarm snoozed" in s_low:
336 return True
337 if re.search(r"snoozed\s+for\s+\d+", s_low):
338 return True
339 if re.search(r"\bsnooz(ing|ed)\b", s_low):
340 return True
341 if "select snooze duration" in s_low:
342 return True
343 return False
344
345
346 def _rename_dialog_open(state: str) -> bool:
347 s = state.lower()
348 if "enter timer name" in s:
349 return True
350 has_buttons = re.search(r’"text"\s*:\s*"(ok|cancel)"’, state, re.I)
351 has_edit = re.search(r’"is_editable"\s*:\s*true’, state, re.I)
352 return bool(has_buttons and has_edit)
353
354
355 def _detect_alarm_time(state: str) -> bool:
356 return bool(re.search(r"\b\d{1,2}\s*:\s*\d{2}(?:\s*[ap]m)?\b", state, re.I))
357
358
359 def _selected_weekdays(state: str) -> Set[str]:
360 selected = set()
361 for key, full, abbrev in (
362 ("sunday", "Sunday", "S"),
363 ("monday", "Monday", "M"),
364 ("tuesday", "Tuesday", "T"),
365 ("wednesday", "Wednesday", "W"),
366 ("thursday", "Thursday", "T"),
367 ("friday", "Friday", "F"),
368 ("saturday", "Saturday", "S"),
369):
370 patt = rf’("content_description"|"text")\s*:\s*"(?:{full}|{abbrev})"[^\n]*?("

is_selected"|"is_checked")\s*:\s*true’
371 if re.search(patt, state, re.I):
372 selected.add(key)
373 return selected
374
375
376 def _alarm_time_present(state: str, hour24: int, minute: int, ap: Optional[str]):
377 s = state.lower().replace("\u200a", "")
378 h12 = hour24 % 12 or 12
379 patterns = [rf"\b0*{h12}:{minute:02d}\s*(?:am|pm)?\b"]
380 if minute == 0:
381 patterns.append(rf"\b0*{h12}\s*(?:am|pm)\b")
382 patterns.append(rf"\b0*{hour24}:{minute:02d}\b")
383 for p in patterns:
384 if re.search(p, s):
385 if ap and not re.search(rf"{ap}\b", s):
386 continue
387 return True
388 return False
389
390
391 # --------------- NEW HELPER ---
392
393
394 def _day_toggle_buttons_visible(state: str) -> bool:
395 """Detect if the row of weekday toggle buttons is visible."""
396 matches = re.findall(r’"text"\s*:\s*"(S|M|T|W|F)"’, state)
397 unique = set(matches)
398 return len(matches) >= 5 and len(unique.intersection({"M", "T", "W", "F"})) >= 3
399
400
401 # --
402 # REWARD CLASS

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

403 # --
404
405
406 class Reward:
407 """Dense reward function for Google Clock tasks."""
408
409 _SHAPING_INC = 0.3
410 _ADJ_INC_THRESHOLD = 10
411
412 # --
413 # INIT
414 # --
415 def __init__(self, extra_info: Optional[str] = None):
416 self.raw_instr: str = extra_info or ""
417 self.instruction: str = self.raw_instr.lower()
418 self.instruction_norm_full = _normalize_time_text(self.raw_instr)
419 self.instruction_norm = self.instruction_norm_full.lower()
420
421 # Task detection
422 self.task_type = self._infer_task()
423
424 # Stopwatch flags
425 self.restart_mode = False
426 self._reset_seen = False
427
428 # Goal parsing / bookkeeping
429 self.goal_seconds = 0
430 self.goal_label = ""
431 self.goal_hour24 = 0
432 self.goal_minute = 0
433 self.goal_hms = (0, 0, 0)
434 self.goal_ap: Optional[str] = None
435 self.city_keyword = ""
436 self.city_keywords: List[str] = []
437 self.recurrence_days: Set[str] = set()
438 self.alarm_any_time = False
439
440 # Timer-adjust bookkeeping
441 self.initial_timer_val: Optional[int] = None
442 self.prev_timer_val: Optional[int] = None
443 self.max_timer_val: Optional[int] = None
444 self.increments = 0
445 self.needed_increments = 0
446 self._countdown_seen = False
447
448 # Alarm creation flag
449 self._alarm_creation_seen = False
450
451 # delete-alarm bookkeeping
452 self._alarm_present_ever = False
453
454 # adjust-alarm bookkeeping
455 self.orig_hour24 = 0
456 self.orig_minute = 0
457 self._orig_seen = False
458
459 # pause-timer stability tracking
460 self._prev_timer_val_for_pause: Optional[int] = None
461 self._same_val_steps: int = 0
462
463 # snooze-specific
464 self._snooze_dialog_seen = False
465
466 # Generic bookkeeping
467 self.goal_achieved = False
468 self._best_level = 0
469 self._t = 0
470 self._confirm_goal_seen = False
471
472 # Map tasks to progress-functions
473 self._progress_fns: dict[str, Callable[[str], int]] = {
474 "reset_stopwatch": self._pl_reset_stopwatch,
475 "restart_stopwatch": self._pl_restart_stopwatch,
476 "start_stopwatch": self._pl_start_stopwatch,
477 "pause_stopwatch": self._pl_pause_stopwatch,
478 "pause_timer": self._pl_pause_timer,
479 "delete_timer": self._pl_delete_timer,
480 "delete_alarm": self._pl_delete_alarm,
481 "add_city": self._pl_add_city,
482 "set_alarm": self._pl_set_alarm,
483 "adjust_alarm": self._pl_adjust_alarm,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

484 "rename_timer": self._pl_rename_timer,
485 }
486
487 # Goal-specific parsing / bookkeeping
488 if self.task_type == "set_timer" or self.task_type == "run_timer":
489 self.goal_seconds = _parse_requested_time(self.instruction)
490 h = self.goal_seconds // 3600
491 rem = self.goal_seconds % 3600
492 m = rem // 60
493 s = rem % 60
494 self.goal_hms = (h, m, s)
495 if self.task_type == "adjust_timer":
496 inc_secs = _parse_adjust_timer_amount(
497 self.instruction_norm_full
498) or _parse_requested_time(self.instruction)
499 self.goal_seconds = max(1, inc_secs)
500 self.needed_increments = max(1, math.ceil(self.goal_seconds / 60))
501 if self.task_type == "rename_timer":
502 self.goal_seconds = _parse_requested_time(self.instruction)
503 self.goal_label = _parse_new_timer_label(self.instruction)
504 if self.task_type == "set_alarm":
505 explicit = re.search(
506 r"\d{1,2}(:\d{2})?\s*(am|pm)", self.instruction_norm_full, re.I
507)
508 if explicit:
509 self.alarm_any_time = False
510 self._parse_alarm_goal_time()
511 else:
512 self.alarm_any_time = True
513 self.recurrence_days = self._parse_recurrence_days(self.instruction_norm)
514 if self.task_type == "adjust_alarm":
515 self.goal_hour24, self.goal_minute = self._parse_adjusted_alarm()
516 self.goal_ap = None
517 self.orig_hour24, self.orig_minute, _ = _parse_alarm_time(
518 self.instruction_norm_full
519)
520 if self.task_type == "add_city":
521 self.city_keyword = self._parse_city_name(self.instruction) or "italy"
522 self.city_keywords = [self.city_keyword]
523 first = self.city_keyword.split()[0] if self.city_keyword else ""
524 if first and first not in self.city_keywords:
525 self.city_keywords.append(first)
526 if self.task_type == "reset_stopwatch":
527 if re.search(r"\brestart\b", self.instruction) or re.search(
528 r"start\s+(?:over|again)", self.instruction
529):
530 self.restart_mode = True
531
532 # --
533 # PUBLIC API
534 # --
535 def reward_fn(self, state: str) -> float:
536 self._t += 1
537 if self.task_type == "set_alarm":
538 self._update_alarm_creation_seen(state)
539 if self.goal_achieved:
540 return 100.0
541 if self.task_type in self._progress_fns:
542 return self._reward_from_progress(self._progress_fns[self.task_type], state)
543 if self.task_type == "set_timer" or self.task_type == "run_timer":
544 return self._reward_timer(state, self.task_type == "set_timer")
545 if self.task_type == "adjust_timer":
546 return self._reward_adjust_timer(state)
547 if self.task_type == "snooze_alarm":
548 return self._reward_snooze(state)
549 return 0.0
550
551 def debug_fn(self, state: str) -> str:
552 dbg = {
553 "step": self._t,
554 "task_type": self.task_type,
555 "goal_achieved": self.goal_achieved,
556 "best_level": self._best_level,
557 }
558 if self.task_type in {"set_timer", "run_timer", "adjust_timer"}:
559 dbg.update(
560 {
561 "goal_seconds": self.goal_seconds,
562 "increments": self.increments,
563 "countdown_seen": self._countdown_seen,
564 }

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

565)
566 if self.task_type == "rename_timer":
567 dbg["goal_label"] = self.goal_label
568 if self.task_type == "snooze_alarm":
569 dbg["dialog_seen"] = self._snooze_dialog_seen
570 return _safe_json_dumps(dbg)
571
572 # --
573 # TASK INFERENCE
574 # --
575 def _infer_task(self) -> str:
576 instr = self.instruction
577 has_sw = _has_stopwatch(instr)
578
579 if has_sw and _contains_any(instr, ["pause", "stop"]):
580 return "pause_stopwatch"
581 elif has_sw and _contains_any(
582 instr, ["restart", "start over", "start again", "begin again"]
583):
584 return "restart_stopwatch"
585 if has_sw and _contains_any(instr, ["reset", "zero", "set to zero", "clear"]):
586 return "reset_stopwatch"
587 if has_sw:
588 return "start_stopwatch"
589
590 if (
591 (re.search(r"\btime\b", instr) or "clock" in instr)
592 and re.search(r"\bin\s+\w+", instr)
593 and not _contains_any(instr, ["timer", "alarm"])
594):
595 return "add_city"
596
597 if "timer" in instr:
598 if _contains_any(instr, ["delete", "remove", "clear"]):
599 return "delete_timer"
600 if _contains_any(instr, ["pause", "stop", "cancel"]):
601 return "pause_timer"
602 if _contains_any(instr, ["rename", "name", "called", "label"]):
603 return "rename_timer"
604 if re.search(
605 r"\badd\b[^\n]*?\b\d+\s*(?:hour|minute|second)s?\s+timer", instr
606):
607 dont_start_req = bool(
608 re.search(
609 r"(?:\b(?:don’?t|do\s+not)\s+(?:start|run)\b)"
610 r"|(?:\bwithout\s+starting\b)"
611 r"|(?:\b(?:but|and)\s+don’?t\s+start\b)"
612 r"|(?:\bleave\s+it\s+paused\b)"
613 r"|(?:\bkeep\s+it\s+paused\b)",
614 instr,
615)
616)
617 if dont_start_req:
618 return "set_timer"
619 else:
620 return "run_timer"
621 if _contains_any(instr, ["increase", "extend", "more", "up"]):
622 return "adjust_timer"
623 if re.search(
624 r"\badd\b[^\n]*?\b(minutes?|hours?|seconds?)\b[^\n]*?\bto\b[^\n]*?\btimer\b",
625 instr,
626):
627 return "adjust_timer"
628 return "run_timer"
629
630 if "snooze" in instr:
631 return "snooze_alarm"
632 if _contains_any(instr, ["delete", "remove"]) and "alarm" in instr:
633 return "delete_alarm"
634 if "alarm" in instr and _contains_any(
635 instr,
636 [
637 "delay",
638 "resched",
639 "push",
640 "move",
641 "change",
642 "shift",
643 "defer",
644 "later",
645 "increase",

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

646],
647):
648 return "adjust_alarm"
649 if "alarm" in instr:
650 return "set_alarm"
651
652 if _contains_any(
653 instr, ["add", "timezone", "time zone", "city", "world clock"]
654):
655 return "add_city"
656 return "none"
657
658 def _update_alarm_creation_seen(self, state: str):
659 s = state.lower()
660 if any(kw in s for kw in ("add alarm", "alarm time", "select time")):
661 self._alarm_creation_seen = True
662
663 # --
664 # GENERIC reward helpers
665 # --
666 def _reward_from_progress(self, fn: Callable[[str], int], state: str) -> float:
667 lvl = fn(state)
668 if self.task_type == "set_alarm":
669 if lvl >= 3:
670 if self._alarm_creation_seen:
671 self.goal_achieved = True
672 return 100.0
673 if self._confirm_goal_seen or self._best_level >= 2:
674 self.goal_achieved = True
675 return 100.0
676 self._confirm_goal_seen = True
677 self._best_level = max(self._best_level, 2)
678 return 0.99
679 self._confirm_goal_seen = False
680 if lvl >= 3:
681 self.goal_achieved = True
682 return 100.0
683 if lvl > self._best_level:
684 inc = (lvl - self._best_level) * self._SHAPING_INC
685 self._best_level = lvl
686 return min(inc, 0.99)
687 return 0.0
688
689 # --
690 # TIMER-specific dense reward
691 # --
692 def _reward_timer(self, state: str, start_req: bool) -> float:
693 reward = 0.0
694 if _timer_tab_selected(state):
695 reward += 0.2
696 current_val = _extract_timer_components(state)
697 if current_val is None:
698 return min(reward, 0.99)
699 cur_hh, cur_mm, cur_ss = current_val
700 current_digit_string = f"{cur_hh:02d}{cur_mm:02d}{cur_ss:02d}".lstrip("0")
701 if current_digit_string == "":
702 current_digit_string = "0"
703 goal_digit_string = f"{self.goal_hms[0]:02d}{self.goal_hms[1]:02d}{self.goal_hms[2]:02

d}".lstrip("0")
704 if goal_digit_string == "":
705 goal_digit_string = "0"
706 running = _is_timer_running(state)
707 if current_digit_string == goal_digit_string and running:
708 if start_req and running:
709 self.goal_achieved = True
710 return 100.0
711 if not start_req and not running:
712 self.goal_achieved = True
713 return 100.0
714 matching_digits = 0
715 for i in range(0, min(len(current_digit_string), len(goal_digit_string))):
716 if goal_digit_string[i] == current_digit_string[i]:
717 matching_digits += 1
718 else:
719 # Stop counting as soon as a mismatch occurs
720 break
721 reward += (matching_digits / len(goal_digit_string)) * 0.7
722 return min(reward, 0.99)
723
724 # --
725 # Other dense rewards (adjust_timer, snooze)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

726 # --
727 def _reward_adjust_timer(self, state: str) -> float:
728 reward = 0.0
729 if _timer_screen_visible(state):
730 reward += 0.2
731 current_val = _extract_timer_value(state)
732 if current_val is None:
733 return min(reward, 0.99)
734 if self.initial_timer_val is None:
735 self.initial_timer_val = self.prev_timer_val = self.max_timer_val = (
736 current_val
737)
738 return min(reward, 0.99)
739 if current_val > (self.max_timer_val or 0):
740 self.max_timer_val = current_val
741 diff_step = current_val - (self.prev_timer_val or current_val)
742 if diff_step > self._ADJ_INC_THRESHOLD:
743 self.increments += max(1, int(round(diff_step / 60.0)))
744 elif diff_step < -1:
745 self._countdown_seen = True
746 self.prev_timer_val = current_val
747 net_increase_max = (self.max_timer_val or current_val) - self.initial_timer_val
748 fraction_by_inc = self.increments / max(1, self.needed_increments)
749 fraction_by_delta = net_increase_max / max(1, self.goal_seconds)
750 progress_fraction = min(1.0, max(fraction_by_inc, fraction_by_delta))
751 reward += 0.8 * progress_fraction
752 tol = max(2, int(self.goal_seconds * 0.05))
753 goal_reached_primary = (
754 self.increments >= self.needed_increments
755 or net_increase_max >= self.goal_seconds - tol
756)
757 committed = (
758 _is_timer_running(state) or _is_timer_paused(state) or self._countdown_seen
759)
760 keypad = _timer_keypad_mode(state)
761 secondary_success = (
762 not goal_reached_primary
763 and net_increase_max >= 0.4 * self.goal_seconds
764 and self.increments >= 1
765 and self._countdown_seen
766 and committed
767 and not keypad
768)
769 if (goal_reached_primary or secondary_success) and committed and not keypad:
770 self.goal_achieved = True
771 return 100.0
772 return min(reward, 0.99)
773
774 def _reward_snooze(self, state: str) -> float:
775 s_low = state.lower()
776 if "select snooze duration" in s_low:
777 self._snooze_dialog_seen = True
778 classic_done = (
779 "alarm snoozed" in s_low
780 or bool(re.search(r"snoozed\s+for\s+\d+", s_low))
781 or bool(re.search(r"\bsnooz(ing|ed)\b", s_low))
782)
783 row_done = (
784 self._snooze_dialog_seen
785 and "select snooze duration" not in s_low
786 and "snooze" in s_low
787 and bool(re.search(r"\b\d+\s+minutes?\b", s_low))
788)
789 if classic_done or row_done:
790 self.goal_achieved = True
791 return 100.0
792 reward = 0.0
793 if _alarm_tab_selected(state):
794 reward += 0.2
795 if re.search(r’"(content_description|text)"\s*:\s*"snooze"’, state, re.I):
796 reward += 0.3
797 if "select snooze duration" in s_low:
798 reward += 0.2
799 return min(reward, 0.99)
800
801 # --
802 # Progress-level helpers (stopwatch/timer/alarm)
803 # --
804 def _pl_reset_stopwatch(self, state: str) -> int:
805 if self.restart_mode:
806 if _stopwatch_running(state) and self._reset_seen:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

807 return 3
808 if _stopwatch_time_zero(state):
809 self._reset_seen = True
810 return 2
811 if _button_visible(state, "Reset") and (
812 _stopwatch_tab_selected(state) or "stopwatch" in state.lower()
813):
814 return 1
815 return 0
816 if _stopwatch_time_zero(state):
817 return 3
818 if _button_visible(state, "Reset") and (
819 _stopwatch_tab_selected(state) or "stopwatch" in state.lower()
820):
821 return 2
822 if _stopwatch_tab_selected(state):
823 return 1
824 return 0
825
826 def _pl_pause_stopwatch(self, state: str) -> int:
827 if not _stopwatch_running(state):
828 return 3
829 if _stopwatch_tab_selected(state):
830 return 1
831 return 0
832
833 def _pl_restart_stopwatch(self, state: str) -> int:
834 running = _stopwatch_running(state)
835 at_zero = _stopwatch_time_zero(state)
836 if running and self._reset_seen:
837 return 3
838 if at_zero:
839 self._reset_seen = True
840 return 2
841 if _stopwatch_tab_selected(state):
842 return 1
843 return 0
844
845 def _pl_start_stopwatch(self, state: str) -> int:
846 if _stopwatch_running(state):
847 return 3
848 if "stopwatch" in state.lower() or _stopwatch_tab_selected(state):
849 return 2
850 if _contains_any(state.lower(), ["the clock", ’"clock"’, "alarms", "timer"]):
851 return 1
852 return 0
853
854 def _pl_pause_timer(self, state: str) -> int:
855 if _is_timer_paused(state):
856 return 3
857 current_val = _extract_timer_value(state)
858 if current_val is not None:
859 if self._prev_timer_val_for_pause == current_val:
860 self._same_val_steps += 1
861 else:
862 self._same_val_steps = 0
863 self._prev_timer_val_for_pause = current_val
864 else:
865 self._same_val_steps = 0
866 stable_and_visible = (
867 _timer_tab_selected(state)
868 and current_val is not None
869 and self._same_val_steps >= 1
870 and not _is_timer_running(state)
871)
872 if stable_and_visible:
873 return 3
874 if _timer_paused_notification(state) and _timer_tab_selected(state):
875 return 3
876 if _timer_paused_notification(state):
877 return 2
878 if _is_timer_running(state):
879 return 2
880 if _timer_tab_selected(state):
881 return 1
882 return 0
883
884 def _pl_delete_timer(self, state: str) -> int:
885 if _timer_deleted(state):
886 return 3
887 if _contains_any(

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

888 state.lower(), ["delete", "remove", "clear", "âŇń", "backspace", "cancel"]
889):
890 return 2
891 if _timer_tab_selected(state):
892 return 1
893 return 0
894
895 def _pl_delete_alarm(self, state: str) -> int:
896 s_low = state.lower()
897 had_alarm_before = self._alarm_present_ever
898 alarm_now = _any_alarm_present(state) or _detect_alarm_time(state)
899 if alarm_now:
900 self._alarm_present_ever = True
901 if _is_alarm_deleted(state) and had_alarm_before:
902 return 3
903 if " delete" in s_low or "ð§ŮŚ" in s_low or re.search(r"trash|remove", s_low):
904 return 2
905 if alarm_now:
906 return 1
907 return 0
908
909 def _pl_add_city(self, state: str) -> int:
910 city_seen = self.city_keywords and any(
911 re.search(rf"\b{re.escape(kw)}\b", state, re.I) for kw in self.city_keywords
912)
913 in_search = (
914 re.search(r"search for a city", state, re.I)
915 or "select time zone" in state.lower()
916)
917 if city_seen and _clock_tab_selected(state) and not in_search:
918 return 3
919 if city_seen:
920 return 2
921 if _clock_tab_selected(state):
922 return 1
923 return 0
924
925 def _pl_set_alarm(self, state: str) -> int:
926 if self._alarm_goal_met(state):
927 return 3
928 if "select time" in state.lower() or "alarm set for" in state.lower():
929 return 2
930 if _alarm_tab_selected(state):
931 return 1
932 return 0
933
934 def _pl_adjust_alarm(self, state: str) -> int:
935 if not self._orig_seen and _alarm_time_present(
936 state, self.orig_hour24, self.orig_minute, None
937):
938 self._orig_seen = True
939 if (
940 _alarm_time_present(state, self.goal_hour24, self.goal_minute, None)
941 and self._orig_seen
942):
943 return 3
944 if "select time" in state.lower() or "alarm set for" in state.lower():
945 return 2
946 if _alarm_tab_selected(state) or self._orig_seen:
947 return 1
948 return 0
949
950 def _pl_rename_timer(self, state: str) -> int:
951 dialog_open = _rename_dialog_open(state)
952 label_seen = _timer_label_present(state, self.goal_label)
953 if label_seen and not dialog_open:
954 return 3
955 if dialog_open:
956 return 2
957 if _timer_tab_selected(state):
958 return 1
959 return 0
960
961 # --
962 # Additional parsing / goal-checking helpers
963 # --
964 def _parse_recurrence_days(self, instr_l: str) -> Set[str]:
965 days = {
966 "sunday",
967 "monday",

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

968 "tuesday",
969 "wednesday",
970 "thursday",
971 "friday",
972 "saturday",
973 "weekdays",
974 "weekday",
975 "week day",
976 "week days",
977 "weekends",
978 "every day",
979 "everyday",
980 }
981 found: Set[str] = set()
982 for d in days:
983 if d in instr_l:
984 if d in {
985 "weekdays",
986 "weekday",
987 "week day",
988 "week days",
989 "every day",
990 "everyday",
991 }:
992 found.update(
993 {"monday", "tuesday", "wednesday", "thursday", "friday"}
994)
995 elif d == "weekends":
996 found.update({"saturday", "sunday"})
997 else:
998 found.add(d)
999 return found

1000
1001 def _alarm_goal_met(self, state: str) -> bool:
1002 # time & presence
1003 if self.alarm_any_time:
1004 time_ok = _any_alarm_present(state)
1005 else:
1006 time_ok = _alarm_time_present(
1007 state, self.goal_hour24, self.goal_minute, self.goal_ap
1008)
1009 if not time_ok or not _alarm_context_present(state):
1010 return False
1011
1012 # recurrence handling
1013 if not self.recurrence_days:
1014 return True
1015
1016 # exact match
1017 if self.recurrence_days.issubset(_selected_weekdays(state)):
1018 return True
1019
1020 # lenient weekday rule
1021 weekdays_set = {"monday", "tuesday", "wednesday", "thursday", "friday"}
1022 if self.recurrence_days == weekdays_set and _day_toggle_buttons_visible(state):
1023 if "not scheduled" not in state.lower(): # ensure days have been picked
1024 return True
1025 return False
1026
1027 def _parse_alarm_goal_time(self):
1028 times = self._extract_times(self.instruction_norm_full)
1029 if not times:
1030 self.goal_hour24, self.goal_minute, self.goal_ap = _parse_alarm_time(
1031 self.instruction_norm_full
1032)
1033 return
1034 alarm_pos = self.instruction_norm.rfind("alarm")
1035 chosen = next((t[:3] for t in times if t[3] > alarm_pos), times[0][:3])
1036 self.goal_hour24, self.goal_minute, self.goal_ap = chosen
1037
1038 def _parse_adjusted_alarm(self) -> Tuple[int, int]:
1039 base_h, base_m, _ = _parse_alarm_time(self.instruction_norm_full)
1040 m = re.search(
1041 r"\bby\s+(\d+)\s*(hour|hours|minute|minutes)\b", self.instruction_norm
1042)
1043 if m:
1044 num = int(m.group(1))
1045 unit = m.group(2)
1046 delta = num * (60 if "hour" in unit else 1)
1047 total = (base_h * 60 + base_m + delta) % (24 * 60)
1048 return total // 60, total % 60

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

1049 time_tokens: List[Tuple[int, int]] = []
1050 pat = re.compile(r"(\d{1,2})(?:[:.]\s*(\d{2}))?\s*(am|pm)", re.I)
1051 for mt in pat.finditer(self.instruction_norm):
1052 h, mnt, ap = int(mt.group(1)), int(mt.group(2) or 0), mt.group(3).lower()
1053 if ap == "pm" and h != 12:
1054 h += 12
1055 if ap == "am" and h == 12:
1056 h = 0
1057 time_tokens.append((h % 24, mnt))
1058 if len(time_tokens) >= 2:
1059 return time_tokens[1]
1060 return base_h, base_m
1061
1062 @staticmethod
1063 def _parse_city_name(instr_l: str) -> str:
1064 parts = instr_l.split("add", 1)
1065 if len(parts) >= 2:
1066 tokens = parts[1].strip().split()
1067 city = []
1068 for w in tokens:
1069 if w in {"the", "a", "an"}:
1070 continue
1071 if w in {
1072 "time",
1073 "timezone",
1074 "zone",
1075 "city",
1076 "in",
1077 "to",
1078 "for",
1079 "app",
1080 "on",
1081 "world",
1082 "country",
1083 }:
1084 break
1085 city.append(w)
1086 if city:
1087 return " ".join(city).strip()
1088 if " in " in instr_l:
1089 _, after = instr_l.split(" in ", 1)
1090 tokens = after.strip().split()
1091 city = []
1092 for w in tokens:
1093 if w in {"the", "a", "an"}:
1094 continue
1095 wd = w.rstrip(".,;!")
1096 if wd in {
1097 "time",
1098 "timezone",
1099 "zone",
1100 "city",
1101 "for",
1102 "app",
1103 "on",
1104 "world",
1105 "country",
1106 }:
1107 break
1108 city.append(wd)
1109 return " ".join(city).strip()
1110 return ""
1111
1112 @staticmethod
1113 def _extract_times(instr: str) -> List[Tuple[int, int, str, int]]:
1114 instr_n = _normalize_time_text(instr)
1115 pat = re.compile(r"(\d{1,2})(?:[:.]\s*(\d{2}))?\s*(am|pm)", re.I)
1116 res = []
1117 for m in pat.finditer(instr_n):
1118 h, minute, ap = int(m.group(1)), int(m.group(2) or 0), m.group(3).lower()
1119 h24 = h % 12 + (12 if ap == "pm" else 0)
1120 res.append((h24 % 24, minute, ap, m.start()))
1121 return res

Listing 1: Android Control Generated Reward.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

A.9 PROMPTS

Goal Identification Prompt

Given this reward code: {reward_code}

Trajectory:
{trajectory}

Please analyze the state sequence and the agent’s instruction.
Identify the index of the goal state. The state indices are 1-based.

OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Explain your reasoning for choosing the goal state(s).
’goal_state_indexes’: A list of integers representing the 1-based
index of the goal state(s), or -1 if no goal state is present.

Prompt 1: The prompt for identifying the goal state(s) within a trajectory using a given reward
function.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

LLM Initial Reward Generation

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior.

Requirements:

• Write self-contained Python 3.9 code

• Always return rewards >= 0

• Make the function generic enough to handle variations
(different positions, orientations, etc.)

• Design for modularity - you might extend this reward later to
handle multiple goal types

• Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Environment Details:
{env_code}, {import_instructions}, {state_description}

Trajectories
{expert_trajectories}

Key Instructions:

1. Analyze the trajectory to understand what constitutes success

2. Identify intermediate progress that should be rewarded

3. Create utility functions for reusable reward components

The code will be written to a file and then imported.
OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Given the reason for your answer
’reward_class_code’: Code for the Reward function class in the
format:
imports
<imports_here>
utils functions
<utils functions here>
reward function
class Reward:

def __init__(self, extra_info=None):
<code_here>

def reward_fn(self, state):
<code_here>

def debug_fn(self, state):
<code_here>

The Reward class will be initialized with the extra_info argument.
Describe in the comments of the class the behaviour you are trying to
reproduce.
reward_fn and debug_fn receive only state as argument. The debug_fn
should return a string that will be printed and shown to you after
calling reward_fn on each state. You can print internal class
properties to help you debug the function. Extract any needed
information from the state or store it in the class. The Reward
class will be re-initialised at the beginning of each episode.

Prompt 2: Prompt to generate the initial set of rewards

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Evolution Mutation Prompt

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior.

Requirements:

• Write self-contained Python 3.9 code

• Always return rewards >= 0

• Make the function generic enough to handle variations
(different positions, orientations, etc.)

• Design for modularity - you might extend this reward later to
handle multiple goal types

• Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Original Reward Code:
{{code}}

{{import_message}}
{{state_description}}

--
CRITICAL: Incorrect Trajectories
The reward function above FAILED on the following trajectories. It
either assigned a high reward to a failed trajectory or failed to
assign the highest reward to the correct goal state. The predicted
rewards for each step are shown.
Change the reward function to fix these errors. The goal is to
make the reward function correctly identify the goal state (or lack
thereof) in these examples.

Key Instructions:

1. Analyze the trajectory to understand what constitutes success

2. Identify intermediate progress that should be rewarded

3. Create utility functions for reusable reward components

4. Implement goal switching logic using extra_info to determine
which reward function to use

5. Reuse existing utilities where possible

6. Make sure the logic you write generalises to variations in
‘extra_info‘

{incorrect_trajectories}

{expert_traj_str}
--

Now, provide the mutated version of the reward function that
addresses these errors.

OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Briefly explain the corrective change you made.
{REWARD_OUTPUT_FORMAT}
{REWARD_EXTRA_INFO}

Prompt 3: The prompt used for evolutionary mutation, providing feedback on incorrect trajectories.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Evolution Shaping Prompt

You are an ML engineer writing reward functions for RL training.
Given a trajectory with marked goal states, create a Python reward
function that can reproduce this behavior. Requirements:

• Write self-contained Python 3.9 code

• Always return rewards >= 0

• Make the function generic enough to handle variations
(different positions, orientations, etc.)

• Design for modularity - you might extend this reward later to
handle multiple goal types

• Give 100.0 for the goal state and less than 1.0 (modulated for
shaping) for all other states

Original Reward Code:
{env_code}

{import_message}
{state_description}

--
CRITICAL: Incorrectly Shaped Trajectories
The reward function above is not shaped optimally on the following
trajectories. This is an expert trajectory, so the reward should
monotonically increase from one state to the next. The predicted
rewards for each step are shown.
Change the reward function to fix these errors.

{incorrect_expert_trajectories}
--

Now, provide the mutated version of the reward function that
addresses these errors.

OUTPUT FORMAT:
Answer in a json format as follows:
’reasoning’: Briefly explain the corrective change you made.
{REWARD_OUTPUT_FORMAT}
{REWARD_EXTRA_INFO}

Prompt 4: The prompt used for refining reward shaping based on expert trajectories.

A.10 LLM USAGE STATEMENT

We wish to disclose the role of LLMs in the preparation of this work to ensure transparency.

Manuscript Writing We employed LLMs to assist in the writing process. This included rephras-
ing sentences and paragraphs to enhance clarity and flow, and checking for grammatical errors and
stylistic consistency. While LLMs helped refine the presentation of our ideas, all core arguments,
scientific claims, and the overall structure of the paper were developed by the human authors.

Code Development and Debugging In the software development process, LLMs were used as
a coding assistant. This involved generating specific utility functions based on detailed prompts,
providing explanations for complex error messages, and suggesting alternative implementations for
performance or readability improvements. The overall software architecture and core algorithms
were designed and implemented by the human authors, who verified and tested all LLM-assisted
code.

42

	Introduction
	Related Works
	Method
	Background
	GRACE

	Experiments
	Experimental Setup
	Analysis

	Discussion
	Reproducibility Statement
	Appendix
	Relations to Inverse Reinforcement Learning
	Goal Identification
	Additional Online Results
	Extended Discussion and Future Work
	New BabyAI Levels
	Hyperparameters
	Evolution Examples
	Generated Rewards
	Prompts
	LLM Usage Statement

