Textual-to-Visual Iterative Self-Verification Slide Generation Agent

Anonymous ACL submission

Abstract

Generating presentation slides is a time-
consuming task that urgently requires automa-
tion. Due to their limited flexibility and lack
of automated refinement mechanisms, exist-
ing autonomous LLM-based agents face con-
straints in real-world applicability. In this work,
we decompose the task of generating missing
presentation slides into two key components:
content generation and layout generation,
aligning with the typical process of creating
academic slides. For content generation, we
introduce a content generation approach that
enhances coherence and relevance by incor-
porating context from surrounding slides and
leveraging section retrieval strategies. For lay-
out generation, we propose a textual-to-visual
self-verification process using a LLM-based
Reviewer + Refiner workflow, transforming
complex textual layouts into intuitive visual for-
mats. This modality transformation simplifies
the task, enabling accurate and human-like re-
view and refinement. Experiments show that
our approach significantly outperforms base-
line methods in terms of alignment, logical
flow, visual appeal, and readability.

1 Introduction

Effectively summarizing and presenting research
findings through academic presentation slides is an
essential part of scientific communication, allow-
ing researchers to present key contributions and en-
gage audiences at conferences and seminars (Guo
et al., 2024; Mondal et al., 2024). However, creat-
ing these slides is a time-consuming process that
requires extracting core information from lengthy
papers, organizing it coherently, and designing vi-
sually consistent layouts across multiple slides (Fu
et al., 2021). With the rapid growth in the vol-
ume of research, the demand for automated solu-
tions has increased significantly. Recent advances
in large language models (LLMs) (OpenAl, 2023;
Touvron et al., 2023; Templeton et al., 2024) have

demonstrated remarkable capabilities in mimick-
ing human behavior for complex tasks (Hong et al.,
2023; Park et al., 2023; Yao et al., 2022b; Zala
et al., 2024; Ma et al., 2024a) beyond text genera-
tion (Yao et al., 2022b,a; Xi et al., 2024; Yang et al.,
2024). Building on these strengths, LL.M-based
agents offer a promising opportunity to automate
tasks like slide generation (Zheng et al., 2025), re-
ducing manual effort while ensuring coherence and
visual quality.

Despite its potential, generating high-quality aca-
demic presentation slides presents two major chal-
lenges: how to assign reasonable and adaptive
layouts for generated content and how to ensure
layout quality and consistency.

The first challenge lies in generating layout in-
formation that adapts to the unique visual structure
for different textual contents. Some methods fo-
cus solely on textual content, neglecting structural
aspects like positioning, spacing, and alignment,
leading to impractical outputs (Sun et al., 2021;
Bandyopadhyay et al., 2024). Existing rule-based
methods provide a quick and straightforward solu-
tion by populating predefined slots with generated
content. However, they overlook the unique struc-
tural style of each presentation, often leading to
rigid layouts that break the visual coherence.

The second challenge lies in achieving consis-
tent textual-visual results, complicated by the inher-
ent difficulty of representing slide layouts in struc-
tured textual formats. Unlike visual representations,
where spatial relationships and element alignment
are easy to interpret, textual formats lack this vi-
sual clarity (Xu et al., 2024; Hu et al., 2024). This
makes it difficult for models to fully understand
the spatial and structural aspects of slide design,
leading to frequent errors such as text overflow,
misalignment, and inconsistent spacing.

Furthermore, correcting these errors directly in
the textual format is non-trivial. Without a visual
reference, detecting overlapping elements or mis-

alignments becomes challenging, particularly in
slides with complex layouts.

The key component of our framework is a
textual-to-visual iterative self-verification process
to refine initial output. The initial slide layouts
are generated in a textual format, which—while
structured and machine-readable—often contains
errors due to the complexity of representing slide
information in a non-visual form. Additionally, re-
viewing and refining these layouts in their original
format is challenging and unintuitive. To address
this, we introduce a modality transformation (Li
et al., 2025) that converts the textual format into a
visualized form. This transformation significantly
reduces the complexity of the task, making it easier
for the LLM-based Reviewer + Refiner workflow
to detect and correct issues such as alignment and
text overflow in a human-like, intuitive manner.
The reviewer provides feedback by analyzing the
visual representation of the slide layout. The feed-
back is then passed to the refiner, who applies the
suggested adjustments to the structured layout in
textual format. This iterative refinement process
ensures higher-quality final outputs with improved
coherence and visual consistency.

Our key contributions are as follows.

1. An agentic framework for slide generation in-
cluding content and layout generation approaches,
ensuring thematic consistency and visual coher-
ence.

2. A textual-to-visual iterative self-verification
process with modality transformation, enabling in-
tuitive and accurate refinement for slide layout.

3. Extensive analyses and systematic evalua-
tion, demonstrating the significant effectiveness
and practical potential of our framework for auto-
mated academic slide generation.

2 Related Work

In this section, we introduce the background of
the LLM-based agent and existed studies on slides
generations.

2.1 LLM-based Agent

LLMs have demonstrated impressive capabilities
for complicated, interactive tasks (Yao et al.,
2022b,a; Xi et al., 2024; Yang et al., 2024; Ma
etal., 2024b). LLM-based autonomous agents have
achieved remarkable progress in a wide range of
domains, including logic reasoning (Qi et al., 2024;
Khattab et al., 2022), tool use (Qin et al., 2024;

Zhang et al., 2023a), and social activities (Park
et al., 2023). The current paradigm of agents relies
on the language intelligence of LLMs. The main-
stream work pattern encompasses environment per-
ceiving, planning, reasoning, and executing, form-
ing a workflow to dive and conquer intricate chal-
lenges.

Empowered by the recent progress of multi-
modal pre-training, those agents can understand
image, video, and audio channels (Wu et al., 2023;
Liu et al., 2023). (i) Visual knowledge can largely
facilitate reasoning and is integrated into Chain-of-
Thoughts (Zhang et al., 2023b; Xu et al., 2024).
(i1) Multi-modal reasoning enables divergent think-
ing cross modalities and takes advantage of those
different modalities. Sketchpad (Hu et al., 2024)
allows LLMs to draw drafts to assist its planning
and reasoning, i.e., to draw auxiliary lines for ge-
ometry problems. Visualization-of-Thought (Wu
et al., 2024) generates visual rationales for spatial
reasoning tasks like mazes. For each stage of com-
plex multi-modal tasks, selecting an appropriate
modality as the main modality for reasoning can
leverage the natural characteristics of the modality
and stimulate the potential of LLMs (Park et al.,
2025).

2.2 Slide Generation

Previous studies have explored extractive methods
and simplified this task as sentence selection, e.g.,
to calculate the importance score and extract top
sentences (Wang et al., 2017). With the develop-
ment of small language models (Lewis et al., 2020;
Raffel et al., 2020), slide generation is unified as
abstractive, query-based document summarization
(Sun et al., 2021).

Despite their early success, the emergence of
LLM:s exhibits exceptional performance and stim-
ulates the demands of intelligent slide generation.
Slide generation poses intricate challenges for au-
tonomous agents, as it requires document reading
comprehension and precise tool use to generate
layouts. Pioneer work focuses on modifying tar-
get elements, asking agents to execute a series of
specific instructions (Guo et al., 2024). The agent
needs to understand the status of the slide, navigate
to the element, and generate precise API calls. Re-
cent studies first plan the outlines and then generate
each page. To further control the style of presen-
tations, Mondal et al. (2024) introduce a reward
model trained on human feedback to guide both
topic generation and content extraction. Consid-

ering the visual quality of slides, Bandyopadhyay
et al. (2024) employ a visual LM to insert images.
DOC2PPT (Fu et al., 2021) integrates an object
placer to predict the position and size of each ele-
ment by training small models. PPTAgent (Zheng
et al., 2025) directly utilizes slide templates to fix
the layout and then fill textboxes, ensuring visual
harmony and aesthetic appeal.

3 Methodology

In this section, we propose an LLM-based agentic
workflow to automate the generation of content and
layout for academic paper slides.

3.1 Task Formulation

We first formally define our slide generation task.
In this task, a presentation is represented as a col-
lection of slide pages, where each page consists
of multiple elements. Each elemente € E is a
tuple (¢, 1), where c denotes the content (e.g., text,
images, tables) and [specifies the corresponding
layout information (e.g., position, size, font style).

Our overall task is to generate the missing
slide S; given the paper D, the missing slide
topic 7', and the partially available slide set S =
{S1,892,...,5,}.

Input The input consists of: 1. A paper D =
{dy,da,...,dn}, where d; denotes a section or
paragraph in the paper. 2. A missing slide topic 7T,
describing the main focus of the missing slide. 3. A
partially available slide set S = {S1, S2,...,Sn},
where some slides S; are missing. 4. The preced-
ing slide Sy, and the following slide Spe.: as
contextual information.

Output The output is a structured textual file S;,
which describes the missing slide, including both
content ¢ and layout information [for each element
e € E. Formally,

Si={ej=(c;,l;) i =1.2,....k}

where k is the number of elements in the generated
slide. The generated textual file can be directly
converted into a PowerPoint slide.

3.2 Slide Generation Framework

The process of creating a presentation typically
involves two key stages: (1) identifying the core
content that needs to be presented on each slide,
and (2) arranging this information into a visually
coherent and consistent layout.

The goal of content generation is to generate
c; for each element e; based on the paper D, the
missing slide’s topic 7', and contextual information
from the surrounding slides Sj;.c, and Syeqt:

Cj = gcontent(Da T7 Sprew Sne:ct)

Here, Geontent represents the content generation pro-
cess, ensuring that the generated content is accurate,
concise, and contextually relevant.

The layout generation task determines the layout
l; for each element e; = (¢, [;) to maintain visual
consistency and readability. The initial layout draft
l;o) is generated using the content ¢; and contextual
information from the surrounding slides:

150) = glayoutﬁdraft(cja Spreva Snewt)

To refine the initial layout, a textual-to-visual
iterative self-verification process is applied. The
layout at step k (lgk)) is visualized as Image(l§k)),
allowing the LLM-based Reviewer + Refiner work-
flow to provide feedback and corrections:

l]('k+1) = greﬁne <l](k)71mage(l](k)))

This iterative process continues until the layout
reaches the desired quality and visual coherence.

3.2.1 Content Generation

Determining the key contents on a slide page in-
volves understanding paper structures, extracting
critical texts and figures, and ensuring overall co-
herence for a logical flow and consistent style.

Our content generation stage adopts a multi-step
process with three sub-modules: Text Retriever,
Figure Extractor, and Content Generator, consisting
of a pipeline to identify relevant text segments,
recommend figures and tables, and then decide the
contents to present.

Text Retriever We build a text retriever to re-
trieve the most relevant sections of the paper. The
paper is divided into section-level granularity, with
each segment represented and indexed as a dense
embedding. Given the topic of a slide, the retriever
selects the most relevant segments by calculating
the cosine similarity between the dense embed-
dings of the slide topic and the indexed sections.

Figure Extractor Beyond the retrieved text, the
Figure Extractor identifies candidate figures to sup-
port slide content. It scans the top-k retrieved text
segments for explicit references (e.g., “Figure 17,

(a) Content Generation

Task: Identify the core content that needs
to be presented on each slide.

3 sub-modulesl Academic Paper
@ Neighbor Slides
@ Slide Topic

|;(1) Text Retriever J (2) Figure Extractoril

Top-k relevant Recommend
sections Figures

@M" (3) Content Generator l
|

Title:
Content:
- Key point 1
- Key point 2
- Key point n
Recommended Figures/Tables:
[Figure x, Figure y, Table z, ...]

[Slide Title]

(b) Layout Generation

Task: Arrange information into a visually
coherent and consistent layout.

2 stages l

ITI) Initial Layout Generator]

(2) Enter Textual-to-Visual
Iterative Self-Verification...

f_ .
- Textual Transformation Visual v
. Format Format

Difficult to understand Intuitive BUT
BUT easy to modify difficult to modify

R
X
Feedback

l Examine

A

Revise I

/

Figure 1: Overall Framework

“Table 2), and extracts the corresponding captions
from the paper. These captions provide semantic
descriptions of the figures.

At this stage, only candidate figures are col-
lected; the final selection is made by the Content
Generator based on the generated slide content.

Content Generator Given the related text seg-
ments and candidate figures provided by previous
modules, the LLM agent performs three sub-tasks.

First, it generates slide text aligned with the
slide’s topic and context.

Second, it selects the most relevant figures or
tables from the candidate set.

Finally, it incorporates adjacent slides to main-
tain logical flow and ensure seamless transitions.

The Content Generator’s output is then used for
Layout Generation, which focuses on organizing
content into a visually coherent slide.

3.2.2 Layout Generation

Slide layouts need to be flexible and controllable,
rather than fully randomized or constrained by rigid
templates. However, generating adaptive layouts is
challenging and prone to issues such as text over-
flow, misalignment, and inconsistent spacing, espe-
cially when handling diverse content and styles.
To address this, we design a textual-to-visual
iterative self-verification process. The initial lay-
out draft mimics surrounding slides for style con-
sistency but remains difficult to review in its struc-

tured textual format. We design an LLM-based
Reviewer + Refiner workflow that validates and
refines the layout respectively, improving accuracy
and coherence through iterative corrections.

Stage 1: Initial Layout Generation The initial
attempt is conducted by directly asking the LLM to
arrange the layout for each element of the generated
contents, specifying each element’s position, size,
font, and color. We also append surrounding slide
pages as demonstrations and carefully optimize the
prompt to instruct the LLM to mimic their layout
patterns for a visually consistent design. The layout
is normalized as a JSON format.

While this initial layout serves as a foundation,
our pilot experiments show that several factors con-
tribute to potential errors:

(i) Textual slide layout is inherently complex, re-
quiring detailed key-value pairs for positions, sizes,
fonts, and colors. Any inconsistency in this struc-
tured data can cause significant visual defects.

(i1) LLMs lack direct visual feedback and can-
not accurately assess how the generated layout will
appear in its final form. Unlike models specifi-
cally trained for visual tasks, LLMs rely on textual
context and structural patterns to predict layout in-
formation. This process is inherently limited, as it
depends heavily on imitation and pattern recogni-
tion without understanding visual balance or spatial
relationships. Consequently, the generated layouts

‘‘‘‘‘ Attribute First, then Generate: Locally-attributable

’._!_'};(;.ompose generation ket @undedidext Gengration |

e FirST, Then Generate: like humans choose content, then generate.
:ér granularity in the output, further decompose fusion step into:
: J .

I}era ive sentence fusion

The title overlaps with the

text below, move the title
N (id:1260) upwards! Adjust the bound of element
1260, increase both top and

bottom values by the same

amount.

= o

Attribute First, then Generate: Locally-attributable
2 Lpecompose generation ikt @kdedidext Lengration

* | Iattribute First, then Generate: like humans choose content, then generate.
| wtarity i the-output.further
bl ertencotevel nianni

Lo Literative sentence fusi

fustonsteprinto:

The title has reached the top

N and cannot move up any
further. Move all the text belo
down\;ar dov x v Adjust the bound of element ...,

) reduce both top and bottom

values by the same amount.

Attribute First, then Generate: Locally-attributable

* hecompose generation into content selection and content generation.
o 1260

* | Attribute First, then Generate: like humans choose content, then generate.
s Y

" fosgranularity in the output, further decompose fusion step into:
0 shtence-level planning

ol Tterative sentence fusion ‘

@\ No mistake! End of iteration

: Locally-attributable ‘

(> =
Generation
ecompose generation into content selection and cortent ganeration.

Attribute First, then G

Te First, then Generate: like humans choose content, then generate.

fusionrstep-to:

BRFAiE I phs-a{gut further
tive sentence fusion }

The title is too close to the border.
The text overlaps with the title, move
N the text downward.

Too little space between text. Adjust the bound of all text
elements by reducing both top
and bottom values equally, with
element 1260 reduced by a
larger amount.

Figure 2: Iterative Layout Refinement in the Reviewer + Refiner Workflow

may exhibit issues such as poor alignment, over-
lapping elements, or inconsistent spacing, which
require further refinement to ensure high-quality
results.

Stage 2: Textual-to-Visual Iterative Self-
Verification To refine the initial layout, we in-
troduce a self-verification process that combines
modality transformation and a LLM-based agentic
workflow.

Modality Transformation We first convert
the initial textual output into a visualized slide. The
initialized layout is written into a slide and saved
as an image. To facilitate visual perception, each
visualized element in the slide is enclosed in a col-
ored bounding box with a unique ID, matching its
corresponding element in the textual file. This vi-
sual augmentation simplifies the workload, largely
relieving the burden of perception and enabling the
Reviewer to quickly reference specific elements
and detect potential issues.

Reviewer The Reviewer simulates how a hu-
man expert would evaluate slide quality, following
a predefined set of evaluation criteria and adjust-
ment rules. Specifically, it performs the following
tasks: Object overlapping detection, Image qual-
ity and distortion analysis, Element bounding and
text overflow correction, Element positioning and
alignment, Text formatting consistency and Overall
composition and visual balance

Each recommendation is output as a structured
list of suggestions, identifying specific elements

by their ID and providing precise numerical val-
ues for adjustments. For example, the Reviewer
might suggest increasing a text box’s height by
1.2x to accommodate overflowing text or shifting
an image downward by 10% of its height to resolve
an overlap. Such a definite, specific advice format
makes it easier for the Refiner to implement precise
corrections in the subsequent refinement stage.

Refiner The Refiner plays a role for execu-
tion, translating the Reviewer’s visual feedback
into precise modifications within the textual lay-
out. To ensure accurate modifications, the Refiner
follows a set of predefined rules based on the type
of feedback received. For example, when the Re-
viewer suggests repositioning an element, the Re-
finer adjusts its bounding box coordinates accord-
ingly while ensuring it remains within slide bound-
aries. Each rule is applied systematically based on
the Reviewer’s feedback. The Refiner’s task is to
modify only the necessary fields while maintain-
ing the basic structure, resulting in a complete and
refined file that reflects the intended adjustments.

Integration and Rendering The final output of
this process is a refined JSON-formatted layout
description that accurately represents the corrected
slide. This JSON is passed to the rendering module
to produce the final PowerPoint slide, ensuring that
the layout visually reasonable and aligns with the
overall presentation style.

LLM Method Coverage ROUGE-1 ROUGE-2 ROUGE-L
P R F1 P R F1 P R F1

- D2S 24.38 1830 3031 2047 473 779 526 1686 27.21 19.08
Vanilla 29.81 2456 47774 28.02 894 1996 1034 17.54 37.58 20.46
- w/o Retriever 28.18 30.06 42.04 2935 1244 1945 1254 23.19 34.85 22.99

Llama-31-8B - w/o Neighbor 32.36 2531 4231 2679 9.78 19.03 10.72 19.00 34.07 20.42
Ours (3S) 32.76 28.64 3930 2747 1123 17.13 11.15 2199 32.18 21.36
Ours (5S) 31.18 28.52 42.63 2840 1138 1933 11.68 21.76 34.99 21.97
Vanilla 28.41 2329 4397 2565 7.15 1686 820 16.23 34.09 18.31
- w/o Retriever 29.01 3248 37.68 2836 11.15 15.88 10.05 2445 30.35 21.64

GPT-40 - w/o Neighbor 28.81 29.11 34.60 26.13 10.18 1543 9.61 2279 29.21 20.88
Ours (3S) 29.49 31.63 3286 26.10 11.30 1491 9.84 2434 27.81 20.76
Ours (5S) 29.41 3175 37.68 2839 10.89 15.71 10.28 24.09 30.60 21.97
Vanilla 25.28 2427 4492 26.02 9.06 19.69 10.10 17.89 36.24 19.65
- w/o Retriever 26.18 3147 36777 2792 12.60 17.11 11.60 24.66 30.39 22.14

Qwen2.5-7B - w/o Neighbor 30.08 24.13 4493 2591 9.01 19.69 10.06 17.78 36.26 19.57
Ours (3S) 28.79 29.78 36.26 2599 11.63 16.58 10.56 24.17 30.76 21.21
Ours (5S) 27.67 2831 37.17 26.01 1029 1571 9.87 21.60 3021 20.18

Table 1: Evaluation results for content generation.

4 Experiments

4.1 Dataset Construction

The dataset is sourced from the ACL 2024 In-
Person Poster Session 1, with data collected from
the public academic platform Underline. The
dataset consists of academic papers and their cor-
responding PowerPoint slides in PDF format, cov-
ering various research topics in natural language
processing. To facilitate processing and preserve
format details, all data is uniformly converted into
JSON format, containing element-level informa-
tion such as text content, font styles, positions, and
sizes. Text from papers was extracted using GRO-
BID (Kermitt2, 2020). Figures and captions were
extracted using PDFFigures 2.0 (Clark and Divvala,
2016).

4.2 Baseline

We compare with two traditional document-to-slide
generation systems.

D2S (Sun et al., 2021) adopts a two-step pipeline
that first retrieves content using slide titles, then
summarizes the retrieved content into bullet points
via long-form QA.

Doc2ppt (Fu et al., 2021) formulates the task as
end-to-end generation using a hierarchical seq2seq
model that jointly predicts content and layout.

4.3 Implementation

We compare the performance of three large lan-
guage models: Llama-31-8B-Instruct (Grattafiori
et al., 2024), GPT-40 (OpenAl et al., 2024), and

Qwen-2.5-7B (Qwen et al., 2025). The best-
performing model is selected to generate the final
structured content. In the layout generation mod-
ule, both the Reviewer and Refiner modules are
built on top of multimodal large language model.

For the retriever, we use the Salesforce SFR-
Embedding-Mistral (Wang et al., 2024) retriever
to compute similarity scores and select the top-k
most relevant sections.

Our experiments are naturally organized in the
form of ablations. In the w/o Section Retriever
configuration, the model receives the entire paper
as input without section-level retrieval. In the w/o
Neighbor Slides configuration, the surrounding
slide content is removed, which helps assess the
role of contextual information in maintaining logi-
cal flow and consistency.

4.4 Evaluation

Our evaluation method measures both content gen-
eration and layout generation. The evaluation pro-
cess combines quantitative metrics and structured
qualitative assessment to ensure comprehensive
analysis.

Content Evaluation We evaluate generated slide
content using ROUGE (Lin, 2004) and Coverage
(Kothawade et al., 2020). ROUGE measures lexical
overlap with reference slides, while Coverage com-
putes the average cosine similarity between sen-
tence embeddings from the source document and
generated bullet points, reflecting semantic align-
ment. Higher Coverage indicates better semantic
alignment with the original content.

https://underline.io/events/466/posters?searchGroup=lecture&eventSessionId=18190

Result Type Element-Level Slide-Level Overall Impression
Align & Space | Logic Coherence | Visual Appeal Readability
Reference Slide 4.5 3.7 3.8 3.5 3.8
DOC2PPT 3.1 1.9 3.2 2.0 3.0
Baseline 2.0 3.0 33 2.0 2.5
JSON-Based Refinement 2.1 2.6 34 1.8 24
Our Method 3.0 3.8 34 2.8 3.1

Table 2: Evaluation results for layout generation

Layout Evaluation We adopt LLM-as-Judge
(Chen et al., 2024) to evaluate slide layout across
three levels:

o Element Level: Assesses alignment, spacing,
and positioning of individual elements to ensure a
well-structured layout.

o Slide Level: Focuses on logical flow and text-
visual consistency, ensuring information is pre-
sented clearly and supported by relevant visuals.

o Overall Impression: Evaluates visual appeal
and readability, ensuring cohesive design, appropri-
ate font size, and clear figures.

4.5 Main Results

Content Generation Among the three models,
GPT-40 demonstrates the most consistent and high
performance, particularly in ROUGE-L F1 (21.97)
and ROUGE-2 Recall (15.71). Although Llama-
31-8B shows competitive performance in certain
cases (e.g., ROUGE-1 Recall 47.74 for the Base-
line), GPT-40 achieves a better balance between
precision and recall. Qwen2.5-7B shows moder-
ate performance, but its results are slightly more
variable compared to the other models.

Layout Generation For layout evaluation, Ta-
ble 2 summarizes the results of layout genera-
tion across three different configurations: Baseline,
Textual-Based Refinement, and Our Method. The
Reference Slide serves as a benchmark for assess-
ing the quality of generated layouts.

Vanilla: This configuration represents the initial
layout generated by the model without any refine-
ment. The layout is stored in a structured JSON for-
mat describing positions, sizes, and other attributes.
However, due to the complexity of multi-element
layouts and the lack of visual feedback, this initial
output often contains errors such as misalignment,
overflow, and inconsistent spacing.

Textual-Based Refinement: In this configura-
tion, the initial JSON file is refined through an au-
tomated rule-based review. The Reviewer analyzes

the JSON structure to detect layout issues, while
the Refiner applies corrective actions directly to the
JSON file. Although this approach improves some
metrics, such as Coherence (3.4), it still struggles
with Visual Appeal (1.8) and Alignment (2.1), in-
dicating the limitations of rule-based refinement
without visual feedback.

Our Method: By introducing modality trans-

formation, we convert the JSON layout into a fully
visualized slide image, allowing the Reviewer +
Refiner workflow to detect and correct issues more
intuitively. This approach yields significant im-
provements, especially in Alignment and Spacing
(3.0) and Logical Flow (3.8), closely approaching
the quality of the reference slides. Additionally,
Visual Appeal (2.8) and Readability (3.0) show
notable gains compared to the previous configura-
tions.
The results indicate that incorporating the Reviewer
+ Refiner workflow and modality transformation
significantly improves layout quality, especially in
terms of visual appeal and overall readability.

S Analysis

5.1 Ablation

Effect of Neighbor Slides Neighbor slides sig-
nificantly impact the quality of content generation.
For instance, removing neighbor slides in Llama-
31-8B (w/o Neighbor Slides) leads to a noticeable
decrease in ROUGE-1 F1 (28.40 to 26.79) and
ROUGE-2 F1 (11.68 to 10.72). Similar trends are
observed in GPT-40 and Qwen2.5-7B, highlighting
the importance of contextual information in main-
taining logical coherence and reducing redundancy.

Balancing Full Context vs. Section Retrieval
While using a section retriever helps reduce input
length and improve efficiency, it can also cause
minor variations in ROUGE scores. For exam-
ple, Llama-31-8B with Section Retriever achieves
slightly lower recall compared to its full-input coun-

terpart. When provided with the full paper, they can
better understand the broader context and underly-
ing relationships, resulting in more accurate and
coherent slide content. This suggests that LLMs
have strong capabilities in processing long docu-
ments. Thus, in scenarios where the input length
remains within the allowable range, feeding the full
paper is often more advantageous for generating
high-quality slides on a given topic.

However, in situations where the input length
exceeds the model’s context window or when the
paper contains a significant amount of irrelevant
information, Section Retrieval becomes essential.
Selecting an optimal number of sections (e.g., 3
vs. 5) helps balance relevance and completeness.
According to the results, Qurs (5S) generally offers
better recall and overall F1 compared to selecting
fewer sections, as it provides more comprehensive
contextual information without overwhelming the
model with unnecessary details.

In summary, choosing between full-context in-
put and section retrieval depends on the specific
characteristics of the input paper. When the pa-
per is relatively concise and highly relevant to the
target topic, full-context input should be preferred.
In contrast, for longer papers with diverse content,
section retrieval is crucial for ensuring relevance
while maintaining efficiency.

5.2 Factors Affecting Layout Quality

Alignment and Spacing metrics evaluate whether el-
ements are properly positioned, evenly spaced, and
free from overlap. As shown in Table 2, our method
achieved a notable improvement in the Alignment
and Spacing score (3.0) compared to the Baseline
(2.0) and JSON-Based Refinement (2.1). Specifi-
cally, we observed that self-verification on textual
layout cannot improve the layout quality, even com-
promise the Logic, Visual Appeal, and Readability.
Our method eliminates this problem and achieves
consistent improvement by introducing the textual-
to-visual modality transformation.

Taking a closer look at the wrong cases, the re-
maining problems fall into three types.

(i) Low-quality initial layouts—such as overlap-
ping elements or uneven spacing—Ilimit the Re-
viewer’s ability to provide precise corrections. For
example, when multiple elements overlap, it be-
comes unclear which one should be adjusted.

(i) The lack of diverse layout patterns in the
training data, particularly for slides with images,
limits the model’s ability to position visual ele-

ments effectively.

(ii1)) Complex multi-element layouts can cause
small errors to cascade during refinement, making
them hard to fix without advanced optimization.

5.3 Complete Presentation Generation

While our current framework focuses on generating
slides given a specific topic, the method can be
naturally extended to automate the generation of a
complete presentation composed of various slides.

Topic Generation and Slide Planning The first
step in generating a full presentation is to extract
key topics from the input paper. This can be
achieved by analyzing the paper’s structure (e.g.,
Abstract, Introduction, Method, Results). Addition-
ally, keyword extraction and clustering techniques
can help create a sequence of logically connected
topics for the slides. Each generated topic corre-
sponds to a unique slide.

Multi-Page Content Generation Once the top-
ics are generated, the framework applies the content
generation strategy iteratively for each slide. By
incorporating context from the previously gener-
ated slides, the model maintains logical flow and
coherence across the entire presentation. Special
transition slides (e.g., Overview) can be inserted to
improve the presentation’s structure.

Consistent Layout and Visual Style The Re-
viewer + Refiner review process can be fully reused
to ensure layout consistency across all slides.

This extension to full presentation generation
holds significant practical value. It allows re-
searchers to generate complete, high-quality pre-
sentations directly from academic papers, reducing
the manual effort involved in slide creation.

6 Conclusion

In this paper, we propose a novel framework for
generating academic presentation slides. By de-
composing the task into content generation and
layout generation, our method ensures adaptive lay-
outs and visually consistent slides. We introduce a
textual-to-visual iterative self-verification process
using an LLM-based Reviewer + Refiner workflow,
transforming complex textual layouts into visual
representations for intuitive review and refinement.
Experiments demonstrate that our approach sig-
nificantly improves alignment, logical flow, visual
appeal, and readability, offering a practical solution
for automating high-quality slide generation.

Limitations

While our framework shows promising results in
generating academic slides, it has two main lim-
itations. First, the dataset is restricted to scien-
tific papers and corresponding presentation slides
from publicly available sources, which may limit
its generalizability to other types of presentations.
Second, the focus of our approach is primarily on
generating accurate content and structured layouts,
without considering advanced visual design aspects
such as color schemes, animations, or aesthetic en-
hancements that contribute to overall slide polish
and engagement.

Ethics Statement

Our study utilizes academic papers and their associ-
ated presentation slides that are publicly accessible
on official conference platforms. These materi-
als are collected under the fair use principle and
are used strictly for non-commercial, analytical
research purposes. We do not use these data for
model training, but only for performance evalua-
tion.

References

Sambaran Bandyopadhyay, Himanshu Maheshwari,
Anandhavelu Natarajan, and Apoorv Saxena. 2024.
Enhancing presentation slide generation by LLMs
with a multi-staged end-to-end approach. In Proceed-
ings of the 17th International Natural Language Gen-
eration Conference, pages 222-229, Tokyo, Japan.
Association for Computational Linguistics.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu,
Yaochen Wang, Huichi Zhou, Qihui Zhang, Yao Wan,
Pan Zhou, and Lichao Sun. 2024. Mllm-as-a-judge:
Assessing multimodal 1lm-as-a-judge with vision-
language benchmark. Preprint, arXiv:2402.04788.

Christopher Clark and Santosh Divvala. 2016. Pdf-
figures 2.0: Mining figures from research papers.
In Proceedings of the 16th ACM/IEEE-CS on Joint
Conference on Digital Libraries, JCDL ’16, page
143-152, New York, NY, USA. Association for Com-
puting Machinery.

Tsu-Jui Fu, William Yang Wang, Daniel J. McDuff, and
Yale Song. 2021. Doc2ppt: Automatic presentation
slides generation from scientific documents. In AAAT
Conference on Artificial Intelligence.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur

Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao,
and Nan Duan. 2024. PPTC benchmark: Evaluat-
ing large language models for PowerPoint task com-
pletion. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 8682-8701,
Bangkok, Thailand. Association for Computational
Linguistics.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and 1 others. 2023. Coga-
gent: A visual language model for gui agents. ArXiv
preprint, abs/2312.08914.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A. Smith, and Ran-
jay Krishna. 2024. Visual sketchpad: Sketching as
a visual chain of thought for multimodal language
models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Kermitt2. 2020. Grobid: Machine learning for
extracting information from scholarly documents.
https://github.com/kermitt2/grobid. Ac-
cessed: 2025-02-16.

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. 2022. Demonstrate-search-
predict: Composing retrieval and language mod-
els for knowledge-intensive nlp. arXiv preprint
arXiv:2212.14024.

Suraj Kothawade, Jiten Girdhar, Chandrashekhar Lava-
nia, and Rishabh Iyer. 2020. Deep submodular net-
works for extractive data summarization. Preprint,
arXiv:2010.08593.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia,
Shaoguang Mao, Li Dong, Ivan Vuli¢, and Furu
Wei. 2025. Imagine while reasoning in space:
Multimodal visualization-of-thought. Preprint,
arXiv:2501.07542.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning.

https://aclanthology.org/2024.inlg-main.18/
https://aclanthology.org/2024.inlg-main.18/
https://aclanthology.org/2024.inlg-main.18/
https://arxiv.org/abs/2402.04788
https://arxiv.org/abs/2402.04788
https://arxiv.org/abs/2402.04788
https://arxiv.org/abs/2402.04788
https://arxiv.org/abs/2402.04788
https://doi.org/10.1145/2910896.2910904
https://doi.org/10.1145/2910896.2910904
https://doi.org/10.1145/2910896.2910904
https://api.semanticscholar.org/CorpusID:231719374
https://api.semanticscholar.org/CorpusID:231719374
https://api.semanticscholar.org/CorpusID:231719374
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.findings-acl.514
https://doi.org/10.18653/v1/2024.findings-acl.514
https://doi.org/10.18653/v1/2024.findings-acl.514
https://doi.org/10.18653/v1/2024.findings-acl.514
https://doi.org/10.18653/v1/2024.findings-acl.514
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://github.com/kermitt2/grobid
https://arxiv.org/abs/2010.08593
https://arxiv.org/abs/2010.08593
https://arxiv.org/abs/2010.08593
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2501.07542
https://arxiv.org/abs/2501.07542
https://arxiv.org/abs/2501.07542
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2304.08485

Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, As-
ton Zhang, Zhuosheng Zhang, and Hai Zhao. 2024a.
Caution for the environment: Multimodal agents
are susceptible to environmental distractions. arXiv
preprint arXiv:2408.02544.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024b.
Coco-agent: A comprehensive cognitive mllm agent
for smartphone gui automation. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 9097-9110.

Ishani Mondal, Shwetha S, Anandhavelu Natarajan,
Aparna Garimella, Sambaran Bandyopadhyay, and
Jordan Boyd-Graber. 2024. Presentations by the hu-
mans and for the humans: Harnessing LLMs for
generating persona-aware slides from documents. In
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2664-2684,
St. Julian’s, Malta. Association for Computational
Linguistics.

OpenAl. 2023. Gpt-4 technical report. ArXiv preprint,
abs/2303.08774.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive simu-
lacra of human behavior. In In the 36th Annual ACM
Symposium on User Interface Software and Technol-
ogy (UIST ’23), UIST 23, New York, NY, USA.
Association for Computing Machinery.

Simon Park, Abhishek Panigrahi, Yun Cheng, Dingli
Yu, Anirudh Goyal, and Sanjeev Arora. 2025. Gen-
eralizing from simple to hard visual reasoning: Can
we mitigate modality imbalance in vims? Preprint,
arXiv:2501.02669.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reason-
ing makes smaller 1lms stronger problem-solvers.
Preprint, arXiv:2408.06195.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan

10

Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Edward Sun, Yufang Hou, Dakuo Wang, Yunfeng
Zhang, and Nancy X. R. Wang. 2021. D2S:
Document-to-slide generation via query-based text
summarization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1405-1418, Online. As-
sociation for Computational Linguistics.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack
Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy
Cunningham, Nicholas L Turner, Callum McDougall,
Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
and 3 others. 2024. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. ArXiv preprint,
abs/2307.09288.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Improv-
ing text embeddings with large language models.
Preprint, arXiv:2401.00368.

Sida Wang, Xiaojun Wan, and Shikang Du. 2017.
Phrase-based presentation slides generation for aca-
demic papers. In AAAI Conference on Artificial In-
telligence.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-
Seng Chua. 2023. Next-gpt: Any-to-any multimodal
IIm.

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan
Xia, Li Dong, Lei Cui, and Furu Wei. 2024. Mind’s
eye of LLMs: Visualization-of-thought elicits spatial
reasoning in large language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, Songyang Gao,
Lu Chen, Rui Zheng, Yicheng Zou, Tao Gui,
Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan
Wu, and Yu-Gang Jiang. 2024. Agentgym: Evolv-
ing large language model-based agents across diverse
environments. Preprint, arXiv:2406.04151.

https://aclanthology.org/2024.eacl-long.163/
https://aclanthology.org/2024.eacl-long.163/
https://aclanthology.org/2024.eacl-long.163/
https://aclanthology.org/2024.eacl-long.163/
https://aclanthology.org/2024.eacl-long.163/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2501.02669
https://arxiv.org/abs/2501.02669
https://arxiv.org/abs/2501.02669
https://arxiv.org/abs/2501.02669
https://arxiv.org/abs/2501.02669
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/2412.15115
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2021.naacl-main.111
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://api.semanticscholar.org/CorpusID:29166371
https://api.semanticscholar.org/CorpusID:29166371
https://api.semanticscholar.org/CorpusID:29166371
https://arxiv.org/abs/2309.05519
https://arxiv.org/abs/2309.05519
https://arxiv.org/abs/2309.05519
https://openreview.net/forum?id=CEJ1mYPgWw
https://openreview.net/forum?id=CEJ1mYPgWw
https://openreview.net/forum?id=CEJ1mYPgWw
https://openreview.net/forum?id=CEJ1mYPgWw
https://openreview.net/forum?id=CEJ1mYPgWw
https://arxiv.org/abs/2406.04151
https://arxiv.org/abs/2406.04151
https://arxiv.org/abs/2406.04151
https://arxiv.org/abs/2406.04151
https://arxiv.org/abs/2406.04151

Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao
Sun, and Li Yuan. 2024. Llava-cot: Let vision
language models reason step-by-step. Preprint,
arXiv:2411.10440.

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024. Swe-agent: Agent-computer inter-
faces enable automated software engineering. arXiv
preprint arXiv:2405.15793.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744-20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
ReAct: Synergizing reasoning and acting in language
models. volume abs/2210.03629.

Abhay Zala, Han Lin, Jaemin Cho, and Mohit Bansal.
2024. Diagrammergpt: Generating open-domain,
open-platform diagrams via llm planning. In COLM.

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru
Tang, Xinbei Ma, Zhiwei He, Yiming Wang, Mark
Gerstein, Rui Wang, Gongshen Liu, and Hai Zhao.
2023a. Igniting language intelligence: The hitch-
hiker’s guide from chain-of-thought reasoning to lan-
guage agents. Preprint, arXiv:2311.11797.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023b. Multi-
modal chain-of-thought reasoning in language mod-
els. arXiv preprint arXiv:2302.00923.

Hao Zheng, Xinyan Guan, Hao Kong, Jia Zheng,
Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and
Le Sun. 2025. Pptagent: Generating and evaluating
presentations beyond text-to-slides. arXiv preprint
arXiv:2501.03936.

A Detailed Descriptions of Reviewer and
Refiner Modules

A.1 Reviewer Module

The Reviewer module analyzes the visual repre-
sentation of the slide, identifies layout issues, and
provides precise feedback for improvements. This
feedback focuses on alignment, spacing, text over-
flow, and image distortion. The primary goal of
the Reviewer is to detect errors and ensure that all
elements are properly positioned and formatted for
a visually coherent slide.

A.1.1 Evaluation Criteria and Feedback Rules

The Reviewer module evaluates slides based on the
following criteria:

11

* Object Overlapping: Identifies overlapping
elements and suggests repositioning or resiz-
ing to maintain separation.

* Image Quality and Distortion: Detects
blurry or distorted images and recommends
proportional scaling.

* Element Bounding and Text Overflow: En-
sures text fits within its bounding box and
suggests expanding the box or reducing font
size.

* Element Positioning and Alignment:
Checks alignment and spacing, adjusting
misaligned elements to the nearest grid line.

* Text Formatting Consistency: Verifies font
family and text hierarchy, ensuring the title is
larger than body text.

* Overall Composition and Visual Balance:
Evaluates symmetry and visual balance, rec-
ommending layout adjustments for better har-
mony.

A.1.2 Example Output

The output of the Reviewer module is a structured
JSON list, detailing necessary modifications for
each slide element.

L

{
"element": 302,
"recommendation”: "Increase text box
height by 1.2x to fit
overflowing text.”
}’
{

"element": 303,

"recommendation”: "Move downward by
10% of its height to resolve
overlap with ID 302."

}’
{

"element": 304,

"recommendation”: "Reduce font size
by 2pt to fit within the
bounding box."

3

A.2 Refiner Module

The Refiner module applies the Reviewer’s feed-
back by modifying the structured layout described
in JSON format. This module focuses on correct-
ing bounding box positions, resizing elements, and
preventing overlaps.

https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2411.10440
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2311.11797
https://arxiv.org/abs/2311.11797
https://arxiv.org/abs/2311.11797
https://arxiv.org/abs/2311.11797
https://arxiv.org/abs/2311.11797

A.2.1 Input to the Refiner

The input to the Refiner module consists of the
following components:

* JSON File: Describes the position, size, font,
and content of each element on the slide.

¢ Reviewer’s Feedback: Provides detailed rec-
ommendations for modifying elements (e.g.,
move, resize, align).

¢ Slide Dimensions: Ensures all adjustments
remain within the boundaries of the slide.

A.2.2 Modification Instructions

The Refiner applies modifications based on the Re-
viewer’s feedback, following these rules:

* Move an Element: Adjust the element’s
bounding box values to reposition it. Mod-
ify the top, bottom, left, and right values as
required.

Resize or Scale an Element: Modify the
width and height of an element proportionally
while preserving its aspect ratio.

* Avoid Overlap: Ensure no two elements over-
lap by repositioning or resizing conflicting
elements.

Maintain Slide Boundaries: Prevent ele-
ments from exceeding the slide’s width or
height.

A.2.3 Example Input and Output

The following example illustrates how the Refiner
module processes input and produces a refined lay-
out.

{
"element": 302,
"Bounds": [100, 200, 300, 40017,
"Font": {"size": 163},
"Text"”: "Sample Text"”
}
{
"element"”: 302,
"Bounds": [100, 220, 300, 42017,
"Font": {"size": 143},
"Text": "Sample Text"”
}

By applying these refinements iteratively, the
Refiner ensures that the final slide layout meets
high visual and structural standards, resulting in an
accurate and human-like output.

12

B Layout Evaluation Criteria and
Scoring Standards

This section provides a detailed explanation of the
evaluation criteria used to assess the quality of the
generated slides. The evaluation process covers
multiple aspects of slide design, including align-
ment, logical flow, text-visual consistency, visual
appeal, and readability. Each criterion is scored on
a five-point scale from 1 (Poor) to 5 (Excellent).

B.1 Alignment and Spacing

This criterion evaluates whether elements on the
slide are properly positioned, evenly spaced, and
free from overlap. It ensures that the layout main-
tains visual balance and clarity.

* 1 Point (Poor): Severe misalignment; text
overlaps with visuals, creating a chaotic lay-
out.

* 3 Points (Average): Most elements are
aligned, but minor misplacements exist.

* 5 Points (Excellent): Perfect alignment and
spacing with a professional layout.

Example Output:
{

"reason”: "Most elements are well-
aligned, but the spacing between
the title and body text is
inconsistent.”,

"score": 4

}

B.2 Logical Flow

This criterion assesses the logical sequence of con-
tent, ensuring that the information presented in the
slide is clear and structured for easy audience un-
derstanding.

* 1 Point (Poor): Disorganized content; key
points do not follow a logical sequence.

* 3 Points (Average): Basic logical structure;
minor reordering could improve the flow.

* 5 Points (Excellent): Seamless logical se-
quence with clear and structured information.

Example Output:

{

"reason"”: "The information is
structured logically, but the
second point would be clearer if
placed before the third."”,

"score": 4

}

B.3 Text-Visual Consistency

This criterion evaluates the consistency between
text and visual elements such as images and charts.
It ensures that visuals effectively support the textual
information.

¢ 1 Point (Poor): Visuals are irrelevant or con-
tradict the text.

* 3 Points (Average): Somewhat aligned, but
better integration is needed.

* 5 Points (Excellent): Perfectly integrated vi-
suals that reinforce the message.

Example Output:
{

"reason”: "The visuals effectively
support the content, but the chart
could be labeled more clearly.”,
"score": 4

B.4 Visual Appeal

This criterion assesses the overall aesthetic quality
of the slide, focusing on color harmony, typography,
and visual balance.

* 1 Point (Poor): Inconsistent styling; visually
unappealing design.

* 3 Points (Average): Basic but functional color
scheme; lacks enhancements.

* 5 Points (Excellent): Cohesive and visually
appealing design with engaging elements.

Example Output:
{

"reason”: "The color scheme is
visually appealing and harmonious,
but the background contrasts too
strongly with the text.”,
"score": 4

3

13

B.5 Readability

This criterion evaluates the readability and clarity
of the text and graphical elements, ensuring that all
content is easily understandable.

e 1 Point (Poor): Text is too small or has low
contrast, making it unreadable.

* 3 Points (Average): Generally clear, but some
areas need better contrast or spacing.

* 5 Points (Excellent): Highly readable with
optimal font size, spacing, and contrast.

Example Output:

{

"reason”: "The text is clear, well-

spaced, and maintains good

contrast. The charts are easy to

read and properly scaled.”,
"score”: 5

These evaluation criteria ensure a comprehen-
sive and structured assessment of the generated
slides. By adhering to these standards, the evalua-
tion process becomes interpretable, consistent, and
reliable.

C Reliability Verification of Layout
Generation Evaluation

To verify the reliability of our layout evaluation
framework (LLM-as-Judge), we conducted a hu-
man evaluation on a randomly selected subset of
generated slides. To ensure consistency with the
LLM-based evaluations, we provided human raters
with the same scoring rubric and descriptions used
by the LLM, including detailed explanations of
each criterion. Each dimension was rated on a 1-5
Likert scale, where 1 indicates poor performance
and 5 indicates excellent performance. We then
computed Pearson correlation coefficients between
human scores and the LLM-based assessments.

As illustrated in Figure 6, the average correla-
tion reached 0.6984, suggesting a strong agreement
between human judgments and LLM evaluations.
In particular, dimensions such as visual appeal and
readability achieved the highest consistency, with
correlations of 0.89 and 0.77, respectively. These
results support the use of LLM-as-Judge as a reli-
able proxy for human evaluation in layout quality
evaluation.

Readsbity |
visialAppea 2
Text-Visual Consistency |~
Logic [
Alignsspace
0O 02 04 06 08 1

Figure 3: Pearson Correlation Between LLM-as-Judge
and Human Evaluation Scores

D Comparison of Text Retrieval Strategy

To assess the impact of retrieval strategy, we com-
pared the embedding-based retriever (Salesforce
SFR Embedding-Mistral) with a classical sparse re-
trieval method, BM25. Both retrievers were applied
to retrieve top-5 relevant segments for slide con-
tent generation. Quantitatively, the two approaches
yielded comparable performance, and further anal-
ysis revealed a high degree of overlap in the re-
trieved segments. This is likely due to the formal
and structured nature of academic writing, where
key sentences often share significant lexical over-
lap—making sparse methods like BM25 surpris-
ingly competitive.

Since final content generation is performed by
a powerful LLM, minor differences in retrieval re-
sults tend to have limited influence on the final
ROUGE scores. We retain the embedding-based
retriever in our framework for its stronger gener-
alization ability across domains and robustness in
semantically diverse settings.

Retriever ROUGE-1 ROUGE-2 ROUGE-L
BM25 28.67 11.27 22.49
Embedding-based 28.40 11.68 21.97

Table 3: F1 comparison of sparse and dense retrievers
using LLaMA3-8B.

E Further Analysis by Slide Type

To better understand how our system performs
across different types of slides, we conduct a quali-
tative analysis based on slide content composition.
Specifically, we categorize generated slides into the
following three types:

¢ Text-only slides: slides that contain only tex-
tual bullet points without any figures or tables.

14

 Text + figure slides: slides that combine tex-
tual content with at least one accompanying
figure or table.

* Figure-only slides: slides where the primary
content consists of visual elements, with min-
imal or no textual explanation.

For text-only slide, as shown in Figure 4, the re-
fined version improves spacing between elements,
making the content more legible and visually orga-
nized.

Introduction Introduction

> Definition of CSC

»Importance of CSC in NLP applications »Definition of CSC

>Challenges in CSC »Importance of CSC in NLP applications

»Challenges in CSC

Before After

Figure 4: Example of Layout Refinement for a Text +
Figure Slide

For text + figure slide, as shown in Figure 5, in
the original version (left), the figure is relatively
small and placed in the bottom-right corner, making
it visually disconnected from the textual content. In
the refined version (right), the figure is enlarged and
repositioned to occupy the right half of the slide.
The spacing between elements is also improved.

Motivation Motivation
v vt g

Before After

Figure 5: Example of Layout Refinement for a Text-
only Slide

For figure-only slide, as shown in Figure 6, in the
refined version (right), spacing and alignment are
improved to reduce clutter and enhance readability,
allowing each visual component to stand out more
clearly.

Before . After

Figure 6: Example of Layout Refinement for a Figure-
only Slide

	Introduction
	Related Work
	LLM-based Agent
	Slide Generation

	Methodology
	Task Formulation
	Slide Generation Framework
	Content Generation
	Layout Generation

	Experiments
	Dataset Construction
	Baseline
	Implementation
	Evaluation
	Main Results

	Analysis
	Ablation
	Factors Affecting Layout Quality
	Complete Presentation Generation

	Conclusion
	Detailed Descriptions of Reviewer and Refiner Modules
	Reviewer Module
	Evaluation Criteria and Feedback Rules
	Example Output

	Refiner Module
	Input to the Refiner
	Modification Instructions
	Example Input and Output

	Layout Evaluation Criteria and Scoring Standards
	Alignment and Spacing
	Logical Flow
	Text-Visual Consistency
	Visual Appeal
	Readability

	Reliability Verification of Layout Generation Evaluation
	Comparison of Text Retrieval Strategy
	Further Analysis by Slide Type

