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Abstract001

Generating presentation slides is a time-002
consuming task that urgently requires automa-003
tion. Due to their limited flexibility and lack004
of automated refinement mechanisms, exist-005
ing autonomous LLM-based agents face con-006
straints in real-world applicability. In this work,007
we decompose the task of generating missing008
presentation slides into two key components:009
content generation and layout generation,010
aligning with the typical process of creating011
academic slides. For content generation, we012
introduce a content generation approach that013
enhances coherence and relevance by incor-014
porating context from surrounding slides and015
leveraging section retrieval strategies. For lay-016
out generation, we propose a textual-to-visual017
self-verification process using a LLM-based018
Reviewer + Refiner workflow, transforming019
complex textual layouts into intuitive visual for-020
mats. This modality transformation simplifies021
the task, enabling accurate and human-like re-022
view and refinement. Experiments show that023
our approach significantly outperforms base-024
line methods in terms of alignment, logical025
flow, visual appeal, and readability.026

1 Introduction027

Effectively summarizing and presenting research028

findings through academic presentation slides is an029

essential part of scientific communication, allow-030

ing researchers to present key contributions and en-031

gage audiences at conferences and seminars (Guo032

et al., 2024; Mondal et al., 2024). However, creat-033

ing these slides is a time-consuming process that034

requires extracting core information from lengthy035

papers, organizing it coherently, and designing vi-036

sually consistent layouts across multiple slides (Fu037

et al., 2021). With the rapid growth in the vol-038

ume of research, the demand for automated solu-039

tions has increased significantly. Recent advances040

in large language models (LLMs) (OpenAI, 2023;041

Touvron et al., 2023; Templeton et al., 2024) have042

demonstrated remarkable capabilities in mimick- 043

ing human behavior for complex tasks (Hong et al., 044

2023; Park et al., 2023; Yao et al., 2022b; Zala 045

et al., 2024; Ma et al., 2024a) beyond text genera- 046

tion (Yao et al., 2022b,a; Xi et al., 2024; Yang et al., 047

2024). Building on these strengths, LLM-based 048

agents offer a promising opportunity to automate 049

tasks like slide generation (Zheng et al., 2025), re- 050

ducing manual effort while ensuring coherence and 051

visual quality. 052

Despite its potential, generating high-quality aca- 053

demic presentation slides presents two major chal- 054

lenges: how to assign reasonable and adaptive 055

layouts for generated content and how to ensure 056

layout quality and consistency. 057

The first challenge lies in generating layout in- 058

formation that adapts to the unique visual structure 059

for different textual contents. Some methods fo- 060

cus solely on textual content, neglecting structural 061

aspects like positioning, spacing, and alignment, 062

leading to impractical outputs (Sun et al., 2021; 063

Bandyopadhyay et al., 2024). Existing rule-based 064

methods provide a quick and straightforward solu- 065

tion by populating predefined slots with generated 066

content. However, they overlook the unique struc- 067

tural style of each presentation, often leading to 068

rigid layouts that break the visual coherence. 069

The second challenge lies in achieving consis- 070

tent textual-visual results, complicated by the inher- 071

ent difficulty of representing slide layouts in struc- 072

tured textual formats. Unlike visual representations, 073

where spatial relationships and element alignment 074

are easy to interpret, textual formats lack this vi- 075

sual clarity (Xu et al., 2024; Hu et al., 2024). This 076

makes it difficult for models to fully understand 077

the spatial and structural aspects of slide design, 078

leading to frequent errors such as text overflow, 079

misalignment, and inconsistent spacing. 080

Furthermore, correcting these errors directly in 081

the textual format is non-trivial. Without a visual 082

reference, detecting overlapping elements or mis- 083
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alignments becomes challenging, particularly in084

slides with complex layouts.085

The key component of our framework is a086

textual-to-visual iterative self-verification process087

to refine initial output. The initial slide layouts088

are generated in a textual format, which—while089

structured and machine-readable—often contains090

errors due to the complexity of representing slide091

information in a non-visual form. Additionally, re-092

viewing and refining these layouts in their original093

format is challenging and unintuitive. To address094

this, we introduce a modality transformation (Li095

et al., 2025) that converts the textual format into a096

visualized form. This transformation significantly097

reduces the complexity of the task, making it easier098

for the LLM-based Reviewer + Refiner workflow099

to detect and correct issues such as alignment and100

text overflow in a human-like, intuitive manner.101

The reviewer provides feedback by analyzing the102

visual representation of the slide layout. The feed-103

back is then passed to the refiner, who applies the104

suggested adjustments to the structured layout in105

textual format. This iterative refinement process106

ensures higher-quality final outputs with improved107

coherence and visual consistency.108

Our key contributions are as follows.109

1. An agentic framework for slide generation in-110

cluding content and layout generation approaches,111

ensuring thematic consistency and visual coher-112

ence.113

2. A textual-to-visual iterative self-verification114

process with modality transformation, enabling in-115

tuitive and accurate refinement for slide layout.116

3. Extensive analyses and systematic evalua-117

tion, demonstrating the significant effectiveness118

and practical potential of our framework for auto-119

mated academic slide generation.120

2 Related Work121

In this section, we introduce the background of122

the LLM-based agent and existed studies on slides123

generations.124

2.1 LLM-based Agent125

LLMs have demonstrated impressive capabilities126

for complicated, interactive tasks (Yao et al.,127

2022b,a; Xi et al., 2024; Yang et al., 2024; Ma128

et al., 2024b). LLM-based autonomous agents have129

achieved remarkable progress in a wide range of130

domains, including logic reasoning (Qi et al., 2024;131

Khattab et al., 2022), tool use (Qin et al., 2024;132

Zhang et al., 2023a), and social activities (Park 133

et al., 2023). The current paradigm of agents relies 134

on the language intelligence of LLMs. The main- 135

stream work pattern encompasses environment per- 136

ceiving, planning, reasoning, and executing, form- 137

ing a workflow to dive and conquer intricate chal- 138

lenges. 139

Empowered by the recent progress of multi- 140

modal pre-training, those agents can understand 141

image, video, and audio channels (Wu et al., 2023; 142

Liu et al., 2023). (i) Visual knowledge can largely 143

facilitate reasoning and is integrated into Chain-of- 144

Thoughts (Zhang et al., 2023b; Xu et al., 2024). 145

(ii) Multi-modal reasoning enables divergent think- 146

ing cross modalities and takes advantage of those 147

different modalities. Sketchpad (Hu et al., 2024) 148

allows LLMs to draw drafts to assist its planning 149

and reasoning, i.e., to draw auxiliary lines for ge- 150

ometry problems. Visualization-of-Thought (Wu 151

et al., 2024) generates visual rationales for spatial 152

reasoning tasks like mazes. For each stage of com- 153

plex multi-modal tasks, selecting an appropriate 154

modality as the main modality for reasoning can 155

leverage the natural characteristics of the modality 156

and stimulate the potential of LLMs (Park et al., 157

2025). 158

2.2 Slide Generation 159

Previous studies have explored extractive methods 160

and simplified this task as sentence selection, e.g., 161

to calculate the importance score and extract top 162

sentences (Wang et al., 2017). With the develop- 163

ment of small language models (Lewis et al., 2020; 164

Raffel et al., 2020), slide generation is unified as 165

abstractive, query-based document summarization 166

(Sun et al., 2021). 167

Despite their early success, the emergence of 168

LLMs exhibits exceptional performance and stim- 169

ulates the demands of intelligent slide generation. 170

Slide generation poses intricate challenges for au- 171

tonomous agents, as it requires document reading 172

comprehension and precise tool use to generate 173

layouts. Pioneer work focuses on modifying tar- 174

get elements, asking agents to execute a series of 175

specific instructions (Guo et al., 2024). The agent 176

needs to understand the status of the slide, navigate 177

to the element, and generate precise API calls. Re- 178

cent studies first plan the outlines and then generate 179

each page. To further control the style of presen- 180

tations, Mondal et al. (2024) introduce a reward 181

model trained on human feedback to guide both 182

topic generation and content extraction. Consid- 183
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ering the visual quality of slides, Bandyopadhyay184

et al. (2024) employ a visual LM to insert images.185

DOC2PPT (Fu et al., 2021) integrates an object186

placer to predict the position and size of each ele-187

ment by training small models. PPTAgent (Zheng188

et al., 2025) directly utilizes slide templates to fix189

the layout and then fill textboxes, ensuring visual190

harmony and aesthetic appeal.191

3 Methodology192

In this section, we propose an LLM-based agentic193

workflow to automate the generation of content and194

layout for academic paper slides.195

3.1 Task Formulation196

We first formally define our slide generation task.197

In this task, a presentation is represented as a col-198

lection of slide pages, where each page consists199

of multiple elements. Each element e ∈ E is a200

tuple (c, l), where c denotes the content (e.g., text,201

images, tables) and l specifies the corresponding202

layout information (e.g., position, size, font style).203

Our overall task is to generate the missing204

slide Ŝi given the paper D, the missing slide205

topic T , and the partially available slide set S =206

{S1, S2, . . . , Sn}.207

Input The input consists of: 1. A paper D =208

{d1, d2, . . . , dm}, where di denotes a section or209

paragraph in the paper. 2. A missing slide topic T ,210

describing the main focus of the missing slide. 3. A211

partially available slide set S = {S1, S2, . . . , Sn},212

where some slides Ŝi are missing. 4. The preced-213

ing slide Sprev and the following slide Snext as214

contextual information.215

Output The output is a structured textual file Ŝi,216

which describes the missing slide, including both217

content c and layout information l for each element218

e ∈ E. Formally,219

Ŝi = {ej = (cj , lj) | j = 1, 2, . . . , k}220

where k is the number of elements in the generated221

slide. The generated textual file can be directly222

converted into a PowerPoint slide.223

3.2 Slide Generation Framework224

The process of creating a presentation typically225

involves two key stages: (1) identifying the core226

content that needs to be presented on each slide,227

and (2) arranging this information into a visually228

coherent and consistent layout.229

The goal of content generation is to generate 230

cj for each element ej based on the paper D, the 231

missing slide’s topic T , and contextual information 232

from the surrounding slides Sprev and Snext: 233

cj = Gcontent(D,T, Sprev, Snext) 234

Here, Gcontent represents the content generation pro- 235

cess, ensuring that the generated content is accurate, 236

concise, and contextually relevant. 237

The layout generation task determines the layout 238

lj for each element ej = (cj , lj) to maintain visual 239

consistency and readability. The initial layout draft 240

l
(0)
j is generated using the content cj and contextual 241

information from the surrounding slides: 242

l
(0)
j = Glayout_draft(cj , Sprev, Snext) 243

To refine the initial layout, a textual-to-visual 244

iterative self-verification process is applied. The 245

layout at step k (l(k)j ) is visualized as Image(l(k)j ), 246

allowing the LLM-based Reviewer + Refiner work- 247

flow to provide feedback and corrections: 248

l
(k+1)
j = Grefine

(
l
(k)
j , Image(l(k)j )

)
249

This iterative process continues until the layout 250

reaches the desired quality and visual coherence. 251

3.2.1 Content Generation 252

Determining the key contents on a slide page in- 253

volves understanding paper structures, extracting 254

critical texts and figures, and ensuring overall co- 255

herence for a logical flow and consistent style. 256

Our content generation stage adopts a multi-step 257

process with three sub-modules: Text Retriever, 258

Figure Extractor, and Content Generator, consisting 259

of a pipeline to identify relevant text segments, 260

recommend figures and tables, and then decide the 261

contents to present. 262

Text Retriever We build a text retriever to re- 263

trieve the most relevant sections of the paper. The 264

paper is divided into section-level granularity, with 265

each segment represented and indexed as a dense 266

embedding. Given the topic of a slide, the retriever 267

selects the most relevant segments by calculating 268

the cosine similarity between the dense embed- 269

dings of the slide topic and the indexed sections. 270

Figure Extractor Beyond the retrieved text, the 271

Figure Extractor identifies candidate figures to sup- 272

port slide content. It scans the top-k retrieved text 273

segments for explicit references (e.g., “Figure 1”, 274
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Figure 1: Overall Framework

“Table 2”), and extracts the corresponding captions275

from the paper. These captions provide semantic276

descriptions of the figures.277

At this stage, only candidate figures are col-278

lected; the final selection is made by the Content279

Generator based on the generated slide content.280

Content Generator Given the related text seg-281

ments and candidate figures provided by previous282

modules, the LLM agent performs three sub-tasks.283

First, it generates slide text aligned with the284

slide’s topic and context.285

Second, it selects the most relevant figures or286

tables from the candidate set.287

Finally, it incorporates adjacent slides to main-288

tain logical flow and ensure seamless transitions.289

The Content Generator’s output is then used for290

Layout Generation, which focuses on organizing291

content into a visually coherent slide.292

3.2.2 Layout Generation293

Slide layouts need to be flexible and controllable,294

rather than fully randomized or constrained by rigid295

templates. However, generating adaptive layouts is296

challenging and prone to issues such as text over-297

flow, misalignment, and inconsistent spacing, espe-298

cially when handling diverse content and styles.299

To address this, we design a textual-to-visual300

iterative self-verification process. The initial lay-301

out draft mimics surrounding slides for style con-302

sistency but remains difficult to review in its struc-303

tured textual format. We design an LLM-based 304

Reviewer + Refiner workflow that validates and 305

refines the layout respectively, improving accuracy 306

and coherence through iterative corrections. 307

Stage 1: Initial Layout Generation The initial 308

attempt is conducted by directly asking the LLM to 309

arrange the layout for each element of the generated 310

contents, specifying each element’s position, size, 311

font, and color. We also append surrounding slide 312

pages as demonstrations and carefully optimize the 313

prompt to instruct the LLM to mimic their layout 314

patterns for a visually consistent design. The layout 315

is normalized as a JSON format. 316

While this initial layout serves as a foundation, 317

our pilot experiments show that several factors con- 318

tribute to potential errors: 319

(i) Textual slide layout is inherently complex, re- 320

quiring detailed key-value pairs for positions, sizes, 321

fonts, and colors. Any inconsistency in this struc- 322

tured data can cause significant visual defects. 323

(ii) LLMs lack direct visual feedback and can- 324

not accurately assess how the generated layout will 325

appear in its final form. Unlike models specifi- 326

cally trained for visual tasks, LLMs rely on textual 327

context and structural patterns to predict layout in- 328

formation. This process is inherently limited, as it 329

depends heavily on imitation and pattern recogni- 330

tion without understanding visual balance or spatial 331

relationships. Consequently, the generated layouts 332
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Figure 2: Iterative Layout Refinement in the Reviewer + Refiner Workflow

may exhibit issues such as poor alignment, over-333

lapping elements, or inconsistent spacing, which334

require further refinement to ensure high-quality335

results.336

Stage 2: Textual-to-Visual Iterative Self-337

Verification To refine the initial layout, we in-338

troduce a self-verification process that combines339

modality transformation and a LLM-based agentic340

workflow.341

Modality Transformation We first convert342

the initial textual output into a visualized slide. The343

initialized layout is written into a slide and saved344

as an image. To facilitate visual perception, each345

visualized element in the slide is enclosed in a col-346

ored bounding box with a unique ID, matching its347

corresponding element in the textual file. This vi-348

sual augmentation simplifies the workload, largely349

relieving the burden of perception and enabling the350

Reviewer to quickly reference specific elements351

and detect potential issues.352

Reviewer The Reviewer simulates how a hu-353

man expert would evaluate slide quality, following354

a predefined set of evaluation criteria and adjust-355

ment rules. Specifically, it performs the following356

tasks: Object overlapping detection, Image qual-357

ity and distortion analysis, Element bounding and358

text overflow correction, Element positioning and359

alignment, Text formatting consistency and Overall360

composition and visual balance361

Each recommendation is output as a structured362

list of suggestions, identifying specific elements363

by their ID and providing precise numerical val- 364

ues for adjustments. For example, the Reviewer 365

might suggest increasing a text box’s height by 366

1.2x to accommodate overflowing text or shifting 367

an image downward by 10% of its height to resolve 368

an overlap. Such a definite, specific advice format 369

makes it easier for the Refiner to implement precise 370

corrections in the subsequent refinement stage. 371

Refiner The Refiner plays a role for execu- 372

tion, translating the Reviewer’s visual feedback 373

into precise modifications within the textual lay- 374

out. To ensure accurate modifications, the Refiner 375

follows a set of predefined rules based on the type 376

of feedback received. For example, when the Re- 377

viewer suggests repositioning an element, the Re- 378

finer adjusts its bounding box coordinates accord- 379

ingly while ensuring it remains within slide bound- 380

aries. Each rule is applied systematically based on 381

the Reviewer’s feedback. The Refiner’s task is to 382

modify only the necessary fields while maintain- 383

ing the basic structure, resulting in a complete and 384

refined file that reflects the intended adjustments. 385

Integration and Rendering The final output of 386

this process is a refined JSON-formatted layout 387

description that accurately represents the corrected 388

slide. This JSON is passed to the rendering module 389

to produce the final PowerPoint slide, ensuring that 390

the layout visually reasonable and aligns with the 391

overall presentation style. 392
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LLM Method Coverage ROUGE-1 ROUGE-2 ROUGE-L
P R F1 P R F1 P R F1

- D2S 24.38 18.30 30.31 20.47 4.73 7.79 5.26 16.86 27.21 19.08

Llama-31-8B

Vanilla 29.81 24.56 47.74 28.02 8.94 19.96 10.34 17.54 37.58 20.46
- w/o Retriever 28.18 30.06 42.04 29.35 12.44 19.45 12.54 23.19 34.85 22.99
- w/o Neighbor 32.36 25.31 42.31 26.79 9.78 19.03 10.72 19.00 34.07 20.42
Ours (3S) 32.76 28.64 39.30 27.47 11.23 17.13 11.15 21.99 32.18 21.36
Ours (5S) 31.18 28.52 42.63 28.40 11.38 19.33 11.68 21.76 34.99 21.97

GPT-4o

Vanilla 28.41 23.29 43.97 25.65 7.15 16.86 8.20 16.23 34.09 18.31
- w/o Retriever 29.01 32.48 37.68 28.36 11.15 15.88 10.05 24.45 30.35 21.64
- w/o Neighbor 28.81 29.11 34.60 26.13 10.18 15.43 9.61 22.79 29.21 20.88
Ours (3S) 29.49 31.63 32.86 26.10 11.30 14.91 9.84 24.34 27.81 20.76
Ours (5S) 29.41 31.75 37.68 28.39 10.89 15.71 10.28 24.09 30.60 21.97

Qwen2.5-7B

Vanilla 25.28 24.27 44.92 26.02 9.06 19.69 10.10 17.89 36.24 19.65
- w/o Retriever 26.18 31.47 36.77 27.92 12.60 17.11 11.60 24.66 30.39 22.14
- w/o Neighbor 30.08 24.13 44.93 25.91 9.01 19.69 10.06 17.78 36.26 19.57
Ours (3S) 28.79 29.78 36.26 25.99 11.63 16.58 10.56 24.17 30.76 21.21
Ours (5S) 27.67 28.31 37.17 26.01 10.29 15.71 9.87 21.60 30.21 20.18

Table 1: Evaluation results for content generation.

4 Experiments393

4.1 Dataset Construction394

The dataset is sourced from the ACL 2024 In-395

Person Poster Session 1, with data collected from396

the public academic platform Underline. The397

dataset consists of academic papers and their cor-398

responding PowerPoint slides in PDF format, cov-399

ering various research topics in natural language400

processing. To facilitate processing and preserve401

format details, all data is uniformly converted into402

JSON format, containing element-level informa-403

tion such as text content, font styles, positions, and404

sizes. Text from papers was extracted using GRO-405

BID (Kermitt2, 2020). Figures and captions were406

extracted using PDFFigures 2.0 (Clark and Divvala,407

2016).408

4.2 Baseline409

We compare with two traditional document-to-slide410

generation systems.411

D2S (Sun et al., 2021) adopts a two-step pipeline412

that first retrieves content using slide titles, then413

summarizes the retrieved content into bullet points414

via long-form QA.415

Doc2ppt (Fu et al., 2021) formulates the task as416

end-to-end generation using a hierarchical seq2seq417

model that jointly predicts content and layout.418

4.3 Implementation419

We compare the performance of three large lan-420

guage models: Llama-31-8B-Instruct (Grattafiori421

et al., 2024), GPT-4o (OpenAI et al., 2024), and422

Qwen-2.5-7B (Qwen et al., 2025). The best- 423

performing model is selected to generate the final 424

structured content. In the layout generation mod- 425

ule, both the Reviewer and Refiner modules are 426

built on top of multimodal large language model. 427

For the retriever, we use the Salesforce SFR- 428

Embedding-Mistral (Wang et al., 2024) retriever 429

to compute similarity scores and select the top-k 430

most relevant sections. 431

Our experiments are naturally organized in the 432

form of ablations. In the w/o Section Retriever 433

configuration, the model receives the entire paper 434

as input without section-level retrieval. In the w/o 435

Neighbor Slides configuration, the surrounding 436

slide content is removed, which helps assess the 437

role of contextual information in maintaining logi- 438

cal flow and consistency. 439

4.4 Evaluation 440

Our evaluation method measures both content gen- 441

eration and layout generation. The evaluation pro- 442

cess combines quantitative metrics and structured 443

qualitative assessment to ensure comprehensive 444

analysis. 445

Content Evaluation We evaluate generated slide 446

content using ROUGE (Lin, 2004) and Coverage 447

(Kothawade et al., 2020). ROUGE measures lexical 448

overlap with reference slides, while Coverage com- 449

putes the average cosine similarity between sen- 450

tence embeddings from the source document and 451

generated bullet points, reflecting semantic align- 452

ment. Higher Coverage indicates better semantic 453

alignment with the original content. 454
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Result Type Element-Level Slide-Level Overall Impression
Align & Space Logic Coherence Visual Appeal Readability

Reference Slide 4.5 3.7 3.8 3.5 3.8
DOC2PPT 3.1 1.9 3.2 2.0 3.0
Baseline 2.0 3.0 3.3 2.0 2.5
JSON-Based Refinement 2.1 2.6 3.4 1.8 2.4
Our Method 3.0 3.8 3.4 2.8 3.1

Table 2: Evaluation results for layout generation

Layout Evaluation We adopt LLM-as-Judge455

(Chen et al., 2024) to evaluate slide layout across456

three levels:457

◦ Element Level: Assesses alignment, spacing,458

and positioning of individual elements to ensure a459

well-structured layout.460

◦ Slide Level: Focuses on logical flow and text-461

visual consistency, ensuring information is pre-462

sented clearly and supported by relevant visuals.463

◦ Overall Impression: Evaluates visual appeal464

and readability, ensuring cohesive design, appropri-465

ate font size, and clear figures.466

4.5 Main Results467

Content Generation Among the three models,468

GPT-4o demonstrates the most consistent and high469

performance, particularly in ROUGE-L F1 (21.97)470

and ROUGE-2 Recall (15.71). Although Llama-471

31-8B shows competitive performance in certain472

cases (e.g., ROUGE-1 Recall 47.74 for the Base-473

line), GPT-4o achieves a better balance between474

precision and recall. Qwen2.5-7B shows moder-475

ate performance, but its results are slightly more476

variable compared to the other models.477

Layout Generation For layout evaluation, Ta-478

ble 2 summarizes the results of layout genera-479

tion across three different configurations: Baseline,480

Textual-Based Refinement, and Our Method. The481

Reference Slide serves as a benchmark for assess-482

ing the quality of generated layouts.483

Vanilla: This configuration represents the initial484

layout generated by the model without any refine-485

ment. The layout is stored in a structured JSON for-486

mat describing positions, sizes, and other attributes.487

However, due to the complexity of multi-element488

layouts and the lack of visual feedback, this initial489

output often contains errors such as misalignment,490

overflow, and inconsistent spacing.491

Textual-Based Refinement: In this configura-492

tion, the initial JSON file is refined through an au-493

tomated rule-based review. The Reviewer analyzes494

the JSON structure to detect layout issues, while 495

the Refiner applies corrective actions directly to the 496

JSON file. Although this approach improves some 497

metrics, such as Coherence (3.4), it still struggles 498

with Visual Appeal (1.8) and Alignment (2.1), in- 499

dicating the limitations of rule-based refinement 500

without visual feedback. 501

Our Method: By introducing modality trans- 502

formation, we convert the JSON layout into a fully 503

visualized slide image, allowing the Reviewer + 504

Refiner workflow to detect and correct issues more 505

intuitively. This approach yields significant im- 506

provements, especially in Alignment and Spacing 507

(3.0) and Logical Flow (3.8), closely approaching 508

the quality of the reference slides. Additionally, 509

Visual Appeal (2.8) and Readability (3.0) show 510

notable gains compared to the previous configura- 511

tions. 512

The results indicate that incorporating the Reviewer 513

+ Refiner workflow and modality transformation 514

significantly improves layout quality, especially in 515

terms of visual appeal and overall readability. 516

5 Analysis 517

5.1 Ablation 518

Effect of Neighbor Slides Neighbor slides sig- 519

nificantly impact the quality of content generation. 520

For instance, removing neighbor slides in Llama- 521

31-8B (w/o Neighbor Slides) leads to a noticeable 522

decrease in ROUGE-1 F1 (28.40 to 26.79) and 523

ROUGE-2 F1 (11.68 to 10.72). Similar trends are 524

observed in GPT-4o and Qwen2.5-7B, highlighting 525

the importance of contextual information in main- 526

taining logical coherence and reducing redundancy. 527

Balancing Full Context vs. Section Retrieval 528

While using a section retriever helps reduce input 529

length and improve efficiency, it can also cause 530

minor variations in ROUGE scores. For exam- 531

ple, Llama-31-8B with Section Retriever achieves 532

slightly lower recall compared to its full-input coun- 533
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terpart. When provided with the full paper, they can534

better understand the broader context and underly-535

ing relationships, resulting in more accurate and536

coherent slide content. This suggests that LLMs537

have strong capabilities in processing long docu-538

ments. Thus, in scenarios where the input length539

remains within the allowable range, feeding the full540

paper is often more advantageous for generating541

high-quality slides on a given topic.542

However, in situations where the input length543

exceeds the model’s context window or when the544

paper contains a significant amount of irrelevant545

information, Section Retrieval becomes essential.546

Selecting an optimal number of sections (e.g., 3547

vs. 5) helps balance relevance and completeness.548

According to the results, Ours (5S) generally offers549

better recall and overall F1 compared to selecting550

fewer sections, as it provides more comprehensive551

contextual information without overwhelming the552

model with unnecessary details.553

In summary, choosing between full-context in-554

put and section retrieval depends on the specific555

characteristics of the input paper. When the pa-556

per is relatively concise and highly relevant to the557

target topic, full-context input should be preferred.558

In contrast, for longer papers with diverse content,559

section retrieval is crucial for ensuring relevance560

while maintaining efficiency.561

5.2 Factors Affecting Layout Quality562

Alignment and Spacing metrics evaluate whether el-563

ements are properly positioned, evenly spaced, and564

free from overlap. As shown in Table 2, our method565

achieved a notable improvement in the Alignment566

and Spacing score (3.0) compared to the Baseline567

(2.0) and JSON-Based Refinement (2.1). Specifi-568

cally, we observed that self-verification on textual569

layout cannot improve the layout quality, even com-570

promise the Logic, Visual Appeal, and Readability.571

Our method eliminates this problem and achieves572

consistent improvement by introducing the textual-573

to-visual modality transformation.574

Taking a closer look at the wrong cases, the re-575

maining problems fall into three types.576

(i) Low-quality initial layouts—such as overlap-577

ping elements or uneven spacing—limit the Re-578

viewer’s ability to provide precise corrections. For579

example, when multiple elements overlap, it be-580

comes unclear which one should be adjusted.581

(ii) The lack of diverse layout patterns in the582

training data, particularly for slides with images,583

limits the model’s ability to position visual ele-584

ments effectively. 585

(iii) Complex multi-element layouts can cause 586

small errors to cascade during refinement, making 587

them hard to fix without advanced optimization. 588

5.3 Complete Presentation Generation 589

While our current framework focuses on generating 590

slides given a specific topic, the method can be 591

naturally extended to automate the generation of a 592

complete presentation composed of various slides. 593

Topic Generation and Slide Planning The first 594

step in generating a full presentation is to extract 595

key topics from the input paper. This can be 596

achieved by analyzing the paper’s structure (e.g., 597

Abstract, Introduction, Method, Results). Addition- 598

ally, keyword extraction and clustering techniques 599

can help create a sequence of logically connected 600

topics for the slides. Each generated topic corre- 601

sponds to a unique slide. 602

Multi-Page Content Generation Once the top- 603

ics are generated, the framework applies the content 604

generation strategy iteratively for each slide. By 605

incorporating context from the previously gener- 606

ated slides, the model maintains logical flow and 607

coherence across the entire presentation. Special 608

transition slides (e.g., Overview) can be inserted to 609

improve the presentation’s structure. 610

Consistent Layout and Visual Style The Re- 611

viewer + Refiner review process can be fully reused 612

to ensure layout consistency across all slides. 613

This extension to full presentation generation 614

holds significant practical value. It allows re- 615

searchers to generate complete, high-quality pre- 616

sentations directly from academic papers, reducing 617

the manual effort involved in slide creation. 618

6 Conclusion 619

In this paper, we propose a novel framework for 620

generating academic presentation slides. By de- 621

composing the task into content generation and 622

layout generation, our method ensures adaptive lay- 623

outs and visually consistent slides. We introduce a 624

textual-to-visual iterative self-verification process 625

using an LLM-based Reviewer + Refiner workflow, 626

transforming complex textual layouts into visual 627

representations for intuitive review and refinement. 628

Experiments demonstrate that our approach sig- 629

nificantly improves alignment, logical flow, visual 630

appeal, and readability, offering a practical solution 631

for automating high-quality slide generation. 632

8



Limitations633

While our framework shows promising results in634

generating academic slides, it has two main lim-635

itations. First, the dataset is restricted to scien-636

tific papers and corresponding presentation slides637

from publicly available sources, which may limit638

its generalizability to other types of presentations.639

Second, the focus of our approach is primarily on640

generating accurate content and structured layouts,641

without considering advanced visual design aspects642

such as color schemes, animations, or aesthetic en-643

hancements that contribute to overall slide polish644

and engagement.645

Ethics Statement646

Our study utilizes academic papers and their associ-647

ated presentation slides that are publicly accessible648

on official conference platforms. These materi-649

als are collected under the fair use principle and650

are used strictly for non-commercial, analytical651

research purposes. We do not use these data for652

model training, but only for performance evalua-653

tion.654
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A Detailed Descriptions of Reviewer and889

Refiner Modules890

A.1 Reviewer Module891

The Reviewer module analyzes the visual repre-892

sentation of the slide, identifies layout issues, and893

provides precise feedback for improvements. This894

feedback focuses on alignment, spacing, text over-895

flow, and image distortion. The primary goal of896

the Reviewer is to detect errors and ensure that all897

elements are properly positioned and formatted for898

a visually coherent slide.899

A.1.1 Evaluation Criteria and Feedback Rules900

The Reviewer module evaluates slides based on the901

following criteria:902

• Object Overlapping: Identifies overlapping 903

elements and suggests repositioning or resiz- 904

ing to maintain separation. 905

• Image Quality and Distortion: Detects 906

blurry or distorted images and recommends 907

proportional scaling. 908

• Element Bounding and Text Overflow: En- 909

sures text fits within its bounding box and 910

suggests expanding the box or reducing font 911

size. 912

• Element Positioning and Alignment: 913

Checks alignment and spacing, adjusting 914

misaligned elements to the nearest grid line. 915

• Text Formatting Consistency: Verifies font 916

family and text hierarchy, ensuring the title is 917

larger than body text. 918

• Overall Composition and Visual Balance: 919

Evaluates symmetry and visual balance, rec- 920

ommending layout adjustments for better har- 921

mony. 922

A.1.2 Example Output 923

The output of the Reviewer module is a structured 924

JSON list, detailing necessary modifications for 925

each slide element. 926

[ 927
{ 928

"element ": 302, 929
"recommendation ": "Increase text box 930

height by 1.2x to fit 931
overflowing text." 932

}, 933
{ 934

"element ": 303, 935
"recommendation ": "Move downward by 936

10% of its height to resolve 937
overlap with ID 302." 938

}, 939
{ 940

"element ": 304, 941
"recommendation ": "Reduce font size 942

by 2pt to fit within the 943
bounding box." 944

} 945
] 946

A.2 Refiner Module 947

The Refiner module applies the Reviewer’s feed- 948

back by modifying the structured layout described 949

in JSON format. This module focuses on correct- 950

ing bounding box positions, resizing elements, and 951

preventing overlaps. 952
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A.2.1 Input to the Refiner953

The input to the Refiner module consists of the954

following components:955

• JSON File: Describes the position, size, font,956

and content of each element on the slide.957

• Reviewer’s Feedback: Provides detailed rec-958

ommendations for modifying elements (e.g.,959

move, resize, align).960

• Slide Dimensions: Ensures all adjustments961

remain within the boundaries of the slide.962

A.2.2 Modification Instructions963

The Refiner applies modifications based on the Re-964

viewer’s feedback, following these rules:965

• Move an Element: Adjust the element’s966

bounding box values to reposition it. Mod-967

ify the top, bottom, left, and right values as968

required.969

• Resize or Scale an Element: Modify the970

width and height of an element proportionally971

while preserving its aspect ratio.972

• Avoid Overlap: Ensure no two elements over-973

lap by repositioning or resizing conflicting974

elements.975

• Maintain Slide Boundaries: Prevent ele-976

ments from exceeding the slide’s width or977

height.978

A.2.3 Example Input and Output979

The following example illustrates how the Refiner980

module processes input and produces a refined lay-981

out.982

{983
"element ": 302,984
"Bounds ": [100, 200, 300, 400],985
"Font": {"size": 16},986
"Text": "Sample Text"987

}988

989

{990
"element ": 302,991
"Bounds ": [100, 220, 300, 420],992
"Font": {"size": 14},993
"Text": "Sample Text"994

}995

By applying these refinements iteratively, the996

Refiner ensures that the final slide layout meets997

high visual and structural standards, resulting in an998

accurate and human-like output.999

1000

B Layout Evaluation Criteria and 1001

Scoring Standards 1002

This section provides a detailed explanation of the 1003

evaluation criteria used to assess the quality of the 1004

generated slides. The evaluation process covers 1005

multiple aspects of slide design, including align- 1006

ment, logical flow, text-visual consistency, visual 1007

appeal, and readability. Each criterion is scored on 1008

a five-point scale from 1 (Poor) to 5 (Excellent). 1009

1010

B.1 Alignment and Spacing 1011

This criterion evaluates whether elements on the 1012

slide are properly positioned, evenly spaced, and 1013

free from overlap. It ensures that the layout main- 1014

tains visual balance and clarity. 1015

• 1 Point (Poor): Severe misalignment; text 1016

overlaps with visuals, creating a chaotic lay- 1017

out. 1018

• 3 Points (Average): Most elements are 1019

aligned, but minor misplacements exist. 1020

• 5 Points (Excellent): Perfect alignment and 1021

spacing with a professional layout. 1022

Example Output: 1023

{ 1024
"reason ": "Most elements are well - 1025

aligned , but the spacing between 1026
the title and body text is 1027
inconsistent .", 1028

"score": 4 1029
} 1030

1031

B.2 Logical Flow 1032

This criterion assesses the logical sequence of con- 1033

tent, ensuring that the information presented in the 1034

slide is clear and structured for easy audience un- 1035

derstanding. 1036

• 1 Point (Poor): Disorganized content; key 1037

points do not follow a logical sequence. 1038

• 3 Points (Average): Basic logical structure; 1039

minor reordering could improve the flow. 1040

• 5 Points (Excellent): Seamless logical se- 1041

quence with clear and structured information. 1042

Example Output: 1043
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{1044
"reason ": "The information is1045

structured logically , but the1046
second point would be clearer if1047
placed before the third.",1048

"score": 41049
}1050

1051

B.3 Text-Visual Consistency1052

This criterion evaluates the consistency between1053

text and visual elements such as images and charts.1054

It ensures that visuals effectively support the textual1055

information.1056

• 1 Point (Poor): Visuals are irrelevant or con-1057

tradict the text.1058

• 3 Points (Average): Somewhat aligned, but1059

better integration is needed.1060

• 5 Points (Excellent): Perfectly integrated vi-1061

suals that reinforce the message.1062

Example Output:1063

{1064
"reason ": "The visuals effectively1065

support the content , but the chart1066
could be labeled more clearly.",1067

"score": 41068
}1069

1070

B.4 Visual Appeal1071

This criterion assesses the overall aesthetic quality1072

of the slide, focusing on color harmony, typography,1073

and visual balance.1074

• 1 Point (Poor): Inconsistent styling; visually1075

unappealing design.1076

• 3 Points (Average): Basic but functional color1077

scheme; lacks enhancements.1078

• 5 Points (Excellent): Cohesive and visually1079

appealing design with engaging elements.1080

Example Output:1081

{1082
"reason ": "The color scheme is1083

visually appealing and harmonious ,1084
but the background contrasts too1085

strongly with the text.",1086
"score": 41087

}1088

1089

B.5 Readability 1090

This criterion evaluates the readability and clarity 1091

of the text and graphical elements, ensuring that all 1092

content is easily understandable. 1093

• 1 Point (Poor): Text is too small or has low 1094

contrast, making it unreadable. 1095

• 3 Points (Average): Generally clear, but some 1096

areas need better contrast or spacing. 1097

• 5 Points (Excellent): Highly readable with 1098

optimal font size, spacing, and contrast. 1099

Example Output: 1100

{ 1101
"reason ": "The text is clear , well - 1102

spaced , and maintains good 1103
contrast. The charts are easy to 1104
read and properly scaled.", 1105

"score": 5 1106
} 1107

These evaluation criteria ensure a comprehen- 1108

sive and structured assessment of the generated 1109

slides. By adhering to these standards, the evalua- 1110

tion process becomes interpretable, consistent, and 1111

reliable. 1112

1113

C Reliability Verification of Layout 1114

Generation Evaluation 1115

To verify the reliability of our layout evaluation 1116

framework (LLM-as-Judge), we conducted a hu- 1117

man evaluation on a randomly selected subset of 1118

generated slides. To ensure consistency with the 1119

LLM-based evaluations, we provided human raters 1120

with the same scoring rubric and descriptions used 1121

by the LLM, including detailed explanations of 1122

each criterion. Each dimension was rated on a 1–5 1123

Likert scale, where 1 indicates poor performance 1124

and 5 indicates excellent performance. We then 1125

computed Pearson correlation coefficients between 1126

human scores and the LLM-based assessments. 1127

As illustrated in Figure 6, the average correla- 1128

tion reached 0.6984, suggesting a strong agreement 1129

between human judgments and LLM evaluations. 1130

In particular, dimensions such as visual appeal and 1131

readability achieved the highest consistency, with 1132

correlations of 0.89 and 0.77, respectively. These 1133

results support the use of LLM-as-Judge as a reli- 1134

able proxy for human evaluation in layout quality 1135

evaluation. 1136

1137
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Figure 3: Pearson Correlation Between LLM-as-Judge
and Human Evaluation Scores

D Comparison of Text Retrieval Strategy1138

To assess the impact of retrieval strategy, we com-1139

pared the embedding-based retriever (Salesforce1140

SFR Embedding-Mistral) with a classical sparse re-1141

trieval method, BM25. Both retrievers were applied1142

to retrieve top-5 relevant segments for slide con-1143

tent generation. Quantitatively, the two approaches1144

yielded comparable performance, and further anal-1145

ysis revealed a high degree of overlap in the re-1146

trieved segments. This is likely due to the formal1147

and structured nature of academic writing, where1148

key sentences often share significant lexical over-1149

lap—making sparse methods like BM25 surpris-1150

ingly competitive.1151

Since final content generation is performed by1152

a powerful LLM, minor differences in retrieval re-1153

sults tend to have limited influence on the final1154

ROUGE scores. We retain the embedding-based1155

retriever in our framework for its stronger gener-1156

alization ability across domains and robustness in1157

semantically diverse settings.1158

Retriever ROUGE-1 ROUGE-2 ROUGE-L
BM25 28.67 11.27 22.49
Embedding-based 28.40 11.68 21.97

Table 3: F1 comparison of sparse and dense retrievers
using LLaMA3-8B.

1159

E Further Analysis by Slide Type1160

To better understand how our system performs1161

across different types of slides, we conduct a quali-1162

tative analysis based on slide content composition.1163

Specifically, we categorize generated slides into the1164

following three types:1165

1166

• Text-only slides: slides that contain only tex-1167

tual bullet points without any figures or tables.1168

• Text + figure slides: slides that combine tex- 1169

tual content with at least one accompanying 1170

figure or table. 1171

• Figure-only slides: slides where the primary 1172

content consists of visual elements, with min- 1173

imal or no textual explanation. 1174

For text-only slide, as shown in Figure 4, the re- 1175

fined version improves spacing between elements, 1176

making the content more legible and visually orga- 1177

nized. 1178

Figure 4: Example of Layout Refinement for a Text +
Figure Slide

For text + figure slide, as shown in Figure 5, in 1179

the original version (left), the figure is relatively 1180

small and placed in the bottom-right corner, making 1181

it visually disconnected from the textual content. In 1182

the refined version (right), the figure is enlarged and 1183

repositioned to occupy the right half of the slide. 1184

The spacing between elements is also improved. 1185

Figure 5: Example of Layout Refinement for a Text-
only Slide

For figure-only slide, as shown in Figure 6, in the 1186

refined version (right), spacing and alignment are 1187

improved to reduce clutter and enhance readability, 1188

allowing each visual component to stand out more 1189

clearly.

Figure 6: Example of Layout Refinement for a Figure-
only Slide

1190
1191
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