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Abstract
This paper focuses on the design of spatial ex-
periments to optimize the amount of informa-
tion derived from the experimental data and en-
hance the accuracy of the resulting causal ef-
fect estimator. We propose a surrogate func-
tion for the mean squared error (MSE) of the
estimator, which facilitates the use of classical
graph cut algorithms to learn the optimal de-
sign. Our proposal offers three key advances:
(1) it accommodates moderate to large spatial in-
terference effects; (2) it adapts to different spa-
tial covariance functions; (3) it is computation-
ally efficient. Theoretical results and numeri-
cal experiments based on synthetic environments
and a dispatch simulator that models a city-scale
ridesharing market, further validate the effective-
ness of our design. A python implementation of
our method is available at https://github.
com/Mamba413/CausalGraphCut.

1. Introduction
Background. Before deploying any policy in practice, it
is essential to evaluate its impact. This renders randomized
control trials or online experiments extensively used for ac-
curate policy evaluation. In numerous applications, the ex-
periments involve multiple units that are either distributed
across different spatial regions or connected through a net-
work. The spatial or network dependencies inherent in
these experiments pose two unique challenges for policy
evaluation: (i) the existence of interference effects where
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interventions applied to one experimental unit may influ-
ence others, leading to the violation of the fundamental
stable unit treatment value assumption (SUTVA) for causal
inference (Imbens & Rubin, 2015); (ii) the strong outcome
correlations among units, which increase the variance of
the causal effect estimator. We present the following ex-
amples to illustrate.

Example 1: A/B testing in marketplaces. A/B testing is
frequently used in two-sided markets such as Uber, Lyft,
Airbnb and eBay to assess the impact of a newly devel-
oped product relative to a standard control. It has become
the gold standard for companies in conducting data-driven
decision making (Johari et al., 2022). Spatial interference
is ubiquitous in marketplaces. For instance, ridesharing
companies constantly offer subsidizing policies to drivers
or passengers across different regions in a city. Applying a
subsidizing policy in one location can attract drivers from
neighboring regions to this area, potentially decreasing the
driver supply in other regions. Thus, a subsidizing policy in
one location can affect outcomes at other locations, induc-
ing interference over space (Shi et al., 2023a). Meanwhile,
market features like online driver numbers and call order
numbers form interconnected spatial networks, leading to
considerable spatial correlation (Luo et al., 2024).

Example 2: Environmental and epidemiological appli-
cations. Environmental and epidemiological studies fre-
quently utilize spatial data to examine causal effects of
certain interventions on health outcomes in different geo-
graphical regions (Reich et al., 2021). Spatial correlation
and interference are likely to arise in these applications.
For instance, in evaluating the impact of vaccination cam-
paigns on disease incidence, infection rates exhibit strong
correlations within regions. Furthermore, the vaccination
coverage in a given region not only influences its own in-
fection rate but also those in the neighboring regions (Van-
derWeele et al., 2012; Perez-Heydrich et al., 2014).

Example 3: Experimentation in social networks. So-
cial network sites such as Facebook and LinkedIn exten-
sively conduct online experiments to evaluate user engage-
ment or satisfaction from a new service or feature. In these
experiments, the treatment applied to a given user may
spill over to other users via underlying social connections
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(like friends), leading to network interference. Addition-
ally, since connected users often exhibit similar behaviors,
their outcomes are likely correlated (Gui et al., 2015).

Contributions. This paper primarily focuses on the first
application, aiming to identify the optimal design that min-
imizes the mean squared error (MSE) of the resulting av-
erage treatment effect (ATE) estimator. Nonetheless, the
theories and methods developed herein can be adapted to
the other two examples.

Methodologically, our contribution lies in the develop-
ment of a causal graph cut algorithm for designing exper-
iments with spatial interference and correlation. The ad-
vances of our algorithm are summarized as follows:

• Flexibility: Our proposal is more flexible than exist-
ing works that assume weak interference (Viviano et al.,
2023). It accommodates moderate to large interference
effects.

• Adaptivity: Instead of employing existing minimax
approaches (Leung, 2022; Viviano et al., 2023; Zhao,
2024b) that minimize the same worst-case MSE across
applications with different covariance structures and can
be overly conservative, our algorithm adapts to differ-
ent correlation structures, providing a tailored solution
to each individual application.

• Computational efficiency: The design problem requires
allocating treatment for each region and is inherently NP-
hard, as the number of treatment allocation rules grows
exponentially fast with respect to the number of regions.
Unlike existing solutions that rely on computationally in-
tensive integer programming (Zhao, 2024b), we propose
a new surrogate function for the MSE, which enables
the use of spectral clustering-based graph cut algorithms
for minimization, thus substantially enhancing computa-
tional efficiency.

Theoretically, our analysis reveals that the two pivotal fac-
tors — interference and correlation — drive the optimal de-
sign in opposite directions. Specifically, experiments with
large interference effects are best designed by assigning
same policies to neighboring regions whereas those with
strong spatial correlations benefit from allocating different
policies. By incorporating the effects of the two factors into
our surrogate function, the proposed algorithm effectively
address both challenges, achieving desirable properties.

Empirically, based on synthetic environments and a city-
level simulator — constructed using physical models and
a real dataset from a ridesharing company to realistically
simulate driver and passenger behaviors, we demonstrate
the superior performance of our design compared to exist-
ing state-of-the-art methods. Notably, in the simulator, the
proposed ATE estimator achieves an MSE that is 3.5 times
smaller than those of the benchmark approaches.

1.1. Related works

This section reviews related works on spatial causal infer-
ence, experimental design and off-policy evaluation.

Spatial causal inference. Our proposal is closely related to
a growing line of research on causal inference in the pres-
ence of spatial interference. Depending on the underlying
assumptions, the methodologies developed within this area
can be broadly grouped into three categories:

1. The first category assumes partial interference where
units are partitioned into clusters and interference is re-
stricted to within these clusters, not between them (Hal-
loran & Struchiner, 1995; Sobel, 2006; Hudgens & Hal-
loran, 2008; Tchetgen & VanderWeele, 2012; Crépon
et al., 2013; Liu et al., 2016; Zigler & Papadogeorgou,
2021).

2. The second category assumes neighborhood interfer-
ence where interference is limited to a unit’s neigh-
bors or a predefined local region (Verbitsky-Savitz &
Raudenbush, 2012; Bhattacharya et al., 2020; Fatemi &
Zheleva, 2020; Ma & Tresp, 2021; Gao & Ding, 2023;
Dai et al., 2024; Jiang et al., 2024; Yang et al., 2024).

3. The last category considers more general interference
structures (Aronow & Samii, 2017; Forastiere et al.,
2021; Puelz et al., 2022; Song & Papadogeorgou, 2024;
Zhang et al., 2024; Zhan et al., 2024).

In the machine learning literature, spatial causal inference
is also related to recent advances on bandits with interfer-
ence (Jia et al., 2024; Agarwal et al., 2024; Xu et al., 2024).
However, despite the development of various methods to
handle interference, experimental designs have been less
considered in these papers.

Experimental design under interference. The design of
experiments is a classical problem in statistics, motivated
by applications ranging from biology and agriculture to
psychology and engineering (Fisher et al., 1966). Recently,
it has gained considerable attention in the field of machine
learning (see e.g., Foster et al., 2021; Blau et al., 2022;
Weltz et al., 2023; Fiez et al., 2024; Kato et al., 2024).

Our paper contributes to a growing line of research focus-
ing on identifying optimal treatment assignment strategies
in the presence of interference. Several designs have been
proposed to guide treatment allocation in settings with in-
terference over time (Hanna et al., 2017; Hu & Wager,
2022; Zhong et al., 2022; Bojinov et al., 2023; Li et al.,
2023; Xiong et al., 2024; Sun et al., 2024; Wen et al., 2025)
or among entities in marketplaces (Wager & Xu, 2019; Jo-
hari et al., 2020; Bajari et al., 2021; Munro et al., 2021; Li
et al., 2022; Zhu et al., 2024).
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This work studies designs under spatial or network inter-
ference. Methodologies developed within this field can be
broadly categorized into three types:

1. The first type of methods adopts the principle of bal-
ance in the design of experiments. These methods fo-
cus on balancing covariates (Kallus, 2018; Liu et al.,
2024; Harshaw et al., 2024) and cluster sizes in cluster-
randomized designs (Gui et al., 2015; Saveski et al.,
2017; Rolnick et al., 2019).

2. The second type of methods analytically calculates the
MSE of the ATE estimator and uses it either to heuris-
tically guide the design of cluster-randomized experi-
ments (Ugander et al., 2013) or to determine the opti-
mal number of clusters by minimizing the MSE’s order
of magnitude (Leung, 2022; Jia et al., 2023).

3. The last type of methods identifies the optimal de-
sign through an optimization perspective (Zhao, 2024a).
They apply optimization tools to directly minimize the
MSE of the treatment effect estimator or its proxy (Baird
et al., 2018; Ni et al., 2023; Jiang & Wang, 2023; Vi-
viano et al., 2023; Chen et al., 2024). In particular,
Viviano et al. (2023) markedly advanced the design of
cluster-randomized experiments under network interfer-
ence by proposing a causal clustering algorithm, which
offers a rigorous framework to numerically solve the
optimal design via graph clustering algorithms. Subse-
quent developments are explored in several recent stud-
ies (see e.g., Eichhorn et al., 2024; Zhao, 2024b).

Our paper falls into the third category: it utilizes classical
graph cut algorithms for optimization. Unlike Viviano et al.
(2023) that employs a minimax formulation along with a
weak interference assumption to simplify the MSE — po-
tentially at the cost of being conservative and restrictive —
our proposed algorithm does not rely on minimax formula-
tions or limit itself to weak interference. Despite the more
complicated form of the MSE, we identify a suitable surro-
gate to optimize, backed by theoretical guarantees. Empir-
ically, our proposal substantially outperforms both causal
clustering and other state-of-the-art in our application.

Off-policy evaluation (OPE). Finally, our work is also
closely related to OPE in contextual bandits and reinforce-
ment learning. OPE aims to learn the expected return under
a target policy using an offline dataset collected from a pos-
sibly different behavior policy. There are three commonly-
used OPE methods:

1. Direct method derives the policy value estimator by
learning a value function that measures the (cumulative)
reward under the target policy (Hahn, 1998; Le et al.,
2019; Feng et al., 2020; Luckett et al., 2020; Hao et al.,

2021; Chen & Qi, 2022; Shi et al., 2022; Bian et al.,
2024).

2. Importance sampling (IS) method reweights the ob-
served reward using IS ratios to address the distribu-
tional shift between target and behavior policies (Heck-
man et al., 1998; Zhao et al., 2012; Swaminathan &
Joachims, 2015; Thomas et al., 2015; Liu et al., 2018;
Dai et al., 2020; Luckett et al., 2020; Kuzborskij et al.,
2021; Wang et al., 2023; Hu & Wager, 2023; Zhou et al.,
2025).

3. Doubly robust (DR) method and its variant combine the
direct and IS estimators to achieve more accurate and
robust estimation (Tan, 2010; Dudı́k et al., 2011; Zhang
et al., 2012; 2013; Jiang & Li, 2016; Thomas & Brun-
skill, 2016; Chernozhukov et al., 2018; Liu et al., 2019;
Chernozhukov et al., 2022; Shi et al., 2021; Kallus &
Uehara, 2022; Liao et al., 2022; Xu et al., 2023; Shi
et al., 2024).

Moreover, there is a growing line of research that proposes
to adapt OPE methodologies to A/B testing (see e.g., Farias
et al., 2022; Shi et al., 2023b). However, none of these
aforementioned studies address interference or focus on ex-
perimental design. While works such as Wan et al. (2022),
Hanna et al. (2017) and Liu & Zhang (2024) consider the
design problem to optimize the efficiency of the OPE esti-
mator, they do not address spatial/network interference ei-
ther.

2. Preliminaries
In this section, we first formulate the A/B testing problem
in spatial experiments, presenting our model and assump-
tions. We next detail the ATE estimator. Finally, we in-
troduce cluster-randomized designs, which are extensively
used in the field (see e.g., Ugander et al., 2013; Karrer et al.,
2021; Leung, 2022).

Spatial A/B testing. We consider a spatial setting with R
non-overlapping regions across a city. The goal of spatial
A/B testing is to compare the impact of implementing a
newly developed policy in the whole city against an exist-
ing practice. Its procedure can be summarized as follows:

• At the beginning of the experiment, we observe a covari-
ate matrix O = (O1, · · · , OR)

⊤ ∈ RR×d where each
vector Oi ∈ Rd measures certain market features from
the ith region. For instance, in ridesharing, Oi could rep-
resent the number of initial drivers within that region.

• During the experiment, the decision maker assigns poli-
cies by specifying a vector A = (A1, A2, . . . , AR)

⊤

where each Ai is a binary variable indicating whether the
i-th region receives the newly developed policy (Ai = 1)
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or a standard control policy (Ai = 0). In the context
of ridesharing, Ai could correspond to whether to assign
certain driver-side or passenger-side subsidizing policy
at the ith region (Shi et al., 2023a; Li et al., 2024).

• After the experiment, we collect an outcome vector Y =
(Y1, · · · , YR)

⊤ with each Yi measuring the i-th region’s
outcome of interest (such as the total driver income).
Throughout this paper, we assume Yi = gi(A,O) + ei
for some unknown function gi and mean-zero error ei in-
dependent of O and A.

• Finally, the experiment is repeated N times, resulting in
N independent (O,A,Y ) triplets. Based on the data, we
aim to estimate the ATE, defined as

ATE = E[CATE(O)] =

R∑
i=1

E[gi(1,O)− gi(0,O)],

which measures the difference in outcome between ap-
plying the new policy globally to all regions and imple-
menting the control policy. Here, CATE denotes the con-
ditional ATE as a function of the observation matrix.

We make two remarks. First, unlike existing works on
the design of spatial/network experiments (see Section 1.1)
which analyze data from a single experiment without re-
peated measures, we consider settings with repeated mea-
surements (Zhang & Wang, 2024). This is motivated by
our ridesharing example where the experiment is conducted
over two weeks, and each day’s data can be treated as an in-
dependent realization since the number of call orders typi-
cally wanes between 1 and 5 am (Luo et al., 2024).

Second, our outcome regression model Yi = gi(A,O)+ei
manifests the two challenges in spatial A/B testing:

1. Interference: gi depends not only on the ith region’s
own treatment Ai, but also on the treatments assigned
to other regions as well.

2. Correlation: The covariance matrix of the residual
e = (e1, · · · , eR)⊤, denoted by Σ ∈ RR×R, is typi-
cally non-diagonal, indicating that residuals are corre-
lated across regions.

Estimation. To simplify the estimation under spatial inter-
ference, we impose the neighborhood interference assump-
tion introduced in Section 1.1, which restricts the interfer-
ence to neighboring regions. It is a specific yet widely used
exposure mapping assumption (Aronow & Samii, 2017).

Assumption 1 (Neighborhood interference). For each re-
gion i, denote Ni as the set of spatial neighboring re-
gions for the i-th region, including the i-th region itself.
Let aNi

be the |Ni|-dimensional subvector of a that is
formed by the treatments assigned to the regions in Ni.
For any i ∈ {1, 2, · · · , R}, a,a′ ∈ {0, 1}R and o ∈ Rd,
gi(a,o) = gi(a

′,o) whenever aNi
= a′

Ni
.

For any 1 ≤ t ≤ n and 1 ≤ i ≤ R, let (Ai,t, Yi,t) denote
the policy-outcome pair associated with the i-th region col-
lected from the t-th experiment. Assumption 1 motivates
us to consider the following importance sampling (IS) esti-
mator popularly employed in the literature to estimate the
ATE (see e.g., Ugander et al., 2013; Zhao, 2024b),

ÂTE
IS
=

1

N

N∑
t=1

R∑
i=1

(
Ti,t(1)

E[Ti,t(1)]
− Ti,t(0)

E[Ti,t(0)]

)
Yi,t,

where Ti,t(a) :=
∏

j∈Ni

I(Aj,t = aj) so that Ti,t(1) (or

Ti,t(0)) indicates whether all neighbors of the i-th region
(including itself) are treated with the new policy (or the
standard control).

A well-known limitation of IS estimators is its large vari-
ance (Dudı́k et al., 2011). To mitigate this issue, we employ
the following doubly robust (DR) estimator developed by
Yang et al. (2024) for ATE estimation. DR attains theoreti-
cally no larger and empirically often smaller MSE than IS,
and is defined as

ÂTE
DR

=
1

N

N∑
t=1

R∑
i=1

[νi,t(1)− νi,t(0)], (1)

where νi,t(a) = gi(a,Ot) +
Ti,t(a)

E[Ti,t(a)]
[Yi,t − gi(a,Ot)]

and Ot denotes the observation matrix from the t-th exper-
iment. Notice that νi,t depends on gi, which is unknown
and must be estimated. In practice, estimation of gi can
be achieved either parametrically, using a specified func-
tional form based on lower-dimensional statistics of ac-
tions and observations (Hu et al., 2022), or nonparamet-
rically through neural networks (Leung & Loupos, 2022;
Dai et al., 2024; Wang et al., 2024). Thanks to its dou-
ble robustness property and the fact that the randomization
probability E[Ti,t(a)] is known by design, the resulting es-
timator remains unbiased even when the estimated gi is in-
consistent. Notably, when the estimated gi is set to zero,
the resulting estimator simplifies to IS.

Design. In our context, each design specifies a treatment
allocation rule that determines the joint probability distri-
bution function of A. Following the existing practice, we
focus on the class of cluster-randomized designs in this
paper. These designs partition the R regions into m dis-
joint clusters C1, . . . , Cm where regions within the same
cluster receive the same treatment. Meanwhile, treatments
across different clusters are independent, each following a
Bernoulli distribution with a probability p of receiving the
new policy. We further fix p = 0.5 throughout the paper
to ensure a balanced design, since the optimal design is
indeed balanced (Yang et al., 2024).

Two special cases are worthwhile to mention: (i) When
m = 1, there is only one cluster. The resulting design is
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(a) (b) (c)

Figure 1. Illustrations of the optimal cluster-randomized designs
in three experiments, where different colors represent different
clusters. (a) With weakly correlated residuals, the optimal design
simplifies to the global design. (b) Without interference, the op-
timal design reduces to the individual design. (c) With moderate
to large levels of interference and correlation, the optimal design
falls between the two extremes, resulting in a 3-cluster design.

reduced to a global design where all regions receive the
same policy during each experiment. (ii) When m = R,
each region forms a single cluster, resulting in an individ-
ual design where policies are i.i.d. across regions.

Our objective lies in determining the optimal cluster-
randomized design, for which we propose a causal graph
cut algorithm to minimize the MSE of the ATE estimator
in (1). Details are provided in the next section.

3. Causal Graph Cut
This section is organized as follows. Section 3.1 analyzes
the roles of spatial interference and correlation in design-
ing cluster-randomized experiments. Section 3.2 derives
our surrogate function for the MSE of the ATE estimator.
Finally, Section 3.3 details our causal graph cut algorithm.

3.1. Cluster-randomized design: the roles of
interference and correlation

We will show that interference and correlation are the two
driving factors in determining the MSE of ATE estimators
under different designs. Interestingly, they influence the
design of experiments in completely different directions:

Claim 1. Experiments with large interference are best de-
signed by applying same policies to neighboring regions.

Claim 2. Experiments with strong correlation are best de-
signed by allocating different policies to different regions.

To illustrate these two claims, we consider three experi-
ments visualized in Figure 1, with the same spatial grid.
They differ in the sizes of interference effects and correla-
tion: (i) In the left experiment, there is moderate to large in-
terference, while the residuals e1, . . . , eR are weakly corre-
lated across regions. (ii) In the middle experiment, SUTVA
holds, meaning there is no interference, but there is moder-
ate to large correlation. (iii) In the right experiment, both
levels of interference and correlation range from moderate
to large.

Figure 1 further visualizes the optimal cluster-randomized

designs for the three experiments, with different colors rep-
resenting different clusters. It clearly shows that:

(i) With weakly correlated errors, interference plays the
leading role in determining the MSE. Since all regions
are connected, according to Claim 1, the optimal alloca-
tion rule assigns the same policy to all regions, resulting
in a global design.

(ii) Without interference effects, correlation becomes the
sole factor in determining the MSE. According to
Claim 2, the optimal allocation rule assigns different
treatments across regions, creating an individual design.

(iii) When both interference and correlation are present, the
optimal design typically falls between the two extremes,
resulting in a cluster-randomized design. Specifically, in
the right experiment, the proposed algorithm identifies
a three-cluster design as the optimal design.

For any two regions i and i′, let Σii′ denote the covariance
between two residuals ei and ei′ . Let δ > 0 represent the
size of the spatial correlation so that |Σii′ | ≤ δ for any two
non-neighboring regions i, i′. The following two proposi-
tions formally summarize the aforementioned findings.
Proposition 1. When δ is sufficiently small (i.e., spatial
correlation is weak among non-neighboring regions), and
the covariance Σii′ between any two neighboring regions
i, i′ is positive, the global design minimizes the MSE of the
DR estimator (1).
Proposition 2. When SUTVA (i.e., the no-interference as-
sumption) holds and all entries of Σ are non-negative, the
individual design minimizes the MSE of the DR estimator.

To verify the two claims and propositions, we offer a de-
composition of the DR estimator’s MSE in the following
theorem. Recall that N denotes the number of repeated ex-
periments. For a given cluster C, let ∂C denote its boundary.
Theorem 1. Under Assumption 1, the DR estimator’s
MSE under a cluster-randomized design with m clusters
{Cj}mj=1 is given by

MSE(ÂTE
DR

) =
1

N
Var

{
CATE(Ot)

}
︸ ︷︷ ︸

design-agnostic (DA) term

+
4

N

[ m∑
j=1

∑
i,i′∈Cj

Σii′

]
︸ ︷︷ ︸
spatial correlation (SC) term

+
8

N

[∑
j ̸=k

∑
i∈Cj

∑
i′∈∂Ck

Σii′I(Ni′ ∩ Cj ̸= ∅)
]

︸ ︷︷ ︸
first-order interference term I1

+O
[ 1

N

m∑
j,k=1

∑
i∈∂Cj

∑
i′∈∂Ck

|Σii′ |
]

︸ ︷︷ ︸
second-order interference term I2

,

where the event Ni′ ∩Cj ̸= ∅ indicates that the i′-th region
is adjacent to the j-th cluster.
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(a)

𝑖

𝑖′

(b)

𝑖
𝑖′

(c)

𝑖

𝑖′

Figure 2. An illustration of each term in the MSE decomposition
from Theorem 1 with m = 2 clusters distinguished by different
colors. (a) SC captures the residual covariance between any i, i′

within the same cluster. (b) I1 captures the residual covariance
between any i, i′ that belong to different clusters, with one region
lying on the boundary between the two clusters. (c) I2 captures
residual covariance between any i, i′ from different clusters, with
both regions located on the boundary.

Theorem 1 decomposes the MSE into four terms. We elab-
orate each of them below.

1. The design-agnostic term (DA) accounts for the varia-
tion in covariates across N experiments. It is indepen-
dent of the design and hence design-agnostic.

2. The spatial correlation term (SC) captures the residual
covariances between regions within the same cluster, as
illustrated in Figure 2(a). When the covariance function
is non-negative, it becomes evident that minimizing this
term is equivalent to assigning different policies to dif-
ferent regions, thus demonstrating Claim 2. Notably, it
attains the minimum value under the individual design,
which in turn proves Proposition 2.

3. The interference terms I1 and I2 equal zero in the ab-
sence of spatial interference. Unlike the SC which cap-
tures only within-cluster correlation, both I1 and I2 ac-
count for between-cluster correlation, as illustrated in
Figure 2(b) and (c). Under neighborhood interference,
the first-order term I1 requires at least one region to lie
on the boundaries between the two clusters, represent-
ing a first-order boundary effect. The second-order term
I2 further requires that both regions be located on the
boundary, thus characterizing a second-order boundary
effect. For any two neighboring regions, assigning them
different policies causes them to belong to connected
yet different clusters, which creates boundaries. Thus,
minimizing these terms is equivalent to assigning the
same policy to neighboring regions, which demonstrates
Claim 1. Apparently, there is no boundary effect under
the global design. This proves Proposition 1.

In summary, interference and correlation drive the optimal
design in opposite directions. Interference induces estima-
tion errors at cluster boundaries. Thus, assigning the same
policy to neighboring regions eliminates the boundary ef-
fect and minimizes these errors. On the contrary, allocating
different policies to different regions effectively negates the
positive correlation between their residuals, thus reducing
the estimation errors caused by spatial correlation.

3.2. Balancing interference and correlation: a new
surrogate function for the MSE

In this section, we design a surrogate function aimed at
achieving the following properties:

Property 1 (Flexibility). The surrogate function shall ac-
commodate moderate to large interference effects.

Property 2 (Adaptivity). The surrogate function shall
adapt to different correlation structures.

Property 3 (Computational efficiency). The surrogate
function can be optimized efficiently.

Flexibility is crucial, since limiting the methodology to
weak interference would be overly restrictive. Addition-
ally, computational efficiency is essential for the practical
implementation of the design. Below, we provide a numer-
ical example to highlight the importance of adaptivity.

A numerical example. Consider a square spatial grid with
R = 144 regions visualized in Figure 3(a) and an expo-
nential spatial correlation structure: Σij = ρ|i−j| for some
0 < ρ ≤ 1 that characterizes the strength of spatial corre-
lation. We numerically compute MSEs of DR estimators
under different cluster-randomized designs, each dividing
the spatial grid into m equally sized square rectangles (see
Figure 3(a) for an example with m = 4). Notice that vary-
ing ρ induces different covariance functions whereas vary-
ing m yields different designs. We report the MSE for each
combination of ρ and m in Figure 3(b), where the MSE
values on the y-axis are presented using a logarithmic scale
for clearer visualization and comparison. These results em-
phasize two key motivations, which we discuss below.

1. We first note that the MSE varies considerably with
cluster size. Notably, when ρ = 0.9, the MSE reaches
its minimum value of 20 with 4 clusters, but increases
to over 40 under the global design. This highlights the
motivation for addressing the design problem itself .

2. We also observe that the optimal cluster size varies with
ρ. This highlights the motivation for developing an
adaptive method capable of identifying the optimal de-
sign tailored to each individual covariance function.

A new surrogate function. It remains challenging to de-
sign a surrogate function for the MSE that satisfies the
aforementioned three properties. Under neighborhood in-
terference, the primary challenge arises from the presence
of the two interference terms I1 and I2 (see Theorem 1),
the calculation of which requires specifying cluster bound-
aries. Since clusters under different designs have differ-
ent boundaries, optimizing these terms becomes an NP-
hard combinatorial optimization problem, conflicting with
Property 3. One solution is to impose the weak interfer-
ence assumption as in Viviano et al. (2023), under which
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(a) (b)

Figure 3. (a) An 12×12 grid divided into four square clusters. (b)
A scatter plot visualizing the DR estimator’s MSE as a function
of cluster size. ρ is selected from {0.1, 0.3, 0.5, 0.7, 0.9}.

the boundary effect becomes negligible (see their proof of
Lemma 3.2). However, this approach violates Property 1.

For illustration purposes, we will now focus on designs
with two clusters to discuss how we address these chal-
lenges and detail our surrogate function. Its more gen-
eral form, applicable to general numbers of clusters, is pre-
sented in Appendix A. Let C1 and C2 denote a partition of
all R regions, our surrogate function is defined as follows:

8R

N

∑
i∈C1

∑
i′∈C2

Wii′Σ
+
ii′ −

8

N

∑
i∈C1

∑
i′∈C2

Σii′ , (2)

where {Wii′}i,i′=1,...,R denotes the binary adjacency ma-
trix indicating whether two regions are adjacent, and Σ+

ii′ =
max(Σii′ , 0). This objective function is built upon Theo-
rem 1 and is motivated by the following observations:

1. The DA term does not need to be incorporated in the
surrogate, since it is design-agnostic.

2. Minimizing the SC term, i.e., the within-cluster covari-
ance, is equivalent to maximizing the between-cluster
covariance, represented by the second term in (2).

3. Instead of directly minimizing I1, we use a surrogate
upper bound given by the first term in (2) that does not
involve cluster boundaries and can be more efficiently
optimized.

4. Applying a similar upper bound to I2 will result in a
quartic objective function, rather than quadratic, render-
ing spectral clustering-based cut algorithms inapplica-
ble. However, as indicated by Figure 2(c), only a small
fraction of the regions lie at the boundary, making I2 a
high-order and negligible term when compared with I1.
This justifies omitting I2 from the objective function.

Proposition 3 below formally establishes that the first term
in (2) serves as a valid upper bound for I1, under the fol-
lowing assumption which is automatically satisfied when
the covariance function decays with distance — a condition
commonly imposed in spatial statistics (Cressie, 2015).

Assumption 2 (Decaying covariance). For any three dis-
joint regions i1, i2, i3 such that only i1 and i2 are neigh-
bors, it holds that Σi1,i2 ≥ Σi1,i3 .

1

4
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2
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2

3

2
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1

−1

(a) (b) (c)

3
4

2
1

2
1

3
4

(d)

2

3

2

3

1

−1

Figure 4. (a) Spatial layout of 4 regions to be partitioned. (b) Each
region is represented as a vertex, with edges determined by the
weight ω. (c) The cut highlighted in red minimizes the total loss
weight. (d) The spatial layout obtained after applying the 2-cut,
illustrating how the regions are partitioned based on the graph cut.

Proposition 3. Under Assumption 2, the first term in (2)
upper bounds I1.

Meanwhile, when the covariance function is bounded away
from zero, i.e., minii′ Σii′ > 0, the following Proposition
shows that this upper bound remains tight in the sense that
it is of the same order of magnitude as I1.

Proposition 4. When ϵ > 0, the first term in (2) is up-
per bounded by dmaxσI1 where dmax denotes the maximum
number of neighbors across regions and σ denotes the ratio
maxi ̸=i′ Σii′/mini,i′ Σii′ .

It is also worthwhile to mention that our surrogate function
explicitly relies on the covariance function Σ, allowing the
resulting design to be dependent upon Σ. Alternatively,
one could employ a minimax approach similar to Viviano
et al. (2023) and Zhao (2024b) that derives a worst-case
surrogate among all possible covariance functions. How-
ever, the resulting design is no longer adaptive to Σ.

In summary, the two terms in (2) measure the effects of in-
terference and correlation, respectively. Optimizing these
terms drives the resulting designs as described in Claims 1
and 2. By incorporating both, our surrogate function bal-
ances interference and correlation, successfully achieving
the first two desired properties. We will discuss how to ef-
ficiently optimize this function in the next section.

3.3. Causal graph cut: the detailed algorithm

We focus on the case with two clusters to illustrate our al-
gorithm. Notice that the surrogate function in (2) is propor-
tional to

∑
i∈C1

∑
i′∈C2

ωii′ where ωii′ = RWii′Σ
+
ii′−Σii′

can be viewed as the weight between any two regions. As-
signing two regions to different clusters results in a loss
of their weight, and minimizing the surrogate function is
equivalent to determining the optimal clustering that min-
imizes the total lost weight. This formulation allows us
to employ classical graph cut algorithms (see e.g., Gold-
schmidt & Hochbaum, 1994; Stoer & Wagner, 1997) to
optimize our surrogate function, as illustrated in Figure 4.

Following Hagen & Kahng (1992), let L represent the
Laplacian matrix of Ω = {ωii′}i,i′ and define the partition
vector x such that xi = 1/

√
R if i ∈ C1 and xi = −1/

√
R

if i ∈ C2. A key observation is that the cut loss func-
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tion can be represented using the following quadratic form
x⊤Lx/4. Instead of employing integer programming to
optimize this quadratic form, we relax the search space to
the entire unit ball to facilitate computation. This simplifies
the optimization to identifying the eigenvectors of L. Given
that the Laplacian matrix has a trivial eigenvector (a vector
of all ones) with an associated eigenvalue of zero, classical
graph cut algorithms typically compute the eigenvector as-
sociated with the second smallest eigenvalue, known as the
Fiedler vector (Fiedler, 1973; 1989).

However, our problem sightly differs from the classical
graph cut problem in that the weight matrix is not guar-
anteed to be positive definite. Consequently, if the smallest
eigenvalue equals zero, we search for the Fiedler vector.
Otherwise, we employ the first eigenvector. Once we have
obtained the appropriate eigenvector, we apply the k-means
algorithm to finalize the partition. In more general set-
tings with m > 2 clusters, instead of searching for the first
or second eigenvector, we search for a few (i.e., log2(m)
many), and apply the k-means algorithm to determine the
m clusters. By varying m from 1 to a predefined maximum
value mmax — set to R2/3 in our implementation based on
Leung (2022)’s recommendation — we obtain mmax many
designs. We next evaluate their performance by plugging
each design into the MSE formula derived from Theorem 1
(instead of the surrogate function) and choose the number
of clusters that minimizes the MSE. Finally, the aforemen-
tioned discussion implicitly assumes that Σ is known; how-
ever, in practical applications, direct access to Σ is often
not feasible. Since the experiment is repeated N times, we
can estimate Σ to construct the MSE estimator and update
the design in an iterative manner. We summarize the pro-
cedure in Algorithm 1.

4. Experiments
In this section, we conduct numerical experiments to com-
pare the ATE estimator computed via the proposed causal
graph cut (CGC) algorithm against those constructed based
on the following benchmark methods: (i) spectral cluster-
ing (SC, Leung, 2022); (ii) the three-net algorithm (TNET,
Ugander et al., 2013); (iii) causal clustering (CC, Viviano
et al., 2023). we also compare against the DR estimators
constructed based on (iv) the global design (GD) and (v)
the individual design (ID). We also compare against (vi) an
oracle version of the proposed CGC algorithm (denoted by
OCGC) which works as well as if the covariance matrix Σ
is known in advance.

Synthetic environments. We design four spatial settings
visualized in Figure 5(a), covering four classical urban
morphology (Kropf, 2017). We set function gi to be a si-
nusoidal function that incorporates both spatial covariates
and treatments, with correlation parameter ρ indicating de-

Algorithm 1 Causal graph cut (CGC)

Input: A batch sample size B and an initial clustering C.
1: for l = 1, . . . , N/B do
2: Implement the design based on C and collect the

dataset D(l) = {(Yt,At,Ot)}Bt=1.
3: Use datasets D(1), . . . ,D(l) to estimate gi (denoted

by ĝi) and compute êit = Yit − ĝi(ANi,t,ONi,t).
4: Compute the estimated covariance matrix Σ̂ whose

(i, i′)-th entry is given by Σ̂ii′ =
∑B

t=1 êitêi′t/B.
5: for m = 1, · · · ,mmax do
6: Use Σ̂ to estimate the MSE and apply graph cut

to learn the optimal design with m clusters.
7: end for
8: Select the number of clusters whose clustering min-

imizes the estimated MSE and update C.
9: Calculate the DR estimator ÂTEl according to (1)

using the data D(l).
10: end for
Output: ÂTE = (B/N)

∑N/B
l=1 ÂTEl

(a) (b)
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Figure 5. (a) Four types of spatial grids in synthetic environments:
square (top-left), rectangle (top-right), circle (bottom-left), fans
(bottom-right). (b) MSEs with different numbers of repetitions N
in the real-data-based simulator. The shaded area visualizes the
confidence interval.

gree of spatial dependence, evaluated under three different
covariance structures (constant, truncated constant, expo-
nential), see Appendix C.1 for further details. We study
the MSE of estimators as ρ increases from 0.1 to 0.9. The
numerical results are shown in Figure 6, with values on
the y-axis presented on a logarithmic scale for clearer vi-
sualization. It can be seen that our algorithms CGC and
OCGC achieve MSEs that are substantially smaller than
CC, TNET and SC. Besides, regardless of the spatial set-
ting and covariance structure, our design consistently sur-
passes both the naive global design and individual de-
sign, with 54% and 72% improvements, which reflects
the advantage of our proposed algorithms. Finally, it is
worth mentioning that the CGC closely matches the per-
formance of OCGC, indicating the effectiveness of our it-
erative framework.
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Figure 6. The plot of ρ versus MSE, with each panel representing
a different spatial arrangement setting.

Real-data-based simulator. We develop a simulator using
a five-day historical dataset from a ridesharing company
to evaluate the proposed approach. This simulator repli-
cates key dynamics of a city-scale ridesharing market with
R = 85 hexagonal regions. Every 2 seconds, the simula-
tor updates, among others: (1) drivers’ decisions to accept
assigned orders, taking into account historical driver and
order characteristics; (2) driver movements to pick-up loca-
tions or idle movement patterns based on historical trajec-
tories; (3) the driver pool, accounting for new active drivers
and those going offline; and (4) new orders based on his-
torical data, incorporating factors like passenger subsidies
and processing unassigned and new requests. Particularly,
drivers’ decisions and reposition leverage the prediction of
machine learning models trained with datasets that includes
about 1 million observations. Furthermore, to match with
the real world setting, when each simulation starts, drivers
are distributed across the city based on their empirical dis-
tribution from the offline dataset that has more than 70,000
observations. See Appendix C.2 for more details.

In the experiments, the covariate is the number of initial
drivers available at the start of each time period. The out-
come, measured by gross merchandise value (GMV), will
be used to evaluate the effectiveness of the policy. We ex-
clude OCGC since we cannot assess the spatial correlation
of the real-world environment. The results are presented in
Figure 5(b).

First, we observe that our proposed method achieves the
lowest MSE in most cases, with its MSE consistently
decreasing as the number of repeated experiments in-
creases, demonstrating the learning capability of our iter-
ative framework. The improvement over the benchmarks is
substantial, with the MSE being approximately 3.5 times

Square Circle Fan Rectangle

C
onstant

E
xponential

Truncated

0.90.70.50.3 0.90.70.50.3 0.90.70.50.3 0.90.70.50.3
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Figure 7. The plot of ρ versus MSE in single-experiment set-
tings, with each panel representing a different spatial arrange-
ment. OCGC (0.01) and OCGC (0.1) represent our method using
a noised covariance matrix, where the noise follows a normal vari-
able with mean 0 and variance 0.01 and 0.1, respectively. We did
not implement GD in single-experiment settings, since it assigns
the same treatment to all regions, making the ATE unidentifiable
from the experimental data.

lower. Second, due to the strong spatial correlation in
real-world environments, the global design is significantly
less effective than the individual design, further supporting
Proposition 1. The individual design, in turn, is substan-
tially less effective than the proposed method, highlighting
the advantages of our approach in balancing spatial corre-
lation and interference.

Single-experiment settings. Finally, we remark that our
core methodology does not rely on the assumption of
repeated experiments. It remains applicable to single-
experiment settings when we have certain prior knowledge
regarding the underlying covariance matrix, either from a
pilot study or based on historical data. To support this
claim, we used a proxy covariance matrix constructed by
adding noise to the true covariance matrix, and present the
corresponding numerical results in Figure 7.

The results demonstrate that our estimator: (i) maintains
optimality against existing methods; (ii) achieves near-
oracle performance (comparable to the oracle method with
the true covariance matrix); (iii) remains robust to the ap-
proximation errors in the covariance matrix.

We also remark that while cross-fitting helps simplify the
theory (by avoiding the need for imposing VC-class condi-
tions on to establish the asymptotics of the ATE estimator),
our method remains effective without it - numerical results
above were obtained without cross-fitting.
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Schuurmans, D. Coindice: Off-policy confidence inter-
val estimation. Advances in Neural Information Process-
ing Systems, 33:9398–9411, 2020.

Dai, R., Wang, J., Zhou, F., Luo, S., Qin, Z., Shi, C., and
Zhu, H. Causal deepsets for off-policy evaluation under
spatial or spatio-temporal interferences. arXiv preprint
arXiv:2407.17910, 2024.

Dudı́k, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. In Proceedings of the 28th In-
ternational Conference on International Conference on
Machine Learning, pp. 1097–1104, 2011.

Eichhorn, M., Khan, S., Ugander, J., and Yu, C. L. Low-
order outcomes and clustered designs: combining design
and analysis for causal inference under network interfer-
ence. arXiv preprint arXiv:2405.07979, 2024.

10

http://dx.doi.org/10.1214/16-AOAS1005
http://dx.doi.org/10.1214/16-AOAS1005
https://doi.org/10.1162/rest_a_00716
https://doi.org/10.1162/rest_a_00716
https://doi.org/10.1111/ectj.12097


Causal Graph Cut: Balancing Interference and Correlation in Spatial Experimental Designs

Farias, V., Li, A., Peng, T., and Zheng, A. Markovian inter-
ference in experiments. Advances in Neural Information
Processing Systems, 35:535–549, 2022.

Fatemi, Z. and Zheleva, E. Minimizing interference and se-
lection bias in network experiment design. In Proceed-
ings of the International AAAI Conference on Web and
Social Media, volume 14, pp. 176–186, 2020.

Feng, Y., Ren, T., Tang, Z., and Liu, Q. Accountable off-
policy evaluation with kernel bellman statistics. In In-
ternational Conference on Machine Learning, pp. 3102–
3111. PMLR, 2020.

Fiedler, M. Algebraic connectivity of graphs. Czechoslo-
vak mathematical journal, 23(2):298–305, 1973.

Fiedler, M. Laplacian of graphs and algebraic connectivity.
Banach Center Publications, 1(25):57–70, 1989.

Fiez, T., Nassif, H., Chen, Y.-C., Gamez, S., and Jain, L.
Best of three worlds: Adaptive experimentation for digi-
tal marketing in practice. In Proceedings of the ACM on
Web Conference 2024, pp. 3586–3597, 2024.

Fisher, R. A., Fisher, R. A., Genetiker, S., Fisher, R. A., Ge-
netician, S., Britain, G., Fisher, R. A., and Généticien, S.
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A. Surrogate function for general m
For the general case where m > 2, similarly, to minimize MSE that is affected by the clustering configuration, it is
sufficient to minimize the upper bound of SC + I1 by solving the following objective function:

∑
j<k

∑
i∈Cj

∑
i′∈Ck

2R

m
Σ+

ii′Wii′ −
∑
j<k

∑
i∈Cj

∑
i′∈Ck

Σii′ , (3)

where the first term is an upper bound of I1 and the later one is equal to the term SC after adding a constant
∑
i,i′

Σii′ . The

objective function (3) forms a graph-cut problem.

B. Proofs
B.1. Proof of Theorem 1

Proof. According to Theorem 2 in Yang et al. (2024) and assuming functions gi are known, we have

MSE(ÂTE
DR

) = σ2
1 + DA,

where

σ2
1 =

1

N

∑
i,i′

( 1

pmii′
+

1

(1− p)mii′

)
Σii′I(mii′ > 0),

DA =
1

N
Var

{ R∑
i=1

[gi(1,Ot)− gi(0,Ot)]
}
,

where mii′ =
m∑
j=1

I (Ni ∩ Cj ̸= ∅) I (Ni′ ∩ Cj ̸= ∅) represents the number of clusters that both Ni and Ni′ belong to.

We now elaborate that σ2
1 = SC + I1 + I2. Note that we set p = 0.5 throughout this paper for balanced design. Let C0

j

denote the interior region of cluster Cj . We first rewrite σ2
1 in the following form:

σ2
1 =

1

N
Var

[ m∑
j=1

( ∑
i∈C0

j

2Ai − 1

p
ei +

∑
i∈∂Cj

I(ANi = 1)− I(ANi = 0)

pmi
ei

)]
,

which can be decomposed into the sum of a within-cluster term σ2
w and a between-cluster term σ2

b . Specifically,

σ2
w =

1

N

[ m∑
j=1

∑
i,i′∈C0

j

Σii′

p2
+ 2

m∑
j=1

∑
i∈C0

j

∑
i′∈∂Cj

Σii′

p2
+

m∑
j=1

∑
i,i′∈∂Cj

Σii′

p1+mii′

]

=
1

N

[ m∑
j=1

∑
i,i′∈Cj

Σii′

p2
+

m∑
j=1

∑
i,i′∈∂Cj

Σii′(1− pmii′−1)

p1+mii′

]
= SC +

1

N

[ m∑
j=1

∑
i,i′∈∂Cj

Σii′(1− pmii′−1)

p1+mii′

]
︸ ︷︷ ︸

J1

,
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and

σ2
b =

2

N

[∑
j ̸=k

∑
i∈C0

j

∑
i′∈∂Ck

Σii′

p2
I(Ni′ ∩ Cj ̸= ∅)

]
+

1

N

[∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

Σii′

pmii′+1
I(mii′ > 0)

]
=

2

N

[∑
j ̸=k

∑
i∈Cj

∑
i′∈∂Ck

Σii′

p2
I(Ni′ ∩ Cj ̸= ∅)

]
+

1

N

[∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

(
Σii′

pmii′+1
− 2Σii′

p2
)I(Ni′ ∩ Cj ̸= ∅)

]
+

1

N

[∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

Σii′

pmii′+1

(
I(mii′ > 0)− I(Ni′ ∩ Cj ̸= ∅)

)]
= I1 +

1

N

[∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

(
Σii′

pmii′+1
− 2Σii′

p2
)I(Ni′ ∩ Cj ̸= ∅)

]
︸ ︷︷ ︸

J2

+
1

N

[∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

Σii′

pmii′+1

(
I(mii′ > 0)− I(Ni′ ∩ Cj ̸= ∅)

)]
︸ ︷︷ ︸

J3

.

We denote I2 = J1 + J2 + J3. Then we have σ2
1 = SC + I1 + I2.

B.2. Proof of Proposition 1

Proof. Because the correlation between non-neighboring regions is sufficiently small and the correlation between neigh-
boring regions is positive, we can simplify our proof by setting Σii′ = 0 for any two non-neighboring regions. Under such
a condition, we have

N

4
SC =

∑
ii′

Σii′ −
∑
j ̸=k

∑
i∈Cj

∑
i′∈Ck

Σii′

=
∑
ii′

Σii′ −
∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

Σii′Wii′ ,

N

4
I1 = 2

∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

Σii′Wii′ .

Thus minimizing SC + I1 is equivalent to minimizing∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

Σii′Wii′ . (4)

Under the global design, there has only one cluster, making the expression in (4) equal to zero. Given that all elements Σii′

are non-negative, we conclude that the global design achieves the minimum value for (4).

For the second-order interference I2, we analyze its three components separately to demonstrate that the global design is
optimal:

• For J1, when the i, i′-th regions are within the same cluster Cj , we have mii′ ≥ 1, and thus Σii′ (1−pm
ii′−1)

p1+m
ii′

≥ 0.
Therefore, J1 is minimized under the global design where there are no boundaries.

• For J2, we have

NJ2 =
∑
j ̸=k

∑
i∈∂Cj

∑
i′∈∂Ck

(
Σii′

pmii′+1
− 2Σii′

p2

)
I(Ni′ ∩ Cj ̸= ∅)I(i, i′ are two neighboring regions).

Since mii′ ≥ 2 when i, i′ are adjacent, together with the fact that p = 0.5, Σii′

pm
ii′+1 − 2Σii′

p2 must be a non-negative value.
The results ensures a global design minimizes J2.
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• For J3, because Ni′ ∩ Cj ̸= ∅ implies mii′ ≥ 1, then we have I(mii′ > 0) ≥ I(Ni′ ∩ Cj ̸= ∅), which ensures
Σii′

pm
ii′+1 (I(mii′ > 0)− I(Ni′ ∩ Cj ̸= ∅)) is always non-negative. This fact implies J3 is minimized under the global

design.

Since SC+I1 and I2 are each minimized under the global design, their sum is also minimized under the global design.

B.3. Proof of Proposition 2

Proof. When SUTVA holds, the interference terms I1 and I2 equal zero. For SC, we have

SC =
4

N

[∑
ii′

Σii′ −
∑
j ̸=k

∑
i∈Cj

∑
i′∈Ck

Σii′

]
. (5)

Thus minimizing MSE is equivalent to maximizing
∑

j ̸=k

∑
i∈Cj

∑
i′∈Ck

Σii′ , which equals the summation over correla-
tions between different clusters. Due to the non-negativeness of Σii′ , it is maximized when m = R, where each region
belongs to a unique cluster, i.e., as in the individual design.

B.4. Proof of Proposition 3

Proof. As proved in Section B.1, we have

I1 =
8

N

[ ∑
i∈C1

∑
i′∈∂C2

Σii′I(Ni′ ∩ C1 ̸= ∅) +
∑
i∈C2

∑
i′∈C1

Σii′I(Ni′ ∩ C2 ̸= ∅)
]

≤ 8

N

[ ∑
i∈C1

∑
i′∈C2

Σ+
ii′

∑
ℓ∈C1

Wℓi′ +
∑
i∈C2

∑
i′∈C1

Σ+
ii′

∑
ℓ∈C2

Wℓi′

]
≤ 8

N

[ ∑
i∈C1

∑
i′∈C2

∑
ℓ∈C1

Σ+
ℓi′Wℓi′ +

∑
i∈C2

∑
i′∈C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′

]
=

8

N

[
|C1|

∑
i′∈C2

∑
ℓ∈C1

Σ+
ℓi′Wℓi′ + |C2|

∑
i′∈C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′

]
, (6)

where the second inequality holds under Assumption 2. The last term (6) equals

8

N

(
|C1|+ |C2|

) ∑
i′∈C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′ =

8R

N

∑
i′∈C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′ ,

which, together with Equation (5), gives us the objective function:

8

N

∑
i∈C1

∑
i′∈C2

[
RΣ+

ii′Wii′ − Σii′

]
.
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B.5. Proof of Proposition 4

Proof. As stated in Section B.3, we have

8R

N

∑
i′∈C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′ =

8

N

[ ∑
i∈C1

∑
i′∈C2

∑
ℓ∈C1

Σ+
ℓi′Wℓi′ +

∑
i∈C2

∑
i′∈C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′

]
=

8

N

[ ∑
i∈C1

∑
i′∈∂C2

∑
ℓ∈C1

Σ+
ℓi′Wℓi′ +

∑
i∈C2

∑
i′∈∂C1

∑
ℓ∈C2

Σ+
ℓi′Wℓi′

]
≤ 8

N
max
i ̸=i′

Σii′

[ ∑
i∈C1

∑
i′∈∂C2

∑
ℓ∈C1

Wℓi′ +
∑
i∈C2

∑
i′∈∂C1

∑
ℓ∈C2

Wℓi′

]
≤ 8

N
dmax max

i̸=i′
Σii′

[ ∑
i∈C1

∑
i′∈∂C2

I(Ni′ ∩ C1 ̸= ∅) +
∑
i∈C2

∑
i′∈∂C1

I(Ni′ ∩ C2 ̸= ∅)
]

≤ 8

N
dmaxσ

[ ∑
i∈C1

∑
i′∈∂C2

Σii′I(Ni′ ∩ C1 ̸= ∅) +
∑
i∈C2

∑
i′∈∂C1

Σii′I(Ni′ ∩ C2 ̸= ∅)
]

= dmaxσI1,

where the second equation holds because Wℓi′ = 0 when i′ falls in the interior region of its cluster, and the second
inequality holds because each i′ ∈ ∂Ck (for k = 1, 2) can have at most dmax adjacent neighbors that fall in Cj .

C. Experiments: details and additional results
C.1. Synthetic environments

Settings. The model for the outcome is represented as follows:

Yit = 3Oit sin
(
lx + ly + s× (Ait + 0.5Āit)

)
+ eit,

where Oit ∈ R represents the covariates, Āit =
1

|Ni|−1

∑
j ̸=i,j∈Ni

Ajt represents the average of neighboring treatments,
and s denotes the signal strength, which is set to 2.5% for our experiments. For each t, (e1t, . . . , eRt) are independently
drawn from a zero-mean multivariate Gaussian distribution with time-invariant covariance Σ. Under the spatial setting, Σ is
set as one of the following correlation structures: (i) constant correlation, Σij = ρI(i ̸=j); (ii) truncated constant correlation,
Σij = I(i = j)+(ρ−R−1|i−j|)I(|i−j| ≤ ρR); (iii) exponential correlation, Σij = ρ|i−j|. After structuring the regions,
the corresponding synthetic environment is created to simulate the conditions that allow us to generate datasets.

We evaluate each method using the relative MSE as criterion. Specifically, we use the relative MSE which is computed as
R−1

∑R
r=1(ÂTEr − ATE)2/(ATE)2, where ÂTEr is the estimated ATE returned by one estimator at the r-th independent

replication. We set the total number of replications to R = 50.

C.2. Real-data simulator

Orders and drivers are simulated as follows:

1. New orders are generated according to historical data. These orders, along with existing unassigned orders, are pro-
cessed and assigned according to the dispatch algorithm described in Tang et al. (2019).

2. Drivers who are assigned to orders will decide whether to accept them based on probabilities generated by a pre-trained
LightGBM model. This step considers various characteristics of both the drivers and the orders.

3. Drivers who are idle and not currently assigned to any orders are directed to specific areas based on historical data of
idle driver movements.

4. Drivers who are subject to repositioning must follow the directives provided by a pre-trained repositioning algorithm
implemented by the ridesharing platform.

5. Once drivers accept orders, they proceed to the pickup locations, collect the passengers, and then travel to the specified
destinations.

6. The pool of available drivers is continuously updated to reflect new drivers entering the service area and existing drivers
who go offline.
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Different from the synthetic environment, we cannot obtain the oracle ATE value by mathematical calculation. There-
fore, we use a Monte Carlo (MC) procedure to approximate the true ATE value. Specifically, we run the simulator
for N independent days under actions 1 and 0, respectively, leading to the reward observations {r(1)it }1≤i≤R,1≤t≤N and
{r(0)it }1≤i≤R,1≤t≤N . With the two datasets, the MC estimator for ATE is given by:

ÂTE
MC

=
1

N

N∑
t=1

R∑
i=1

[
r
(1)
it − r

(0)
it

]
.

When N → ∞, the ÂTE
MC

converges to ATE. In our experiment, we set N to a large value and the obtained ÂTE
MC

is set
as the surrogate of the true ATE. Specifically, N is set as 1000.

C.3. Implementation details

Algorithm 1 in the main text skips the estimation procedure of {gi}Ri=1 so as to simplify the illustration of the algorithm.
Here, we elaborate the details. Besides, to circumvent the need for imposing stringent metric entropy conditions on the
outcome regression function (Dai et al., 2020), we adopt the data-splitting and cross-fitting method (Chernozhukov et al.,
2018).

The idea of cross-fitting is presented below. Given the repeated observations {(Yi,t, Ai,t, Oi,t)}1≤i≤R,1≤t≤N , we split the
data into K non-overlapped subsets of equal size. Then we estimate the regression function gi based on the training data
{(Yi,t, Ai,t,Ot) : t /∈ Ik, 1 ≤ i ≤ R}, where Ik denote the indices of the kth subset. We denote the estimated function gi

as ĝ(k)i under such step. Under the cross-fitting framework, we denote the DR estimator as ÂTE
DR-CF

. We summarized the
complete algorithm for this in Algorithm 2.

Algorithm 2 Estimating ATE at the l-th iteration using cross-fitting.

Input: Datasets D(j) = {(Yt,At,Ot)}Bt=1 for j = 1, . . . , l, as collected in Algorithm 1.
1: Split dataset D(1) ∪ · · · ∪D(l) into K non-overlapped subsets of equal size. Let Ik denote the set of the indices for the

kth subset.
2: for k = 1, . . . ,K do
3: Compute the estimated outcome regression functions

{
ĝ
(k)
i

}R

i=1
based on the data tuples {(Yi,t, Ai,t, Oi,t)} | t /∈

Ik, i ∈ {1, . . . , R}} using random forest.
4: Compute ν̂

(k)
i,t (a) = ĝ

(k)
i (Ai,t, Oi,t) +

Ti,t(a)
E[Ti,t(a)]

[Yi,t − ĝ
(k)
i (Ai,t, Oi,t)] for all i ∈ {1, . . . , R} and t ∈ Ik.

5: end for
6: Compute the ATE estimator:

ÂTE
DR-CF
l =

1

lB

K∑
k=1

∑
t∈Ik

R∑
i=1

[ν̂
(k)
i,t (1)− ν̂

(k)
i,t (0)]

Output: ÂTE
DR-CF
l .

We give more details on the Step 3 and Step 5 in Algorithm 2.

• In Step 3, instead of using the observed data at each region to fit regression model, we concatenate the observed data in
all region, and augment the data by including the longitude and latitude as two additional features. The advantage of this
procedure is that it shares the information across spatial regions, making the estimated outcome regression model can
still fit data well when the number of repeated observations N is small. The advantage of this procedure is demonstrated
by Figure 8. We can see that, when sample size is small, such procedures (denoted as OCGC, CGC) are much better than
fitting gi individually with dataset {(Yit, Ait, Oit)}Nt=1 (denoted as OCGC-Local, CGC-Local).

• In Step 6, we need to calculate the term E(Tit(a)) for estimation. Because the treatment are randomly assigned and
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independent to covariates, E(Tit(a)) has a close form expression that is written as:

E[Tit(a)] = (p)a(1− p)1−a
∏
k ̸=j

[
1−

∏
i∈Nl

I (i /∈ Ck) (p)a(1− p)1−a

]
+

∏
i∈Nl

I (i /∈ Ck) .

Using this expression can simplify the computing on ÂTE.

• In the algorithm, we use D(1), . . . ,D(l) together to refit machine learning model, rather than using the dataset obtained
in a single step (i.e., D(l) generated in the l-th step). This approach sufficiently leverages the collected data as reported in
Figure 9. We use the logarithmic scale on values of y-axis for a clearer presentation. From Figure 9, leveraging all data
(denoted as CGC) generally decreases the MSE when compared to using only one dataset D(l) (denoted as CGC-ST).
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Figure 8. The plot of number of repeated experiments versus MSE on square spatial setting. Each panel corresponds to a spatial corre-
lation setting. For clearer representation, we adopt a logarithmic scale for the values on the y-axis.
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Figure 9. The plot of number of repeated experiments versus MSE on square spatial setting.

D. Discussion and Future Works
Our method omits I2 in the objective function to facilitate the optimization. We acknowledge that such second-order effects
may be non-negligible. However, its inclusion would significantly increase the computational complexity. Developing
a computationally tractable solution that properly accounts for this term remains a practical challenge for future work.
In terms of applications, our methodology primarily targets settings where independent experiments can be repeatedly
conducted over time. While this framework aligns well with our ridesharing application for spatial A/B testing (the focus
of this paper), it may require adaptation for other settings. From the empirically effective performance of our approach on
the single experiment, it would be a promising direction to extend our approach to more general experimental settings.
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