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Abstract

Multimodal symbolic logical reasoning, which aims to deduce new facts from multimodal input
via formal logic, is critical in high-stakes applications such as autonomous driving and medical
diagnosis, as its rigorous, deterministic reasoning helps prevent serious consequences. To eval-
uate such capabilities of current state-of-the-art vision language models (VLMs), we introduce
MuSLR, the first multimodal symbolic logical reasoning grounded in formal logical rules. We
curate a benchmark dataset for MuSLR comprising 1,093 instances across 7 domains, including
35 atomic symbolic logic and 976 logical combinations, with reasoning depths ranging from 2
to 9. We evaluate 7 state-of-the-art VLMs on our benchmark and find that they all struggle with
multimodal symbolic reasoning, with the best model, GPT-4.1, achieving only 46.8%. Thus,
we propose LogiCAM, a modular framework that applies formal logical rules to multimodal
inputs, boosting GPT-4.1’s Chain-of-Thought performance by 14.13%, and delivering even
larger gains on complex logics such as first-order logic. We also conduct a comprehensive
error analysis, showing that around 70% of failures stem from logical misalignment between
modalities, offering key insights to guide future improvements. All data and code are publicly
available at https://llm-symbol.github.io/MuSLR.

1 Introduction
Recent progress has extensively highlighted the pivotal role of reasoning capabilities in enhancing the
generality and robustness of large language models (LLMs) [9, 12, 29–31]. Yet, achieving human-
level intelligence demands more than commonsense or heuristic thinking. In particular, symbolic
logical reasoning, grounded in formal logic such as first-order logic, offers a rigorous, precise,
and verifiable paradigm essential for high-stakes scenarios where reasoning errors can have critical
consequences. Although previous works have shown that LLMs can handle symbolic reasoning
in purely textual contexts [22, 36, 37], these capabilities remain limited to unimodal inputs, i.e.,
text. However, many real-world domains, such as autonomous driving, healthcare, law, and finance,
demand reasoning that integrates multiple modalities, particularly combining visual and textual
information, to support accurate and reliable conclusions. Consider an autonomous driving system
that observes a traffic sign (from a camera image) indicating “Road Closed Ahead”, given the traffic
rule “Only if the road ahead is open (B), the vehicles may proceed straight (A).” From the image,
the system detects that the road is in fact closed (¬B), and must infer that continuing straight is not
permitted (¬A), forming a formal logical reasoning (Modus Tollens; (A → B) ∧ ¬B → ¬A) to
avoid traffic accidents. Despite the significance of such multimodal symbolic reasoning, no standard
definition or benchmark currently exists for this capability.
To fill this gap, we introduce Multimodal Symbolic Logical Reasoning (MuSLR), a novel task that
challenges VLMs to perform symbolic reasoning over combined visual and textual inputs. Figure 1
illustrates the MuSLR task with the above example. We define MuSLR under two task formats: Truth
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INPUT

Context (Rules):


1. If driving straight is allowed, then there is no road construction.


2. On a road without a parking sign, the driver should either go straight or must change lane (C). 


3.On a two-way road with one lane per direction, if the driver must change lanes, the driver must wait for vehicles in the opposing lane to pass before changing lanes.


Question: 


Please determine whether the following action is valid (True/False/Unknown) based on the image and context: The driver should change lanes now.

TextImage

GOLD SYMBOLIC REASONING

STEP 4: Conclusion

 happening (¬B). 

 allowed (A),  then there is no road construction (B).  
(A→B)

Conclusion: Driving straight is not allowed (¬A).

Minor Premise: There is road construction

Major Premise (Context 1): If driving straight is

 Driving straight is not allowed (¬A).

Symbolic rules: Modus Tollens (A→B)∧¬B⊢¬A 

STEP 1 STEP 2 

Major Premise (Context 2):On a road without  
a parking sign (D), the driver should either go
 straight (A)ormust change lane (C). 
 (D→(A∨C))

 (¬A).
Minor Premise1: Driving straight is not allowed 

(D) (from the image).
The road has no parking signMinor Premise2: 

Conclusion: The driver must change lanes (C).

Symbolic rules: modus ponens and disjunctive 
syllogism: (D→(A ∨C)) ∧(D ∧¬A) ⊢C) 

Since the driver must wait for vehicles in the
pposing lane to pass before changing lane (E),
 the driver cannot change lane now.
Therefore, the action "The driver should 
change lanes now" is False
Final answer: False

STEP 3

Conclusion:The driver must wait for vehicles
in the opposing lane to pass before changing
lane (E).

Major Premise (Context 3):On a two-way
road with one lane per direction (F), if the driver
must change lanes (C),  the driver must wait for     
 vehicles in the opposing lane to pass before
changing lanes (E).(F→(C→E)) 

Minor Premise1:It is a two-way road with
 one lane per direction (F). 
Minor Premise2: The driver must change lanes
(C) .

Symbolic rules: Modus Ponens
(F→(C→E)) ∧(F ∧C)⊢E 

Figure 1: An example of a depth-4 propositional logic task, requiring the VLMs to apply formal
symbolic logic rules and integrate multimodalities to reach the conclusion.

Evaluation and Multiple Choice, where given an image I , context T , the model must apply symbolic
logical reasoning to identify the correct answer. To enable systematic evaluation, we then propose
MuSLR-Bench, a high-quality benchmark dataset specifically designed to assess the symbolic
reasoning abilities of state-of-the-art VLMs. Drawing from authentic web-sourced scenarios where
visual and textual content naturally co-occur, we annotate each instance with formal logical rules
(e.g., modus ponens) and conduct rigorous quality checks to ensure correctness and logical validity.
MuSLR-Bench comprises 1,093 instances spanning 7 domains, including 35 atomic symbolic logic
and 976 complex logical compositions, with reasoning depths ranging from 2 to 9 to reflect diverse
difficulty levels. In a pilot study, we evaluate seven leading open- and closed-weight VLMs of varying
sizes on MuSLR-Bench, revealing that even top models struggle substantially with multimodal
symbolic logic inference.
To establish a strong baseline for MuSLR, we further propose LogiCAM (Logical reasoning with
Commonsense Augmentation in Multimodalities), which decomposes multimodal symbolic reasoning
into modular steps through Chain-of-Thought (CoT) mechanism (cf. Figure 4). First, the Premise
Selector is designed to address the difficulty of multimodal fusion. We next devise a Reasoner
module to integrate multimodal evidence and apply symbolic reasoning by approximating formal
logical rules, enabling rigorous and systematic deduction to meet the core challenge of MuSLR.
Then, the Reasoning Type Identifier is designed to address the issue of incomplete information
in MuSLR, where heuristics act as supplementary resources to complement symbolic rules when
they are insufficient to reach the conclusion. Extensive experiments show that LogiCAM improves
GPT-4.1’s CoT performance by 14.13% on MuSLR-Bench, achieving even greater gains on complex
first-order logic tasks. Further analysis reveals that reasoning performance deteriorates sharply as
logical complexity and chain depth increase, highlighting key limitations of current popular VLMs.
In summary, our contributions are fourfold:
• We introduce MuSLR, a pioneering task targeting multimodal symbolic logical reasoning, ad-

dressing a critical gap in real-world AI reasoning.
• We curate MuSLR-Bench, a high-quality dataset comprising 1,093 instances with diverse logical

structures and depths, serving as a critical foundation for this topic.
• We develop LogiCAM, a strong CoT-based baseline method that decomposes complex reasoning

into more manageable and trackable modules.
• Through extensive experiments and analyses, we pinpoint where and why current VLMs struggle

with MuSLR, offering insights for future investigation of this area.

2 Related Work
Textual Symbolic Logic Reasoning and Benchmarks. Existing benchmarks for symbolic logical
reasoning have primarily focused on purely textual settings under formal logic rules. For instance,
FOLIO [7] is a human-annotated dataset for complex natural language reasoning equipped with first-
order logic annotations to ensure the logical consistency of premises and conclusions. ProofWriter
[28] provides small English rulebases of facts and rules with associated questions, requiring models
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Image Processing Symbolic Rules Processing

Real world Grounding Quality Control

Image

STEP 1: Collect data

Text
In normal 

operation, if the

 “Road Work Ahead” 
(W20-1) warning sign is 
not present in advance of a 
location, you can assume 
there is no active work

 ... (more) ...

MLLM

STEP 2: Extract visual detail 

Visual detail
1. The image shows s two-way 
road with one lane per direction
2. There is a road construction 
happening
3. The road has no parking sign 
...(more)...

MLLM

STEP 5: Select symbolic rules

Reasoning chain
1.((A→B)∧¬B)→¬A
2. (((A∨C)∧¬A)→C

...(more)...
Conclusion( ):The driver 
should not change lanes. 

C

Instantiated rules

1.If driving straight is 
allow, then ..... (A→B)
2.On a road without 
parking sign, the driver 
should..... (B→C)
3. On a two-way road with 
one lane per direction, if ....

Visual 

Combination x

Text

C:The driver should not 
change the lane. A: Ture

1

¬ : The driver should change 
the lane now. A: False

C2

Random:The driver should 
dance. A: Unknown

3

STEP 6: Construct question

Determine whether the            is ARG

ARG

True1

False2

Unknown3

STEP 7: Quality control

1.If driving straight...

2.On a road without...

3.On a two-way road...

Instantiated rules
1.((A→B)∧¬B)→¬A

2. (((A∨C)∧¬A)→C

Reasoning chain

Conclusion(C): E

1. The road has 
2. There is 
3. The image shows 

Visual deatil 

1.If driving straight...

2.On a road without...

3.On a two-way road...

Instantiated rules

1.((A→B)∧¬B)→¬A

2. (((A∨C)∧¬A)→C

Reasoning chain

Conclusion(C): E

1. The road has 
2. There is 
3. The image shows 

Visual deatil

Before

After

Automatic and Manual Verification

STEP 3: Collect symbolic rules

Modus Ponens: ((P→Q)∧P)→Q
Modus Tollens:((P→Q)∧¬Q)→¬P
Disjunctive Syllogism:

((P∨Q)∧¬P)→Q
 ... (more) ...

Symbolic rules

STEP 4: Arrange combinations

Symbolic rules
Combination ...

Combination 2

Combination 1

1.((A→B)∧¬B)→¬A

2. (((A∨C)∧¬A)→C

3. ((C→D)∧C)→D

4. ((D→E)∧D)→E

Figure 2: Pipeline of MuSLR data construction. We begin by collecting multimodal data and symbolic
rules. These rules are then combined to form reasoning chains, which are grounded in real-world
contexts to generate questions and answers, followed by a strict quality check.

to prove or refute statements (or answer “unknown” when proof is impossible) via multi-step
natural language proofs. Likewise, Multi-LogiEval [24] evaluates multi-step logical reasoning across
propositional, first-order, and even non-monotonic logic types, encompassing over 30 inference rules
and various depths to test LLMs’ deductive abilities. We further acknowledge numerous additional
related works, such as ProntoQA [27], LogicBench [23], and RuleArena [41]. However, these
benchmarks assume fully specified, idealized inputs in a single modality (text) and do not incorporate
visual information, limiting their direct applicability to real-world scenarios.

Multimodal Reasoning and Benchmarks. In parallel, several benchmarks have introduced access-
ing reasoning in vision and language [5, 33]. LogicVista [35] evaluates VLMs’ logical reasoning in
visual contexts, with 448 annotated multiple-choice questions spanning a spectrum of logical reason-
ing tasks and capabilities. Similarly, VisuLogic [38] targets vision-centric reasoning by constructing
tasks that require robust visual logic without relying on textual descriptions or shortcuts. Meanwhile,
broader vision-language benchmarks emphasize contextual reasoning rather than formal logic: for
example, MMMU [39] offers college-level multimodal questions across six disciplines (e.g., charts,
maps, chemical structures), testing domain-expert reasoning. MathVista [18] targets compositional
mathematical inference in visual scenarios. However, none of these multimodal benchmarks explicitly
test the application of formal logical rules (e.g. Modus Ponens or De Morgan’s Law) grounded in both
visual and textual input. MuSLR addresses this gap by requiring explicit symbolic logical deduction
from joint visual–textual inputs, integrating formal logic rules into multimodal understanding.

Neuro-Symbolic Reasoning Method. Many prior works adopt a symbolic prover in the reasoning
pipeline to achieve rigorous and reliable reasoning. Typically, an LLM is used to formalize natural
language into symbolic form, after which a theorem prover is employed to solve it [11, 19, 22, 26,
34]. However, theorem provers only accept text input. In multimodal scenarios, this requires first
converting visual or multimodal information into text, a process that inevitably leads to information
loss and thus limits adaptability. In contrast, our LogiCAM framework is designed to approximate
symbolic reasoning using a vision–language model (VLM), which has direct access to multimodal
information without relying on lossy translation.

3 Task Definition
The proposed tasks require models to integrate information from both an image I and a text passage
T to perform reasoning, ensuring that neither modality alone is sufficient for correct inference. The
tasks explicitly emphasize multimodal reasoning, where the fusion of visual and textual context is
essential for deriving accurate and consistent conclusions.

Task-I: Truth Evaluation (True/False/Unknown) Question. Given an image I , a text passage
T , and an argument A, the model must determine the truth value of the argument based on the
combined information from I and T . Specifically, the model outputs the truth value Truth(A) ∈
{True, False,Unknown} and generates a sequence of reasoning steps R = {R1, R2, . . . , Rn}, where
each Ri represents an individual step that contributes to the final decision. Formally, the input is a
triplet (I, T,A), and the output consists of Truth(A) and R.
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Statistics Numbers
Total instances 1093
Total sources 7
Domain (#) 7
Symbolic logic (#) 3
Atomic symbolic rules (#) 35
Symbolic rule combination (#) 976
Min reasoning depth 2
Max reasoning depth 9
Min context length 35
Max context length 1484
Avg. context length 554.9
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Figure 3: Dataset Statistics. The left table presents general dataset statistics. The middle pie chart
illustrates the distribution across domains and symbolic logic. The right bar charts display the number
of instances by reasoning depth and data source.

Task-II: Multiple Choice Question. Given an image I , a text passage T , and candidate arguments
{A1, A2, A3, A4}, the model must select the argument that best matches the image and text, denoted
as BestArgument(I, T ) ∈ {A1, A2, A3, A4}. Additionally, the model must provide detailed reason-
ing steps R = {R1, R2, . . . , Rn}, where each Ri details a step in the reasoning process. Formally,
the input is a triplet (I, T, {A1, A2, A3, A4}), and the output consists of BestArgument(I, T ) and R.

4 MuSLR-Bench: A Benchmark for Multimodal Symbolic Logical Reasoning
Dataset Construction. We collect images from various sources such as COCO [14], Flickr30k
[25], nocaps [1], Mimic [10], RVL_CDIP [8], ScienceQA [17], and manually collected Traffic
Reports. Visual details for each image are extracted using GPT-4o, ensuring diverse and fine-grained
descriptions. We carefully select non-trivial logical inference rules, such as Modus Ponens and
Hypothetical Syllogism, drawn from propositional logic (PL), first-order logic (FOL), and non-
monotonic logic (NM). These rules then form meaningful but abstract reasoning chains through
logical combinations. The abstract chains are grounded in real-world contexts by leveraging extracted
visual features and relevant retrieved text from sources like healthcare, traffic reports, and Wikipedia.
Questions and answers are then generated based on these instantiated reasoning chains, using rule-
based substitution.
To ensure the quality and relevance of the dataset, both automatic and manual quality control
procedures are employed. Automatic checks include assessing lexical similarity and commonsense
plausibility, while human annotators verify the accuracy of visual details and the real-world relevance
of the generated context. Instances that fail these checks are filtered out, ensuring a high-quality,
logically sound, and contextually relevant dataset. Further details on the data construction and quality
control processes are provided in the Appendix B and C, respectively.

4.1 Dataset Highlights
MuSLR consists of 1093 instances, where each instance includes a multimodal context (image
and associated text), a ground-truth logical reasoning chain, and corresponding question-answer
pairs. The dataset is constructed to support both detailed symbolic logical reasoning analysis and
challenging multimodal reasoning tasks. Below, we summarize the key features of the dataset:
Ground-Truth Reasoning Steps. Each instance is equipped with an explicit, step-by-step ground-
truth reasoning chain, enabling detailed analysis and training of models for symbolic logical reasoning.
Multi-Scenario Coverage. The dataset spans a wide range of domains, including science, enter-
tainment, sports, social issues, general knowledge, traffic, healthcare, and finance. The distribution
across these scenarios is illustrated in the pie chart in Figure 3.
Diverse Symbolic Reasoning Types. MuSLR contains diverse symbolic logic: propositional logic
(PL), first-order logic (FOL), and non-monotonic logic (NM), ensuring broad logical coverage.
Multimodality. To the best of our knowledge, this is the first dataset that combines both image and
text modalities for symbolic logical reasoning tasks grounded in formal logical rules.
Diverse Difficulty Levels. The reasoning chains vary in depth from 2 to 9 steps, offering a broad
spectrum of difficulty levels and supporting evaluation across simple and complex reasoning scenarios.
Multiple Question Types. The dataset supports multiple question formats, including Truth Evalua-
tion and Multiple-Choice questions, allowing for diverse model evaluation protocols.
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Critical Premises
1. There is road construction. 
2. If driving straight is allowed, then 
there is no road construction. 

Text
Context:1. If driving straight...
              2. On a road without ...
              ...(more)...
Question:Please determine...

Final answer

Premise Selector

Major Premise: If driving straight is...
Minor Premise:  There is road construction...
Conclusion:  Driving straight is not allowed ....
Symbolic rules:  Modus Tollens(A→B)∧¬B⊢¬A 

If you see a "Road Work Ahead" sign, you just 
assume: "Ok, can't go straight through here."

Reasoner

Symbolic rules applicable?

Yes

Heuristic

Reasoning Type

Identifier

Conclusion

Conclusion

Symbolic Completion check
Knowing going straight is not allowed 
cannot determine "The driver should 
change lanes now" because the driver 
could have other actions like parking. So 
the reasoning is not complete yet.

or

No Yes

No

STEP 1: Select critical premise STEP 2: Identify reasoning type STEP 3: Perform reasoning STEP 4: Check for completion

Add Conclusion

Figure 4: LogiCAM Workflow. The figure illustrates a single iteration; the complete multi-iteration
reasoning process is detailed in Section 9.

4.2 Challenge
MuSLR presents five key challenges for developing robust multimodal symbolic reasoning models:
Integrate Multimodality. Can the model extract and integrate critical visual and textual context to
construct valid reasoning chains? (See Section 7.5)
Step-by-Step Symbolic Reasoning Tracability. Can the model produce interpretable, verifiable,
step-by-step reasoning processes in valid logic? (See Section 7.2)
Blend Heuristics for Symbolic Reasoning. Can the model apply heuristic reasoning when symbolic
logic is insufficient?
Diverse Symbolic Logic. Can the model handle various forms of symbolic logic (PL, FOL, and
NM)? (See Section 7.1)
Reasoning Depth Handling. Can the model reason over different depths, maintaining consistency in
longer chains? (See Section 7.3)
Addressing these challenges requires models to integrate multimodal perception and systematic
logical reasoning, thereby providing a solid foundation for advancing multimodal reasoning systems.

5 LogiCAM: A Modular MuSLR Framework
We propose a modular framework, LogiCAM (Logical reasoning with Commonsense Augmentation
with Multimodality), which consists of three modules based on GPT-4.1, as illustrated in Figure
4. Each module is designed to address a specific challenge posed by MuSLR. The modules work
together to solve different problem components, which include: (1) the Premise Selector, (2) the
Reasoning Type Identifier, and (3) the Reasoner module. Below, we explain how each module
addresses its challenge and contributes to the reasoning chain.

Select Critical Multimodal Premises. The Premise Selector is designed to address the multimodal-
ities integration challenge, which involves the need to process both visual and textual data to extract
critical premises. Given an image I and textual information T containing context T and question
Q, this module directs the VLM to first select the most relevant symbolic rules Rr ∈ T . The VLM
will then analyze the symbolic logic Rr to determine which part is relevant to the image and extract
the corresponding visual information Vr. In this way, the system ensures that only the most critical
visual and textual details are extracted, avoiding unnecessary complexity and noise from abundant
data. The symbolic rule Rr and visual details Vr will be combined and denoted as Icritical.

Identify Reasoning Type. The Reasoning Type Identifier addresses the blend of heuristics and
symbolic, which involves determining whether symbolic reasoning or heuristics should be applied
during each reasoning iteration. The core challenge is deciding when symbolic logic is sufficient and
when heuristics should be used to complement symbolic reasoning. To solve this, the Reasoning Type
Identifier analyzes the selected premises Icritical and determines whether formal logical rules can be
applied. If so, prioritize it. Otherwise, heuristics and commonsense reasoning are employed to com-
pensate for the limitations of purely symbolic reasoning. In this way, the model maximizes the rigor
and soundness of the reasoning by prioritizing symbolic reasoning while maintaining flexibility to
supplement additional knowledge through commonsense-driven heuristics when symbolic reasoning
alone is insufficient.

Perform Reasoning. The Reasoner is central to addressing symbolic reasoning tracability, which
uses a VLM to approximate formal logical rules when symbolic reasoning is required. Depending
on the outcome of the Reasoning Type Identifier, the Reasoner either applies symbolic reasoning or
uses heuristic commonsense to complete the reasoning process. If symbolic reasoning is selected,
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Model Symbol Healthcare Traffic Sports Ent. Social Science Finance General

Three-shots CoT Open-Weight VLMs

Qwen
PL 50.00 33.33 33.33 42.67 36.49 48.54 54.17 46.51

FOL 0.00 42.86 50.00 40.00 66.67 16.67 22.22 25.00
NM 43.18 25.93 43.75 35.42 23.26 43.75 54.24 37.50

Llava
PL 20.45 30.95 37.18 32.00 22.97 34.95 27.08 43.02

FOL 0.00 57.14 50.00 20.00 44.44 66.67 55.56 50.00
NM 31.82 37.04 45.31 43.75 39.53 47.06 25.42 45.31

InternVL
PL 57.95 42.86 37.97 44.00 37.84 46.60 51.04 50.00

FOL 50.00 42.86 50.00 20.00 66.67 50.00 22.22 50.00
NM 38.64 29.63 46.88 35.42 46.51 49.02 45.76 43.08

InstructBlip
PL 42.05 33,33 39.2 26.67 36.49 29.13 40.62 25.58

FOL 50.00 28.57 25.00 40.00 55.56 16.67 22.22 25.00
NM 52.27 40.74 53.12 31.25 44.19 35.29 2.34 30.77

Three-shots CoT Closed-Weight VLMs

Claude
PL 44.32 26.19 24.36 26.67 28.38 35.92 36.46 34.88

FOL 50.00 14.29 50.00 20.00 55.56 0.00 44.44 75.00
NM 29.55 37.04 32.81 29.17 30.23 43.14 38.98 31.25

GPT-4o
PL 45.45 40.48 33.33 37.50 34.72 37.00 28.99 43.90

FOL 0.00 14.29 25.00 0.00 37.50 33.33 50.00 33.33
NM 52.27 48.15 35.48 50.00 52.38 45.10 41.46 32.81

GPT-4.1
PL 54.55 50.00 44.30 41.33 33.78 43.69 45.83 51.16

FOL 0.00 14.29 50.00 20.00 44.44 16.67 33.33 0.00
NM 47.73 59.26 46.88 50.00 53.49 56.86 61.02 40.62

LogiCAM

PL 63.64 61.90 58.23 64.00 56.76 57.28 53.68 67.44
(+9.09) (+11.90) (+13.93) (+22.67) (+22.98) (+13.59) (+7.85) (+16.28)

FOL 50.00 60.42 50.00 60.00 44.44 40.00 75.00 75.00
(+50.00) (+46.13) (+0.00) (+40.00) (+0.00) (+23.33) (+41.67) (+75.00)

NM 63.64 66.67 58.23 60.42 74.42 64.71 74.14 55.38
(+15.91) (+7.41) (+11.35) (+10.42) (+20.93) (+7.85) (+13.12) (+14.76)

Table 1: Main Results. Blue indicates the best open-weight VLM, and Red indicates the best
closed-weight VLM. The (red brackets) indicate our improvement over the base model.

the module applies formal logical rules to the premises Icritical and derives a conclusion C based
on a syllogism, which draws a result from the major and minor premises. This reasoning process
ensures that conclusions are drawn according to sound logical principles. If heuristics are selected,
the module uses commonsense reasoning to bridge gaps left by symbolic logic. This design makes
sure that the model can perform symbolic reasoning grounded in logical principle, while relax this
restriction when heuristics are required. A full example can be found in the Figure 9.

Check for Completion. Finally, the system checks whether the conclusion C is sufficient to answer
the question Q. If so, it concludes the final answer. Otherwise, the system appends the conclusion C
to the context T , resulting in T ′ = T ∪ C, and starts over the whole reasoning iteration.

6 Experiments

6.1 Settings
Evaluation. We evaluate models based on two dimensions: direct answer match and reasoning
accuracy. Direct answer match measures the correctness of the final answer, while reasoning accuracy
evaluates the quality of the step-by-step reasoning. Reasoning accuracy is computed by comparing
model-generated steps with ground-truth steps using ROUGE-L [13] and BertScore-F1 [40]. We also
assess ROSCOE [6], which measures logical coherence, factual grounding, and informativeness step
by step. More details are in Section 7.2.

Baseline. For benchmarking, we consider multiple state-of-the-art models. For open-source models,
we benchmark Qwen2.5-VL-7B-Instruct [3], Llava-1.5-7B [15], InternVL3-8B [42], and
Instructblip-Vicuna-13B [4]. For closed-source models, we evaluate GPT-4o [20], GPT-4.1
[21] and Claude-3.7-Sonnet [2]. These models are chosen to represent the current SoTA in
multimodal reasoning.

Settings. To ensure reproducibility, all models are evaluated under standardized settings. We adopt
a three-shot Chain-of-Thought (CoT) [32] prompting setup. For language model sampling, the
temperature is set to 0.0 to minimize randomness and encourage deterministic outputs.
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6.2 Main Results and Observations
The main results are presented in Table 1. We have the following observations:
Closed-weight models generally outperform, but open-weight models can rival or surpass them.
GPT-4.1 leads with 46.84%, followed closely by InternVL at 45.20%, the top open-weight model.
Qwen (41.63%) and GPT-4o (38.93%) follow in the second tier, with InstructBLIP (35.59%), Llava
(35.13%), and Claude (33.49%) at the lower end. The performance gap between top and bottom
is just 13.35%. These results show that while closed-weight models typically excel, well-designed
open-weight models can sometimes outperform proprietary models
LogiCAM enhances CoT and achieves the highest overall performance, with especially strong
gains in complex symbolic logic. Integrating LogiCAM into GPT-4.1 results in a substantial
performance boost, increasing the average accuracy by 14.13%. When examined by logic type, the
improvements are consistent yet differ in scale: FOL accuracy increases by 48.93 %, PL by 31.93 %,
and NM by 26.17 %. This pattern indicates that the advantage of LogiCAM grows with the complexity
of the logic type: the largest relative improvement is observed in FOL, the most structurally demanding
form, followed by PL, and then NM, which is more aligned with intuitive human reasoning and less
dependent on rigid symbolic structure. These results suggest that LogiCAM not only strengthens
general symbolic reasoning but is especially effective in complex logical operations.

7 Analysis and Discussion
We conduct additional experiments and perform detailed analysis to gain deeper insights into the
multimodal symbolic reasoning capabilities of current VLMs.

7.1 Effects on Different Types of Symbolic Logic
In Figure 5, we evaluate the accuracy of each symbolic logic and found that Model accuracy
decreases with rising symbolic complexity: VLMs perform best with non-monotonic reasoning,
less well with propositional logic, and struggle most with first-order logic. First-order logic has
the lowest average accuracy at 37.04%, due to its strictest formalism and need for precise variable
binding and quantifier tracking. Propositional logic fares better with 42.77%, as its simpler structure
eases syntactic constraints. Non-monotonic reasoning performs best at 46.09%, due to its closer
alignment with human cognition and requiring less rigid symbolic manipulation. Overall, as symbolic
complexity increases, model accuracy declines, highlighting the challenges of fine-grained logical
abstraction in current VLMs.

7.2 Tracability of Reasoning Step
As shown in Figure 6, LogiCAM leads in both ROUGE-L (0.170) and BertScore (0.835), with the
highest overall mean (0.590), indicating its outputs closely match human phrasing and meaning.
Claude scores highest on ROSCOE (0.784), reflecting strong logical consistency but performs poorly
on ROUGE-L (0.084). GPT-4.1 balances phrasing and semantics (ROUGE-L = 0.166%, BertScore
= 0.833%) but shows moderate stepwise justification (ROSCOE = 0.725%), suggesting occasional
logical gaps. Llava and GPT-4o have similar profiles (Average = 0.570%), demonstrating that strong
semantic similarity (0.822%) doesn’t guarantee superior inference quality (ROSCOE = 0.776%).
Surface-level or semantic objectives alone don’t ensure logical coherence. Future work should
include logic-focused training goals. A Pearson’s correlation analysis reveals a weak correlation
between ROUGE-L and ROSCOE (r = 0.25) but a moderate correlation between BertScore and
ROSCOE (r = 0.65), suggesting that surface-level metrics do little for logical coherence, while
semantically rich training helps more. Claude’s high ROSCOE but low ROUGE and BertScore
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Figure 7: Panel A reports accuracy across different depths, while Panel B illustrates the error
distribution across models.

highlights that reasoning-focused objectives improve logical rigor, often at the cost of natural
phrasing. This suggests that optimizing for surface or semantic metrics alone isn’t enough to improve
logical coherence, and future research should target the quality of symbolic logic.

7.3 Depth Analysis
As shown in Figure 7A, All models exhibit a clear decline in performance as the symbolic
reasoning depth increases, confirming the benchmark’s effectiveness in exposing the growing
complexity of multimodal logical tasks. GPT-4.1 emerges as the strongest baseline, with the highest
accuracy after LogiCAM and a moderate 16% drop from 2–3 to 8–9 steps. However, it still struggles
at greater depths, revealing limits in complex multi-hop reasoning. GPT-4o and Llava maintain
stable performance with minor 3–4% drops, but their overall accuracy is much lower, indicating a
trade-off between robustness and reasoning capacity. In contrast, Claude suffers a sharp 20% decline,
highlighting poor generalization on longer symbolic chains.
In contrast, LogiCAM not only delivers superior average performance but also scales more
effectively when reasoning chains grow. It demonstrates the strongest overall performance and
robustness, consistently outperforming other models across all reasoning depths. It achieves 71.91%
accuracy at the shallowest level and maintains a solid 54.61% even at the deepest. Notably, it
surpasses the strongest baseline GPT-4.1 by 13% at depths 8–9, highlighting a substantial advantage
in handling extended reasoning chains. While LogiCAM exhibits a larger absolute drop across depths,
its high performance at all levels indicates strong generalization to both moderate and complex
symbolic reasoning tasks. This drop, however, suggests there is still room to improve long-chain
reasoning robustness.

7.4 Ablation Study
We conduct an ablation study, which demonstrates that each module is indispensable, as shown in
Figure 8A. Removing the symbolic reasoning module produces the largest performance reduction
(5.14%), underscoring the importance of adhering to formal logical rules. Omitting heuristic reasoning
yields a 3.45% degradation, indicating that heuristics serve as an effective complement when strict
logical rules are inapplicable. Disabling premise selection results in a 3.27% drop, reflecting its
crucial role in identifying critical information and simplifying subsequent inference. Collectively,
these findings highlight that each module plays a critical and non-redundant role, underscoring the
necessity of the full design for achieving strong overall performance.

7.5 Error Analysis
We conduct a thorough error analysis by randomly selecting a domain- and symbol-balanced subset of
100 examples for each model. We identify six major error types: incorrect application of logical rules,
failure to supplement with heuristic commonsense knowledge, overlooking critical visual details,
logical misalignment between visual and textual context, improper reliance on heuristic shortcuts
where symbolic reasoning is required, and misperception of objects in the image. Details of each
error type are discussed in Appendix A.

Error distribution across different models. As shown in Figure 7 B, failures to logically align
and integrate visual with textual premises overwhelmingly dominate (67% for LogiCAM, 74% for
GPT-4.1, and 63% for InternVL), demonstrating that cross-modal grounding remains the principal
hurdle. Looking specifically at each model:
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Figure 8: Panel A shows the ablation study results as bar plots, while Panel B presents pie charts
illustrating the error distribution across different logical types.

• LogiCAM is designed to blend symbolic deduction with heuristic inference; it exhibits a high rate
of heuristic shortcuts (13%), indicating difficulty in discerning when to apply formal logic versus
commonsense reasoning.

• GPT-4.1 shows minimal reliance on heuristics (3%) and almost no failures to supplement with
commonsense (1%), yet overlooks visual details in 13% of cases and misapplies formal logical
rules 9% of the time. The latter aligns with known Chain-of-Thought behavior, where outputs can
seem plausible but contain subtle logical errors [37].

• InternVL suffers the highest proportion of pure perception errors (18%), reflecting weaker object
recognition than GPT-4.1, and relies on heuristic shortcuts in 11% of cases.

Notably, all models suffer major logical misalignment between modalities and visual oversight errors,
underscoring a critical need for advances in vision–language fusion. Future work should focus
on improving cross-modal fusion and incorporating logic-based training objectives, enabling more
accurate symbolic reasoning across modalities.

Error distribution across different logical types. We further analyze the error by logical types as
shown in Figure 8B, and have the following findings:
• Consistent Alignment Issues Across Logic Types. A primary source of failure in PL, FOL,

and NM arises from logical misalignment between text and image, with this problem being
particularly severe in NM (79%) and PL (68%). This aligns with our broader finding that mapping
formal logical structures onto multimodal contexts remains a fundamental challenge for current
vision-language models (VLMs).

• FOL is Most Prone to Overlooking and Logical Errors. Overlooking errors are most frequent
in FOL (16%), where models often miss details in multi-entity, nested, or quantified reasoning.
Logical rule errors are also highest (17%), reflecting the symbolic complexity of quantifier binding,
variable tracking, and relational reasoning compared to PL or NM.

• PL’s Dependence on Symbolic Alignment. Although PL avoids many deep logical errors, its
performance is highly dependent on accurate logical text-image alignment, as reflected in the
68% rate of alignment errors. Once alignment is achieved, the relatively simple structure of PL
facilitates more reliable rule application by the models.

• NM’s High Alignment Difficulty but Low Logical Error Rates. Despite exhibiting the highest
rate of alignment errors (79%), NM shows the lowest incidence of incorrect logical rule application
(5%) and commonsense supplementation errors (0%). This pattern suggests that once alignment is
successfully established, NM reasoning is more consistent with the model’s intuitive understanding
or default interpretive patterns, which may partly explain its comparatively strong raw performance.

7.6 Case Study
To illustrate the limitations of existing VLMs and how LogiCAM addresses them, we present a case
study comparing the reasoning of GPT-4.1 (with CoT prompting) and LogiCAM in Figure 9.

GPT-4.1’s CoT reasoning exhibits a form of “nearsightedness”. As the reasoning chain grows
longer, it gradually loses the thread that connects image cues to abstract premises, defaulting in-
stead to surface-level judgments (e.g., “I can’t see a predator, so unknown”). Without a system-
atic Premise Selection process, it fails to ground observations like “on grass” in relevant tex-
tual logical rules (e.g., (not on the grass (A) or searching for food (B)) ∧ (on the grass (¬A)) →
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that the lizard detects a predator. The conclusion is unknown—there’s just not enough evidence to know either way.

LogiCAM

INPUT
Image

Context (Rules): Either a lizard is not on the grass, or the lizard is searching for food.If the lizard is observing its surroundings, then it is likely in a state of ecdysis or 

preparing to move. If the lizard is likely to move, then the current surrounding environment is good. If the current surrounding environment is not good or there might be 

enemy arounod, and if the lizard is not likely to move, then it has family living around. If the lizard detects a predator in its vicinity, then the environment is not good. If 

the lizard does not detect a predator in its vicinity, then it does not perceive a threat nearby.


Question: Determine true/false/unknown for the below argument:
The lizard detects a predator.

Text

Select critical information Identify reasoning type Perform reasoning Completion Check

Either the lizard is not on the grass (A), 

or the lizard is searching for food (B). 
The lizard is on the grass (from the image).

The lizard is searching for food.

If the lizard is observing its surroundings (C), then 
it is likely either in a state of ecdysis (D) or 
preparing to move (E).

The lizard is observing its surroundings 

(from Step 2 conclusion).

It is likely in a state of ecdysis (D) or preparing to 
move (E) (from Step 3 conclusion).

The lizard is not shedding its skin, so it is not in 
ecdysis (from the image).

If the lizard is preparing to move (E), then it 
perceives a threat nearby (F). 
The lizard is preparing to move (E)

 (from Step 4 conclusion).

If the lizard does not detect a predator in its vicinity (I), 
then it does not perceive a threat nearby (¬F). 
The lizard perceives a threat nearby (F) 

(from Step 5 conclusion).

Symbolic reasoning: 

Disjunctive syllogism 

((A∨B)∧¬A)→B

Heuristics / Commonsense

Symbolic reasoning: 

Modus ponens

((C→(D∨E))∧C)→(D∨E)

Symbolic reasoning: 

Disjunctive syllogism 

(D∨E)∧¬D→¬E

Symbolic reasoning:

 Modus ponens 

((E→F)∧E)→F

Symbolic reasoning:

Modus tollens 

((I→¬F)∧F)→¬I

Major: Either a lizard is not on the grass (A), or the 
lizard is searching for food (B).


Minor: A lizard is on the grass (¬A; from image).


Conclusion: The lizard is searching for food.(B)

Given that the lizard is searching for food, it is likely observing its 
surroundings, which aligns with the image and commonsense.

 Conclusion: The lizard is observing its surroundings(C).

Major: If the lizard is observing its surroundings (C), then it is likely in a 
state of ecdysis (D) or preparing to move (E). 
Minor: The lizard is observing its surroundings 

 (C; from Step 2 conclusion).

Conclusion: It is likely in a state of ecdysis (D) or preparing to move (E).

Major: It is likely in a state of ecdysis (D) or preparing to move 
(E) (from Step 3 conclusion).

Minor: The lizard is not shedding its skin, so it is not in ecdysis 
(¬D; from image).

Conclusion: The lizard is preparing to move (E).

Major: If the lizard is preparing to move (E), then it perceives a threat nearby (F). 
Minor: The lizard is preparing to move (E) (from Step 4 conclusion). 
Conclusion: The lizard perceives a threat nearby (F).

Major: If the lizard does not detect a predator in its vicinity (I), then it does 
not perceive a threat nearby (¬F).

Minor: The lizard perceives a threat nearby (F) (from Step 5 conclusion).

Conclusion: The lizard detects a predator in its vicinity (¬).

Final answer: True

surface pattern matching without reasoning

Yes

Figure 9: A Case Study Comparing CoT and LogiCAM

searching for food (B). Moreover, lacking step-by-step formal inference, it eventually abandons
the deeper reasoning chain altogether, falling back to superficial pattern matching.

In contrast, LogiCAM systematically derives new knowledge and reaches the correct answer by
integrating three tightly-coupled mechanisms at every inference step. Its Premise Selection
module continuously extracts and logically maps image features into textual element (e.g., “on grass”
→ food search; “no shedding”→ ¬ecdysis), demonstrating its advantages in multimodal fusion. The
Reasoning Type Identifier then selects the appropriate reasoning type, formal logic for structured
inferences (e.g., C → (D ∨E)) or heuristics to complement symbolic logic, thereby balancing the
rigor of formal deduction with the flexibility to incorporate knowledge beyond the scope of logic.
Finally, the Symbolic Reasoner rigorously applies formal inference rules (e.g., disjunctive syllogism,
modus ponens, modus tollens) to derive each new conclusion in a systematic and reliable way. This
disciplined, iterative process ensures robustness in handling long reasoning chains.

8 Conclusion and Future Work
We have pioneered the Multimodal Symbolic Logical Reasoning (MuSLR) task, challenging
models to perform precise, rigorous formal logic inferences over combined visual and textual
inputs, thereby filling a critical gap in existing benchmarks. To support this research direction, we
release MuSLR-Bench, a rigorously annotated dataset of 1,093 instances spanning seven application
domains, featuring 35 atomic reasoning units and 976 composite logic combinations with depths
ranging from 2 to 9. We also propose a strong baseline LogiCAM, a novel modular framework that
systematically decomposes the reasoning process into premise selection, reasoning-type identification,
and formal inference, demonstrating substantial performance gains over prior methods.
Looking forward, our diagnostic analyses reveal two key opportunities for advancing multimodal
symbolic reasoning. First, integrating dedicated symbolic modules is essential: the LogiCAM
outperforms base VLMs precisely because it extracts multimodalities based on logic and embeds
explicit symbolic reasoning steps. Second, existing VLMs struggle to align and fuse visual and
textual information when performing formal logic; Future work should explore tighter multimodal
integration, such as cross-modal architectures trained with logic-grounded objectives, to bridge this
gap. By making MuSLR and its benchmark publicly available, we hope to catalyze research on these
challenges and bring truly rigorous, multimodal symbolic reasoning within reach.
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Appendix
In the appendix, we provide detailed descriptions of each error type (Section A), the complete
workflow of the MuSLR construction pipeline (Section B), the full quality control process, including
both automatic and manual filtering strategies (Section C), the details of the LogiCAM framework
(Section D), the collection of atomic symbolic logic used in our study (Section F), and an ethics
statement (Section G).

A Error Analysis
We provide detailed explanations of each error type below.

Incorrect Application of Logical Rules This error occurs when the model attempts to apply formal
logical rules but does so incorrectly. Typical mistakes include reversing implications, confusing
necessary and sufficient conditions, or failing to properly follow multi-step deductions. While the
model recognizes that logical reasoning is needed, the specific application is flawed, leading to invalid
conclusions.

Failure to Supplement with Commonsense / Rule Misgeneralization In some cases, the given
input lacks complete information, requiring the model to draw on commonsense knowledge to fill in
gaps. This error happens when the model fails to do so, resulting in halted or incomplete reasoning.
Alternatively, the model may overgeneralize a formal rule, applying it too broadly or narrowly, which
also leads to incorrect outcomes.

Overlooking Visual Details This error reflects the model’s inability to notice or correctly interpret
critical visual elements in the image, such as small objects, specific colors, or spatial relationships.
Missing these details prevents the model from correctly progressing in its reasoning chain, despite
the necessary information being present in the visual input.

Premise Integration / Alignment Errors Even when the model successfully extracts information
from both text and image, it sometimes fails to align them correctly. This happens when visual
entities are mismatched with their textual references (e.g., linking “the red triangle” to the wrong
object in the image). Such misalignment breaks the reasoning process and leads to incorrect answers.

Heuristic Shortcuts over Formal Logic Rather than following precise logical reasoning, the model
occasionally defaults to heuristic-based shortcuts, relying on superficial patterns or associations
learned during training. While this may sometimes produce plausible answers, it undermines the
rigor required for formal logical tasks, resulting in systematic errors when heuristics are misapplied.

Visual Perception / Object Recognition Errors This error type stems from failures in basic visual
perception, such as misidentifying objects, misclassifying shapes, colors, or spatial positions. When
the model starts reasoning from an incorrect visual premise, all subsequent deductions are built on a
faulty foundation, leading to incorrect conclusions.

B MuSLR Construction Process
We collect images from multiple sources, including COCO [14], Flickr30k [25], nocaps [1], Mimic
[10], RVL_CDIP [8], ScienceQA [17] and Traffic Report collected manually. For each image I ,
visual details V are extracted using GPT-4o to ensure diverse and fine-grained descriptions.
Step 1: Systematic Rule Selection
We begin by examining a broad set of logical inference rules drawn from propositional logic (PL),
first-order logic (FOL), and non-monotonic logic (NM). We utilize the complete set of logical
rules collected by [24], denoted asR = {r1, r2, . . . , rm}, which comprehensively covers standard
inference patterns. Rather than selecting rules randomly, we carefully curate a subsetRselected ⊆ R
that is both formally sound and frequently encountered in real-world reasoning. This subset includes
classical patterns such as Modus Ponens, Hypothetical Syllogism, Modus Tollens, and Disjunctive
Syllogism. Details about the logical rules are provided in the Appendix.
Step 2: Meaningful Rule Composition:
We select meaningful rule combinations, denoted as Rset = {R1, R2, . . .}, to construct logically
coherent reasoning chains C = {C1, C2, . . .} by rule-based substitution. Each reasoning chain Ci
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consists of an ordered sequence of rules fromRset and is manually composed by experts in formal
logical reasoning to ensure coherence and meaningfulness.
Step 3: Grounding in Real-World Contexts:
The meaningful rule composition step produces an abstract, context-independent symbolic rule set
Rset = {R1, R2, . . .} (e.g., “If A, then B”). During grounding, visual features V from an image
I guide the retrieval of relevant textual information Tretrieved from sources like healthcare reports,
Wikipedia, or traffic incident summaries. Abstract rules fromRset are instantiated using real-world
information from Tretrieved, creating the grounded rule set Rreal (e.g., “If someone is blowing out
candles, they might be celebrating a birthday”).
The adapted rule set Rreal will be used to construct the instantiated reasoning chain Creal. When
the symbolic reasoning ruleRreal alone is insufficient to capture the real-world context Tretrieved, we
incorporate commonsense reasoning to supplement formal logic. This combination forms a hybrid
reasoning structure Chybrid = (r1, r2, . . . , rk), where each ri ∈ Rsym ∪ Rcs. Here, Rsym comprises
rules instantiated fromRset, andRcs denotes commonsense reasoning steps. Commonsense reasoning
is incorporated only in Chybrid and not explicitly represented inRreal. This reflects human cognitive
processes, where not all necessary information is always available, and intuitive reasoning is often
used to fill in the gaps. TheRreal populates the hybrid reasoning template Chybrid, yielding the fully
grounded reasoning chain Creal. Then we use the conclusion of the Creal to construct questions and
ground-truth answers based on rule-based substitution.
Step 4: Question Generation
Based on the ground-truth reasoning chain Cgt and answer Agt, we generate corresponding questions
Q that require multi-step reasoning for solution, following rule-based substitution templates.
Step 5: Automatic and Manual Quality Verification
Finally, both automatic verification procedures and manual expert review are employed to ensure the
overall quality, consistency, and correctness of the generated dataset.

C MuSLR Quality Check
To ensure the high quality, relevance, and correctness of the constructed dataset, we implement a
multi-layered quality control procedure combining both automatic and manual verification steps.
Automatic Quality Control: We apply two automatic filtering strategies to enforce logical soundness
and diversity:

• Lexical Similarity Filtering: We compute the lexical similarity between each pair of reasoning
steps within a reasoning chain using Jaccard Similarity. Chains with a similarity score above 0.5
are discarded to promote step diversity and minimize redundancy.

• Commonsense Plausibility Filtering: Each reasoning step is assessed using Vera [16], a T5
model fine-tuned on commonsense reasoning tasks. If any step receives a plausibility score below
0.5, the entire instance is removed to ensure logical soundness and realism.

As a result of the automatic filtering, the original sample size was reduced from 1,956 to 1,464.
Manual Quality Control: Given that the extraction of visual details (V ) leverages GPT-4o, which
may have hallucinations, we implement a rigorous manual validation stage:

• Visual Detail Verification: Human annotators confirm that the extracted visual details accurately
reflect the content of the corresponding image, explicitly checking for hallucinated objects, actions,
or attributes.

• Context and Question Evaluation: Annotators evaluate whether the generated context (Tcontext)
and associated questions (Q) are plausible and relevant to real-world scenarios.

Annotation Process and Training All instances were independently reviewed by three trained anno-
tators with STEM backgrounds. In total, six annotators were recruited to assess the 1,464 instances,
with each annotator reviewing 732 instances. For each check, annotators provided judgments using a
three-option scale: Yes, No, or Not Sure.
To prepare annotators and ensure consistent application of quality standards, we provided a dedicated
training session. This session covered task definitions, annotation guidelines, and hands-on practice
with feedback. To further support annotators and minimize cognitive load, we developed a custom
annotation interface prototype (see Figure 10), which streamlined the annotation process by integrating
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image previews, visual details, and context input fields for both checks. This tool helped reduce
annotation errors and improve task efficiency.
Annotators also underwent a calibration phase involving 30 examples, followed by iterative discussion
sessions to refine annotation guidelines and resolve disagreements. We measured inter-annotator
agreement using Fleiss’ Kappa, achieving an average score of 0.92 for visual detail verification
(substantial agreement) and 0.71 for context alignment (moderate agreement), which is consistent
with the subjective complexity of evaluating real-world plausibility.
Annotation Results. Visual detail verification exhibited a high level of agreement, with an initial
inter-annotator agreement rate of approximately 0.90, reflecting the objective nature of the task. In
contrast, context alignment showed lower agreement, with an initial rate of around 0.70, due to its
inherently more subjective nature. Instances were initially retained if they received three Yes votes
for both checks.
Conflict Resolution and Filtering.

• Instances that received unanimous No judgments from all annotators in either check were directly
discarded.

• For cases with conflicting judgments (e.g., one No, two Yes or any instance with at least one Not
Sure), a second round of annotation was conducted. During this phase, annotators collaboratively
revisited the flagged cases, discussed discrepancies, and reached a consensus decision to ensure
consistent quality standards.

• If, after discussion, the final decision still resulted in a No for either the visual detail correctness or
context plausibility, the instance was removed.

Filtering Statistics and Error Examples: Across the dataset, 492 instances were filtered by auto-
matic checks, 371 by manual annotation, resulting in the final sample size of 1093. Common errors
detected included hallucinated objects or implausible contexts, further emphasizing the necessity of
both automated and human oversight to ensure dataset validity.

D Detailed LogiCAM Reasoning Process
Below, we present the step-by-step reasoning workflow of LogiCAM.
Step 1: Initial Premise Selection. Given a context setRreal, an image I , and access to a VLM, we
prompt the model to initiate the reasoning process by selecting relevant information Irelevant ⊆ C ∪ V .
The VLM is instructed to prioritize selecting a pair (ϕ, ψ) such that a formal inference rule (e.g.,
Modus Ponens) can be applied. If no such pair exists, the model selects the information it judges
most critical for solving the task.
Step 2: Identify Reasoning Type. For each selected pair Irelevant, we determine the type of reasoning.
Symbolic reasoning is applied if the Irelevant contain a pair (ϕ, ψ) such that a formal inference rule
(e.g., Modus Ponens) can be applied, i.e., ϕ ∧ (ϕ→ χ) ⊢ χ. Otherwise, commonsense reasoning is
used.
Step 3: Perform Reasoning. Depending on the reasoning type identified in the previous step,
the VLM performs inference to derive new knowledge K. For symbolic reasoning, the system
applies syllogistic inference, a form of deductive reasoning. Specifically, given two selected premises
Irelevant = {ϕ, ψ}, the VLM applies formal logical rules to derive a conclusion. For commonsense
reasoning, the VLM generates a semantically and contextually plausible implication χ, such that
(Irelevant → χ), grounded in real-world commonsense knowledge using a VLM. The result of either
reasoning process is recorded as K.
Step 4: Check for Completion. We evaluate whether the current knowledge K is sufficient to
determine an answer to the given question. For truth evaluation (True/False/Unknown) questions
involving a single hypothesis H , if K |= H or K |= ¬H , the process terminates with the correspond-
ing label (True or False); otherwise, it continues. For multiple-choice questions with candidate
hypotheses {H1, H2, H3, H4}, we apply the reasoning process to each Hi individually and select
the one for which K |= Hi holds, if exactly one such Hi exists. If no hypothesis is entailed, or
more than one is, we continue the reasoning process. In all cases, the set of relevant information is
updated as Irelevant ← Irelevant ∪K, and the procedure is repeated from Step 1. The reasoning loop is
bounded by a predefined number of maximum iterations. If no conclusive answer is reached within
this limit, the final output is labeled as Unknown for truth evaluation questions, or deemed incorrect
for multiple-choice questions.

16



E Additional Experiments
E.1 Using Symbolic Prover on MuSLR
Most existing LLM+solver approaches (e.g., Logic-LM, Logic-LM++, LINC) are designed for
text-only reasoning tasks and cannot directly process visual inputs. Extending them to multimodal
settings typically requires a vision-language model (VLM), such as GPT-4.1, to translate images into
textual descriptions. However, this translation often omits subtle or hard-to-verbalize visual cues.
To illustrate this limitation, we adapted a representative LLM+solver method, Logic-LM [22], by
pairing it with a VLM (GPT-4.1) to convert images into text, and compared its performance against
LogiCAM on propositional logic (PL) and first-order logic (FOL). (Logic-LM does not support
natural language with modalities, NM.) The results are summarized below:

Model PL (%) FOL (%)
Logic-LM + VLM 35.14 32.65
LogiCAM 60.44 42.55

Table 2: Performance comparison of Logic-LM with VLM versus LogiCAM on MuSLR.

These findings demonstrate that simply translating visual information into text is insufficient for
effective symbolic reasoning. LogiCAM, which is natively built on VLMs, achieves significantly
higher performance since it can directly access visual content. Nonetheless, LLM+solver approaches
remain important, and we propose exploring more integrated multimodal LLM+solver frameworks as
promising directions for future work.

F Atomic Symbolic Logic
Below, we present the atomic symbolic rules used to construct MuSLR.

Propositional and First-order Logic
• Modus Ponens (MP)

Propositional: (
(p→ q) ∧ p

)
⊢ q

First-order: (
(∀x (p(x)→ q(x))) ∧ p(a)

)
⊢ q(a)

If “p implies q” and p holds, we may conclude q.

• Modus Tollens (MT)
Propositional: (

(p→ q) ∧ ¬q
)
⊢ ¬p

First-order: (
(∀x (p(x)→ q(x))) ∧ ¬q(a)

)
⊢ ¬p(a)

From p→ q and ¬q infer ¬p.

• Hypothetical Syllogism (HS)
Propositional: (

(p→ q) ∧ (q → r)
)
⊢ (p→ r)

First-order: (
∀x ((p(x)→ q(x)) ∧ (q(x)→ r(x)))

)
⊢ (p(a)→ r(a))

Chaining two implications into one.

• Disjunctive Syllogism (DS)
Propositional: (

(p ∨ q) ∧ ¬p
)
⊢ q

First-order: (
(∀x (p(x) ∨ q(x))) ∧ ¬p(a)

)
⊢ q(a)

Eliminate a disjunct once the other is shown false.
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• Constructive Dilemma (CD)
Propositional: (

(p→ q) ∧ (r → s) ∧ (p ∨ r)
)
⊢ (q ∨ s)

First-order:(
(∀x ((p(x)→ q(x)) ∧ (r(x)→ s(x))) ∧ (p(a) ∨ r(a)))

)
⊢ (q(a) ∨ s(a))

From two conditionals and a choice of antecedents, infer a choice of consequents.
• Destructive Dilemma (DD) Propositional:(

(p→ q) ∧ (r → s) ∧ (¬q ∨ ¬s)
)
⊢ (¬p ∨ ¬r)

First-order:(
(∀x ((p(x)→ q(x)) ∧ (r(x)→ s(x))) ∧ (¬q(a) ∨ ¬s(a)))

)
⊢ (¬p(a) ∨ ¬r(a))

The “dual” of the constructive dilemma.
• Biconditional Dilemma (BD)

Propositional: (
(p→ q) ∧ (r → s) ∧ (p ∨ ¬s)

)
⊢ (q ∨ ¬r)

First-order:(
(∀x ((p(x)→ q(x)) ∧ (r(x)→ s(x))) ∧ (p(a) ∨ ¬s(a)))

)
⊢ (q(a) ∨ ¬r(a))

A mix of constructive and destructive patterns.
• Commutativity of ∨ (CT)

Propositional:
(p ∨ q) ⊣⊢ (q ∨ p)

First-order:
∀x (p(x) ∨ q(x)) ⊣⊢ ∀x (q(x) ∨ p(x))

Order of a disjunction doesn’t matter.
• De Morgan’s Transformation (DMT)

Propositional:
¬(p ∧ q) ⊣⊢ (¬p ∨ ¬q)

First-order:
¬∀x (p(x) ∧ q(x)) ⊣⊢ ∃x (¬p(x) ∨ ¬q(x))

Pushing negation inside a conjunction (or quantifier).
• Conjunction of Conclusions (CO)

Propositional: (
(p→ q) ∧ (p→ r)

)
⊢

(
p→ (q ∧ r)

)
First-order:

∀x
(
(p(x)→ q(x)) ∧ (p(x)→ r(x))

)
⊢ ∀x (p(x)→ (q(x) ∧ r(x)))

From two implications with the same antecedent, fuse their consequents.
• Implication Conjunction (IM)

Propositional:
(p→ (q → r)) ⊣⊢ ((p ∧ q)→ r)

First-order:
∀x (p(x)→ (q(x)→ r(x))) ⊣⊢ ∀x ((p(x) ∧ q(x))→ r(x))

Currying/un-currying of implication.
• Material Implication (MI)

Propositional:
(p→ q) ⊣⊢ (¬p ∨ q)

(No direct first-order analogue listed.)
• Existential Generalization (EG) First-order only:

p(a) ⊢ ∃x p(x)
From a particular instance infer an existential claim.

• Universal Instantiation (UI) First-order only:
∀x p(x) ⊢ p(a)

From a universally quantified claim infer it for an arbitrary constant.
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Extended Multi-variable FOL Rules
• MV1

∀x∀y ((p(x) ∧ q(x))→ r(x, y)) ∧ ∃u∃v (p(u) ∧ ¬r(u, v)) ⊢ ∃y ¬q(y)
If every p ∧ q yields r, but there is an instance of p where r fails, then that instance must lack q.

• MV2

∀x∀y ((p(x) ∧ q(x))→ ¬s(x, y)) ∧ ∀z (r(z)→ p(z)) ∧ r(a) ∧ s(a, b) ⊢ ¬q(b)
Combines two universally quantified conditionals and a counter-example to force ¬q(b).

• MV3

∀x ∃y
(
p(x)→ q(x, y)

)
∧ ∀u∀v

(
(q(u, v)∧r(u, v))→ s(v)

)
∧ ∃z∃k (p(z)∧r(z, k)) ⊢ ∃w s(w)

Chaining an existential-conditional, a universal rule, and an example to derive an existential.
• MV4

∀x∀y∀z (p(x, y, z)→ (q(x, z) ∨ r(y))) ∧ ∃u∃v∃w (p(u, v, w) ∧ ¬q(u,w)) ⊢ ∃s r(s)
If p always gives q or r, and for some triple p holds but q fails, then some r must hold.

• MV5
∀x (p(x)→ ∃y r(y, x)) ∧ p(a) ⊢ ∃z r(z, a)

From a universal “p implies an r” and one example of p, infer the corresponding existential.
• MV6

∀x∀y (p(x, y) ∨ q(x, y)) ∧ ∃u∃v ¬q(u, v) ⊢ ∃z∃w p(z, w)
A quantified disjunction plus a counter-example to one disjunct forces the other.

• MV7
∀x∀y (p(x, y)→ (q(x) ∧ r(y))) ∧ p(a, b) ⊢ q(a) ∧ r(b)

From a universal conditional that yields a conjunction, plus an instance, you get both conjuncts.

Non-monotonic Default-Reasoning Patterns
• DRS (Default Reasoning with Several Defaults) Manages cases where multiple default rules apply

at once and may conflict, by finding a consistent combination.
• DRI (Default Reasoning with Irrelevant Information) Ensures that adding facts unrelated to a

default does not block that default’s usual conclusion.
• DRD (Default Reasoning with a Disabled Default) Shows how the presence of an exception can

“turn off” a default that would otherwise fire.
• DRO (Default Reasoning in an Open Domain) Adapts defaults to settings where not all individuals

are known or named.
• REI (Reasoning about Unknown Expectations I) Allows inferring a default property in the absence

of any information to the contrary.
• REII (Reasoning about Unknown Expectations II) Refines REI by handling the situation where

conflicting expectations might arise.
• REIII (Reasoning about Unknown Expectations III) Extends the previous patterns to nested or

higher-order expectations.
• RAP (Reasoning about Priorities) Introduces a priority ordering among defaults to resolve conflicts

in favor of the higher-priority rule.

G Ethics Statement
G.1 Statement
This study adheres to a rigorous ethical framework to ensure the responsible development, evaluation,
and deployment of multimodal general-purpose AI models. The key ethical considerations are
outlined below. These measures ensure that MuSLR, as a responsible and inclusive framework,
continuously contributes to the fair, sustainable, and accountable development of multimodal artificial
intelligence.
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G.2 Privacy and Data Protection
The benchmarking and evaluation processes strictly comply with privacy regulations. All tasks and
datasets used in MuSLR are carefully curated to exclude any personally identifiable information (PII).
Any data obtained from publicly available sources is anonymized and filtered to remove privacy-
sensitive content. We are committed to fully adhering to relevant data protection standards, including
the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA),
thereby upholding the highest standards of ethical research practices.

G.3 Data Collection
All data included in the MuSLR dataset was sourced exclusively from publicly available resources.
The data collection protocol is designed to prioritize ethical sourcing, ensuring that contributors’
rights are respected, including the right to withdraw their data where applicable. This approach
ensures transparency and fairness throughout the dataset construction process.

G.4 Annotator Compensation
We fully recognize the critical role human annotators play in creating the high-quality MuSLR
dataset. All six annotators involved in the project are trained professionals, and they received fair
compensation for their work. Annotators were compensated with cash payments upon completion
of their assigned tasks. Each annotator was committed to contributing their best efforts to data
annotation and quality assurance, ensuring the integrity and reliability of the dataset.

G.5 Bias and Fairness
We proactively implemented measures to analyze and mitigate potential biases related to gender,
ethnicity, language, and other sociocultural factors present in the datasets and evaluation tasks. Our
goal is to reduce the risk of perpetuating biases in AI development. While completely eliminating
bias remains an ongoing challenge, our commitment to identifying and addressing bias throughout
the benchmark development process remains steadfast.
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Figure 10: Annotation Interface. We developed a custom interface to streamline the annotation
process and reduce annotator effort.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We explicitly include the contribution sessions and link that to our main claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide detailed error analysis to discuss the limitations of our proposed method.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: This paper does not have theoretical results.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discussed the data construction and method in the main content, and provided
more details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We will open-source all the data and codes.
Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We include the details in the experiment setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our benchmark is large so it will be too expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We include the details in the experiment setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully conduct the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: Not applicable. The proposed benchmark is a technical contribution intended for
research evaluation and does not have direct societal impacts, either positive or negative.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: There is no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We cite the original paper and specify the version we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide sufficient details about the benchmark in Section 4.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [Yes]
Justification: We include the details of how we instruct the human annotators in appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [Yes]
Justification: We discuss how we minimize human subjects in appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We discuss the details of LLM usage in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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