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Abstract

Neural differential equations such as Neural Ordinary Differential Equations (Neural ODEs),
Neural Controlled Differential Equations (Neural CDEs), and Universal Differential Equa-
tions (UDEs) model temporal evolution as a continuous-time flow rather than a fixed-step
recurrence. Even for regularly sampled data, this formulation differs fundamentally from
discrete-time architectures: it learns smooth vector fields governing instantaneous rates of
change, reducing discretization bias and improving long-horizon stability. We present a sys-
tematic study of Universal Differential Equations for financial volatility forecasting, a
domain characterized by regime shifts, heavy tails, and jump discontinuities. UDEs extend
Neural ODEs by embedding mechanistic structure within learned dynamics, using neural
networks to parameterize coefficients in partially known differential equations instead of
learning the system purely from data. Our UDE variants incorporate volatility’s empir-
ical regularities while retaining neural flexibility for regime adaptation. Our formulation
approximates the aggregate impact of jumps through smooth, continuous dynamics rather
than explicit stochastic arrivals, retaining tractability and interpretability. Across market
regimes, they outperform both continuous-time baselines and discrete-time models, achiev-
ing higher accuracy and greater long-horizon stability while remaining interpretable. These
results suggest that UDEs grounded in mechanistic structure and neural flexibility offer a
principled route to stable, interpretable multi-step forecasting in nonstationary domains.

1 Introduction

Time series forecasting is fundamentally challenging due to complex temporal dependencies that make ac-
curate prediction difficult (25; 19). These challenges are particularly acute in domains where the data-
generating process itself is unstable and where small modeling errors can have cascading consequences.

We focus on financial volatility as our evaluation domain: Volatility serves as a demanding testbed
for three reasons. First, it is practically important: volatility quantifies market risk and is fundamental to
portfolio construction and systemic risk management (3; 11). Second, open data (from yfinance) enables
reproducible research without computational burden. Third, volatility exhibits extreme versions of forecast-
ing challenges through well-documented "stylized facts" (6): clustering (high-volatility periods persist), jump
discontinuities (sudden spikes from large price movements), and heavy-tailed distributions (extreme events
occur more frequently than normal distributions predict). These properties make even single-step prediction
difficult, as models trained during calm markets fail catastrophically under regime shifts. While volatility
dynamics are often modeled with stochastic differential equations (SDEs) incorporating explicit Pois-
son jump terms, such formulations introduce heavy computational and identifiability burdens. In this work,
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we instead approximate jump effects through a smooth deterministic modulation within a continuous-time
ODE framework, preserving differentiability and solver stability while retaining the key phenomenological
behavior of sudden volatility bursts.

Multi-step forecasting amplifies these challenges: Errors compound with horizon, subtle mis-
specifications become catastrophic failures, and models must maintain stability while recursively feeding
their own predictions forward. For volatility, clustering means one error during high-volatility regimes can
destroy entire forecast trajectories—if the model underestimates at step t, it continues underestimating at
t + 1, t + 2, . . . as clustering persists. Unlike smoother time series where multi-step errors degrade gradually,
volatility forecasts collapse abruptly at longer horizons.

Current approaches fall short in different ways: This motivates hybrid approaches combining neu-
ral flexibility with mechanistic stability. Fully data-driven architectures (LSTMs, GRUs, Transformers)
learn discrete-time transitions as black-box functions, requiring massive datasets and often failing at long
horizons (25; 19). Neural ODEs improve inductive bias through continuous-time dynamics but still learn
unconstrained vector fields from data (5). Mechanistic models (GARCH, Heston SDEs) encode domain
knowledge but cannot adapt beyond fixed parametric forms (1; 3) and are computationally expensive to
train when extended to full stochastic (SDE or jump-diffusion) formulations. UDEs bridge this gap by
embedding mechanistic structure while allowing neural modulation of key coefficients.

Universal Differential Equations bridge this gap: An Ordinary Differential Equation (ODE) specifies
a fully known righthand side, ẋ = f(x, t; ϑ); a Universal Differential Equation (UDE) augments a mechanistic
ODE with a learned component, ẋ = fknown(x, t; ϑ) + gNN(x, t; ϕ), or equivalently learns state-dependent
coefficients while retaining the governing form. In this paper, we adopt the modulation view: small MLPs
modulate the mean reversion coefficients under positivity/bound constraints to preserve dissipativity and
interpretability, in contrast to a vanilla neural ODE that learns an unconstrained vector field.

UDEs for forecasting: A different problem class: While neural ODEs and SDEs have been applied
to various forecasting tasks, UDEs were introduced for system identification and scientific discovery, where
models fit to complete observed trajectories with ground-truth feedback at each step (21). Multi-step fore-
casting presents fundamentally different challenges: models must maintain stability under autoregressive
rollout, recursively feeding their own predictions forward without ground-truth correction. This autoregres-
sive structure causes errors to compound over time. A small bias at horizon h = 1 becomes catastrophic
degradation at h = 20 as the model repeatedly consumes its own outputs. To our knowledge, we provide the
first systematic study demonstrating that UDEs, when properly constrained through compositional stacking
of domain structure, remain stable under this autoregressive stress test, where unconstrained neural ODEs
collapse (Section 2).

Why not SDEs or Neural SDEs? Stochastic differential equations provide a principled way to represent
uncertainty, but neural or jump-augmented SDEs are computationally expensive and often numerically
unstable. Training requires stochastic integration and Monte-Carlo gradient estimation at every step, leading
to high variance and long runtimes. Moreover, diffusion and jump parameters are difficult to identify
jointly from historical volatility alone without exogenous information (options data, macro factors). To
maintain tractability and interpretability, we focus on deterministic UDEs that embed financial structure
while remaining computationally efficient and stable under long rollouts.

Our approach: Compositional UDEs for volatility: We use neural networks to modulate mechanis-
tic coefficients within a governing differential equation rather than learning dynamics from scratch. For
volatility forecasting specifically, we incorporate mean-reversion dynamics with task-specific coefficients:
mean-reversion rates (speed of return to equilibrium) and long-term volatility levels. This preserves the
stabilizing inductive bias of the mechanistic form while allowing adaptation to regime-dependent dynamics.
The result is a model that maintains interpretability each learned coefficient corresponds to a meaning-
ful market quantity while achieving strong multi-step stability. Our framework leverages volatility’s stylized
facts as domain knowledge while allowing neural components to learn continuous, state-dependent parameter
variations. The mechanistic structure constrains dynamics to remain mean-reverting by construction, while
neural modulation enables smooth adaptation to evolving market conditions within that stable template.
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Model hierarchy and terminology: Our experimental framework spans a spectrum from pure data-
driven to pure mechanistic models. At one extreme, Vanilla Neural ODE learns dynamics entirely from
data with no structural priors. At the other, ODE-MR is a pure mean-reverting process with fixed pa-
rameters. Between these extremes, our UDE variants progressively incorporate stylized facts: UDE-MR
adds neural modulation of mean-reversion coefficients; UDE-MRVC further adds volatility clustering; and
UDE-MRVCJ additionally incorporates jump dynamics through a smooth deterministic modulation term
that approximates average jump effects within a continuous-time formulation. All UDE variants enforce soft
constraints, such as nonnegative mean-reversion rates, bounded long-run levels, and structured clustering
terms to ensure neural components respect rather than overturn the mechanistic structure.

Our contributions are:

1. Application of UDEs to autoregressive multi-step forecasting: Unlike previous UDE appli-
cations in system identification where models fit complete observed trajectories, multi-step forecast-
ing requires stability under repeated self-feeding of predictions without ground truth correction. We
demonstrate that structurally constrained UDEs maintain performance under this autoregressive
stress test, using rigorous rolling walk-forward validation across asset classes.

2. Parameter efficiency through structural inductive biases: UDEs achieve competitive accu-
racy with significantly fewer parameters than foundation models, demonstrating that embedding
domain structure can replace massive scale for forecasting tasks with partial mechanistic knowledge.

3. Interpretable regime adaptation: Unlike black-box foundation models, the hybrid architecture
maintains interpretability through its mechanistic structure. Learned parameters correspond to
economically meaningful quantities (mean-reversion rates, volatility clustering strength, jump inten-
sities) that can be tracked across time, enabling post-hoc analysis of how market dynamics evolve
across regimes (Figure 2).

4. Long-horizon stability: UDEs remain relatively stable across longer horizons, unlike purely neural
and foundation models, which degrade at a higher rate.

All results are reported in trading days, where 1, 5, 10, 20 steps correspond approximately to daily, weekly,
bi-weekly and monthly time-periods periods for most assets.

2 Related Work

Multi-step Time Series Forecasting: Multi-step forecasting presents unique challenges due to error
accumulation and distribution shift, with approaches broadly categorized into direct, recursive, and multi-
output strategies (23). Deep learning architectures have significantly advanced the field, including LSTNet
(17) which combined CNNs and RNNs for temporal patterns, and transformer-based methods like Informer
(28) and Autoformer (25) that capture long-term dependencies through specialized attention mechanisms.
Recent state-of-the-art foundation models like TimesFM (8) leverage large-scale pretraining across diverse
temporal domains to enable robust, zero-shot multi-step forecasting.

Neural Differential Equations for Time Series: Neural ordinary differential equations (Neural
ODEs) (5) model temporal evolution as continuous dynamical systems, enabling natural interpolation and
extrapolation. They have been applied to various forecasting domains including energy demand predic-
tion (26), weather forecasting (24), and ecological population dynamics (2). Neural stochastic differential
equations (Neural SDEs) extend this framework by incorporating stochastic terms for uncertainty quantifica-
tion, finding applications in retail sales forecasting and financial modeling (9). Neural controlled differential
equations (Neural CDEs) (16) have been evaluated on standard time series benchmarks, demonstrating
advantages for irregularly-sampled data. However, these works primarily focus on system modeling or short-
horizon prediction tasks, with evaluation protocols typically using limited validation strategies.

Volatility Forecasting: Financial volatility forecasting has evolved from parametric econometric models to
flexible machine learning approaches. The GARCH family (3; 12) and stochastic volatility models (13) have
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dominated academic finance, providing interpretable but potentially misspecified parametric forms. Recent
machine learning approaches include neural networks for volatility prediction (27), deep learning models
capturing complex patterns (4), and hybrid methods that combine GARCH with neural networks as feature
extractors (18).

Universal Differential Equations: The Universal Differential Equations paradigm represents an ad-
vancement in scientific machine learning, structurally integrating mechanistic models with data-driven com-
ponents. Introduced by Rackauckas et al. (21), UDEs parameterize unknown dynamical terms using neural
networks, enabling simultaneous leverage of domain knowledge and data-driven flexibility. This extends
several key lineages: Neural ODEs (5), Physics-Informed Neural Networks (22), and symbolic regression
for interpretable dynamics (7). While previous UDE applications have focused on physical and biological
systems, our work explores their value for financial forecasting, modeling volatility dynamics as partially-
specified differential equations with learned market microstructure effects.

3 Method

We formulate financial volatility forecasting as a multi-step prediction problem. Let {x}T
t=0 denote the

sequence of log-volatilities, where xt = ln(σt) and σt represents the latent daily volatility. The objective is
to predict future log-volatilities x̂t+h at fixed horizon h, leveraging past observed values within a look-back
window of length K.

Log-volatility is the standard target for volatility modeling. It acts as a variance-stabilizing transforma-
tion: the original volatility process σt exhibits heteroskedasticity, while xt = ln(σt) converts multiplicative
dynamics into additive noise with more stable variance, simplifying modeling assumptions across methods.

Volatility is estimated using the Garman-Klass (GK) range-based estimator on daily prices. For each day t,
the GK realized variance is

σ2
GK,t = 1

2
(

ln Ht

Lt

)2 −
(
2 ln 2 − 1

)(
ln Ct

Ot

)2 (1)

where Ot, Ht, Lt, Ct are the open, high, low, and close. We take σt =
√

σ2
GK,t and use xt = ln(σt) for

modeling. The GK estimator is approximately 7.4 times (10) more efficient than the close-to-close squared
returns volatility estimator for daily data while remaining robust to drift.

3.1 Pure Physics Model: ODE with Mean Reversion

Considering the log-volatility xt ∈ R, the pure physics model posits the continuous-time dynamics governed
by the Ordinary Differential Equation:

d(x)/d(t) = κ(θ − x) (2)

with parameters κ > 0 representing the mean reversion speed and θ ∈ R the long-term equilibrium. This
linear vector field is globally Lipschitz continuous with Lipschitz constant κ, which by the Picard–Lindelöf
theorem guarantees existence and uniqueness of solutions for all initial conditions. The closed-form solution

x(t) = θ + (x0 − θ)e−κt (3)

demonstrates exponential convergence to θ, confirming global asymptotic stability. The Jacobian matrix of
the system linearised about the equilibrium point x∗ = θ is J = −κ < 0, which ensures perturbations decay
exponentially, embodying the mean reversion property fundamental to modeling volatility dynamics.

3.2 Pure Neural ODE Model: Data-Driven Dynamics

In contrast to the purely parametric physics model, the pure neural ODE represents the log-volatility evo-
lution via a learnable continuous vector field parameterized by a neural network NNϕ : R → R,
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d(x)/d(t) = NNϕ(x), (4)

where ϕ denotes network parameters. Leveraging the Universal Approximation Theorem, this neural net-
work, with sufficient depth and non-linear smooth activations such as GELU, can approximate any continuous
vector field on a compact subset of R arbitrarily well. The local Lipschitz continuity of NNϕ ensures, via
classical ODE theory, local existence and uniqueness of solutions. However, neural vector fields impose no in-
herent structural guarantees like mean reversion or boundedness, potentially leading to unstable trajectories
or divergence, which may affect forecasting performance and interpretability.

3.3 Universal Differential Equation Model: Structural Coupling via Neural Modulation

The universal differential equation framework allows us to integrate prior domain knowledge by coupling
neural modulation with mean reversion, one of the strongest studied effects in volatility:

dx

dt
= κeff(x)

(
θeff(x) − x

)
(5)

Rather than learning the dynamics function entirely from data (as in Vanilla Neural ODE) or fixing param-
eters rigidly (as in pure ODE), we use small neural networks to modulate the mechanistic coefficients in a
state-dependent manner. Specifically, the mean-reversion rate and long-term level are defined as:

κeff(x) = softplus(κ) + ε︸ ︷︷ ︸
κ+

· exp
(
s tanh(NN1(x))

)
, θeff(x) = θ + b tanh(NN2(x)) (6)

where NN1 and NN2 are small MLPs (e.g., 3 hidden layers with 64 units each), s > 0 and b > 0 control
the modulation strength, and ε > 0 is a small constant. This multiplicative structure ensures κeff(x) >
0 (preserving dissipativity) while keeping θeff(x) bounded, thereby maintaining mean-reverting stability.
Critically, the neural component modulates coefficients within the mechanistic structure rather than adding
a separate unconstrained drift term, which would allow the network to learn dynamics that overturn the
mean-reverting property.

Incremental model composition. We first enforce physics-parameter constraints (κ+ > 0 via softplus
and bounded θeff shifts), which forces a mean-reverting representation and prevents runaway dynamics.
Building on this base, we progressively incorporate additional stylized facts through compositional stacking:
volatility clustering (via lagged squared returns) and jump processes (via learned jump rate and magni-
tude). This progressive design enables systematic ablation of each component’s contribution to forecasting
performance. Table 1 presents the model variants evaluated in our experiments.

Integrator choice: Because the volatility data are uniformly sampled at daily frequency, we employ a
fixed-step fourth-order Runge–Kutta (RK4) integrator with step size h = 1 day for all models. This choice
avoids unnecessary adaptive stepping overhead while maintaining high-order accuracy and deterministic
reproducibility across thousands of rolling windows. Although adaptive solvers are beneficial for irregu-
larly sampled data, our setting benefits more from the continuous-time formulation’s structural properties:
learning a smooth vector field that governs instantaneous rates of change rather than discrete one-step tran-
sitions. This continuous representation reduces discretization bias and promotes trajectory-level stability
during multi-step rollouts, even under regular sampling.
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Table 1: UDE model variants with progressive incorporation of stylized facts. Ablation studies (Section 4.3)
show monotonic improvements from compositional stacking.

Variant Dynamics Equation

UDE-Mean Reversion dx

dt
= κeff(x) (θeff(x) − x)

UDE-Volatility Clustering dx

dt
= κeff(x) (θeff(x) − x) + γ+ r2

t−1

where γ+ = softplus(γ) + ε

UDE-Jumps dx

dt
= κeff(x) (θeff(x) − x) + λ(x) J(x)

where λ(x) = softplus(NNλ(x)) + ε, J(x) = tanh(NNJ (x))

UDE-MRVCJ dx

dt
= κeff(x) (θeff(x) − x) + γ+ r2

t−1 + λ(x) J(x)

4 Experiments

We evaluate our UDE-based volatility forecasting framework using rigorous rolling walk-forward validation
across diverse financial assets. Our experimental design tests model robustness across varying market dy-
namics, volatility regimes, and stress periods spanning nearly two decades.

4.1 Datasets and Evaluation Protocol

Asset Classes: We evaluate on 10 financial indices spanning major global markets and asset classes:
developed and emerging market equities, government bonds, small/large cap indices, and cryptocurrency.
This diverse collection exhibits strong temporal dependencies, conditional heteroskedasticity, and stress
periods, including the 2008 financial crisis, 2020 COVID crash, and 2022 market turbulence. Daily prices
are obtained from Yahoo Finance, and volatility is estimated using the Garman–Klass range-based estimator.
We model log-volatility xt = ln(σt) as described in Section 3. Complete details and tickers are provided in
Appendix A.3.

Rolling walk-forward validation: We use strictly non-overlapping rolling windows to ensure realistic
out-of-sample evaluation. Each window consists of sequential train, validation, and test splits with no data
leakage. Windows are rolled forward through the entire sample period (Aug 2005 - Aug 2025), naturally
traversing multiple market regimes and crisis periods. This protocol prevents look-ahead bias and provides
conservative performance estimates. Full details on window sizes, stride length, and split configuration are
provided in Appendix A.4.

Baselines: We compare against statistical models (Random Walk, EWMA, GARCH-family), deep learning
approaches (LSTM, GRU), foundation models (TimesFM zero-shot and few-shot), pure mechanistic baselines
(ODE-MR), and pure neural ODE baselines (Vanilla Neural ODE). This comprehensive set isolates the
contribution of hybrid structural constraints.

4.2 Results

We present the performance evaluation of our UDE-based architecture across multiple forecasting horizons,
comparing against traditional econometric models, deep learning baselines, and foundation models. Table 2
shows aggregated results across horizons 1, 5, 10, and 20 steps ahead.
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Table 2: Normalized RMSE (mean ± 95% CI). Normalized by standard deviation of observed volatility.
Scale-independent metric, lower is better.

Model Type NRMSE h = 1 NRMSE h = 5 NRMSE h = 10 NRMSE h = 20

Random Walk Baseline 0.770 ± 0.063 0.841 ± 0.080 0.882 ± 0.084 0.911 ± 0.087
EWMA Statistical 1.381 ± 0.220 1.442 ± 0.223 1.498 ± 0.232 1.602 ± 0.245

GARCH(1,1) Econometric 1.384 ± 0.222 1.494 ± 0.234 1.606 ± 0.247 1.852 ± 0.277
FIGARCH(1,1) Econometric 1.430 ± 0.235 1.548 ± 0.249 1.677 ± 0.267 1.985 ± 0.314

LSTM Sequence 0.811 ± 0.052 0.825 ± 0.048 0.855 ± 0.049 0.965 ± 0.047
GRU Sequence 0.803 ± 0.048 0.817 ± 0.046 0.818 ± 0.048 0.906 ± 0.046

MertonJD Jump Diffu-
sion

0.834 ± 0.083 0.892 ± 0.115 0.929 ± 0.165 0.964 ± 0.196

TimesFM Transformer 0.704 ± 0.055 0.782 ± 0.051 0.794 ± 0.053 0.819 ± 0.050
TimesFM few-shot Transformer 0.701 ± 0.054 0.780 ± 0.050 0.791 ± 0.052 0.814 ± 0.049

Vanilla Neural ODE Neural ODE 0.735 ± 0.056 0.812 ± 0.073 0.949 ± 0.228 0.998 ± 0.090
ODE-MR Physics 0.758 ± 0.080 0.985 ± 0.070 0.997 ± 0.069 1.020 ± 0.085

UDE-MR UDE 0.662 ± 0.056 0.740 ± 0.050 0.753 ± 0.050 0.780 ± 0.050
UDE-MRVC UDE 0.660 ± 0.056 0.738 ± 0.051 0.749 ± 0.052 0.774 ± 0.052
UDE-MRVCJ UDE 0.658 ± 0.052 0.735 ± 0.048 0.743 ± 0.049 0.759 ± 0.048

Figure 1: Multi-horizon forecasting accuracy (NRMSE; lower is better) at horizons h ∈ {1, 5, 10, 20} for base-
line (Random Walk), sequence models (LSTM, GRU), transformer models (TimesFM, TimesFM-FewShot),
and Neural-ODE/UDE variants. The UDE-MRVCJ model (incorporating mean reversion, volatility cluster-
ing, and jumps) achieves the best performance across all horizons. Curves show mean results over rolling
evaluation windows; lower lines indicate more accurate forecasts.

We evaluate significance using the Diebold–Mariano (DM) test across rolling windows for each asset. Because
the selected assets span distinct classes (equity indices, emerging-market indices, and crypto) with low cross-
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Table 3: Diebold-Mariano significance across assets (combined p-values, Fisher). Lower p indicates model 2
significantly outperforms model 1.

Pair h = 1 h = 5 h = 10 h = 20

Vanilla Neural ODE → UDE-MR 3.1e-4 1.8e-5 2.2e-6 8.5e-7
UDE-MR → UDE-MRVC 0.0170 0.0857 0.0709 0.0386
UDE-MRVC → UDE-MRVCJ 0.0412 0.0013 0.0034 0.0189

correlations in realized volatility, we treat test outcomes as approximately independent. Combined p-values
are therefore computed using Fisher’s method.

4.2.1 Performance Analysis

UDEs combine accuracy and stability. UDE variants slightly outperform the foundation model
(TimesFM: 0.70; UDE-MRVCJ: 0.66) at short horizons. Across longer horizons, UDEs remain stable (0.66
→ 0.76 from h = 1 to h = 20), whereas purely neural models degrade (Vanilla Neural ODE: 0.74 → 1.00)
and rigid mechanistic models stay suboptimal (ODE-MR: 0.76 → 1.02).

Compositional stacking yields monotonic improvements. Table 3 shows statistically significant
improvements at each composition step. Adding mean-reversion modulation to Vanilla Neural ODE provides
the largest gain (DM p < 3.1e-4 at h = 1, p < 8.5e-7 at h = 20). Volatility clustering (UDE-MRVC) and
jumps (UDE-MRVCJ) provide incremental but consistent improvements, particularly at longer horizons
where structural constraints prevent catastrophic degradation.

4.2.2 Computational Efficiency

Table 4: The efficiency table highlight that UDE variants are orders of magnitude smaller and have a smaller
footprint than large neural and foundation baselines while preserving long-horizon stability.

Model Params Memory (MB) Train (s) Infer (s) Total (s) Epoch (s)
Random Walk 0 0.00 N/A 0.00 0.00 0.000
EWMA 1 0.05 N/A 0.00 0.00 0.000
GARCH(1,1) 4 0.10 0.36 0.00 0.36 0.000
FIGARCH(1,1) 5 0.10 1.11 0.00 1.11 0.000
Merton JD 8 0.15 0.95 0.02 0.97 0.002
LSTM 50.5K 0.19 0.49 0.19 0.68 0.010
GRU 37.9K 0.14 0.46 0.18 0.64 0.009
ODE-MR 2 0.00 0.50 0.02 0.52 0.005
Vanilla Neural ODE 4.4K 0.02 1.02 0.05 1.07 0.010
UDE-MR 4.4K 0.02 1.32 0.09 1.42 0.013
UDE-MRVC 4.4K 0.02 1.46 0.10 1.56 0.014
UDE-MRVCJ 4.4K 0.03 1.54 0.11 1.65 0.016
TimesFM 200.0M 800.00 N/A 25.52 25.52 0.000
TimesFM-FewShot 200.0M 800.00 N/A 25.25 25.25 0.000
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4.3 Ablation Study

Table 5: Ablation study of model components for multi-step volatility forecasting. R2 measures explained
variance; sMAPE measures scale-independent forecast accuracy (lower is better).

Model Structure h = 1 h = 20
R2 sMAPE R2 sMAPE

ODE-MR Pure Mechanistic 0.421 7.91 -0.198 11.58
Vanilla Neural ODE Pure Neural 0.456 7.50 -0.136 10.46
UDE-MR + Mean Reversion 0.518 7.17 0.150 9.37
UDE-MRVC + Vol. Clustering 0.522 7.14 0.151 9.36
UDE-MRVCJ + Jumps 0.535 7.03 0.160 9.11

4.4 Interpretability via Parameter Evolution (S&P 500)

We track how the learned parameters of our UDE–MRVCJ evolve across rolling windows for the S&P 500.
This reveals where the model adapts and where it remains invariant. First, the mean–reversion speed κ(x)
and the long–run level θ(x) co-move with regime shifts: κ decreases during prolonged drawdowns (slower
pullback toward equilibrium) and θ rises when background volatility is persistently elevated. Second, the
jump mechanism is event–sensitive: the estimated jump rate λ(x) exhibits pronounced spikes around market
stress (e.g., macro announcements, crisis windows), while the jump magnitude concentrates within those
episodes, indicating a parsimonious “rare event” channel rather than persistent overfitting. Third, the
volatility–clustering strength (γ) varies smoothly and remains bounded, capturing short–horizon persistence
without destabilizing the core dynamics. Finally, a stability summary and correlation heatmap show that
core parameters (κ, θ) remain stable across windows and are only weakly confounded with jump/clustering
terms, supporting identifiability and interpretability. Together, these diagnostics let us explain forecast
changes (e.g., “volatility increased because mean reversion slowed and jump intensity spiked”) rather than
treat predictions as opaque.

(a) Mean-reversion speed κ(x): Controls how quickly
volatility returns to equilibrium. Higher values during
stress indicate faster normalization.

(b) Long–run level θ(x) across windows (S&P 500).
Equilibrium volatility target. Increases during crises (el-
evated baseline risk), decreases during calm periods.

Figure 2: Learned mean-reversion dynamics across market regimes. Pure mechanistic baseline uses fixed
parameters and oscillates aggressively in response to regime shifts, while UDE variants’ neural components
absorb these corrections, leading to more stable and meaningful parameters.
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(a) Parameter correlation: weak confounding across
channels (S&P 500).

(b) Composite view: clustering + jumps alignment with
stress (S&P 500).

Figure 3: Identifiability: mean–reversion parameters are largely orthogonal to jump/clustering terms.

(a) Jump rate lambda(x) : Average jumps per step.
Spikes during stress periods indicate the model learns
when jump-like dynamics are necessary.

(b) Jump magnitude J(x): Size of jump effect when acti-
vated. Concentrated during tail episodes, near-zero oth-
erwise.

Figure 4: Jump dynamics activation during market stress (S&P 500). Our smooth, continuous jump formu-
lation approximates the aggregate effect of discontinuous jumps through deterministic modulation.

5 Limitations and Future Work

Point forecasts vs probabilistic predictions. Our framework produces deterministic point forecasts
rather than distributional predictions with uncertainty quantification. While sufficient for demonstrating
Multi-step stability, risk management applications require value-at-risk estimation or full predictive distri-
butions. Neural Stochastic Differential Equations (Neural SDEs) offer a natural extension by adding learned
diffusion terms:

dx/dt = κeff(x)[θeff(x) − x] + γeff(x)dWt (7)
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(a) Clustering strength γ: smooth, bounded variation
(S&P 500).

(b) Stability summary: core parameters vary modestly.
Consistent values across windows indicate the model
learns general representations rather than overfitting.

Figure 5: Parameter stability and clustering dynamics (S&P 500). Volatility clustering strength varies
smoothly without destabilizing core dynamics. Standard deviations across rolling windows confirm core
mechanistic parameters remain stable while jump/clustering terms show comparable consistency.

where γeff(x) models state-dependent volatility and Wt represents Brownian motion. However, Neural SDEs
remain notoriously difficult to train: adjoint methods require solving backward through stochastic processes
with numerical instability (15). In contrast, the diffusion coefficient design requires careful constraints
to prevent explosive trajectories (20). Recent advances in stable Neural SDE classes and signature-based
training (14) suggest promising directions, but adapting these to compositional UDE frameworks remains
open work.

Limited exogenous features: We use only lagged squared returns as exogenous input. Incorporating
macroeconomic indicators, market microstructure features, or cross-asset correlations could improve regime
detection and forecasting accuracy. In practice, longer-horizon volatility dynamics often depend on macroe-
conomic indicators, option-implied volatility, and cross-asset information. Integrating these features could
enhance regime detection and long-range accuracy, though it risks diluting the structural clarity and parsi-
mony that make UDEs interpretable. A key open question is how to incorporate exogenous signals without
sacrificing mechanistic transparency.

Domain generalization: While financial volatility provides an excellent testbed due to documented styl-
ized facts and accessible data, demonstrating the framework’s effectiveness across diverse domains would
strengthen claims of general methodological contribution. Each domain would require careful physics term
design and validation against domain-specific baselines.

Despite these limitations, our core results remain robust: UDE variants with inductive biases achieve stable
multi-step forecasting with dramatic parameter efficiency and interpretable dynamics. We explicitly note
that institutional-grade data would be required for deployment in real-world trading or risk management
systems.

6 Conclusion

We demonstrated that Universal Differential Equations (UDEs) provide an effective framework for multi-
step time series forecasting, achieving superior accuracy and long-horizon stability across diverse financial
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regimes, including crises and structural breaks. Our compositional UDE variants consistently outperform
foundation, econometric, and deep learning baselines while using orders of magnitude fewer parameters.

UDEs and neural differential equations more broadly are particularly well suited to forecasting because they
model temporal evolution as a continuous flow rather than a fixed-step recurrence. Even with regularly
sampled data, this formulation enforces trajectory-level smoothness and reduces discretization bias, the main
driver of error accumulation in recurrent architectures. By learning instantaneous rates of change instead of
discrete transitions, UDEs maintain stable dynamics over extended horizons.

More fundamentally, UDEs offer a principled bridge between mechanistic and data-driven modeling. By
embedding domain structure, mean reversion, volatility clustering, and jump effects within a differential
equation while allowing neural modulation of key coefficients, they preserve stabilizing inductive bi-
ases that confine the learned dynamics to economically plausible regimes. Our compositional framework
showed that each successive incorporation of domain-informed structure yields monotonic, statistically
significant gains, demonstrating that carefully chosen inductive biases can substitute for brute-force scale.

This combination of continuous-time modeling and structured knowledge integration explains why compact
UDE models can rival or surpass massive foundation models. Structural bias, when aligned with the data-
generating process, not only enhances efficiency and interpretability but also delivers robust multi-step
forecasts that remain coherent across regimes, an essential property for modeling inherently unstable systems
like financial volatility.
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A Appendix

A.1 Lipschitz Continuity for UDE-MRVCJ

We consider the one-dimensional ODE on log-volatility

dx

dt
= f(x; r2

t−1) = κeff(x)
(
θeff(x) − x

)︸ ︷︷ ︸
mean reversion

+ γ+ r2
t−1︸ ︷︷ ︸

vol. clustering

+ λ(x) J(x)︸ ︷︷ ︸
expected jumps

,

where
κeff(x) = κ0 exp

(
s tanh(k(x))

)
, θeff(x) = θ + b tanh(ϑ(x)),

λ(x) = softplus(ℓ(x)) + ε, J(x) = tanh
(
j(x)

)
.

Here κ0 = softplus(κ) + ε > 0 is constant, s > 0 is the modulation scale, b > 0 is the θ-shift bound , and
ε > 0 is a fixed numerical slack. The maps k, ϑ, ℓ, j : R → R are the scalar outputs of two MLPs with
GELU activations (one for {k, ϑ} and one for {ℓ, j}). The clustering input r2

t−1 is exogenous and treated as
constant in x at each step. We assume the MLPs are globally Lipschitz with constants Lbase (for k, ϑ) and
Ljump (for ℓ, j). For GELU networks this holds with

LMLP ≤
( ∏

i

∥Wi∥2

)
(1.129)#activations.

We write K = [−M, M ] for a compact domain of interest and use ∥ · ∥ for the Euclidean norm on R.

Auxiliary bounds: (i) Since | tanh′ | ≤ 1 and (softplus)′ = σ ∈ (0, 1),

|(tanh ◦g)′| ≤ |g′|, |(softplus ◦ g)′| ≤ |g′|, ∀g : R → R.

(ii) For x ∈ K, define

κmax := κ0 es, Lκ := κ0 es s Lbase, Lθ := b Lbase.

Then |κeff(x)| ≤ κmax and |κ′
eff(x)| ≤ Lκ; also |θ′

eff(x)| ≤ Lθ and |θeff(x)| ≤ |θ|+ b. (iii) For the jump factors,
|J(x)| ≤ 1 and

|λ′(x)| ≤ Ljump, |J ′(x)| ≤ Ljump.

Let
Λ(M) := sup

x∈K
λ(x) ≤ log 2 + |ℓ(0)| + Ljump M + ε

(using softplus(t) ≤ log(1 + e|t|) ≤ log 2 + |t| and |ℓ(x)| ≤ |ℓ(0)| + Ljump|x|).
Theorem A.1 (Local Lipschitz on compact sets). On any compact K = [−M, M ], the vector field f(·; r2

t−1)
is Lipschitz continuous in x with constant

Lf (M) ≤ Lκ

(
M + |θ| + b

)
+ κmax (Lθ + 1)︸ ︷︷ ︸

mean reversion term

+ Ljump (1 + Λ(M))︸ ︷︷ ︸
expected jump term

.

The exogenous clustering term γ+r2
t−1 does not affect the Lipschitz constant in x.

Proof. Write f(x) = g(x)h(x)+c+q(x) where g = κeff , h = θeff −x, c = γ+r2
t−1 (constant in x), and q = λ J .

For any x1, x2 ∈ K,
|g1h1 − g2h2| ≤ |g1 − g2| |h1| + |g2| |h1 − h2|.

Using |h(x)| ≤ |θeff(x)| + |x| ≤ |θ| + b + M and |h1 − h2| ≤ (Lθ + 1)|x1 − x2|, plus |g1 − g2| ≤ Lκ|x1 − x2|
and |g2| ≤ κmax, we obtain the first bracket. For q = λJ ,

|q1 − q2| ≤ |λ1 − λ2| |J1| + |λ2| |J1 − J2| ≤
(
Ljump · 1 + Λ(M) Ljump

)
|x1 − x2|.

Summing the bounds yields the stated Lf (M).
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Theorem A.2 (Linear growth and global existence). There exist constants C0(M), C1 ≥ 0 such that

|f(x; r2
t−1)| ≤ C0(M) + C1 |x|, ∀x ∈ R.

One admissible choice is

C1 = κmax + Ljump, C0(M) = κmax(|θ| + b) + |γ+| |r2
t−1| + log 2 + |ℓ(0)| + ε,

using λ(x) ≤ log 2 + |ℓ(0)| + Ljump|x| + ε. Consequently, by Picard–Lindelöf and Grönwall, the IVP admits
a unique solution globally in time.

A.2 Convergence of RK4 for Our Constrained Neural Mean–Reversion with Clustering and Jumps

We study our model

ẋ(t) = f
(
x(t), u(t)

)
= κeff(x)

(
θeff(x) − x

)︸ ︷︷ ︸
mean reversion

+ γ+ u(t)︸ ︷︷ ︸
vol. clustering

+ λ(x) J(x)︸ ︷︷ ︸
expected jumps

,

with
κeff(x) = κ0 exp

(
s tanh(k(x))

)
, θeff(x) = θ + b tanh(ϑ(x)),

λ(x) = softplus
(
ℓ(x)

)
+ ε, J(x) = tanh

(
j(x)

)
,

where k, ϑ, ℓ, j are scalar outputs of MLPs with exact GELU activations, and u(t) = r2
t−1 is a bounded exoge-

nous regressor. In our solver, we hold u(t) piecewise–constant on each RK4 step (matching our experimental
procedure).

Let [0, T ] be fixed and K ⊂ R be a compact set that contains the true trajectory and all RK4 stage values
(for h small enough).

Hypotheses we verify. - (H1) Uniform Lipschitz in x on K: by our Lipschitz result in Appendix A.1,
there exists L ≥ 0 such that |f(x1, u) − f(x2, u)| ≤ L |x1 − x2| for all x1, x2 ∈ K and admissible u. - (H2)
Smoothness in x on K: exp, tanh, softplus and exact GELU are C∞; compositions with affine maps preserve
C∞, so f(·, u) ∈ C∞(K) uniformly in u. Hence ∂m

x f(·, u) are bounded on K for m = 0, . . . , 4. - (H3) Stage
confinement: since f is bounded on K, there exists h0 > 0 such that for 0 < h ≤ h0 all RK4 stages remain
in K.

We apply classical RK4 with step h > 0, freezing u(t) ≡ un on [tn, tn+1], tn = nh:

k1 = f(xn, un), k2 = f
(
xn + h

2 k1, un

)
, k3 = f

(
xn + h

2 k2, un

)
,

k4 = f
(
xn + hk3, un

)
, xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4).

Lemma A.3 (Local truncation error (order 5)). There exists Cloc = Cloc(K, f) such that, for all x ∈ K
and admissible (frozen) u, ∥∥φh(x, u) − Φh(x, u)

∥∥ ≤ Cloc h5,

where φh is the exact time-h flow of x′ = f(x, u) and Φh is one RK4 step.

Proof. By (H2), f(·, u) ∈ C4(K) uniformly in u. The Taylor–Butcher expansion and RK4 order conditions
give a uniform O(h5) remainder. (H3) guarantees stage evaluations stay in K where the bounds apply.

Lemma A.4 (One–step Lipschitz stability). There exist c1 = c1(K, f) and h1 > 0 such that, for 0 < h ≤ h1
and all x, y ∈ K and admissible u,∥∥Φh(x, u) − Φh(y, u)

∥∥ ≤ (1 + c1h) ∥x − y∥.

Proof. Write Φh(x, u) = x + h Ψh(x, u) with stage–averaged slope Ψh. By (H1)–(H2), Ψh(·, u) is Lipschitz
in x with constant L + O(h) uniformly on K. Hence ∥Φh(x, u) − Φh(y, u)∥ ≤ (1 + h(L + C ′))∥x − y∥ for
some C ′, proving the claim.
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Theorem A.5 (Global O(h4) error for our model). Under (H1)–(H3) there exists C = C(K, f), independent
of h and n, such that

max
0≤n≤N

∥∥x(tn) − xn

∥∥ ≤ C eLT h4, N = ⌊T/h⌋.

Proof. On [tn, tn+1] with frozen un, the exact solution satisfies x(tn+1) = φh(x(tn), un), so

en+1 := x(tn+1) − xn+1 =
[
Φh(x(tn), un) − Φh(xn, un)

]
+ τn+1, ∥τn+1∥ ≤ Cloch5.

By Lemma A.4, ∥en+1∥ ≤ (1 + c1h)∥en∥ + Cloch5. Discrete Grönwall yields ∥en∥ ≤ Cec1tnh4 ≤ CeLT h4,
since c1 ≥ L and e0 = 0.

Why the hypotheses hold for our architecture. - Mean reversion term: κeff and θeff are C∞ compo-
sitions of exp, tanh and affine maps; on K they and their first four derivatives are bounded. Our Lipschitz
constant L on K was established in Appendix A.1. - Clustering term: γ+ u(t) is constant in x and bounded
in t, so it does not affect Lipschitz in x nor the order of the method. - Jump term: λ = softplus ◦ ℓ and
J = tanh ◦j are C∞; their products and derivatives are bounded on K. - Stage confinement: since f is
bounded on K, taking h ≤ h0(K, f) ensures stage values remain in K.

A.3 Datasets

We evaluate on the following 10 indices spanning major global markets and asset classes:

• Developed Market Equities: S&P 500 (ˆGSPC), NASDAQ (ˆIXIC), Dow Jones (ˆDJI)

• Emerging Market Equities: NIFTY50 (ˆNSEI)

• Small/Large Cap: Russell 1000 (ˆRUI), Russell 2000 (ˆRUT)

• Government Bonds: iShares Core U.S. Aggregate Bond ETF (AGG)

• Cryptocurrency: Bitcoin (BTC-USD), Ethereum (ETH-USD)

• International: FTSE 100 (ˆFTSE)

Daily OHLC prices are obtained via yfinance. Realized volatility is estimated using the Garman–Klass
estimator (Eq. 1), and we model log-volatility xt = ln(σt). Evaluation period: August 2005 to August 2025.

A.4 Evaluation Protocol

Rolling window configuration. We use the following strictly temporal configuration:

• Train: 63 trading days (≈3 months)

• Validation: 20 days

• Test: 30 days

• Stride: 30 days between consecutive window start dates

We selected the training window length via a small hyperparameter sweep over candidate lookback periods
7, 21, 63, 126, 252 trading days and evaluated normalized MSE on held-out rolling windows across all
assets. The 63-day window produced the lowest aggregate NRMSE across assets. Intuitively, longer windows
(126, 252) often span multiple volatility regimes, causing learned modulators to average over heterogeneous
dynamics and thereby reduce predictive utility; visually, parameter trajectories estimated from 126/252-day
fits show piecewise regime structure that a single parameter set cannot capture reliably. A short window (7,
21) lacks sufficient information to estimate even the compact neural modulators stably. Thus, the 63-day
choice represents an empirical tradeoff between enough data to fit modulators and narrowness of the regime
assumed.
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Walk-forward guarantee of no data leakage. The walk-forward protocol ensures strictly out-of-sample
testing by moving forward in time only. For each window, we:

1. Train a model on the training segment

2. Validate on the validation segment

3. Make predictions on the test segment

4. Roll forward by stride days and repeat

Critically, we never revisit past test periods. Once predictions are made for a test segment, that window
is complete. Even though future training windows may include data that was previously used as test data,
we never re-predict those periods with the benefit of future information the predictions have already been
made and recorded using only past data. This is the defining property of walk-forward validation: we only
predict forward in time, never backward.

For a train size of 63 days, validation size of 20 days, test size of 30 days, and stride of 30 days:

• Window 1: Train on days 1-63, Val on days 64-83, Test on days 84-113

• Window 2: Train on days 31-93, Val on days 94-113, Test on days 114-143

• Window 3: Train on days 61-123, Val on days 124-143, Test on days 144-173

By Window 3, days 84-113 (Window 1’s test set) now appear in the training data. However, predictions for
days 84-113 were already made in Window 1 using only data up to day 83. We do not re-predict them. This
ensures that every prediction uses only information available at the time the prediction would have been
made in real-world deployment.

Forecast horizons and autoregressive rollout. We evaluate at h ∈ {1, 5, 10, 20} days ahead. For
h = 20, each 30-day test window yields 10 independent predictions (days 1-20, 2-21, ..., 10-29 of the test
period).

All predictions are made using strictly autoregressive rollout with no future data leakage. When
predicting at time t for horizon h, the model uses only information available up to time t. Critically:

• For multi-step predictions (h > 1), the model recursively feeds its own predictions forward

• No ground-truth values from t + 1 to t + h − 1 are provided during the rollout

• Exogenous variables (e.g., squared returns r2
t−1) use only strictly causal values: when predicting at

time t, we use r2
t−1 (available), never r2

t or future returns

• At prediction time t for target t + h, the model has no access to any data from time t + 1 onward

This ensures realistic evaluation: predictions are made exactly as they would be in real-world deployment,
where future information is unavailable.

Example of autoregressive rollout. To predict log-volatility at t + 20 starting from time t:

1. Input: observed log-volatilities up to t, exogenous features up to t − 1 (e.g., r2
t−1)

2. Predict x̂t+1 using the ODE integrated from t to t + 1

3. Predict x̂t+2 using x̂t+1 as input (not ground truth xt+1)

4. Continue rolling forward: x̂t+3 from x̂t+2, ..., x̂t+20 from x̂t+19
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5. Exogenous features at each step use only past information (e.g., at step t + k, use predicted r̂2
t+k−1

derived from x̂t+k−1)

This protocol tests the model’s ability to maintain stability under compounding error, the key challenge in
multi-step forecasting.

A.5 Training Configuration

Unless stated otherwise, we use:

• Seeds: 42, 43, 44 (results aggregated across all 3 seeds and 10 assets)

• Horizon in loss: nsteps = 20

• Batch size: 50

• Networks: Small MLP modulators with GELU activations

– Hidden sizes tested: [64,64], [64,64,64], [64,64,64,64], [16,16],[32,32]
– Selected: [64,64] (no further improvement with deeper architectures)

• Optimizer: Adam with learning rate 1 × 10−3

• Epochs: 50 (with early stopping on validation loss)

• ODE Integrator: RK4 with fixed step size

• Constraints: Softplus for mean-reversion rate (κ+ > 0), bounded shifts for long-run level (θeff)

A.6 Compute Environment

Experiments were run on Linux/macOS with Python 3.10–3.11. GPU was optional; CPU results were
consistent modulo runtime.

Core libraries:

• PyTorch

• Neuromancer for ODE integration, systems, and losses

• NumPy ≥ 1.26, SciPy ≥ 1.11, Pandas ≥ 2.0, Matplotlib ≥ 3.8

A.7 Evaluation Metrics

NRMSE. Normalized Root Mean Squared Error, normalized by the standard deviation of observed volatil-
ity (scale-independent metric, lower is better).

Statistical significance. We report Diebold–Mariano tests (Fisher combined across assets) to compare
model pairs using two-sided squared-error differentials. No multiple-comparison correction is applied. Com-
bined p-values are reported in Table 3.

A.8 Econometric Baselines

GARCH-family models (GARCH, FIGARCH) were estimated using the arch Python library. Models were
refit in each rolling window via maximum likelihood. Convergence was verified; the best-performing config-
uration after convergence is reported.
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A.9 Per-Asset Performance Metrics with Regime Breakdown

This section presents detailed per-asset performance metrics across all forecast horizons (h ∈ {1, 5, 10, 20}),
broken down by volatility regime. For each asset-model combination, we report 12 metrics: MSE , MAE,
QLIKE, and sMAPE for (1) aggregated data, (2) low volatility regime, and (3) high volatility regime. All
values are rounded to 2 decimal places. Bold values indicate the best-performing model for each
metric-regime combination within each asset.

Regime definition: Per asset, classify volatility using a rolling Z-score of realized volatility computed
over a centered rolling window (63 steps). Low-vol if z < -0.5; high-vol if z > +0.5; observations in between
are not used for regime slices.
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Table 6: Short Horizon (h = 1) Performance: Crypto & Bonds

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Crypto
Bitcoin RW 0.37 0.48 1.07 12.55 0.43 0.53 0.58 12.70 0.48 0.57 2.49 16.15

ODE-MR 0.35 0.48 1.35 12.35 0.44 0.55 0.27 13.42 0.84 0.86 4.08 23.68
Vanilla Neural ODE 0.35 0.47 0.98 12.16 0.42 0.52 0.55 12.48 0.46 0.56 2.31 15.81
UDE-MR 0.37 0.41 0.83 10.85 0.43 0.46 0.40 7.42 0.48 0.52 0.42 17.17
UDE-MRVC 0.33 0.40 0.80 10.69 0.42 0.45 0.40 7.42 0.47 0.51 0.40 17.17
UDE-MRVCJ 0.36 0.39 0.79 10.68 0.43 0.46 0.39 10.42 0.46 0.50 0.38 16.95
GARCH 0.90 0.78 0.92 21.80 1.75 1.23 1.59 32.47 0.45 0.56 0.54 12.83
EWMA 0.79 0.72 0.85 20.00 1.56 1.16 1.46 30.28 0.44 0.55 0.52 12.58
FIGARCH 0.82 0.73 0.86 20.29 1.63 1.18 1.49 30.84 0.43 0.54 0.50 12.35
MertonJD 0.84 0.76 0.87 20.70 1.73 1.24 1.60 32.39 0.84 0.94 0.24 18.21
LSTM 0.55 0.59 1.92 15.10 0.71 0.70 0.79 17.12 0.73 0.67 5.14 18.39
GRU 0.48 0.55 1.08 14.24 0.83 0.78 0.83 18.96 0.46 0.52 2.43 14.87
TimesFM 0.35 0.46 1.00 11.88 0.45 0.53 0.52 12.79 0.52 0.60 2.65 16.85
TimesFM FS 0.34 0.45 0.95 11.60 0.43 0.52 0.49 12.28 0.51 0.60 2.54 16.88

Ethereum RW 0.31 0.44 0.86 12.49 0.34 0.48 0.50 12.32 0.45 0.55 1.96 16.85
ODE-MR 0.44 0.55 1.94 14.89 0.37 0.52 0.27 13.54 1.06 0.98 5.60 28.37
Vanilla Neural ODE 0.29 0.43 0.77 12.01 0.33 0.47 0.46 12.15 0.41 0.53 1.77 16.34
UDE-MR 0.31 0.31 0.71 10.89 0.34 0.28 0.35 5.39 0.44 0.44 0.31 17.49
UDE-MRVC 0.31 0.31 0.69 10.87 0.34 0.34 0.34 10.23 0.44 0.44 0.31 17.40
UDE-MRVCJ 0.30 0.30 0.63 10.52 0.34 0.28 0.33 6.74 0.43 0.43 0.31 17.22
GARCH 0.73 0.70 0.78 21.08 1.44 1.11 1.38 31.80 0.42 0.54 0.48 13.65
EWMA 0.65 0.66 0.72 19.61 1.28 1.05 1.26 29.64 0.41 0.53 0.46 13.28
FIGARCH 0.64 0.65 0.71 19.41 1.28 1.04 1.26 29.56 0.40 0.52 0.44 12.98
MertonJD 0.69 0.69 0.75 20.30 1.41 1.12 1.38 31.52 0.72 0.86 0.25 9.32
LSTM 0.40 0.50 0.99 13.90 0.58 0.63 0.63 16.52 0.49 0.58 2.38 17.50
GRU 0.35 0.47 0.68 13.06 0.30 0.44 0.42 11.48 0.35 0.49 1.43 15.31
TimesFM 0.27 0.41 0.69 11.40 0.36 0.49 0.43 12.49 0.42 0.56 1.77 16.98
TimesFM FS 0.26 0.40 0.62 11.15 0.33 0.47 0.40 11.94 0.42 0.56 1.75 17.05

Bonds
AGG RW 0.24 0.39 0.46 6.17 0.55 0.41 0.24 6.29 0.35 0.48 1.09 7.88

ODE-MR 0.26 0.42 0.44 6.55 0.38 0.50 0.32 7.70 0.31 0.46 0.58 7.50
Vanilla Neural ODE 0.24 0.39 0.43 6.11 0.27 0.41 0.24 6.32 0.33 0.47 1.06 7.76
UDE-MR 0.23 0.23 0.38 5.45 0.26 0.26 0.20 5.85 0.34 0.34 0.53 7.20
UDE-MRVC 0.24 0.24 0.40 5.85 0.26 0.26 0.26 5.63 0.35 0.35 0.47 6.35
UDE-MRVCJ 0.24 0.24 0.43 6.30 0.26 0.26 0.31 5.58 0.35 0.35 0.55 7.00
GARCH 1.27 1.00 1.16 17.14 2.10 1.37 1.64 22.75 0.48 0.59 0.64 10.71
EWMA 1.18 0.96 1.09 16.42 1.93 1.32 1.53 21.79 0.48 0.57 0.59 10.41
FIGARCH 1.13 0.93 1.05 15.87 1.89 1.30 1.51 21.42 0.41 0.52 0.56 9.57
MertonJD 1.35 1.05 1.22 17.91 2.23 1.44 1.75 23.87 0.51 0.61 0.61 11.13
LSTM 0.51 0.57 0.58 9.13 0.89 0.82 0.73 12.82 0.23 0.39 0.64 6.55
GRU 0.35 0.46 0.45 7.32 0.60 0.66 0.49 10.17 0.26 0.41 0.74 6.84
TimesFM 0.27 0.40 0.43 6.36 0.38 0.50 0.33 7.61 0.25 0.40 0.76 6.73
TimesFM FS 0.25 0.39 0.42 6.17 0.35 0.47 0.30 7.23 0.25 0.41 0.76 6.74
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Table 7: Short Horizon (h = 1) Performance: Equities

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Equities
DowJones RW 0.22 0.37 0.54 7.36 0.23 0.39 0.34 7.22 0.28 0.44 1.05 9.06

ODE-MR 0.29 0.44 0.39 8.63 0.58 0.70 0.69 13.37 0.29 0.46 0.25 9.49
Vanilla Neural ODE 0.21 0.37 0.51 7.22 0.23 0.39 0.33 7.18 0.28 0.43 1.02 9.00
UDE-MR 0.22 0.22 0.38 6.99 0.23 0.23 0.41 8.96 0.27 0.24 0.41 5.33
UDE-MRVC 0.21 0.21 0.38 6.86 0.23 0.23 0.39 5.19 0.27 0.27 0.43 7.69
UDE-MRVCJ 0.22 0.22 0.40 6.78 0.23 0.23 0.37 5.92 0.28 0.25 0.39 5.33
GARCH 0.80 0.74 0.86 15.51 1.37 1.06 1.31 21.48 0.28 0.42 0.52 9.56
EWMA 0.77 0.72 0.82 15.06 1.42 1.10 1.35 22.15 0.30 0.36 0.43 8.31
FIGARCH 0.74 0.70 0.80 14.72 1.30 1.04 1.26 20.84 0.24 0.38 0.45 8.62
MertonJD 0.85 0.77 0.89 16.26 1.56 1.16 1.47 23.59 0.23 0.39 0.37 8.58
LSTM 0.47 0.54 1.96 10.51 0.40 0.50 0.58 9.49 0.63 0.68 3.21 13.97
GRU 0.46 0.54 1.31 10.78 0.55 0.58 0.63 11.24 0.63 0.68 3.21 13.97
TimesFM 0.27 0.40 0.75 7.94 0.34 0.48 0.44 9.02 0.36 0.48 1.70 9.92
TimesFM FS 0.24 0.39 0.64 7.58 0.32 0.47 0.42 8.85 0.31 0.44 1.37 9.11

FTSE RW 0.23 0.38 0.66 7.56 0.24 0.40 0.34 7.56 0.37 0.49 1.66 10.11
ODE-MR 0.27 0.43 0.38 8.46 0.54 0.69 0.66 13.18 0.37 0.52 0.27 10.92
Vanilla Neural ODE 0.23 0.38 0.63 7.45 0.24 0.40 0.34 7.60 0.35 0.48 1.59 9.92
UDE-MR 0.23 0.30 0.41 6.83 0.24 0.24 0.38 5.35 0.36 0.36 0.36 8.82
UDE-MRVC 0.23 0.23 0.40 6.57 0.24 0.24 0.33 6.14 0.36 0.36 0.37 8.64
UDE-MRVCJ 0.23 0.23 0.39 6.44 0.24 0.24 0.32 7.69 0.37 0.26 0.37 5.10
GARCH 0.58 0.62 0.66 12.97 1.03 0.92 1.05 18.49 0.19 0.35 0.35 8.01
EWMA 0.52 0.58 0.61 12.10 0.93 0.88 0.98 17.55 0.18 0.33 0.36 7.40
FIGARCH 0.52 0.59 0.61 12.27 0.95 0.89 1.00 17.86 0.16 0.33 0.33 7.34
MertonJD 0.57 0.63 0.66 13.17 1.06 0.97 1.11 19.43 0.32 0.47 0.26 6.67
LSTM 0.35 0.47 1.29 9.19 0.22 0.36 0.35 6.76 0.76 0.80 3.68 16.03
GRU 0.35 0.47 1.03 9.25 0.32 0.43 0.42 8.17 0.61 0.70 2.75 14.08
TimesFM 0.22 0.39 0.62 7.27 0.24 0.40 0.34 7.62 0.12 0.57 1.59 10.02
TimesFM FS 0.20 0.36 0.54 7.00 0.24 0.41 0.33 7.64 0.34 0.47 1.36 9.74

NASDAQ RW 0.25 0.38 0.61 7.83 0.23 0.39 0.34 7.68 0.32 0.46 1.31 10.16
ODE-MR 0.29 0.38 0.52 8.80 0.43 0.59 0.68 11.66 0.35 0.51 0.85 10.52
Vanilla Neural ODE 0.25 0.37 0.48 7.66 0.26 0.39 0.45 7.70 0.31 0.45 0.72 9.90
UDE-MR 0.24 0.35 0.44 7.52 0.30 0.41 0.50 9.80 0.32 0.43 0.62 8.85
UDE-MRVC 0.22 0.22 0.38 7.22 0.23 0.23 0.33 7.67 0.31 0.31 0.42 6.98
UDE-MRVCJ 0.23 0.24 0.38 7.21 0.23 0.24 0.34 7.70 0.30 0.32 0.40 7.05
GARCH 0.91 0.81 0.94 18.15 1.67 1.21 1.55 26.17 0.28 0.41 0.41 10.06
EWMA 0.85 0.78 0.88 17.23 1.57 1.17 1.48 25.16 0.25 0.38 0.39 9.31
FIGARCH 0.82 0.77 0.86 16.95 1.54 1.16 1.45 24.84 0.24 0.38 0.37 9.11
MertonJD 0.91 0.82 0.94 18.16 1.70 1.24 1.59 26.56 0.25 0.41 0.37 9.91
LSTM 0.52 0.56 2.40 11.51 0.43 0.53 0.70 10.43 0.90 0.80 5.91 17.10
GRU 0.54 0.59 1.87 12.28 0.64 0.68 0.85 13.87 0.66 0.63 4.22 13.63
TimesFM 0.29 0.42 0.91 8.61 0.37 0.52 0.51 10.18 0.38 0.48 1.97 10.56
TimesFM FS 0.27 0.40 0.80 8.34 0.36 0.51 0.49 10.02 0.34 0.46 1.71 10.07

NIFTY50 RW 0.22 0.37 0.57 7.30 0.25 0.39 0.34 7.40 0.33 0.46 1.29 9.53
ODE-MR 0.25 0.41 0.35 8.10 0.52 0.67 0.63 12.79 0.32 0.51 0.22 10.34
Vanilla Neural ODE 0.21 0.36 0.54 7.18 0.24 0.39 0.33 7.37 0.32 0.46 1.24 9.39
UDE-MR 0.22 0.22 0.37 6.48 0.25 0.25 0.35 8.17 0.33 0.23 0.43 5.05
UDE-MRVC 0.22 0.22 0.36 6.44 0.25 0.25 0.33 5.01 0.32 0.32 0.44 7.92
UDE-MRVCJ 0.21 0.21 0.36 6.31 0.25 0.25 0.32 7.73 0.32 0.32 0.41 7.61
GARCH 0.84 0.77 0.87 16.47 1.43 1.11 1.37 22.77 0.31 0.41 0.40 9.54
EWMA 0.81 0.75 0.84 15.91 1.41 1.10 1.35 22.50 0.37 0.39 0.38 9.04
FIGARCH 0.78 0.74 0.82 15.78 1.37 1.09 1.33 22.19 0.28 0.39 0.37 9.14
MertonJD 0.86 0.80 0.91 17.05 1.49 1.15 1.44 23.62 0.28 0.43 0.40 9.81
LSTM 0.40 0.50 1.37 9.87 0.28 0.37 0.40 7.14 0.75 0.80 3.41 16.26
GRU 0.43 0.52 1.21 10.41 0.43 0.48 0.52 9.37 0.63 0.70 2.81 14.49
TimesFM 0.24 0.38 0.64 7.46 0.27 0.41 0.36 7.88 0.35 0.48 1.42 10.00
TimesFM FS 0.22 0.36 0.58 7.21 0.27 0.41 0.35 7.85 0.23 0.31 1.27 5.09

Russell1000 RW 0.35 0.46 0.95 9.11 0.39 0.50 0.48 9.71 0.50 0.59 2.25 12.01
ODE-MR 0.48 0.59 0.58 11.92 0.95 0.94 1.06 18.55 0.53 0.71 0.14 14.33
Vanilla Neural ODE 0.64 0.54 3.31 10.01 0.52 0.51 0.81 9.26 1.04 0.75 9.70 14.36
UDE-MR 0.36 0.37 0.52 8.12 0.40 0.39 0.52 10.71 0.49 0.35 1.05 5.12
UDE-MRVC 0.33 0.34 0.51 7.62 0.38 0.38 0.49 9.94 0.46 0.37 1.18 6.28
UDE-MRVCJ 0.34 0.35 0.54 7.85 0.40 0.40 0.47 10.42 0.47 0.39 1.09 6.90
GARCH 1.91 1.21 1.60 27.14 2.89 1.60 2.26 34.49 0.80 0.69 0.77 16.75
EWMA 1.36 1.03 1.28 22.40 2.20 1.42 1.92 29.77 0.48 0.54 0.54 12.74
FIGARCH 1.97 1.21 1.62 27.51 2.93 1.60 2.27 34.75 0.85 0.69 0.79 17.02
MertonJD 1.31 1.03 1.27 22.22 2.13 1.41 1.90 29.45 0.42 0.53 0.50 12.31
LSTM 0.37 0.48 1.37 9.31 0.20 0.30 0.28 5.67 0.79 0.83 3.81 16.67
GRU 0.37 0.47 1.07 9.23 0.31 0.39 0.37 7.48 0.65 0.74 2.81 15.11
TimesFM 0.32 0.45 0.93 8.74 0.30 0.42 0.38 7.85 0.55 0.66 2.39 13.38
TimesFM FS 0.31 0.44 0.64 8.65 0.30 0.43 0.38 8.06 0.52 0.63 2.24 12.90

Russell2000 RW 0.38 0.50 1.29 10.43 0.42 0.54 0.53 11.04 0.59 0.64 3.29 13.94
ODE-MR 0.31 0.45 0.49 9.60 0.61 0.73 0.72 14.68 0.50 0.62 0.60 13.41
Vanilla Neural ODE 0.81 0.61 9.52 12.37 0.64 0.58 2.72 11.36 1.49 0.86 26.08 17.82
UDE-MR 0.39 0.39 0.63 8.90 0.42 0.41 0.55 10.91 0.58 0.48 1.44 10.68
UDE-MRVC 0.36 0.37 0.61 8.54 0.40 0.40 0.54 9.92 0.55 0.40 1.46 8.22
UDE-MRVCJ 0.37 0.38 0.63 8.68 0.43 0.43 0.53 10.05 0.52 0.42 1.45 8.81
GARCH 1.27 0.98 1.22 22.98 2.18 1.41 1.90 31.47 0.46 0.55 0.58 14.16
EWMA 1.03 0.87 1.05 20.01 1.87 1.29 1.69 28.58 0.32 0.45 0.50 11.20
FIGARCH 1.18 0.94 1.13 21.82 2.06 1.36 1.82 30.43 0.37 0.49 0.47 12.42
MertonJD 0.99 0.87 1.02 19.86 1.81 1.30 1.69 28.43 0.41 0.52 0.42 10.84
LSTM 0.46 0.52 2.25 10.88 0.31 0.44 0.56 8.70 0.19 0.35 5.99 8.16
GRU 0.47 0.55 1.73 11.58 0.53 0.59 0.72 12.21 0.70 0.68 4.19 14.90
TimesFM 0.39 0.49 1.44 10.26 0.42 0.54 0.59 10.88 0.64 0.66 3.61 14.58
TimesFM FS 0.37 0.48 1.33 10.08 0.42 0.54 0.58 10.96 0.58 0.62 3.33 13.78

SP500 RW 0.34 0.39 0.65 7.66 0.25 0.39 0.37 7.31 0.32 0.45 1.33 9.45
ODE-MR 0.32 0.46 0.43 9.05 0.63 0.74 0.74 13.88 0.32 0.45 0.27 9.23
Vanilla Neural ODE 0.24 0.39 0.62 7.58 0.25 0.40 0.36 7.36 0.33 0.45 1.27 9.30
UDE-MR 0.24 0.24 0.44 7.48 0.25 0.25 0.47 9.81 0.31 0.25 0.42 5.59
UDE-MRVC 0.24 0.24 0.43 7.28 0.25 0.25 0.44 9.26 0.30 0.25 0.40 5.59
UDE-MRVCJ 0.24 0.24 0.42 7.21 0.25 0.25 0.42 5.54 0.32 0.32 0.42 7.41
GARCH 0.99 0.85 1.01 17.97 1.79 1.26 1.63 25.53 0.29 0.44 0.44 10.07
EWMA 0.97 0.83 0.97 17.31 1.75 1.23 1.59 24.95 0.32 0.39 0.43 8.98
FIGARCH 0.92 0.82 0.94 17.09 1.69 1.22 1.56 24.55 0.36 0.41 0.40 9.52
MertonJD 1.05 0.88 1.04 18.38 1.92 1.31 1.73 26.61 0.33 0.42 0.39 9.58
LSTM 0.52 0.56 2.26 11.02 0.46 0.54 0.68 10.18 0.86 0.78 5.80 15.91
GRU 0.52 0.57 1.47 11.40 0.64 0.64 0.72 12.45 0.64 0.65 3.49 13.50
TimesFM 0.30 0.43 0.86 8.41 0.39 0.52 0.50 9.73 0.37 0.46 1.87 9.81
TimesFM FS 0.27 0.41 0.72 8.04 0.37 0.51 0.48 9.52 0.32 0.44 1.51 9.24
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Table 8: Medium Horizon (h = 5) Performance: Crypto & Bonds

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Crypto
Bitcoin RW 0.51 0.57 2.11 14.60 0.59 0.62 0.71 15.03 0.72 0.69 6.06 19.00

ODE-MR 0.59 0.64 3.00 16.04 0.51 0.61 0.42 14.30 1.45 1.16 9.15 30.78
Vanilla Neural ODE 0.42 0.51 1.29 13.20 0.54 0.60 0.64 14.45 0.60 0.64 3.30 17.68
UDE-MR 0.50 0.53 1.22 12.31 0.58 0.61 0.49 8.40 0.69 0.72 0.42 20.63
UDE-MRVC 0.49 0.52 1.21 12.07 0.58 0.60 0.46 7.98 0.68 0.71 0.40 20.48
UDE-MRVCJ 0.47 0.50 1.14 11.73 0.57 0.59 0.44 7.98 0.65 0.68 0.38 20.38
GARCH 1.11 0.89 1.07 25.07 2.12 1.38 1.85 36.88 0.23 0.37 0.36 11.90
EWMA 0.82 0.74 0.87 20.45 1.64 1.19 1.51 31.24 0.72 0.34 0.44 10.73
FIGARCH 1.03 0.85 1.01 23.75 1.99 1.33 1.76 35.24 0.21 0.35 0.35 11.26
MertonJD 0.85 0.76 0.87 20.83 1.74 1.25 1.61 32.58 1.24 1.19 0.24 8.30
LSTM 0.55 0.59 1.95 15.10 0.71 0.70 0.79 17.01 0.74 0.67 5.28 18.40
GRU 0.48 0.55 1.09 14.21 0.80 0.77 0.83 18.68 0.46 0.53 2.49 14.99
TimesFM 0.41 0.50 1.29 12.90 0.54 0.60 0.59 14.25 0.65 0.68 3.63 18.90
TimesFM FS 0.39 0.49 1.26 12.62 0.49 0.58 0.55 5.06 0.65 0.69 3.59 19.26

Ethereum RW 0.41 0.51 1.24 14.35 0.46 0.55 0.57 14.63 0.59 0.63 3.12 19.00
ODE-MR 0.90 0.82 5.57 21.41 0.36 0.47 0.63 12.57 1.99 1.37 15.38 37.45
Vanilla Neural ODE 0.32 0.45 0.85 12.56 0.42 0.54 0.51 13.96 0.46 0.57 2.13 17.16
UDE-MR 0.40 0.40 0.92 12.10 0.56 0.56 0.31 21.60 0.46 0.45 0.39 11.41
UDE-MRVC 0.39 0.39 0.90 11.83 0.56 0.56 0.31 21.21 0.45 0.43 0.33 10.25
UDE-MRVCJ 0.38 0.38 0.88 11.75 0.54 0.54 0.32 20.54 0.41 0.39 0.32 9.84
GARCH 0.83 0.77 0.88 23.26 0.19 0.34 0.35 11.74 1.61 1.19 1.51 34.34
EWMA 0.68 0.67 0.75 20.13 0.18 0.63 0.38 11.22 1.34 1.07 1.31 30.44
FIGARCH 0.79 0.74 0.83 22.31 0.20 0.34 0.36 11.73 1.51 1.15 1.44 32.87
MertonJD 0.70 0.69 0.75 20.44 1.43 1.12 1.39 31.68 1.03 1.09 0.26 14.66
LSTM 0.39 0.50 0.97 13.83 0.59 0.63 0.63 16.66 0.48 0.58 2.30 17.33
GRU 0.35 0.47 0.67 13.00 0.62 0.67 0.66 17.47 0.35 0.49 1.39 15.19
TimesFM 0.32 0.45 0.86 12.42 0.39 0.50 0.45 12.88 0.51 0.62 2.28 18.83
TimesFM FS 0.31 0.44 0.61 12.28 0.37 0.48 0.42 12.21 0.53 0.64 2.34 19.19

Bonds
AGG RW 0.29 0.42 0.57 6.63 0.32 0.45 0.29 6.88 0.46 0.55 1.51 8.97

ODE-MR 0.32 0.45 0.58 6.80 0.36 0.48 0.32 7.35 0.44 0.54 1.42 8.70
Vanilla Neural ODE 0.29 0.42 0.56 6.63 0.35 0.48 0.32 7.31 0.42 0.52 1.41 8.54
UDE-MR 0.29 0.29 0.47 6.50 0.30 0.30 0.23 6.45 0.44 0.44 0.58 7.85
UDE-MRVC 0.28 0.28 0.43 5.85 0.31 0.31 0.30 7.50 0.44 0.35 0.48 6.20
UDE-MRVCJ 0.29 0.29 0.54 7.40 0.32 0.32 0.38 8.20 0.46 0.44 0.68 7.95
GARCH 1.64 1.17 1.43 20.36 2.62 1.56 1.98 26.32 0.68 0.72 0.77 13.42
EWMA 1.23 0.98 1.13 16.80 1.98 1.34 1.57 22.16 0.49 0.58 0.62 10.56
FIGARCH 1.51 1.11 1.33 19.30 2.39 1.49 1.84 24.95 0.61 0.67 0.70 12.49
MertonJD 1.36 1.05 1.23 18.00 2.25 1.45 1.76 24.01 0.52 0.62 0.62 11.19
LSTM 0.50 0.57 0.59 9.12 0.89 0.82 0.74 12.84 0.24 0.40 0.67 6.69
GRU 0.35 0.46 0.45 7.29 0.60 0.67 0.50 10.28 0.26 0.41 0.75 6.93
TimesFM 0.28 0.41 0.45 6.54 0.44 0.55 0.37 8.38 0.18 0.33 0.50 5.59
TimesFM FS 0.27 0.40 0.45 6.34 0.41 0.52 0.34 8.00 0.17 0.32 0.48 5.44
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Table 9: Medium Horizon (h = 5) Performance: Equities

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Equities
DowJones RW 0.30 0.44 0.84 8.59 0.32 0.46 0.42 8.68 0.42 0.53 1.97 10.90

ODE-MR 0.54 0.62 0.64 12.45 1.10 0.99 1.16 19.33 0.38 0.53 0.22 10.83
Vanilla Neural ODE 0.27 0.42 0.73 8.25 0.31 0.46 0.41 8.69 0.40 0.52 1.73 10.76
UDE-MR 0.29 0.29 0.58 8.68 0.31 0.31 0.62 5.06 0.41 0.41 0.51 9.49
UDE-MRVC 0.29 0.29 0.53 6.59 0.32 0.32 0.57 11.35 0.39 0.37 0.49 7.86
UDE-MRVCJ 0.30 0.30 0.52 8.36 0.33 0.33 0.56 11.03 0.41 0.29 0.45 5.87
GARCH 0.92 0.81 0.97 17.18 1.61 1.18 1.50 24.05 0.32 0.44 0.56 10.24
EWMA 0.80 0.73 0.84 15.43 1.47 1.12 1.39 22.64 0.25 0.38 0.43 8.65
FIGARCH 0.83 0.76 0.89 16.04 1.52 1.15 1.43 23.16 0.26 0.39 0.46 9.07
MertonJD 0.86 0.78 0.90 16.38 1.58 1.17 1.48 23.73 0.24 0.42 0.38 8.84
LSTM 0.50 0.56 2.02 10.82 0.42 0.52 0.59 9.71 0.72 0.73 3.95 14.85
GRU 0.45 0.54 1.27 10.74 0.53 0.57 0.61 11.04 0.63 0.69 3.09 14.08
TimesFM 0.35 0.47 0.95 9.26 0.46 0.56 0.57 10.70 0.45 0.55 2.14 11.37
TimesFM FS 0.34 0.46 0.88 9.11 0.46 0.57 0.56 10.75 0.41 0.52 1.93 10.82

FTSE RW 0.27 0.41 0.71 8.10 0.31 0.44 0.40 8.45 0.39 0.52 1.69 10.66
ODE-MR 0.49 0.60 0.59 12.01 0.97 0.94 1.06 18.40 0.36 0.53 0.18 11.19
Vanilla Neural ODE 0.26 0.40 0.66 7.97 0.33 0.46 0.42 8.88 0.37 0.49 1.55 10.09
UDE-MR 0.27 0.27 0.44 7.66 0.30 0.30 0.51 10.62 0.37 0.26 0.44 5.35
UDE-MRVC 0.26 0.26 0.43 5.04 0.31 0.31 0.41 9.22 0.37 0.26 0.43 5.35
UDE-MRVCJ 0.27 0.27 0.41 7.06 0.31 0.31 0.41 9.06 0.39 0.27 0.44 6.53
GARCH 0.63 0.65 0.71 13.73 1.12 0.97 1.14 19.72 0.21 0.36 0.38 8.17
EWMA 0.55 0.60 0.65 12.60 0.97 0.91 1.02 18.18 0.21 0.35 0.45 7.95
FIGARCH 0.58 0.63 0.66 13.17 1.08 0.97 1.12 19.56 0.16 0.32 0.31 7.11
MertonJD 0.58 0.64 0.68 13.36 1.08 0.98 1.14 19.75 0.29 0.47 0.31 7.06
LSTM 0.34 0.47 1.28 9.18 0.23 0.36 0.35 6.82 0.75 0.78 3.62 15.71
GRU 0.35 0.47 1.03 9.25 0.32 0.43 0.42 8.30 0.60 0.68 2.72 13.81
TimesFM 0.26 0.40 0.71 7.92 0.30 0.45 0.40 8.46 0.41 0.54 1.75 11.10
TimesFM FS 0.25 0.40 0.59 7.79 0.30 0.45 0.40 8.55 0.38 0.51 1.61 10.58

NASDAQ RW 0.30 0.44 0.78 9.05 0.35 0.48 0.46 9.49 0.38 0.51 1.61 11.21
ODE-MR 0.35 0.48 0.48 10.02 0.73 0.78 0.82 15.58 0.36 0.51 0.40 11.18
Vanilla Neural ODE 0.28 0.42 0.70 8.67 0.35 0.48 0.44 9.52 0.34 0.49 1.41 10.69
UDE-MR 0.29 0.29 0.59 8.96 0.34 0.34 0.61 12.55 0.36 0.35 0.49 8.32
UDE-MRVC 0.29 0.29 0.54 5.49 0.35 0.35 0.57 6.57 0.36 0.36 0.49 9.94
UDE-MRVCJ 0.30 0.30 0.53 8.77 0.35 0.35 0.57 11.79 0.37 0.31 0.45 7.22
GARCH 1.11 0.91 1.10 20.66 2.02 1.36 1.80 29.60 0.36 0.48 0.49 11.75
EWMA 0.88 0.79 0.91 17.64 1.64 1.21 1.53 25.87 0.28 0.40 0.42 9.70
FIGARCH 1.05 0.88 1.05 19.80 1.93 1.32 1.74 28.62 0.35 0.46 0.48 11.27
MertonJD 0.92 0.83 0.95 18.31 1.74 1.26 1.62 26.90 0.30 0.48 0.39 10.20
LSTM 0.52 0.57 2.39 11.55 0.44 0.53 0.69 10.53 0.91 0.81 6.02 17.14
GRU 0.54 0.60 1.86 12.33 0.65 0.69 0.84 14.05 0.69 0.66 4.29 14.09
TimesFM 0.38 0.49 1.17 10.04 0.50 0.60 0.64 11.99 0.47 0.54 2.61 11.86
TimesFM FS 0.36 0.48 1.06 9.81 0.49 0.60 0.63 11.96 0.33 0.48 2.32 10.75

NIFTY50 RW 0.27 0.40 0.73 7.98 0.31 0.44 0.39 8.40 0.37 0.49 1.63 9.99
ODE-MR 0.45 0.56 0.54 11.32 0.91 0.91 1.01 17.90 0.30 0.48 0.15 9.86
Vanilla Neural ODE 0.30 0.39 0.58 7.67 0.30 0.44 0.38 8.49 0.35 0.47 1.61 9.46
UDE-MR 0.27 0.27 0.41 7.25 0.30 0.30 0.47 6.64 0.36 0.25 0.43 5.13
UDE-MRVC 0.26 0.26 0.39 7.13 0.31 0.31 0.43 9.55 0.35 0.25 0.42 5.05
UDE-MRVCJ 0.25 0.25 0.38 7.08 0.31 0.31 0.42 9.34 0.34 0.24 0.33 5.01
GARCH 1.05 0.89 1.04 19.19 1.81 1.26 1.63 26.16 0.34 0.47 0.44 11.00
EWMA 0.83 0.76 0.85 16.23 1.43 1.11 1.36 22.70 0.28 0.40 0.37 9.38
FIGARCH 0.97 0.86 0.99 18.36 1.70 1.22 1.56 25.34 0.30 0.45 0.41 10.40
MertonJD 0.86 0.80 0.91 17.06 1.50 1.15 1.44 23.55 0.28 0.43 0.39 9.81
LSTM 0.40 0.50 1.35 9.84 0.28 0.37 0.39 7.05 0.73 0.79 3.35 15.97
GRU 0.43 0.52 1.19 10.36 0.43 0.47 0.51 9.29 0.63 0.70 2.75 14.33
TimesFM 0.28 0.42 0.73 8.29 0.34 0.46 0.43 8.87 0.40 0.52 1.60 10.79
TimesFM FS 0.27 0.40 0.65 8.02 0.33 0.47 0.43 8.97 0.34 0.49 1.38 10.01

Russell1000 RW 0.28 0.41 0.74 8.07 0.30 0.43 0.39 8.14 0.43 0.55 1.80 11.24
ODE-MR 0.48 0.59 0.58 11.92 0.95 0.94 1.05 18.38 0.48 0.65 0.17 13.35
Vanilla Neural ODE 0.26 0.39 0.80 7.51 0.26 0.40 0.37 7.47 0.43 0.54 1.92 11.02
UDE-MR 0.28 0.28 0.54 7.86 0.30 0.30 0.49 10.37 0.42 0.29 0.51 5.06
UDE-MRVC 0.27 0.27 0.52 7.81 0.29 0.29 0.45 9.81 0.40 0.28 0.49 5.02
UDE-MRVCJ 0.27 0.27 0.50 7.81 0.30 0.30 0.44 9.61 0.41 0.28 0.47 5.01
GARCH 1.41 1.06 1.32 23.02 2.30 1.46 1.98 30.64 0.47 0.54 0.53 12.70
EWMA 1.23 0.98 1.18 21.11 2.06 1.37 1.83 28.73 0.39 0.48 0.46 11.35
FIGARCH 1.39 1.05 1.30 22.82 2.22 1.43 1.94 30.09 0.46 0.53 0.52 12.51
MertonJD 1.29 1.02 1.25 22.00 2.15 1.42 1.92 29.70 0.38 0.51 0.47 11.66
LSTM 0.38 0.49 1.46 9.48 0.22 0.32 0.35 5.98 0.84 0.85 4.19 17.23
GRU 0.38 0.48 1.13 9.41 0.33 0.41 0.42 7.76 0.69 0.76 3.06 15.56
TimesFM 0.30 0.43 0.82 8.46 0.32 0.45 0.42 8.52 0.49 0.59 2.10 12.31
TimesFM FS 0.29 0.42 0.77 8.36 0.33 0.46 0.42 8.70 0.46 0.58 1.93 11.92

Russell2000 RW 0.31 0.44 0.79 9.34 0.37 0.49 0.46 9.95 0.40 0.52 1.65 11.54
ODE-MR 0.29 0.44 0.44 9.21 0.58 0.70 0.69 14.12 0.38 0.54 0.50 12.16
Vanilla Neural ODE 0.29 0.43 0.62 8.99 0.32 0.46 0.44 9.24 0.41 0.54 1.69 11.91
UDE-MR 0.31 0.31 0.54 8.57 0.36 0.36 0.51 5.14 0.39 0.39 0.47 10.04
UDE-MRVC 0.30 0.30 0.53 8.53 0.36 0.36 0.51 11.36 0.38 0.37 0.45 8.54
UDE-MRVCJ 0.30 0.30 0.50 8.33 0.37 0.37 0.50 11.14 0.37 0.32 0.47 7.44
GARCH 1.07 0.90 1.08 20.79 1.87 1.31 1.71 28.83 0.33 0.46 0.48 11.69
EWMA 0.90 0.81 0.94 18.50 1.63 1.21 1.54 26.42 0.25 0.39 0.39 9.66
FIGARCH 0.95 0.85 0.99 19.44 1.71 1.25 1.61 27.46 0.27 0.41 0.40 10.28
MertonJD 0.95 0.85 0.99 19.38 1.75 1.27 1.64 27.87 0.30 0.46 0.36 9.96
LSTM 0.44 0.52 2.11 10.67 0.31 0.43 0.54 8.53 0.88 0.82 5.46 17.62
GRU 0.46 0.53 1.60 11.27 0.52 0.59 0.70 12.11 0.64 0.65 3.74 14.18
TimesFM 0.33 0.45 1.04 9.39 0.41 0.54 0.55 10.81 0.48 0.56 2.45 12.44
TimesFM FS 0.31 0.44 0.95 9.22 0.40 0.54 0.54 10.87 0.42 0.33 2.22 11.74

SP500 RW 0.35 0.47 0.98 9.21 0.38 0.50 0.49 9.30 0.45 0.55 2.08 11.26
ODE-MR 0.62 0.66 0.70 13.07 1.24 1.05 1.26 20.35 0.36 0.48 0.26 10.24
Vanilla Neural ODE 0.38 0.49 1.01 9.59 0.44 0.54 0.57 10.24 0.43 0.54 2.09 11.04
UDE-MR 0.35 0.35 0.69 9.61 0.37 0.37 0.75 13.76 0.43 0.30 0.54 6.54
UDE-MRVC 0.33 0.33 0.62 9.30 0.37 0.37 0.67 5.23 0.42 0.42 0.50 9.19
UDE-MRVCJ 0.34 0.34 0.61 9.16 0.38 0.38 0.66 12.39 0.43 0.39 0.46 8.39
GARCH 1.18 0.94 1.14 19.93 2.13 1.39 1.86 28.34 0.34 0.47 0.48 10.88
EWMA 1.01 0.85 1.01 17.78 1.85 1.28 1.66 25.81 0.28 0.40 0.44 9.22
FIGARCH 1.15 0.92 1.11 19.51 2.08 1.37 1.82 27.77 0.34 0.46 0.45 10.74
MertonJD 1.06 0.89 1.05 18.56 1.96 1.33 1.76 26.91 0.29 0.44 0.40 9.68
LSTM 0.52 0.56 2.23 11.01 0.46 0.54 0.67 10.20 0.88 0.80 5.72 16.28
GRU 0.52 0.57 1.46 11.41 0.65 0.65 0.72 12.45 0.64 0.66 3.50 13.58
TimesFM 0.41 0.51 1.10 9.98 0.56 0.63 0.67 11.96 0.46 0.55 2.40 11.30
TimesFM FS 0.40 0.50 1.04 9.88 0.56 0.64 0.67 12.02 0.43 0.52 2.21 10.99
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Table 10: Medium Horizon (h = 10) Performance: Crypto & Bonds

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Crypto
Bitcoin RW 0.57 0.60 2.28 15.38 0.69 0.68 0.78 16.72 1.24 1.17 0.54 14.53

ODE-MR 0.60 0.64 3.04 16.10 0.50 0.62 0.44 14.46 0.92 0.87 9.12 18.43
Vanilla Neural ODE 0.46 0.53 1.68 13.50 0.60 0.64 0.70 15.53 0.79 0.73 4.90 18.06
UDE-MR 0.55 0.48 1.25 12.36 0.68 0.52 0.50 9.10 0.75 0.73 0.40 10.39
UDE-MRVC 0.55 0.48 1.23 12.26 0.67 0.47 0.47 8.12 0.74 0.72 0.40 10.15
UDE-MRVCJ 0.52 0.47 1.16 11.91 0.66 0.46 0.45 8.12 0.73 0.71 0.39 9.93
GARCH 1.26 0.95 1.18 27.22 2.38 1.46 2.00 39.49 0.77 0.74 0.40 20.57
EWMA 0.87 0.76 0.90 21.03 1.72 1.22 1.57 32.14 0.82 0.73 0.41 10.62
FIGARCH 1.21 0.91 1.12 25.93 2.30 1.42 1.94 38.32 0.87 0.76 0.37 12.41
MertonJD 0.86 0.77 0.88 21.02 1.77 1.26 1.63 32.86 0.94 0.82 0.41 13.45
LSTM 0.54 0.59 1.94 15.00 0.70 0.70 0.79 16.72 1.26 0.95 5.15 18.27
GRU 0.48 0.55 1.08 14.14 0.82 0.78 0.84 18.89 0.99 0.85 2.42 14.74
TimesFM 0.43 0.52 1.34 13.24 0.58 0.63 0.63 14.99 0.89 0.78 3.61 18.43
TimesFM FS 0.41 0.51 0.68 12.99 0.52 0.59 0.59 14.04 0.85 0.77 3.58 18.63

Ethereum RW 0.46 0.54 1.44 15.14 0.55 0.60 0.64 16.00 1.01 1.07 0.25 9.73
ODE-MR 0.91 0.83 5.62 21.48 0.37 0.48 0.66 12.61 0.57 0.57 15.23 21.28
Vanilla Neural ODE 0.34 0.46 0.83 12.83 0.47 0.57 0.55 14.71 0.55 0.55 1.96 14.21
UDE-MR 0.45 0.44 0.96 12.19 0.55 0.46 0.40 11.54 0.53 0.57 0.31 21.74
UDE-MRVC 0.44 0.44 0.91 12.07 0.53 0.41 0.34 10.08 0.52 0.56 0.31 21.28
UDE-MRVCJ 0.42 0.42 0.90 11.97 0.52 0.44 0.34 10.47 0.50 0.55 0.31 20.21
GARCH 0.94 0.82 0.96 25.05 1.80 1.26 1.64 36.72 0.59 0.59 0.35 12.40
EWMA 0.73 0.69 0.78 20.77 1.43 1.10 1.36 31.40 0.62 0.65 0.35 10.87
FIGARCH 0.94 0.80 0.94 24.53 1.79 1.25 1.61 36.40 0.65 0.69 0.35 12.15
MertonJD 0.71 0.70 0.77 20.68 1.46 1.13 1.40 31.98 0.73 0.70 0.35 12.40
LSTM 0.39 0.49 0.95 13.71 0.61 0.65 0.64 16.90 0.91 0.83 2.19 16.90
GRU 0.35 0.47 0.66 12.97 0.65 0.69 0.67 17.87 0.94 0.82 1.30 14.75
TimesFM 0.33 0.46 0.61 12.66 0.45 0.54 0.50 13.86 0.98 0.84 2.13 18.02
TimesFM FS 0.33 0.45 0.64 12.52 0.42 0.52 0.46 13.17 0.99 0.85 2.21 18.46

Bonds
AGG RW 0.32 0.45 0.62 7.08 0.38 0.49 0.34 7.61 0.46 0.55 1.58 8.98

ODE-MR 0.35 0.47 0.62 7.30 0.40 0.51 0.37 7.85 0.48 0.56 1.55 9.05
Vanilla Neural ODE 0.33 0.46 0.60 7.15 0.37 0.49 0.35 7.70 0.44 0.54 1.48 8.75
UDE-MR 0.30 0.30 0.52 6.35 0.35 0.35 0.26 6.95 0.43 0.43 0.65 7.95
UDE-MRVC 0.31 0.31 0.55 6.90 0.37 0.37 0.33 7.70 0.43 0.39 0.52 6.55
UDE-MRVCJ 0.32 0.32 0.63 7.85 0.39 0.39 0.42 8.70 0.46 0.46 0.82 8.50
GARCH 1.95 1.28 1.63 22.55 3.00 1.67 2.19 28.44 0.91 0.84 0.97 15.88
EWMA 1.30 1.01 1.19 17.32 2.09 1.37 1.64 22.81 0.51 0.61 0.70 10.99
FIGARCH 1.79 1.21 1.51 21.29 2.76 1.59 2.04 26.95 0.79 0.77 0.86 14.53
MertonJD 1.38 1.07 1.25 18.21 2.28 1.46 1.78 24.16 0.54 0.64 0.66 11.52
LSTM 0.50 0.57 0.59 9.14 0.91 0.84 0.76 13.07 0.24 0.40 0.67 6.74
GRU 0.35 0.46 0.45 7.31 0.61 0.68 0.51 10.41 0.26 0.41 0.76 6.98
TimesFM 0.32 0.44 0.52 6.98 0.51 0.60 0.43 9.22 0.18 0.33 0.45 5.62
TimesFM FS 0.30 0.43 0.51 6.78 0.48 0.58 0.40 8.82 0.16 0.32 0.41 5.42
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Table 11: Medium Horizon (h = 10) Performance: Equities

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Equities
DowJones RW 0.55 0.63 0.64 12.55 1.12 1.01 1.18 19.60 0.47 0.56 0.43 11.02

ODE-MR 0.34 0.46 1.09 9.03 0.38 0.49 0.67 9.33 0.52 0.58 2.85 11.76
Vanilla Neural ODE 0.33 0.45 0.93 8.93 0.39 0.51 0.50 9.63 0.45 0.53 2.32 10.85
UDE-MR 0.33 0.33 0.61 9.01 0.37 0.37 0.64 5.48 0.42 0.41 0.53 8.45
UDE-MRVC 0.32 0.32 0.60 8.67 0.37 0.37 0.59 11.64 0.36 0.35 0.51 6.07
UDE-MRVCJ 0.34 0.34 0.58 8.67 0.38 0.38 0.57 11.21 0.33 0.32 0.55 6.25
GARCH 1.03 0.86 1.05 18.31 1.83 1.27 1.65 25.90 0.64 0.70 0.55 14.90
EWMA 0.84 0.76 0.88 15.91 1.56 1.15 1.45 23.38 0.72 0.66 0.46 13.12
FIGARCH 0.92 0.81 0.95 17.02 1.70 1.21 1.55 24.62 0.75 0.68 0.46 13.74
MertonJD 0.88 0.79 0.91 16.59 1.62 1.19 1.51 24.08 0.70 0.66 0.41 13.02
LSTM 0.53 0.59 2.18 11.15 0.43 0.54 0.62 10.05 0.77 0.76 4.26 15.62
GRU 0.45 0.54 1.27 10.79 0.54 0.58 0.61 11.17 0.64 0.70 3.09 14.28
TimesFM 0.38 0.49 1.08 9.66 0.47 0.56 0.57 10.76 0.52 0.60 2.58 12.34
TimesFM FS 0.36 0.48 0.99 9.48 0.47 0.57 0.57 10.84 0.48 0.56 2.32 11.60

FTSE RW 0.30 0.43 0.82 8.56 0.35 0.48 0.45 9.06 0.47 0.58 2.13 11.89
ODE-MR 0.50 0.61 0.60 12.16 1.00 0.95 1.08 18.70 0.42 0.52 0.18 10.82
Vanilla Neural ODE 0.35 0.47 0.96 9.41 0.42 0.54 0.55 10.35 0.46 0.54 2.12 11.38
UDE-MR 0.29 0.29 0.47 7.87 0.34 0.34 0.53 5.96 0.39 0.38 0.44 8.63
UDE-MRVC 0.28 0.28 0.44 7.23 0.34 0.34 0.43 9.50 0.35 0.34 0.43 5.60
UDE-MRVCJ 0.30 0.30 0.44 7.16 0.35 0.35 0.42 9.24 0.32 0.31 0.43 5.40
GARCH 0.69 0.68 0.76 14.45 1.23 1.02 1.23 20.83 0.59 0.64 0.38 11.84
EWMA 0.58 0.62 0.67 12.93 1.03 0.93 1.07 18.79 0.63 0.68 0.42 12.07
FIGARCH 0.63 0.66 0.71 13.90 1.18 1.02 1.21 20.68 0.67 0.69 0.30 12.44
MertonJD 0.60 0.65 0.69 13.51 1.11 0.99 1.16 19.95 0.65 0.68 0.31 12.21
LSTM 0.34 0.47 1.26 9.14 0.22 0.36 0.34 6.78 0.74 0.77 3.58 15.62
GRU 0.34 0.47 1.01 9.21 0.32 0.43 0.42 8.25 0.62 0.68 2.67 13.74
TimesFM 0.30 0.42 0.64 8.17 0.30 0.44 0.40 8.38 0.52 0.60 2.02 11.81
TimesFM FS 0.28 0.41 0.63 8.05 0.30 0.45 0.40 8.47 0.47 0.56 1.89 10.85

NASDAQ RW 0.34 0.47 0.99 9.71 0.40 0.52 0.91 13.34 0.57 0.61 2.38 12.62
ODE-MR 0.36 0.49 0.89 10.18 0.75 0.79 0.84 15.85 0.50 0.59 0.43 12.78
Vanilla Neural ODE 0.36 0.47 1.23 9.74 0.45 0.55 0.60 10.91 0.48 0.56 2.12 11.90
UDE-MR 0.33 0.33 0.65 9.29 0.42 0.44 0.64 12.91 0.43 0.41 0.51 8.92
UDE-MRVC 0.32 0.32 0.63 9.07 0.39 0.39 0.59 7.16 0.39 0.37 0.50 7.49
UDE-MRVCJ 0.33 0.33 0.62 9.03 0.40 0.40 0.59 12.05 0.37 0.36 0.52 7.78
GARCH 1.27 0.98 1.21 22.45 2.32 1.45 1.99 31.99 0.69 0.76 0.51 13.78
EWMA 0.92 0.81 0.94 18.11 1.74 1.25 1.60 26.80 0.72 0.78 0.41 13.32
FIGARCH 1.23 0.95 1.16 21.66 2.27 1.42 1.93 31.25 0.74 0.79 0.51 13.90
MertonJD 0.94 0.83 0.96 18.48 1.77 1.27 1.64 27.18 0.71 0.76 0.39 13.08
LSTM 0.53 0.57 2.43 11.63 0.44 0.54 0.70 10.68 0.90 0.83 6.20 17.40
GRU 0.55 0.60 1.90 12.45 0.66 0.70 0.85 14.20 0.80 0.76 4.40 14.13
TimesFM 0.42 0.51 1.39 10.53 0.52 0.62 0.68 12.25 0.48 0.59 3.28 12.12
TimesFM FS 0.40 0.50 1.28 10.31 0.52 0.62 0.67 12.22 0.46 0.58 2.99 12.51

NIFTY50 RW 0.29 0.42 0.77 8.33 0.33 0.46 0.43 8.88 0.40 0.52 1.87 10.62
ODE-MR 0.45 0.57 0.55 11.40 0.92 0.91 1.02 17.98 0.42 0.53 0.57 11.12
Vanilla Neural ODE 0.29 0.41 0.59 8.01 0.34 0.48 0.46 9.20 0.39 0.48 1.79 9.89
UDE-MR 0.30 0.30 0.44 7.36 0.33 0.33 0.48 10.52 0.39 0.35 0.45 7.31
UDE-MRVC 0.28 0.28 0.42 7.23 0.32 0.32 0.44 9.69 0.37 0.31 0.45 6.01
UDE-MRVCJ 0.27 0.27 0.40 7.22 0.31 0.31 0.42 8.97 0.34 0.30 0.35 5.12
GARCH 1.21 0.96 1.16 20.95 2.00 1.33 1.76 27.93 0.64 0.70 0.57 13.42
EWMA 0.85 0.78 0.88 16.66 1.49 1.14 1.42 23.44 0.69 0.74 0.38 12.45
FIGARCH 1.10 0.91 1.09 19.84 1.84 1.28 1.67 26.70 0.72 0.76 0.52 13.74
MertonJD 0.86 0.80 0.91 17.12 1.51 1.16 1.45 23.80 0.71 0.73 0.39 12.89
LSTM 0.39 0.49 1.37 9.82 0.42 0.49 0.53 8.74 0.75 0.80 3.49 16.29
GRU 0.43 0.51 1.21 10.36 0.45 0.52 0.52 9.31 0.65 0.72 2.87 14.78
TimesFM 0.31 0.43 0.84 8.66 0.34 0.46 0.44 8.78 0.46 0.57 1.94 11.81
TimesFM FS 0.29 0.42 0.76 8.39 0.34 0.46 0.44 8.89 0.42 0.53 1.71 11.06

Russell1000 RW 0.32 0.44 0.85 8.78 0.34 0.46 0.44 8.90 0.46 0.58 2.05 11.81
ODE-MR 0.48 0.59 0.58 11.97 0.95 0.94 1.05 18.46 0.50 0.62 0.72 12.98
Vanilla Neural ODE 0.34 0.43 1.59 8.35 0.32 0.44 0.54 8.27 0.44 0.53 4.05 12.46
UDE-MR 0.31 0.31 0.61 8.10 0.33 0.33 0.50 10.58 0.43 0.35 0.52 7.01
UDE-MRVC 0.30 0.30 0.57 8.06 0.32 0.32 0.47 10.04 0.40 0.32 0.52 6.01
UDE-MRVCJ 0.31 0.31 0.55 8.02 0.31 0.31 0.45 9.75 0.36 0.30 0.52 5.87
GARCH 1.63 1.13 1.45 24.89 2.58 1.53 2.14 32.72 0.67 0.74 0.61 14.04
EWMA 1.27 0.99 1.21 21.48 2.10 1.39 1.86 29.09 0.64 0.70 0.46 12.33
FIGARCH 1.65 1.13 1.45 24.97 2.58 1.53 2.12 32.67 0.70 0.76 0.63 14.25
MertonJD 1.30 1.02 1.26 22.05 2.15 1.42 1.92 29.68 0.68 0.74 0.46 12.82
LSTM 0.38 0.49 1.47 9.49 0.40 0.45 0.50 8.12 0.84 0.85 4.22 17.07
GRU 0.38 0.48 1.14 9.41 0.43 0.46 0.41 7.74 0.67 0.75 3.07 15.12
TimesFM 0.32 0.44 0.93 8.74 0.35 0.47 0.41 8.30 0.54 0.64 2.43 13.10
TimesFM FS 0.31 0.44 0.87 8.62 0.34 0.45 0.42 8.54 0.50 0.60 2.23 12.49

Russell2000 RW 0.36 0.47 1.08 9.98 0.40 0.52 0.50 10.51 0.51 0.58 2.65 12.67
ODE-MR 0.36 0.46 0.65 9.32 0.59 0.70 0.70 14.23 0.46 0.54 0.51 11.60
Vanilla Neural ODE 0.39 0.48 1.89 10.09 0.36 0.49 0.66 9.88 0.49 0.56 4.65 13.20
UDE-MR 0.35 0.35 0.57 8.69 0.39 0.39 0.52 5.70 0.44 0.38 0.49 9.01
UDE-MRVC 0.33 0.33 0.56 8.68 0.38 0.38 0.52 8.31 0.41 0.35 0.49 7.40
UDE-MRVCJ 0.32 0.32 0.54 8.52 0.37 0.37 0.51 7.95 0.38 0.33 0.46 6.74
GARCH 1.16 0.94 1.15 21.84 2.06 1.37 1.83 30.54 0.67 0.73 0.50 13.26
EWMA 0.96 0.84 0.98 19.07 1.75 1.25 1.61 27.54 0.70 0.75 0.39 12.63
FIGARCH 1.06 0.90 1.07 20.61 1.89 1.31 1.72 29.03 0.74 0.77 0.43 13.09
MertonJD 0.97 0.86 1.00 19.64 1.79 1.29 1.67 28.21 0.72 0.74 0.36 12.85
LSTM 0.44 0.52 2.10 10.67 0.42 0.47 0.58 8.74 0.87 0.82 5.34 17.59
GRU 0.46 0.54 1.60 11.34 0.53 0.59 0.73 12.21 0.64 0.64 3.68 14.08
TimesFM 0.35 0.47 1.19 9.76 0.42 0.54 0.58 10.92 0.53 0.60 2.82 13.13
TimesFM FS 0.34 0.46 1.10 9.58 0.42 0.54 0.57 10.98 0.50 0.57 2.58 12.65

SP500 RW 0.61 0.55 1.30 14.92 1.26 1.06 1.27 20.52 0.59 0.63 3.33 12.80
ODE-MR 0.63 0.66 0.71 13.23 0.84 0.59 0.65 16.03 0.49 0.56 0.28 11.53
Vanilla Neural ODE 0.60 0.60 1.94 11.90 0.65 0.65 0.80 12.42 0.71 0.67 4.61 13.68
UDE-MR 0.40 0.40 0.75 10.07 0.43 0.43 0.79 14.17 0.57 0.40 1.59 10.67
UDE-MRVC 0.38 0.38 0.73 9.53 0.41 0.41 0.69 12.86 0.52 0.37 1.37 6.67
UDE-MRVCJ 0.39 0.39 0.69 9.49 0.44 0.44 0.67 12.54 0.55 0.43 1.31 9.10
GARCH 1.33 1.00 1.24 21.27 2.38 1.47 2.01 30.28 0.36 0.47 0.47 11.01
EWMA 1.06 0.87 1.05 18.25 1.93 1.31 1.72 26.55 0.29 0.41 0.45 9.33
FIGARCH 1.31 0.98 1.21 20.98 2.30 1.44 1.96 29.52 0.37 0.47 0.47 11.09
MertonJD 1.08 0.89 1.07 18.75 1.98 1.34 1.77 27.10 0.35 0.43 0.41 9.76
LSTM 0.52 0.56 2.18 11.02 0.46 0.55 0.66 10.32 0.87 0.79 5.57 16.07
GRU 0.52 0.57 1.45 11.45 0.64 0.65 0.71 12.44 0.66 0.67 3.49 13.84
TimesFM 0.44 0.53 1.26 10.36 0.57 0.63 0.68 11.96 0.54 0.59 2.92 12.10
TimesFM FS 0.43 0.52 1.19 10.25 0.57 0.64 0.68 12.03 0.51 0.58 2.73 11.97
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Table 12: Medium Horizon (h = 20) Performance: Crypto & Bonds

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Crypto
Bitcoin RW 0.57 0.60 2.30 15.56 0.65 0.65 0.77 16.08 0.86 0.76 6.53 20.65

ODE-MR 0.60 0.64 3.06 16.10 0.58 0.66 0.42 15.36 1.44 1.15 9.10 30.43
Vanilla Neural ODE 0.53 0.56 2.20 14.37 0.70 0.69 0.93 16.65 0.73 0.69 6.06 18.65
UDE-MR 0.55 0.47 1.19 8.63 0.65 0.45 0.45 9.27 0.80 0.73 3.47 20.39
UDE-MRVC 0.54 0.48 1.27 12.60 0.64 0.52 0.50 9.40 0.78 0.74 3.67 20.50
UDE-MRVCJ 0.50 0.49 1.25 12.55 0.61 0.51 0.48 9.35 0.75 0.72 3.56 19.93
GARCH 1.48 1.03 1.31 30.04 2.69 1.55 2.17 42.33 0.36 0.46 0.45 15.46
EWMA 0.96 0.80 0.96 22.43 1.91 1.29 1.69 33.97 0.59 0.54 0.37 10.99
FIGARCH 1.43 0.99 1.25 28.69 2.59 1.49 2.07 40.50 0.36 0.45 0.45 15.01
MertonJD 0.89 0.78 0.90 21.41 1.83 1.28 1.66 33.31 1.21 1.16 0.34 8.90
LSTM 0.55 0.59 1.97 15.05 0.70 0.69 0.78 16.84 0.73 0.66 5.18 17.89
GRU 0.48 0.55 1.08 14.16 0.85 0.79 0.85 19.26 0.45 0.52 2.40 14.64
TimesFM 0.45 0.53 1.39 13.56 0.62 0.65 0.67 15.44 0.62 0.64 3.66 17.73
TimesFM FS 0.44 0.52 1.36 13.34 0.22 0.36 0.64 8.04 0.63 0.65 3.64 18.04

Ethereum RW 0.48 0.55 1.48 15.45 0.60 0.63 0.68 17.04 0.63 0.65 3.75 19.28
ODE-MR 0.91 0.83 5.65 21.43 0.32 0.43 0.84 10.36 1.97 1.36 15.27 37.10
Vanilla Neural ODE 0.36 0.47 0.90 13.24 0.51 0.60 0.61 15.67 0.48 0.58 2.18 17.64
UDE-MR 0.46 0.44 0.94 12.70 0.59 0.42 0.36 10.24 0.60 0.60 2.67 21.39
UDE-MRVC 0.45 0.44 0.99 12.55 0.58 0.47 0.42 11.83 0.57 0.57 2.86 21.72
UDE-MRVCJ 0.43 0.43 0.91 12.45 0.56 0.42 0.35 10.30 0.55 0.55 2.51 19.93
GARCH 1.12 0.90 1.09 27.99 2.07 1.35 1.80 39.55 0.30 0.43 0.44 15.15
EWMA 0.80 0.73 0.84 22.06 1.59 1.17 1.48 33.30 0.18 0.33 0.34 11.34
FIGARCH 1.11 0.87 1.06 27.34 2.02 1.31 1.74 38.63 0.30 0.41 0.43 14.74
MertonJD 0.74 0.71 0.79 21.16 1.52 1.16 1.45 32.55 0.98 1.03 0.32 10.32
LSTM 0.39 0.49 0.94 13.70 0.63 0.63 0.65 17.26 0.45 0.55 2.13 16.62
GRU 0.36 0.47 0.66 13.02 0.67 0.68 0.70 18.18 0.32 0.47 1.28 14.49
TimesFM 0.35 0.47 0.85 12.88 0.51 0.56 0.55 14.78 0.45 0.57 2.03 17.30
TimesFM FS 0.34 0.46 0.85 12.81 0.26 0.54 0.53 10.24 0.46 0.58 2.07 17.55

Bonds
AGG RW 0.30 0.43 0.59 6.80 0.36 0.48 0.32 7.37 0.43 0.53 1.57 8.61

ODE-MR 0.37 0.48 0.64 7.45 0.43 0.53 0.39 7.95 0.50 0.57 1.57 9.10
Vanilla Neural ODE 0.35 0.47 0.62 7.30 0.40 0.51 0.37 7.80 0.48 0.56 1.52 8.95
UDE-MR 0.28 0.28 0.54 6.50 0.33 0.33 0.28 7.15 0.41 0.41 0.72 8.05
UDE-MRVC 0.29 0.29 0.58 7.05 0.35 0.35 0.35 7.75 0.23 0.38 0.57 6.52
UDE-MRVCJ 0.30 0.30 0.67 8.10 0.37 0.37 0.46 8.95 0.22 0.37 0.53 6.40
GARCH 2.41 1.42 1.89 25.40 3.56 1.81 2.44 31.15 1.24 0.97 1.22 18.70
EWMA 1.42 1.06 1.28 18.30 2.28 1.44 1.75 23.95 0.64 0.67 0.83 12.23
FIGARCH 2.17 1.33 1.73 23.67 3.18 1.70 2.24 29.06 1.03 0.86 1.05 16.41
MertonJD 1.43 1.08 1.28 18.47 2.33 1.47 1.80 24.40 0.57 0.65 0.71 11.76
LSTM 0.51 0.58 0.61 9.23 0.91 0.84 0.75 13.01 0.26 0.41 0.75 6.96
GRU 0.36 0.47 0.47 7.42 0.62 0.69 0.51 10.58 0.28 0.43 0.83 7.34
TimesFM 0.35 0.47 0.55 7.41 0.57 0.64 0.48 9.86 0.39 0.39 0.58 7.20
TimesFM FS 0.34 0.46 0.56 7.23 0.54 0.62 0.45 9.49 0.43 0.43 0.92 8.70
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Table 13: Medium Horizon (h = 20) Performance: Equities

Aggregated Low Vol High Vol
Asset Model MSE MAE QL sM MSE MAE QL sM MSE MAE QL sM

Equities
DowJones RW 0.38 0.50 1.26 9.75 1.09 0.99 1.15 19.32 0.59 0.64 3.26 13.01

ODE-MR 0.55 0.63 0.65 12.56 0.43 0.52 0.52 9.81 0.52 0.62 0.27 13.05
Vanilla Neural ODE 0.48 0.55 1.48 10.90 0.53 0.60 0.67 11.43 0.63 0.65 3.68 13.36
UDE-MR 0.37 0.37 0.66 9.22 0.38 0.38 0.63 6.10 0.54 0.45 1.32 9.39
UDE-MRVC 0.35 0.35 0.64 8.83 0.38 0.38 0.58 11.35 0.52 0.36 1.49 7.30
UDE-MRVCJ 0.38 0.38 0.67 8.85 0.40 0.40 0.55 10.95 0.41 0.41 1.36 6.51
GARCH 1.16 0.91 1.12 19.64 2.03 1.33 1.77 27.63 0.34 0.46 0.50 10.79
EWMA 0.89 0.78 0.91 16.49 1.61 1.18 1.50 24.07 0.24 0.38 0.42 8.62
FIGARCH 1.02 0.85 1.01 18.08 1.78 1.24 1.61 25.51 0.30 0.43 0.45 9.93
MertonJD 0.88 0.79 0.92 16.70 1.59 1.18 1.49 23.94 0.39 0.51 0.42 9.31
LSTM 0.58 0.63 2.48 11.87 0.46 0.56 0.67 10.71 0.85 0.80 5.02 16.78
GRU 0.46 0.54 1.36 10.86 0.51 0.56 0.59 10.80 0.65 0.68 3.34 14.14
TimesFM 0.40 0.50 1.27 9.98 0.45 0.54 0.56 10.40 0.59 0.64 3.12 13.13
TimesFM FS 0.39 0.50 1.19 9.82 0.45 0.55 0.56 10.47 0.55 0.61 2.88 12.50

FTSE RW 0.33 0.46 0.86 8.99 0.41 0.51 0.50 9.72 0.49 0.59 2.20 12.14
ODE-MR 0.51 0.61 0.61 12.30 1.01 0.96 1.10 18.85 0.46 0.64 0.18 13.13
Vanilla Neural ODE 0.60 0.61 2.07 12.31 0.67 0.67 0.84 13.30 0.79 0.69 5.44 14.10
UDE-MR 0.32 0.32 0.49 8.12 0.39 0.39 0.56 11.39 0.45 0.32 0.94 5.30
UDE-MRVC 0.30 0.30 0.44 7.30 0.40 0.40 0.45 9.78 0.44 0.31 1.04 5.23
UDE-MRVCJ 0.33 0.33 0.44 7.22 0.42 0.42 0.43 9.50 0.47 0.44 0.99 9.18
GARCH 0.79 0.73 0.83 15.62 1.38 1.08 1.33 22.20 0.24 0.39 0.40 8.87
EWMA 0.65 0.65 0.73 13.75 1.16 0.99 1.17 20.14 0.21 0.35 0.42 7.88
FIGARCH 0.72 0.71 0.78 15.02 1.30 1.08 1.31 21.90 0.19 0.35 0.32 7.92
MertonJD 0.62 0.66 0.71 13.83 1.16 1.02 1.20 20.50 0.39 0.57 0.29 6.93
LSTM 0.34 0.47 1.24 9.14 0.23 0.37 0.36 6.94 0.73 0.78 3.59 15.64
GRU 0.34 0.47 1.00 9.22 0.33 0.45 0.44 8.54 0.60 0.69 2.70 13.99
TimesFM 0.29 0.43 0.85 8.39 0.30 0.45 0.41 8.44 0.51 0.62 2.26 12.53
TimesFM FS 0.28 0.42 0.61 8.28 0.31 0.45 0.41 8.54 0.49 0.59 2.14 12.21

NASDAQ RW 0.38 0.49 1.26 10.04 0.41 0.52 0.52 10.47 0.63 0.67 3.43 14.33
ODE-MR 0.37 0.50 0.51 10.34 0.73 0.79 0.83 15.75 0.56 0.65 0.50 14.19
Vanilla Neural ODE 0.64 0.58 3.53 11.80 0.69 0.68 1.00 13.40 0.92 0.66 9.90 13.85
UDE-MR 0.39 0.39 0.72 9.60 0.42 0.42 0.65 13.05 0.58 0.44 1.56 8.31
UDE-MRVC 0.36 0.36 0.69 9.26 0.39 0.39 0.59 12.12 0.55 0.41 1.63 8.01
UDE-MRVCJ 0.37 0.37 0.71 9.29 0.41 0.41 0.59 12.08 0.60 0.42 1.57 8.71
GARCH 1.47 1.07 1.34 24.72 2.52 1.51 2.09 33.62 0.50 0.59 0.59 14.88
EWMA 0.98 0.84 0.99 18.83 1.81 1.27 1.65 27.47 0.31 0.43 0.45 10.51
FIGARCH 1.46 1.03 1.30 24.00 2.48 1.47 2.03 32.82 0.55 0.56 0.59 14.54
MertonJD 0.95 0.84 0.98 18.66 1.76 1.26 1.63 27.10 0.43 0.56 0.43 10.63
LSTM 0.53 0.57 2.56 11.70 0.43 0.53 0.71 10.52 0.98 0.84 6.69 17.92
GRU 0.55 0.61 1.98 12.54 0.64 0.69 0.85 14.02 0.75 0.69 4.74 14.82
TimesFM 0.45 0.53 1.64 10.98 0.52 0.61 0.71 12.19 0.65 0.64 4.05 14.00
TimesFM FS 0.43 0.52 1.50 10.73 0.51 0.61 0.69 12.18 0.60 0.62 3.70 13.54

NIFTY50 RW 0.31 0.44 0.86 8.73 0.36 0.47 0.44 9.11 0.46 0.56 2.12 11.51
ODE-MR 0.45 0.57 0.55 11.41 0.92 0.91 1.02 17.97 0.45 0.60 0.19 12.44
Vanilla Neural ODE 0.40 0.48 1.67 9.36 0.46 0.56 0.66 10.76 0.56 0.56 4.12 11.24
UDE-MR 0.31 0.31 0.43 7.51 0.34 0.34 0.49 6.42 0.46 0.37 0.82 7.14
UDE-MRVC 0.29 0.29 0.46 7.41 0.35 0.35 0.45 9.84 0.41 0.41 1.06 9.11
UDE-MRVCJ 0.28 0.28 0.47 7.35 0.36 0.36 0.43 9.49 0.40 0.28 0.99 5.14
GARCH 1.41 1.03 1.30 23.01 2.18 1.38 1.86 29.36 0.64 0.63 0.69 15.42
EWMA 0.92 0.81 0.93 17.46 1.55 1.17 1.47 24.12 0.30 0.42 0.39 9.74
FIGARCH 1.28 0.97 1.20 21.52 2.00 1.32 1.75 27.90 0.55 0.58 0.61 13.99
MertonJD 0.88 0.81 0.93 17.36 1.53 1.17 1.47 24.02 0.29 0.44 0.42 10.17
LSTM 0.40 0.50 1.40 9.86 0.27 0.37 0.38 7.06 0.78 0.83 3.61 16.85
GRU 0.43 0.52 1.25 10.44 0.42 0.48 0.51 9.40 0.68 0.74 3.01 15.22
TimesFM 0.33 0.45 0.97 9.03 0.34 0.45 0.44 8.73 0.09 0.24 2.32 5.14
TimesFM FS 0.32 0.44 0.89 8.81 0.34 0.46 0.44 8.84 0.48 0.59 2.12 12.19

Russell1000 RW 0.35 0.46 0.95 9.11 0.39 0.50 0.48 9.71 0.50 0.59 2.25 12.01
ODE-MR 0.48 0.59 0.58 11.92 0.95 0.94 1.06 18.55 0.53 0.71 0.14 14.33
Vanilla Neural ODE 0.64 0.54 3.31 10.01 0.52 0.51 0.81 9.26 1.04 0.75 9.70 14.36
UDE-MR 0.35 0.35 0.50 7.99 0.38 0.38 0.50 10.53 0.47 0.33 1.00 5.01
UDE-MRVC 0.32 0.34 0.53 7.15 0.36 0.36 0.47 5.49 0.44 0.44 1.29 9.85
UDE-MRVCJ 0.29 0.31 0.56 6.91 0.39 0.39 0.45 9.77 0.46 0.46 1.14 9.48
GARCH 1.91 1.21 1.60 27.14 2.89 1.60 2.26 34.49 0.80 0.69 0.77 16.75
EWMA 1.36 1.03 1.28 22.40 2.20 1.42 1.92 29.77 0.48 0.54 0.54 12.74
FIGARCH 1.97 1.21 1.62 27.51 2.93 1.60 2.27 34.75 0.85 0.69 0.79 17.02
MertonJD 1.31 1.03 1.27 22.22 2.13 1.41 1.90 29.45 0.42 0.53 0.50 12.31
LSTM 0.37 0.48 1.37 9.31 0.20 0.30 0.28 5.67 0.79 0.83 3.81 16.67
GRU 0.37 0.47 1.07 9.23 0.22 0.32 0.37 7.48 0.65 0.74 2.81 15.11
TimesFM 0.32 0.45 0.93 8.74 0.30 0.42 0.38 7.85 0.55 0.66 2.39 13.38
TimesFM FS 0.32 0.44 0.84 8.65 0.30 0.43 0.38 8.06 0.52 0.63 2.24 12.90

Russell2000 RW 0.38 0.50 1.29 10.43 0.42 0.54 0.53 11.04 0.59 0.64 3.29 13.94
ODE-MR 0.30 0.45 0.47 9.50 0.59 0.71 0.70 14.40 0.49 0.61 0.61 13.44
Vanilla Neural ODE 0.81 0.61 9.52 12.37 0.64 0.58 2.72 11.36 1.49 0.86 26.08 17.82
UDE-MR 0.38 0.38 0.61 8.82 0.41 0.41 0.52 11.52 0.57 0.47 1.40 10.75
UDE-MRVC 0.36 0.36 0.62 8.91 0.40 0.40 0.53 5.89 0.55 0.38 1.43 8.16
UDE-MRVCJ 0.35 0.35 0.63 6.32 0.43 0.43 0.53 5.25 0.51 0.48 1.42 10.80
GARCH 1.27 0.98 1.22 22.98 2.18 1.41 1.90 31.47 0.46 0.55 0.58 14.16
EWMA 1.03 0.87 1.05 20.01 1.87 1.29 1.69 28.58 0.32 0.45 0.50 11.20
FIGARCH 1.18 0.94 1.13 21.82 2.06 1.36 1.82 30.43 0.37 0.49 0.47 12.42
MertonJD 0.99 0.87 1.02 19.86 1.81 1.30 1.69 28.43 0.41 0.52 0.42 10.84
LSTM 0.46 0.52 2.25 10.88 0.31 0.44 0.56 8.70 0.19 0.35 5.99 8.16
GRU 0.47 0.55 1.73 11.58 0.53 0.59 0.72 12.21 0.70 0.68 4.19 14.90
TimesFM 0.39 0.49 1.44 10.26 0.42 0.54 0.59 10.88 0.64 0.66 3.61 14.58
TimesFM FS 0.37 0.48 1.33 10.08 0.42 0.54 0.58 10.96 0.58 0.62 3.33 13.78

SP500 RW 0.46 0.54 1.74 10.53 0.43 0.54 0.56 10.13 0.75 0.72 4.77 14.60
ODE-MR 0.63 0.66 0.72 13.28 1.24 1.05 1.26 20.42 0.62 0.67 0.33 14.01
Vanilla Neural ODE 1.41 0.86 5.70 17.47 1.37 0.88 1.42 17.32 1.62 0.94 16.22 18.76
UDE-MR 0.45 0.45 0.84 10.43 0.41 0.41 0.79 14.22 0.72 0.50 1.70 9.97
UDE-MRVC 0.41 0.41 0.82 9.78 0.40 0.40 0.69 5.64 0.64 0.45 1.88 7.23
UDE-MRVCJ 0.44 0.44 0.78 9.76 0.43 0.43 0.67 12.46 0.68 0.48 1.69 7.23
GARCH 1.52 1.06 1.35 23.05 2.61 1.53 2.13 31.91 0.46 0.54 0.54 12.82
EWMA 1.12 0.89 1.09 18.87 2.02 1.34 1.78 27.38 0.30 0.42 0.44 9.73
FIGARCH 1.51 1.05 1.33 22.75 2.56 1.50 2.09 31.30 0.49 0.54 0.54 12.93
MertonJD 1.09 0.90 1.08 18.86 1.96 1.33 1.76 27.03 0.47 0.56 0.43 10.13
LSTM 0.53 0.57 2.41 11.17 0.43 0.53 0.64 10.00 0.96 0.84 6.51 17.06
GRU 0.52 0.58 1.59 11.58 0.60 0.63 0.68 12.03 0.72 0.70 4.05 14.65
TimesFM 0.46 0.54 1.51 10.73 0.54 0.61 0.66 11.59 0.65 0.65 3.84 13.51
TimesFM FS 0.45 0.54 1.42 10.60 0.54 0.62 0.66 11.70 0.61 0.63 3.57 13.16
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