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ABSTRACT

The normalization constraint on probability density poses a significant challenge
for solving the Fokker-Planck equation. Normalizing Flow, an invertible gen-
erative model leverages the change of variables formula to ensure probability
density conservation and enable the learning of complex data distributions. In
this paper, we introduce Physics-Informed Normalizing Flows (PINF), a novel
extension of continuous normalizing flows, incorporating diffusion through the
method of characteristics. Our method, which is mesh-free and causality-free, can
efficiently solve high dimensional time-dependent and steady-state Fokker-Planck
equations.

1 INTRODUCTION

The Fokker-Planck (FP) equation (Risken, 1996) is a well-known partial differential equation that
describes the evolution of a stochastic system’s probability density function (PDF) over time. Due
to the high-dimensional variable and unbounded domain, traditional numerical methods, such as
the finite difference methods (FDM) (Kumar & Narayanan, 2006), the finite element methods
(FEM) (Deng, 2009), and the path integral methods (Wehner & Wolfer, 1983) prove to be com-
putationally daunting in tackling the FP equations. By contrast, deep learning algorithms (Sirignano
& Spiliopoulos, 2018; Raissi et al., 2019; Weinan & Yu, 2018), without a specific network structure,
violate the normalization constraint on PDF, resulting in reduced accuracy and prevalent errors.

Recently, researchers have recognized the potential of flow-based generative models in learning
complicated probability distributions (Kingma & Dhariwal, 2018; Ho et al., 2019; Albergo et al.,
2019), alongside the connection to optimal transport (OT) theory (Finlay et al., 2020; Yang &
Karniadakis, 2020; Zhang et al., 2018). Tang et al. (2022) employed normalizing flows as alternative
solutions and proposed the KRnet for solving the steady-state Fokker-Planck (SFP) equations.
However, the discrete normalizing flow remains circumscribed to model a single target distribution
at a time, typically the final or steady-state distribution, thus constraining its utility in the time-
dependent Fokker-Planck (TFP) equations. Consequently, Feng et al. (2022) introduced the temporal
normalizing flow (TNF) to estimate time-dependent distributions for TFP equations, albeit without
encapsulating the inherent physical laws of FP equations in structure.

More naturally, we generalize the continuous normalizing flow (CNF) (Chen et al., 2018) with
diffusion and propose a novel intelligent architecture: Physics-Informed Normalizing Flows (PINF)
for solving FP equations. We encode the physical constraints into ordinary differential equations
(ODEs) using the method of characteristics and train the model in a self-supervised way. Numerical
experiments demonstrate both accuracy and efficiency in solving high-dimensional TFP and SFP
equations, even without the need for meticulous hyperparameter tuning.

2 PROBLEM DEFINITION

Here we first give a brief introduction to the FP equation. Consider the state variable Xt ∈ Rd

described by the stochastic differential equation (SDE) (Oksendal, 2013):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (1)

where the drift coefficient µ(Xt, t) ∈ Rd is a vector field, σ(Xt, t) ∈ Rd×M is a matrix-valued
function and Wt is an M -dimensional standard Wiener process. The probability density function
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p(x, t) of Xt satisfies the following Fokker-Planck equation:
∂p(x, t)

∂t
= −∇ · [p(x, t)µ(x, t)] +∇ · [∇ · (p(x, t)D(x, t))], ∀(x, t) ∈ Rd × R+,

p(x, 0) = p0(x),

p(x)→ 0 as ||x|| → ∞,

(2)

where (x, t) ∈ Rd+1 denote the spatial-temporal variables, D(x, t) = 1
2σ(x, t)σ(x, t)

T is the
diffusion matrix, p0(x) is the initial PDF of Xt, p(x, t) is defined with the unbounded boundary
condition, ∇ is an operator for spatial variables and ||x|| indicates the ℓ2 norm of x.

The stationary solution of Eq.(2) means the invariant measure independent of time, satisfying
−∇ · [p(x, t)µ(x, t)] +∇ · [∇ · (p(x, t)D(x, t))] = 0, ∀(x, t) ∈ Rd × R+ (3)

More specifically, i.e.,

−
d∑

i=1

∂

∂xi
[p(x, t)µi(x, t)]+

d∑
i=1

d∑
j=1

∂2

∂xi ∂xj
[p(x, t)Dij(x, t)] = 0, ∀(x, t) ∈ Rd×R+ (4)

For the physical background of the FP equation, there are some extra constraints on its solution
p(x, t): ∫

Rd

p(x, t)dx = 1, ∀t ∈ R+

p(x, t) ≥ 0, ∀(x, t) ∈ Rd × R+,

(5)

which are called normalization and nonnegativity constraints.

3 RELATED WORK

To better describe our algorithm and its connections with flow-based models, it is worthwhile to
review prior research on normalizing flows.

3.1 NORMALIZING FLOWS AND CHANGE OF VARIABLES

Given a latent variable z ∈ Z ⊂ Rd drawn from a simple prior probability distribution pZ . When
normalizing flows transform z into x = f(z) ∈ X ⊂ Rd using a bijection f : Z → X, the
probability density function of x follows the change of variables formula:

pZ(z) = pX(x)

∣∣∣∣det(∂f(z)

∂zT

)∣∣∣∣ , (6)

where ∂f(z)
∂zT is the Jacobian of f at z.

To describe a complex target distribution, a sequence of invertible and learnable mappings
represented as fθ = fK ◦ · · · ◦ f2 ◦ f1 are constructed and θ denotes the trainable parameter of
the neural network. Let z1 = z, zk+1 = fk(zk)(k = 1, · · · ,K), then the log density of x = fθ(z)
is computed by

log pX(x) = log pZ(z)−
K∑

k=1

log

∣∣∣∣det(∂fk(zk)

∂zT
k

)∣∣∣∣ . (7)

There are some simple optional structures, such as planar flows and radial flows (Rezende &
Mohamed, 2015). A key challenge is to increase the representative power of normalizing flows
while simplifying the computation of the associated Jacobian determinant. NICE (Dinh et al., 2015)
employed affine coupling layers, duplicating a portion of the input while transforming the remaining
part, thereby maintaining reversibility. Real NVP (Dinh et al., 2016) introduced scale and translation
parameters, further improving the performance of the flow. Additionally, the Jacobian of Real NVP
transformations has a specific lower triangular structure, ensuring efficient computations with linear
time complexity O(d) for the logdet-Jacobian term.

It is important to note that the resulting target distribution adheres to the probability normalization
constraint, as guaranteed by the change of variables formula.

1 =

∫
ΩZ

pZ(z)dz =

∫
pX(x)

∣∣∣∣det(∂fθ(z)

∂zT

)∣∣∣∣ dz =

∫
ΩX

pX(x)dx (8)
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3.2 CONTINUOUS NORMALIZING FLOWS AND INSTANTANEOUS CHANGE OF VARIABLES

Chen et al. (2018) proposed the Neural ODE framework and derived the finite normalizing flows
to a continuous limit scheme, effectively expressing the invertible mappings using ODEs. The
latent variable z and its log probability change according to the instantaneous change of variables
theorem (Villani, 2003): 

dz(t)

dt
= fθ(z, t)

d log p (z(t), t)

dt
= −tr

(
∂fθ
∂z

)
= −∇ · fθ

(9)

By leveraging the adjoint sensitivity method to resolve augmented ODEs in reverse time, CNF
computes gradients with respect to θ and is trained directly using maximum likelihood. An
unexpected side-benefit is that the likelihood can be calculated using relatively cheap trace
operations instead of the Jacobian determinant. Moreover, the entire transformation is automatically
bijective when Eq.(9) has a unique solution. Therefore, the mapping fθ does not need to be bijective.

3.3 RELATIONSHIP BETWEEN CONTINUOUS NORMALIZING FLOWS AND FOKKER-PLANCK
EQUATIONS

Continuous normalizing flows can be related to the special case of the FP equation with zero
diffusion, known as the Liouville equation. Let z(t) ∈ Rd evolve through time according to the
degenerate Eq.(1): dz(t)

dt = f(z(t), t). As shown in Eq.(2), the probability density function p(z, t)
satisfies the FP equation represented as:

∂p(z, t)

∂t
= −∇ · [p(z, t)f(z, t)] . (10)

To compute the value of p(z, t), the characteristics method tracks the trajectory of a particle z(t).
The total derivative of p(z(t), t) is given by

dp(z(t), t)

dt
=

∂p(z, t)

∂t
+

∂p(z, t)

∂z
· dz
dt

= −∇ · (pf) +∇p · f = −p(∇ · f). (11)

By dividing p on both sides, we obtain the same result as Eq.(9). (See Appendix A.2 in Chen et al.
(2018) for more details).

4 PINF: PHYSICS-INFORMED NORMALIZING FLOWS

Let us begin by introducing the PINF algorithm for time-dependent FP equations, categorizing them
into two scenarios based on whether the diffusion term is zero. Subsequently, we will present the
special design of the algorithm for solving the steady-state FP equation.

4.1 TIME-DEPENDENT FOKKER-PLANCK EQUATIONS

The TFP equation is essentially an initial value problem (2), where the initial density function is
known.

4.1.1 TFP EQUATION WITH ZERO DIFFUSION

Problem Setup:
∂p(x, t)

∂t
= −∇ · [p(x, t)µ(x, t)]

p(x, 0) = p0(x)
(12)

The objective of solving the TFP equation is to compute the density p at any given point (x′, t′).
Following the derivation in Eq.(11), the TFP equation can be reformulated as an initial value problem
of ODEs. 

dx(t)

dt
= µ(x, t), x(t′) = x′

d log p (x(t), t)

dt
= −∇ · µ(x, t)

(13)

3



Under review as a conference paper at ICLR 2024

Notably, the increment in log p is independent of its value and solely depends on the start time t′,
the stop time t0 = 0, and the value of x. Therefore, the initial states for (x, log p) can be set as
(x′, 0), and the solution is obtained by using the corresponding output of ODE solvers, yielding
(x0,∆ log p). The specific algorithm is outlined as follows:

Algorithm 1 PINF algorithm for TFP equations with zero diffusion
Input: drift term µ(x, t), samples x′, time t′, initial PDF p0(x).

def faug([xt, log pt], t): ▷ ODEs dynamics
return [µ,−∇ · µ] ▷ Concatenate dynamics of state and log-density

[x0,∆ log p]← ODESolve(faug , [x′, 0], t′, 0) ▷ Calculate
∫ 0

t′
faug([x(t), log p(x(t), t)], t) dt

log p̂← log p0(x0) – ∆ log p ▷ Add change in log-density
p̂(x′, t′) = elog p̂

Output: p̂(x′, t′)

The key distinction between PINF and CNF lies in the fact that the drift µ(x, t) is known in the TFP
equation. In this context, there is no need to train fθ from the real data samples and we can simply
use ODE solvers once to obtain the outcomes.

4.1.2 TFP EQUATION WITH DIFFUSION

Problem Setup:

∂p(x, t)

∂t
= −∇ · [p(x, t)µ(x, t)] +∇ · [∇ · (p(x, t)D(x, t))]

p(x, 0) = p0(x)
(14)

We first perform some necessary transformations of the equation.

∂p(x, t)

∂t
= −∇ · (pµ) +∇ · [∇ · (pD)]

= −∇ · [pµ−∇ · (pD)]

= −∇ · [pµ− (∇p)D − p(∇ ·D)]

= −∇ · [p(µ− (∇ log p)D −∇ ·D)]

= −∇ · (pµ∗)

(15)

Let us define µ∗(x, t) := µ − (∇ log p)D − ∇ ·D. We force x to evolve through time following
dx
dt = µ∗(x, t) and get the associated ODEs by Eq.(11).

dx(t)

dt
= µ∗(x, t)

d log p (x(t), t)

dt
= −∇ · µ∗(x, t)

(16)

In particular, unlike the zero diffusion case, the ODE dynamics depend on the unknown function
log p and its gradient will not be evaluated during the forward calculation. For this reason, we
parameterize log p(x, t) as a neural network ϕθ.

Neural network architecture. The network structure is inspired by the value function representa-
tions used for stochastic optimal control (Li et al., 2022), multi-agent optimal control (Onken et al.,
2021b), and high-dimensional optimal control (Onken et al., 2022). The network is given by

u(s; θ) = w⊤N (s; θN ) +
1

2
s⊤(A⊤A)s+ b⊤s+ c, (17)

where θ = (w, θN ,A, b, c) are the trainable weights of uθ. The shapes of those parameters are listed
as follows: the inputs s = (x, t) ∈ Rd+1 corresponding to space–time, N (s; θN ) : Rd+1 → Rm,
w ∈ Rm, A ∈ Rr×(d+1), b ∈ Rd+1, and c ∈ R. The rank r = min(10, d + 1) is set to limit the
number of parameters in A⊤A. Here, A, b, and c model quadratic potentials, i.e., linear dynamics;
N models nonlinear dynamics.
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Figure 1: An illustration of the PINF algorithm for TFP equations (left) and SFP equations (right).

In our implementation, for N , we use a residual neural network (ResNet) (He et al., 2016) with
(L+ 1) layers and obtain N (s; θN ) = aL as the final step of the forward propagation

a0 = σ(K0s+ b0),

ak = ak−1 + hσ(Kkak−1 + bk), (1 ≤ k ≤ L)
(18)

where the trainable weights are K0 ∈ Rm×(d+1),Kk ∈ Rm×m(1 ≤ k ≤ L), bk ∈ Rm(0 ≤ k ≤
L), and θN = {(Kk, bk)}Lk=0. We select the step size h = 1/L and the element-wise activation
function σ(x) = log(exp(x) + exp(−x)) (Onken et al., 2021a), which is the antiderivative of
the hyperbolic tangent, i.e., σ′(x) = tanh(x). It can also be seen as a smoothed absolute value
function (Ruthotto et al., 2020).

To satisfy the initial value condition p(x, 0) = p0(x), the network ϕθ is cast as

ϕθ(x, t) = log p0(x) + tu(x, t; θ), (19)

to represent log p(x, t) (Lagaris et al., 1998). This structured design can impose hard constraints
that are strictly enforced, rather than soft constraints (Wang & Yu, 2021).

Self-supervised training method. Distinct from normalizing flows that minimize the Kullback-
Leibler divergence, we employ a self-supervised training method. Our approach eliminates the need
for labeled data or real data samples from the target distribution, which are sometimes challenging
or costly to acquire. Training data is adaptively generated based on the initial PDF.

For training ϕθ, we solve the ODEs (16) related to the network ϕθ, obtaining predictions in the form
of log pode. Moreover, the network can also output the prediction log pnet directly. We calculate the
Mean Squared Error (MSE) between log pode and log pnet and use the Adam optimizer (Kingma &
Ba, 2014).

L =
1

N

N∑
k=1

∥ log pode(xk, tk)− log pnet(xk, tk)∥2 (20)

To address issues such as small gradients and optimization difficulties in high-dimensional scenarios,
we avoid comparing ppred directly in the loss function: L = MSE(pode, pnet). Experimental results
also demonstrate that applying the logarithm function accelerates the training process.

Flexible prediction modes. With the trained ϕθ, we provide two flexible prediction modes:
numerical solutions solved by ODE solvers and continuous solutions predicted by neural networks.
This flexibility enables a trade-off between efficiency and accuracy, maintaining advantages such
as memory efficiency, adaptive solvers, and parallel computation (Kang et al., 2021). When using
neural networks for prediction, our approach is mesh-free and causality-free (Nakamura-Zimmerer
et al., 2020), similar to PINNs. Data at different time steps can be computed rapidly and in
parallel, allowing for real-time or low-power applications. Alternatively, when using ODE solvers
for prediction, we can freely choose from modern ODE solvers for adaptive computation (Runge,
1895; Wanner & Hairer, 1996). See Alg.(2) for the complete algorithm.
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Algorithm 2 PINF algorithm for TFP equations with diffusion
Input: drift term µ(x, t), diffusion matrix D(x, t), samples x, time t, initial PDF p0(x), stop time
T , maximum iteration number M , learning rate η.
def faug([xt, log pt], t): ▷ ODEs dynamics

µ∗ ← µ− (∇ϕθ)D −∇ ·D ▷ Characteristic curves dx(t)
dt

return [µ∗,−∇ · µ∗] ▷ Concatenate dynamics of state and log-density
Train ϕθ:
for k = 0, · · · ,M :

Uniformly sample tk ∈ [0, T ] ▷ Sample training data
Sample mini-batch xk

0 ∼ p0(x)
[xk, log p(xk, tk)]← ODESolve(faug , [xk

0 , log p0(x
k
0)], 0, tk)

▷ Calculate [xk
0 , log p0(x

k
0)] +

∫ tk
0

faug([x(t), log p(x(t), t)], t) dt

ODEs prediction: log pode ← log p(xk, tk) ▷ Two prediction modes
ϕθ prediction: log pnet ← ϕθ(x

k, tk)
Compute the MSE loss: L = MSE(log pode, log pnet) ▷ Calculate loss on mini-batch xk

Update the parameters θ using the Adam optimizer with learning rate η. ▷ Train ϕθ once
Predict p̂:
ϕθ mode: p̂net(x, t) = eϕθ(x,t)

ODEs mode: [x0,∆ log p]← ODESolve(faug , [x, 0], t, 0)
log p̂ode ← log p0(x0) – ∆ log p ▷ Add change in log-density
p̂ode(x, t) = elog p̂ode

Output: p̂net(x, t), p̂ode(x, t)

4.2 STEADY-STATE FOKKER-PLANCK EQUATIONS

Problem Setup:

∂p(x, t)

∂t
= −∇ · [p(x, t)µ(x, t)] +∇ · [∇ · (p(x, t)D(x, t))]

∂p(x, t)

∂t
= 0

(21)

The SFP equation replaces the initial value condition with an equation constraint (3), ensuring that
its solution remains invariant over time. Therefore, the steady-state PDF only depends on spatial
variables x and we derive another form of our problem:

−∇ · [p(x)µ] +∇ · [∇ · (p(x)D] = 0 (22)

Normalization Challenge. In the TFP equations, since the initial PDF p0(x) satisfies the
normalization constraint, the total density integral on the space domain

∫
Rd p(x, t)dx remains

conserved as the solution evolves under equation constraints or ODEs controls. Consequently, the
solution p(x, t) predicted by the PINF algorithm also satisfies the normalization constraint.

However, for the SFP equations, it is easily checked that if p(x) is the solution, then any cp(x)
(c > 0 is a constant) also satisfies the equation. In the ODEs, the scheme remains unchanged due to
∇ log(cp(x)) = ∇(log p(x) + log c) = ∇ log p(x). Hence, starting from x1 and evolving through
t1 to t2, both ODEs associated with p(x) and cp(x) reach the same point x2 and have the same
increment ∆ log p. For the ODEs of cp(x), the predicted value of log p̂(x2) is given by

log p̂(x2) = log(cp(x1)) + ∆ log p

= log c+ (log p(x1) + ∆ log p)

= log c+ log p(x2)

= log(cp(x2))

(23)

Ultimately, p(x) and cp(x) satisfy the ODEs.

Neural network architecture. We still employ a neural network ϕθ(x) to parameterize log p(x) in
ODEs (16). For the normalization constraint, we adopt the Real NVP (Dinh et al., 2016) to model
the equilibrium distribution from a Gaussian distribution pG(z;0, I). We stack L affine coupling
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layers to build a flexible and tractable bijective transformation. At each layer, given the input x ∈ Rd

and dimension n < d, the output y is defined as
y1:n = x1:n

yn+1:d = xn+1:d ⊙ exp (s(x1:n)) + t(x1:n)
(24)

where s and t represent scale and translation, and ⊙ is the element-wise product. The Jacobian of
this transformation is triangular, reads

∂y

∂xT
=

[
1n×n 0
∂yn+1:d

∂xT
1:n

diag (exp [s(x1:n)])

]
(25)

Consequently, we can efficiently compute its log-determinant as
∑

k s(x1:n)k.

Since partitioning can be implemented using a binary mask b, the forward and backward computa-
tion processes respectively follow the equations,

Forward: xb = b⊙ x

y = xb + (1− b)⊙ (x⊙ exp (s(xb)) + t(xb))

log

∣∣∣∣det( ∂y

∂xT

)∣∣∣∣ = ∑
(1− b)⊙ s(xb)

Backward: yb = b⊙ y

x = yb + (1− b)⊙ (y − t(yb))⊙ exp (−s(yb))

log

∣∣∣∣det( ∂x

∂yT

)∣∣∣∣ = −∑
(1− b)⊙ s(yb)

(26)

Here, s, t : Rd → Rd are constructed via a simple 3-layer MLP (Goodfellow et al., 2016) with the
activation function σ(x) = tanh (x).

a1 = σ(K1x+ b1),

a2 = σ(K2a1 + b2),

a3 = K3a2 + b3.

(27)

The self-supervised training method and loss function remain consistent with the previous descrip-
tion. This is the PINF algorithm for SFP equations.

Algorithm 3 PINF algorithm for SFP equations
Input: drift term µ, diffusion matrix D, samples x, maximum iteration number M , learning rate η.

def faug([xt, log pt], t): ▷ ODEs dynamics
µ∗ ← µ− (∇ϕθ)D −∇ ·D ▷ Characteristic curves dx(t)

dt
return [µ∗,−∇ · µ∗] ▷ Concatenate dynamics of state and log-density

Train ϕθ:
for k = 0, · · · ,M :

Sample mini-batch zk
0 ∼ pG(z) ▷ Sample training data

Forward computation: xk
0 , log p(x

k
0) = ϕf

θ (z
k
0 , log pG(z

k
0 ))

[xk
1 , log p(x

k
1)]← ODESolve(faug , [xk

0 , log p(x
k
0)], 0, 1)

▷ Calculate [xk
0 , log p(x

k
0)] +

∫ 1

0
faug([x(t), log p(x(t), t)], t) dt

ODEs prediction: log pode ← log p(xk
1)

ϕθ prediction: log pnet ← ϕb
θ(x

k
1)

Compute the MSE loss: L = MSE(log pode, log pnet) ▷ Calculate loss on mini-batch xk
1

Update the parameters θ using the Adam optimizer with learning rate η. ▷ Train ϕθ once
Predict p̂:

p̂net(x) = eϕ
b
θ(x)

Output: p̂net(x)

5 EXPERIMENT

In this section, we consider the following three numerical examples to test the performance of our
PINF algorithm.
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5.1 A TOY EXAMPLE

We first present a toy example, a TFP equation with zero diffusion. We employ it to illustrate that
our PINF algorithm is the method of characteristics in mathematics.

∂p

∂t
+ 2t∇ · (p1) = 0, t ∈ R+, x ∈ Rd

p(x, 0) = (2π)
−d/2

exp

(
−1

2
∥x+ 1∥2

) (28)

Here 1 ∈ Rd denotes an all-ones vector, and the diffusion term µ = 2t · 1 is independent of x. The
corresponding ODEs obtained through the PINF algorithm (1) are as follows:

dx(t)

dt
= 2t · 1

d log p(x(t), t)

dt
= 0

(29)

Consequently, the analytical solution of the equation is

p(x, t) = p(x0, 0) = p0(x− t2 · 1) = (2π)
−d/2

exp

(
−1

2
∥x+ (1− t2)1∥2

)
(30)

5.2 TFP EQUATION

We consider a relatively high-dimensional TFP equation. For this problem, the PINN is effective
primarily with the dimension d ≤ 3.

∂p

∂t
− 1

2
∆p+ 2∇ · (p1) = 0, t ∈ [0, 1], x ∈ Rd

p(x, 0) = (2π)
−d/2

exp
(
∥x∥2/2

) (31)

The exact solution is given by

p(x, t) =
1

(2π(t+ 1))
d/2

exp

(
−∥x− 2t · 1∥2

2(t+ 1)

)
(32)

Using the PINF algorithm (2), we formulate the ODEs as
dx(t)

dt
= 2 · 1− 1

2
∇ log p

d log p(x(t), t)

dt
= −∇ ·

(
dx

dt

) (33)

We solve this TFP equation of d = 10. We take L = 4 residual layers with m = 32 hidden neurons
and set training iteration M = 10000, the learning rate for Adam optimizer η = 0.01, and the
batch size is 2000. The initial spatial training set is generated from p0(x), and the corresponding
temporal training set is uniformly sampled in the interval [0, T ]. We evaluate the performance of
our PINF algorithm at the point (x1,x2, 2, . . . , 2) ∈ Rd and the stop time T = 1, where (x1,x2)
is drawn from a uniform grid within the finite spatial domain [−5, 5]2. The comparison between the
prediction and the ground truth is shown in Fig.(2) and we observe a good agreement.

Figure 2: Exact and predicted solutions for the TFP equation from Case 2 at the stop time T = 1.
Right panel: MAPE between the exact solution and the prediction pode.
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5.3 HIGH DIMENSIONAL SFP EQUATION

In this part, a SFP equation with drift term µ(x) = −ax and diffusion matrix D = σ2

2 1d×d is
considered.

−∇ · (p(x)µ) +∇ · [∇ · (p(x)D)] = 0, x ∈ Rd (34)
Its exact solution is a single Gaussian distribution, represented as

p(x) =
( a

πσ2

)d/2

exp

(
−a∥x∥2

σ2

)
(35)

In our experiment, we set a = σ = 1 and evaluate our PINF algorithm on the SFP equation with
dimensions d = 30 and d = 50. We employ L = 4 affine coupling layers and set M = 500,
η = 0.01, batch size is 2000. Since its steady-state solution is an unimodal function near the origin,
we select the test points as (x1,x2, 0, . . . , 0) ∈ Rd, where (x1,x2) is drawn from a uniform grid
within the range [−3, 3]2, resulting in total 50 × 50 = 2, 500 test points. Fig.(3) shows the exact
solution p(x) and our PINF solution p(x; θ) = ϕb

θ(x), where it can be seen that they are visually
indistinguishable, and the relative error remains below 0.2%, even for relatively high dimensions.

Figure 3: Exact and predicted solutions for the SFP equation from Case 3. Top row: d=30.
Bottom row: d=50.

6 DISCUSSION

Our proposed PINF algorithm extends CNF to the scheme with diffusion using the method of
characteristics. Compared to PINNs, which apply pointwise equation constraints, our improvements
are mainly in reformulating the FP equation as ODEs and computing the integral of the loss along
characteristic curves using an ODE solver, thereby enhancing training efficiency and stability. It
effectively addresses the normalization constraint of the PDF even in high-dimensional FP problems.

The critical distinction between PINF for FP equations and CNF for density estimation lies in
whether the drift term µ is known. In FP equations, the drift term µ(x, t) is known and we obtain its
solution by self-supervised training of a neural network. Conversely, the drift term µθ necessitates
likelihood-based training for the latter. In future work, we may explore the application of PINF with
diffusion for density estimation tasks to enhance model generalization and data generation quality.

Considering the profound physical significance and wide-ranging applications of FP equations,
the PINF algorithm can also be seamlessly integrated with large-scale mean-field games for
optimal control problems, such as path planning, obstacle avoidance, and tracking in drone swarm
applications.
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