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ABSTRACT

Generalist robot policies, trained on large and diverse datasets, have demonstrated
the ability to generalize across a wide spectrum of behaviors, enabling a single
policy to act in varied real-world environments. However, they still fall short on
new tasks not covered in the training data. When finetuned on limited demonstra-
tions of a new task, these policies often overfit to the specific demonstrations—not
only losing their prior abilities to solve a wide variety of generalist tasks but also
failing to generalize within the new task itself. In this work, we aim to develop a
method that preserves the generalization capabilities of the generalist policy dur-
ing finetuning, allowing a single policy to robustly incorporate a new skill into its
repertoire. Our goal is a single policy that both learns to generalize to variations
of the new task and retains the broad competencies gained from pretraining. We
show that this can be achieved through a simple yet effective strategy: interpolat-
ing the weights of a finetuned model with that of the pretrained model. We show,
across extensive simulated and real-world experiments, that such model merging
produces a single model that inherits the generalist abilities of the base model
and learns to solve the new task robustly, outperforming both the pretrained and
finetuned model on out-of-distribution variations of the new task. Moreover, we
show that model merging enables continual acquisition of new skills in a lifelong
learning setting, without sacrificing previously learned generalist abilities.

1 INTRODUCTION

Generalist robot policies trained on large corpora of data have recently shown impressive generaliza-
tion abilities: out of the box, they can perform a range of tasks in unseen environments, generalize
across scenes, viewpoints, objects, and language instructions (Intelligence et al.; Pertsch et al., 2025;
Kim et al., 2024; Team et al., 2025; NVIDIA et al., 2025; Liu et al., 2024b; Qu et al., 2025; Gao
et al., 2025). Albeit impressively general, these generalist policies need to be adapted to perform
downstream tasks at high performance, or on a new robot system, most commonly by finetuning
them on a curated dataset of demonstrations for the target task. While prior work has shown that
such finetuning can lead to robust policies with tens or hundreds of hours of finetuning data (Black
et al., 2024; Intelligence et al.; Bousmalis et al., 2023; Brohan et al., 2023), collecting such amounts
of robot demonstration data is challenging. As a result, in practice often less than 100 demonstra-
tions or a few hours of robot data are used for finetuning (Kim et al., 2024; Team et al., 2024; Kim
et al., 2025). Crucially, existing approaches for robot policy finetuning struggle to preserve the gen-
erality of the pre-trained model in such low-data regimes, and fail to robustly generalize far beyond
the exact viewpoints, objects, and scenarios seen in the finetuning data (Gao et al., 2025; Xiong
et al., 2020; Zhang et al., 2025; Wang, 2025; Xiang et al., 2025; Zhu et al., 2025; Kaplanis et al.,
2019). To expand the usability of generalist policies, we need robust finetuning approaches that
better preserve the generality of pre-trained robot policies and allow us to generalize to a broader set
of scenarios on the target task.

In this work, we introduce RETAIN (Robust finE-tuning wiTh pArameter mergINg), a surprisingly
simple approach for robust robot policy finetuning. We observe that, by simply interpolating the
weights of the pre-trained generalist policy before and after finetuning on the target task (see Fig. 1),
we can obtain checkpoints that match the performance of the finetuned policy on scenarios present
in the finetuning data, while generalizing significantly better to unseen variations of the target task,
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Figure 1: Naive approaches for finetuning of generalist policies narrowly improve target task per-
formance on settings seen in the finetuning data, but fail to generalize or retain generality beyond
the target task. We propose a simple solution: by averaging the generalist policy before and after
finetuning, in weight space, we obtain finetuned policies that (1) significantly improve generaliza-
tion ability to unseen variations of the target task, and (2) retain generalist capabilities on non-target
tasks. Our approach RETAIN is a simple solution for robust policy finetuning.

such as unseen object instances, positions, or viewpoints. Additionally, we observe that RETAIN
preserves the generalist capabilities of the pre-trained policy also on tasks other than the target
task, allowing us to use RETAIN in a continual learning setup by sequentially merging new skills
into pre-trained generalist policies (in a literal sense). We demonstrate the effectiveness of RE-
TAIN for robust policy finetuning and sequential skill acquisition across a range of real-world and
simulated finetuning tasks, achieving state-of-the-art finetuning performance. While previous work
has investigated interpolating model weights of pre-trained and fine-tuned models for vision and
language (Wortsman et al., 2022b;a; Ilharco et al., 2022), this is to our knowledge the first work to
investigate and analyze parameter merging for generalist robot policies and use it to enable continual
acquisition of new robotic skills.

In summary, our contributions are threefold: (1) we introduce a simple approach for robust robot
policy finetuning via policy parameter merging, (2) we extensively evaluate our approach across a
suite of real-world and simulated robot finetuning tasks, and analyze which factors enable successful
policy merging, (3) we demonstrate that our approach enables continual merging of new robot skills
into state-of-the-art generalist policies.

2 RELATED WORK

Adapting generalist policies on new tasks. Fueled by large-scale human teleoperated robot
datasets (Collaboration et al., 2023; Walke et al., 2023; Khazatsky et al., 2024; Shah et al., 2023),
generalist robot policies have recently been shown to solve a wide range of tasks across diverse
scenes (Black et al., 2024; Team et al., 2025; NVIDIA et al., 2025; Kim et al., 2024; Brohan et al.,
2023; Liu et al., 2024b; Anil et al., 2023; Sridhar et al., 2024; Qu et al., 2025). Yet, even state-
of-the-art generalist policies typically need to be adapted for any given target task to achieve high
performance (Black et al., 2024). Thus, a number of approaches have been proposed for training
generalist policies on a new target task: from simply finetuning them on a dataset of target task
demonstrations (Black et al., 2024; Kim et al., 2024; Team et al., 2025), or mixing the outputs of
the pre-trained and fine-tuned policies (Bagatella et al., 2025), to alternative approaches like on-
line and offline reinforcement learning (Mark et al., 2024; Huang et al., 2025; Yang et al., 2023b;
Hu et al., 2024; Zhou et al., 2024; Xu et al., 2024), retrieval-based adaptation (Long et al., 2025;
Di Palo & Johns, 2024) or in-context improvement (Fu et al., 2024a; Sridhar et al., 2025). In this
work, we focus on the most common setting, in which policies are finetuned on a target task using a
small dataset of demonstrations. Various finetuning approaches have been proposed in the literature,
from simply adapting the full network on the target dataset (Kim et al., 2024; Black et al., 2024), to
mixing target and pre-training data (Bousmalis et al., 2023; Fu et al., 2024b; Dass et al., 2025), or
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freezing parts of the network during finetuning (Liu et al., 2023; Liang et al., 2022; Sharma et al.,
2023; Xu et al., 2023). While such approaches may prove effective for learning robust target task
policies in “large-data” finetuning regimes with tens to hundreds of hours of finetuning data (Black
et al., 2023; Intelligence et al.; Bousmalis et al., 2023; Brohan et al., 2023), they often struggle to
retain the generality of the pre-trained policy in more common, accessible settings with 100 or less
target task demonstrations. In such scenarios, finetuned policies often struggle to generalize mean-
ingfully beyond the conditions seen in the finetuning dataset (Zhang et al., 2025), even if the base
policy had broad generalization capabilities. In this work, we propose a simple alternative for robust
policy finetuning in low-data regimes. Instead of directly using the finetuned policy, we observe
that merging the pretrained and finetuned policy checkpoints in weight space leads to significantly
improved generalization on target tasks at no additional training or inference cost.

Model parameter merging. Our approach is inspired by work on model weight merging in com-
puter vision and natural language processing domains (Wang et al., 2024b; Yadav et al., 2023; 2024;
Nasery et al., 2025; Lu et al., 2025; Jang et al., 2024; Matena & Raffel, 2022; Yang et al., 2023a; Jin
et al., 2022). These works demonstrate that interpolating between the weights of multiple finetuned
models, or between pre-trained and finetuned models, can combine their capabilities or make them
more robust to distribution shifts (Wortsman et al., 2022b;a; Ilharco et al., 2022; Neyshabur et al.,
2020). To our knowledge, our work is the first to demonstrate the effectiveness of model merging in
the context of generalist robot policies, and combining it with co-training to further improve upon
vanilla model merging. Additionally, we analyze the importance of different parameter groups in
vision-language-action (VLA) policies and find it often sufficient to only merge parameters from the
language model.

Continual learning. The focus of our work is on improving generalization of finetuned policies
on a target task. However, in addition, we find that our model merging approach is also effective at
retaining the generalist policy’s performance on tasks from the pre-training distribution. As such, we
demonstrate that it can be used to sequentially merge multiple skills into a single pre-trained policy
checkpoint while retaining generality. This setting is typically referred to as continual learning
and there is a large body of literature, both outside (Kirkpatrick et al., 2017; Schwarz et al., 2018;
Lopez-Paz & Ranzato, 2017; Wang et al., 2024c) and within robotics (Lesort et al., 2020; Auddy
et al., 2023; Wan et al., 2024; Meng et al., 2025; Liu et al., 2024a; Wołczyk et al., 2021). Our work
differs from this line of research in that we aim to inherit and pass on the generalization ability of a
pre-trained model to learn new tasks robustly, whereas continual learning methods generally focus
on not forgetting old skills seen during the agent’s lifetime.

3 PROBLEM SETTING

The goal of our work is to develop an approach for robust policy finetuning, in which a generalist
policy is finetuned to a new target task and generalizes to unseen variations of that target task,
like new object instances, viewpoints, scenes, or lighting conditions. Formally, let M denote
an environment, S denote observations (e.g., images, proprioception), A actions, and T task
specifications (e.g., language prompts). A policy πθ(at | st, T ) maps state st ∈ S and task T ∈ T
to a distribution over actions at ∈ A. We assume access to a pretrained generalist policy πθpre ,
trained on a diverse set of tasks and environments, and denote its training data as Dpre. For a
new target task Tτ (e.g., “wipe the whiteboard”), we assume access to a demonstration dataset
Dτ =

{
(s

(i)
t , a

(i)
t , T (i))

}
. In general, we assume that Dτ is collected in a single (or small

number) of environments Mτ , and |Dτ | ≪ |Dpre|.

Behavioral cloning & finetuning. For adapting the policy to the target task, we consider the stan-
dard behavioral cloning (BC) objective. For policy parameterization πθ and demonstration dataset
D, the training objective is defined as:

LBC(θ ; D) := − 1

|D|
∑

(st,at,T )∈D

log πθ(at | st, T ). (1)

We consider two primary finetuning settings: Task-finetuning (task-FT), in which we train ex-
clusively on the target dataset Dτ (e.g., because the pre-training dataset is proprietary); and co-
finetuning (co-FT), in which we finetune on a mix of Dτ and Dpre to help preserve pre-training
capabilities (e.g., in case of open-source pre-training datasets).
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Evaluation. In practice, when we finetune a policy, we don’t simply want it to work only in the
setting where we collected the finetuning demonstration, but for it to complete the demonstrated
task in a variety of contexts or scenes. Current methods often fail in this regime because they
overfit heavily to the small finetuning dataset. Therefore, to assess overfitting and robustness of the
finetuned policy, we evaluate the performance of finetuned policies in the following three settings:

1. Target task in-distribution (ID): measures policy performance on the target task Tτ , with ob-
jects, initial poses/layouts, camera placements, lighting conditions, and backgrounds observed in
the finetuning dataset Dτ .

2. Target task out-of-distribution (OOD): measures the performance on the target task, in sce-
narios not observed in the finetuning dataset, such as changes in object instances, backgrounds,
lighting conditions and camera angles. This measures the robustness of the finetuned policy.

3. Generalist tasks: measures policy performance on tasks other than the target task, but for which
we would expect the generalist policy πθpre to perform reasonably. This measures how well the
finetuned policy retains generalist capabilities from the pre-trained model.

4 CHALLENGES OF FINETUNING GENERALIST ROBOT POLICIES

To understand the challenges of robust finetuning of generalist robot policies, we start by evaluat-
ing standard finetuning approaches for robot policies. We evaluate these approaches in the Libero
simulator (Liu et al., 2024a), a multi-task robotic manipulation simulator containing 130 total tasks.
Concretely, given a state-of-the-art vision-language-action policy (Black et al., 2024), pre-trained
on demonstration data from 117 tasks from the LIBERO-{90, goal, spatial, object} suites, we fine-
tune it to a new Libero target task mugs-on-plates. We then measure performance in the three
scenarios introduced in Section 3: ID, OOD, and Generalist tasks. For OOD evaluations on the
target tasks, we alter object positions, add new distractors, and change backgrounds. Generalist
evaluations are performed over 20 tasks from the pretraining dataset.

Figure 2: Standard approaches for policy finetuning finetuning often overfit. As the policies
are trained for more gradient steps, they perform worse on tasks other than the new target task
(“GENERALIST”) and even start to degrade on scenarios seen in the finetuning data (“ID”). Most
imporatantly, none of the approaches can transfer the generality of a base policy to do well under
variations of the target task (new object positions, instances, viewpoints; “OOD”).

We evaluate standard full model finetuning, as well as multiple common approaches for robust
finetuning: co-finetuning (Dass et al., 2025), weight freezing (Zhang et al., 2025), and LoRA fine-
tuning (Hu et al., 2022). We report the performance of all approaches in Fig. 2 1. We find a clear
tradeoff between generalist and ID target task performance: though the model gets better in ID tar-
get task after fine-tuning , it increasingly loses more and more generalist capabilities. While Co-FT
and LoRA slow down the loss in generalist abilities, they do not completely prevent it. In addition,
when the model is finetuned for too long, it even starts losing performance for ID tasks. Both of
these phenomenon are likely because the model has severely overfitted to the small demonstration
dataset, and is unable to do any other task or recover from small mistakes unseen in the dataset.
More importantly, all tested checkpoints show a large gap between ID and OOD performance: the
models are not able to complete the task when there are small variations to the finetuning dataset.
This is because none of the approaches are able to transfer the generality of the pre-trained model to
the target task.

1See more ablations of learning rates and number of gradient steps in Appendix A.2.
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5 RETAIN: ROBUST POLICY FINETUNING VIA MODEL MERGING

The previous section illustrates that standard finetuning approaches quickly cause the model to forget
its generalist capabilities, and fail to transfer the pre-trained policy’s robustness to the target task.
To address these two issues, we propose RETAIN (Robust finE-tuning wiTh pArameter mergINg),
a simple approach for robust finetuning of robot policies. Given pre-trained policy weights θpre and
finetuned policy weights θft, we propose linearly interpolating θpre and θft in weight space to obtain
a final policy checkpoint, θ̃. That is, RETAIN produces a final policy πθ̃ by setting:

θ̃ = (1− α) · θpre + α · θft (2)
for α a tunable merging weight. Though surprisingly simple, as we will see, this weight space
“merging” of pre-trained and finetuned checkpoints leads to significantly improved OOD perfor-
mance on the target task, while retaining generalist policy capabilities (see Section 6.6). While
weight merging itself already improves the policy’s ability to retain and pass on generalist abilities,
in the following we introduce two further improvements: utilizing the pretraining data Dpre, in
settings where it is available, to augment our task data Dτ during finetuning, and merging θpre
and θft in a modality-specific manner. We will introduce these two methods below, and show how
RETAIN can also enable continual adaptation to new tasks.

5.1 CO-FINETUNING

In Eq. (2), the finetuned policy weight θft can either be optimized via task-finetuning or co-
finetuning, as described in Section 3. In situations where the pre-training dataset, or a subset of
it, is available, we can finetune the policy weight on a mix of Dpre and Dτ . Such co-finetuning usu-
ally leads to better retention of generalist abilities after finetuning (Bousmalis et al., 2023; Fu et al.,
2024b; Dass et al., 2025). While co-finetuning helps not forget prior knowledge, it is not effective
at utilizing the prior knowledge to generalize in a new target task (see Fig. 2). Instead, we find that
we can use model merging together with co-finetuning, which we will refer to as RETAIN-co-FT, to
enable greater generalization on the target task and better preserve generalist knowledge than model
merging with task fine-tuning, which we call RETAIN-task-FT(see Section 6).

5.2 MODALITY-SPECIFIC MERGING

Image 
Enc.

LLM Backbone Action 
Expert

aLanguage 
Instruction

Figure 3: State-of-the-art generalist
policies typically consist of a vision en-
coder, language model backbone, and
action decoder (“action expert”).

While prior works have explored model-merging in the
context of uni-modal vision or language models (Lu et al.,
2025; Jang et al., 2024; Matena & Raffel, 2022; Yang
et al., 2023a; Jin et al., 2022; Wang et al., 2024a), robotics
is fundamentally a multi-modal problem. Modern gen-
eralist robot policies are typically instantiated as vision-
language-action (VLA) models (see Fig. 3) that consist of
a vision encoder (v), a large language model backbone (l),
and often an “action expert” module that decodes robot
action outputs (a). We find that, in such multi-modal
settings, it can be advantageous to use separate merging
weights for different modalities. As such, we can expand the RETAIN merging objective to:θ̃v

θ̃l
θ̃a

 =

[
1−

αv

αl

αa

]
·

θpre,v
θpre,l
θpre,a

+

αv

αl

αa

 ·

 θft,v
θft,l
θpre,a

 (3)

We show in Section 6.5 that, somewhat surprisingly, in many settings it suffices to only merge the
parameters of the language model backbone, and that this can even increase OOD robustness as
compared to merging all parameters.

5.3 CONTINUAL TASK ADAPTATION

We observe that RETAIN enables finetuned policies to retain the generalist capabilities of the pre-
trained policy. As such, we can use RETAIN to sequentially add tasks into a pre-trained checkpoint
by iteratively merging finetuned weights into the base model and continuing to finetune from the
merged checkpoint (see Fig. 4). Formally, for a sequence of target tasks τ1, . . . τN we can compute
a sequence of adapted RETAIN policies that accumulate new task capabilities as:

θ̃n = (1−α) · θ̃n−1 +α · θft,n
∣∣
n ∈ {1...N} (4)
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θpre θ̃1

θft,1

τ1
θ̃2

θft,2

τ2

Task 1 Task 2

τ3

Figure 4: RETAIN enables continual merging of new skills
into generalist policy backbones.

where θft,n denotes the parameters
finetuned on the nth task. Here, we
use vector notation θ̃,α for multi-
modal model parameters and merg-
ing weights.

6 EXPERIMENTS

The goal of our experiments is to
evaluate RETAIN’s ability to robustly
finetune generalist policies to new
tasks, i.e., to broaden the finetuned
policy’s ability to generalize to un-
seen settings in the target task. Concretely, we aim to answer the following questions: (1) Can
RETAIN learn a new skill robustly and generalize more broadly to variations of the skill than prior
finetuning approaches? (2) What factors influence whether we can effectively merge pre-trained and
finetuned policy? (3) Can RETAIN enable continual merging of skills into pre-trained policies by
retaining generality on tasks other than the finetuning task?

6.1 EXPERIMENTAL SETUP

OOD

ID

DROID whiteboard DROID plates LIBERO 

items-into-basket

Figure 5: (Updated) We evaluate policy finetuning on two real-world DROID finetuning tasks (left,
middle) and three simulated Libero finetuning tasks (right, only one visualized here). In each task,
we collect a modest number of demonstrations (50–150) in a comparatively narrow setting (yellow),
but evaluate on a much broader set of variations for the same task (green), including variations to
scene, object instances, initial positions, lighting conditions, distractors, and viewpoints. This tests
transfer of the generalization ability of the pre-trained policy to the target task.

Environments and tasks. We evaluate RETAIN in real-world and simulated finetuning settings
(see Fig. 5)2. For our real-world experiments, we use the DROID robot setup (Khazatsky et al.,
2024), which consists of a 7-DoF Franka robot arm with a wrist-mounted camera and at least one
external camera. We design two challenging fine-tuning tasks: wiping the whiteboard with an eraser
(which we call whiteboard) and putting the dishes into a drying rack (which we call plates).
For both tasks, we collect 50 and 100 demonstrations, respectively. All demonstrations are col-
lected in a single environment with minor position variations (see Fig. 5, top, “ID”), to mirror the
variation in typical narrow-data finetuning regimes (Zhang et al., 2025). We test generalization
of the finetuned policies on a much broader set of target environments (Fig. 5, bottom, “OOD”),
which include unseen backgrounds, object instances, and camera views. For our simulated ex-
periments, we use the Libero simulation environment (Liu et al., 2024a). We finetune policies
pre-trained on the Libero-{object, spatial, goal, 90} datasets to three new tasks: pot-on-stove,
mugs-on-plates, and items-into-basket. We use ≈ 45 demonstrations per task, ob-
tained after filtering and preprocessing the 50 demos provided with the Libero simulator, which only
contain minor variations to the initial positions of each object, and again test on a much broader dis-
tribution of initial positions, backgrounds, and additional distractors (see Fig. 5, right). More setup
details can be found in Appendix A.4 and Appendix A.5.

2We use one of the three OOD scenes as the validation set to tune the merging coefficient, and the rest two
sets as the test set. See Appendix A.6 for details.
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Pre-trained policies. We use state-of-the-art pre-trained robot policies for our experiments. Con-
cretely, for our real-world DROID experiments, we use π0-FAST-DROID (Pertsch et al., 2025), the
best open-source DROID policy at the time of our experiments as judged by the RoboArena policy
ranking (Atreya et al., 2025)3. For Libero, we use a π0 (Black et al., 2023) policy fine-tuned on the
Libero-{object, spatial, goal, 90} datasets as our pre-trained policy.

Comparisons. Although prior methods have not primarily focused on evaluating robustness of
finetuned policies to task variations significantly outside the finetuning dataset, we compare against
such approaches, including those that incorporate regularization techniques to reduce overfitting.
Concretely, we compare our approach, RETAIN, to: “Task-FT”, which finetunes the pre-trained
policy only on the target task dataset using behavioral cloning (Eq. (1)) (Bain & Sammut, 1995;
Black et al., 2024); “Co-FT”, which finetunes on a mix of pre-training and target task data to reduce
overfitting (Fu et al., 2024b; Dass et al., 2025), “LoRA”, which uses low-rank adaptation (Hu et al.,
2022) during finetuning to retain more of the pre-training capabilities (Mittenbuehler et al., 2023;
Kim et al., 2024); “Freeze-FT”, which freezes the language model backbone during finetuning and
only updates the vision encoder, and, in the case of π0, the action expert output head, following
similar approaches in prior work, e.g., Kim et al. (2024); Zhang et al. (2025); Scratch, which learns
a policy from scratch on the demonstration dataset instead of finetuning a generalist policy. For
more details about the policy classes and implementations, see Appendix A.7. Appendix A.6 details
our choice of hyperparameters and tuning process.

6.2 RETAIN SOLVES THE FINETUNING TASK IN A BROADER RANGE OF VARIATIONS

We compare RETAIN with the aforementioned baseline methods when finetuning to a new task, and
show the performance on the three types of evaluations. Fig. 6 shows results averaged across two
DROID environments, and Fig. 7 shows the average of three LIBERO environments. The ID and
OOD evaluations (first two subplots in each) show how well a method learns a new skill: ID evalua-
tions show whether the method learned to fit the demonstration dataset exactly, and OOD evaluations
assess whether the method has learned to generalize to the same task exhibiting variations not seen
in the finetuning dataset.

Figure 6: (Updated) RETAIN results on two DROID tasks,
whiteboard (top) and plates (bottom). RETAIN sig-
nificantly outperform baselines in OOD evaluation and is
competitive in ID evaluations, showing that it is able to learn
new skills robustly and can generalize to its variations using
pretrained knowledge. RETAIN also does best on generalist
evaluations, showing that it is best at retaining abilities to
solve old tasks.

On real-world DROID environ-
ments (Fig. 6), all methods perform
much better on ID evaluations after
finetuning, showing that the policy
has adapted to the new task in the ex-
act same context as the demonstration
dataset. In ID evaluations, methods
that use regularization, such as LoRA
and Co-FT, perform slightly worse in
ID evaluations, likely because they
are too constrained to adapt well to
the new task. In OOD evaluations,
baseline finetuning methods perform
significantly worse: while they can
complete the new task with 70−80%
success rate in the ID setting, they
have 40 − 50% success rate in the
OOD setting. This shows that the
baseline methods are very sensitive to
small variations (such as object loca-
tion change, scene change) and can-
not generalize to perform well. In
comparison, both RETAIN-task-FT and RETAIN-co-FT perform much better, achieving a 70−80%
success rate in OOD evaluations. Note that this is similar their respective performance in ID eval-
uations, suggesting that RETAIN can perform a generalized new skill with the same performance
regardless of variations. In OOD evaluations, RETAIN enables the policy to outperform both the
base model and the finetuned models.

3The current strongest policy, π0.5 (Intelligence et al.), was only open-sourced in early September 2025.
We look forward to testing RETAIN on π0.5 in the future.
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In LIBERO environments (Fig. 7), all methods exhibit similar trends as those in DROID environ-
ments. Since the LIBERO simulation is a much easier task than real world robotic tasks, baseline
fine-tuning methods achieve near-perfect performance in ID evaluations. Under OOD evaluations,
both RETAIN-task-FT and RETAIN-co-FT help improve the policy’s robustness to scene variations.
We observe that the improvement in OOD performance in LIBERO is smaller than that in DROID,
and we attribute this to the lack of generalist capabilities of the base model. For DROID, the base
model π0-FAST was trained on 76k diverse trajectories in 564 scenes, while the LIBERO base model
is only trained on 5.3k trajectories in 117 scenes with fairly limited diversity. As such, the LIBERO
base model contains much less generalist ability than the DROID base model, and so merging with
it inherits less generalization power, giving less improvement under OOD evaluations.
6.3 RETAIN STILL PERFORM WELL ON TASKS FROM THE PRETRAINING DISTRIBUTION

Figure 7: (Updated) RETAIN results averaged over the three
LIBERO scenes. Similar trend as Fig. 6.

As we have shown above in Sec-
tion 6.2, RETAIN allows the model
to not overfit to the finetuning dataset
and generalize to solve a broader
distribution of the finetuning task.
One natural question is whether RE-
TAIN has overfitted to the finetuning
task distribution, and whether it can
still solve tasks under the pretrain-
ing distribution. To evaluate retention
of generalist skills, we evaluate RE-
TAIN and baselines under our generalist evaluation scenes. For DROID, we evaluate on 44 different
real-world tasks; for LIBERO, we evaluate on 20 random tasks in the LIBERO pretraining dataset
(5 each from Libero-{object, spatial, goal, 90}). Fig. 6 and Fig. 7 (right subfig) show that RETAIN
performs just as well as the pretrained model on generalist evaluations, showing that the merged
model has not lost its ability to solve old tasks seen during pretraining. In particular, RETAIN works
even better when combined with co-finetuning; we will offer more discussion on this in Section 6.4.

6.4 MODEL MERGING PERFORMS BETTER WITH CO-FINETUNING

In Fig. 6 and Fig. 7, RETAIN-co-FT outperforms RETAIN-task-FT in all three evaluation settings
in almost all tasks. In particular, RETAIN-co-FT is particularly effective at improving performance
in generalist evaluation. In fact, we observe in LIBERO that co-FT is just as effective at generalist
evaluation as RETAIN-co-FT, but worse under OOD evaluations. We hypothesize this is because co-
finetuning and model merging play different roles in the regularization process: co-finetuning helps
the finetuned model not overfit to the small target dataset by continuous training on pretraining data,
but does not help elicit pretrained knowledge to help generalization on the new task; on the other
hand, model merging explicitly tries to elicit pretrained knowledge and combine it with finetuning
knowledge in parameter space, but doing so with a task-FT model is worse at keeping pretraining
abilities because the task-FT model is overfitted to the target dataset.

6.5 ANALYZING IMPORTANCE OF MERGING DIFFERENT PARAMETERS IN RETAIN

Figure 8: RETAIN performs best when
most of the weights come from the fine-
tuned model. Plot shows OOD perfor-
mance on three types of OOD variations
averaged across three LIBERO tasks.

In this section, we seek to build a mechanistic understand-
ing of how the merging coefficient impacts the perfor-
mance of merged models. To begin with, we try to un-
derstand how changing the coefficient α in Eq. (2), when
all parameters are interpolated with the same value, im-
pacts performance. In Fig. 8, we plot OOD performance
against α averaged across three LIBERO tasks, each with
three types of OOD scenes. α = 0 corresponds to the pre-
trained model, and α = 1 corresponds to the co-finetuned
model without merging. Model merging (0 < α < 1)
helps improve model performance in OOD evaluation, as
long as the merged model is not too deviated from the
finetuned model. When the merged model is too simi-
lar to the pretrained model, it does not have enough task-
specific knowledge, and has near 0 performance. And as
we have shown in Fig. 7, the model with the α value that
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has the best OOD performance is also comparable in ID
evaluations and better at generalist evaluations.

Next, we explore whether merging different parameters with different coefficients has an impact on
the merged policy’s performance. Specifically, we consider modality-specific merging in the context
of VLA policies. As explained in Section 5.2, we use separate coefficients for merging the parame-
ters of the vision encoder, language model, and action expert. Fig. 9 (left) shows the OOD perfor-
mance of the merged model as we vary αv , αl, and αa from 0 to 1 on the mugs-on-plates task:
dark colors represent low OOD performance, and light colors represent high OOD performance.
Observe that the cube has the largest color gradient in the αl direction: this shows that the language
model parameters have the most influence on performance. Interestingly, we see that αl = 1 does
not yield the best performance; the best performing models has αl = 0.8 (see the highlighted plane
at αl = 0.8 in Fig. 9 (left) for the brightest colored dots). Next, to understand how αv and αa impact
performance, we plot in Fig. 9 (middle) the change in OOD performance with these two coefficients
when averaged over αl. This 2D plot essentially squashes the 3D cube plot in the language direc-
tion. Unlike the behavior of αl, higher values of αa and αv lead to better performance; the best
performance is achieved at αa = αv = 1.

Figure 9: Language model parameters have the most influence in modality-specific merging. Left:
Merged model’s OOD performance over a grid search of αa, αv, αl, and αl has the most impact.
Middle: OOD performance of αa and αv averaged over different αl, and higher values are better.
Right: Merging only the language model parameters (αa = αv = 1, αl < 1) improves performance
over a uniform coefficient α for all parameters.

These results suggest that during model merging, it may suffice to only merge the parameters of
the language model backbone (αl < 1) and leave the parameters in the vision encoder and the
action expert set to the parameter values in the finetuned model (αa = αv = 1). To validate this
hypothesis, we compare the OOD performance of merging all parameters with RETAIN (0 < α < 1)
to only merging language model parameters. In Fig. 9 (right), we plot the performance of the
two merging schemes over three different LIBERO tasks, each averaged over three types of OOD
scenes. Somewhat surprisingly, the result shows that the two merging schemes achieve very similar
performance, indicating that we only need to merge parameters from the language model backbone
(instead of all parameters) to inherit the model’s generalization ability and robustness to variations
in the target scene. To the best of our knowledge, this is the first work to demonstrate the importance
of different parameter groups for model merging in VLAs. We believe this may inform future work
on finetuning VLAs, providing insight on which parameter groups are most critical.

6.6 RETAIN ENABLES LEARNING MULTIPLE SKILLS ROBUSTLY

Figure 10: (Updated) RETAIN enables continual
adaptation to a sequence of two skills. OOD per-
formance averaged across two test scenes.

Finally, we test whether RETAIN can enable
learning multiple skills in sequence, as de-
scribed in Section 5.3, and still retain its gen-
eralist abilities. We consider learning the two
DROID tasks sequentially, first finetuning on
plates, and then using this as an initializa-
tion to finetune on whiteboard. As outlined
in Section 5.3, RETAIN uses the merged model
from the first stage of finetuning as initializa-
tion for the second finetuning stage. During
evaluation time, we test whether the final pol-
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icy, after it has sequentially been trained on both tasks, can solve both tasks under ID and OOD
evaluations. We compare against co-FT in the sequential learning setting, since it is the strongest
baseline at retaining prior knowledge in single-task finetuning (see Fig. 6). Fig. 10 shows the per-
formance of the two policies on the two tasks under both ID and OOD settings. We also plot the
performance of these two methods in the single-task finetuning setting in dashed lines. These two
comparisons serve as the oracle performance ceiling that we expect on these tasks, and is not meant
as baselines for the sequential setting. When evaluated on the first task, plates, RETAIN does
much better than co-FT in the sequential setting, showing that it is better at retaining its ability to
solve the first task even after a second round of finetuning. When evaluated on the second task,
whiteboard, RETAIN is also better than co-FT under ID evaluations. RETAIN outperforms co-
FT in the sequential setting under all tasks and evaluation types.

7 CONCLUSION
We present a simple yet effective method, RETAIN, for robust finetuning of generalist robot policies.
We show that by simply interpolating the weights of a generalist policy before and after it is finetuned
on a target task, we can “merge” the generalization ability of the base policy with the task-expertise
of the finetuned policy. Through comprehensive real world and simulated experiments, we show that
RETAIN can help the policy generalize significantly better to variations of the target task unseen in
the demonstration, and is able to retain performance on general tasks. We also apply RETAIN to
sequentially acquire new skills in a lifelong learning setting, and find that it can robustly “merge”
skills into a single policy.

8 LIMITATIONS

While we empirically verified that RETAIN works exceptionally well in helping the finetuned model
generalize to out-of-distribution variations of the task, we don’t understand the full scope of the
reasons why model parameter merging was able to lead to such generalization. This is an interesting
area for future work. We have also included some discussion in Appendix A.8 of some hypothesis
and why previous work found model parameter merging effective for vision and language tasks.
Additionally, RETAIN involves an important hyperparameter, the merginge coefficient, that can be
tuned. While we find in our real world experiments that RETAIN is robust to different values of this
parameter, slight tuning this parameter is needed. One avenue of future work is determining a good
heuristic of how to choose this value.

9 REPRODUCIBILITY STATEMENT

We describe all the implementation details in Appendix A.4 and Appendix A.5, and hyperparameter
choices in Appendix A.6, which should enable researchers to reproduce our results. We also remark
that our algorithm is extremely simple to implement. We will share the code during the review
process and also release the code publicly.
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A APPENDIX

A.1 LIBERO RESULTS DETAILS

Fig. 7 reports the average performance of three LIBERO tasks: pot-on-stove,
mugs-on-plates, and items-into-box. Here we present the individual performance for
all three tasks in Fig. 11.

A.2 ABLATION ON LEARNING RATE AND GRADIENT STEPS

Here, we ablate the learning rate and number of gradient steps we take in the task-FT policy in
Fig. 2 to study whether better hyperparameter choices can reduce or resolve overfitting4. In Fig. 2,
we use learning rate 2.5e − 5. Here in Fig. 12, we ablate four different learning rates: one greater
than the original and two smaller. We evaluate the model at every 100 gradient steps to also ablate
on the number of gradient steps we take. With a larger learning rate, it’s clear that the overfitting
issue is more severe, and the performance on all three kinds of evaluations (ID, OOD, Generalist)
go down to near zero. With a smaller learning rate, the model still performs well in ID evaluations,

4Following the best practice from Black et al. (2024), we always use a learning rate warmup period of 1000
steps in LIBERO and a consine decay schedule over 30k steps to 1/10 of the peak learning rate. The learning
rate we report here are the peak learning rate.
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Figure 11: (Updated) Detailed results on performance of the three LIBERO tasks:
pot-on-stove, mugs-on-plates, and items-into-box.

and suffers less from forgetting generalist capabilities (measured from Generalist evaluations). This
is to be expected because the finetuned model is closer to the pre-trained model with a smaller
learning rate. However, note that with a smaller learning rate, the OOD evaluation performance is
also worse. We plot the OOD performance achieved using the original learning rate in Fig. 2 as
the dotted orange line in Fig. 12, and the gap between the dotted and solid orange line shows the
performance gap in OOD evaluation when we lower the learning rate, possibly due to underfitting.
This new experiment shows that tuning the learning rate and the number of update steps does not
solve the problem of overfitting during finetuning. While lowering the learning rate can retain more
generalist knowledge, it does not prevent the gradual loss of it. More importantly, lower the learning
rate leads to worse OOD evaluation performance.

Figure 12: Ablation on learning rate and number of gradient steps for task-FT on
mugs-on-plates task in LIBERO.

We also perform the same ablation on co-FT, and present the results in Fig. 13. The trend remains the
same, and shows that with lower learning rate we also see a drop in OOD evaluation performance,
possibly again due to underfitting.

A.3 ANALYSIS OF FINETUNING PATH IN PARAMETER SPACE

To understand why model parameter merging helps, we first try to understand here how the model
parameter changes during fine-tuning. In particular, we are interested in understanding how linear
the finetuning path is in parameter space, since model parameter merging only moves weights in
linear paths.
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Figure 13: Ablation on learning rate and number of gradient steps for co-FT on mugs-on-plates
task in LIBERO.

Figure 14: Cosine similarity of parameter difference vectors during finetuning, showing that the
finetuning path is highly non-linear.

To start out, we check the colinearity of the vectors θi+1−θi and θi−θi−1, where θi is the parameter
of the finetuned checkpoint at gradient steps 100∗i (i.e. we plot the difference vector every 100 steps
during finetuning). We measure the colinearity as the cosine similarity between the two difference
vectors. Fig. 14 shows this for the four different learning rates we ablated in Fig. 12. Since no values
are close to 1, this shows that the changes in parameter space is highly non-linear. This is expected
since the parameter trajectory of deep neural networks is often highly non-linear.

Next, we attempt to more directly visualize the path/direction of the parameters during finetuning
by projecting them down to 2D with Principal Component Analysis (PCA). Specifically, we again
consider the difference of the weight vectors, Xi = θi+1 − θi, at every 100 steps during finetuning.
In Fig. 15, we plot the first two principal components of Xi in blue, and label the points i. Indeed,
we see that for all learning rates, the direction of the parameters is highly non-linear. With small
learning rates, the direction oscillates a lot; with larger learning rates, the direction bends in a certain
direction. In addition, we plot the two principal components of the parameter-merged model as well
in orange. As expected, since the the merged model takes a linear path and the finetuned one does
not, the two models end in in very different places in the parameter space. This shows that model
merging achieves a different solution than any checkpoints on the finetuning path.

Finally, we analyze changes in all directions of the difference vectors Xi, instead of just the two prin-
cipal components as shown in Fig. 15. We take the difference vector matrix Y = [X1;X2; ..., Xn]
and compute the singular values of Y Y T and Fig. 16. If the difference vectors lie in a linear path,
then all difference vectors would point in the same direction and there should only be 1 non-zero
singular value. However, it’s clear from Fig. 16 that most singular values are non-zero, showing
that the path is non-linear in many dimensions. This generalizes the intuition from Fig. 15 to more
dimensions, and shows that model merging indeed achieves a different solution than the finetuning
path.

All these analysis experiments goes to show that the finetuning path is highly non-linear, and there-
fore model parameter merging actually results in a different solution than the finetuned models.
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Figure 15: PCA projection of the parameter difference during finetuning to 2D. Each subplot corre-
sponds to a different learning rate.

Figure 16: Singular of the parameter difference during finetuning. Each subplot corresponds to a
different learning rate.
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A.4 DROID SETUP DETAILS

This section outlines the details of the DROID setup that we used for our real-world experiments.

A.4.1 DATASETS: WHITEBOARD

The whiteboard task-dataset consists of 50 human tele-operated trajectories collected using a Oculus
Quest 2 controller. As explained in 6.1, we collect the demonstrations with a fixed setup, with the
only diversity being 5 different eraser initial positions and 2 orientations (vertical / horizontal). All
demonstrations use the language prompt ”wipe the whiteboard”. Each step in our dataset consists
of a base camera image (always collected from the right external camera), a wrist camera image,
8D-state, 8D-action, and the language instruction.

A.4.2 DATASETS: PLATES

The plates task-dataset consists of 100 human tele-operated trajectories collected in a similar manner
as above. Again, the demonstractions are collected with a fixed setup, with the only diversity being 5
plate colors, 2 dish racks, and 2 dish rack orientations (vertical / horizontal). 80 of these 100 demos
also contain distractor objects chosen from a training set of distractors. All demonstrations use the
language prompt ”put the plate in the dish rack”.

A.4.3 TRAINING DETAILS

We utilize [7x joint angles, 1x gripper position] as our proprioceptive state and [7x joint velocity,
1x gripper position] as our actions both during training and inference. We also use the norm-stats
of the DROID dataset, publicly available here, to normalize states and actions during training and
inference by applying quantile-normalization. The base and wrist camera images go through several
transforms (random crop, resizing to 224x224, and color jitter) during training.

The finetuning is performed with an action horizon of 10 environment steps, thus the policy learns
to output action chunks of shape (10,8).

A.4.4 EVALUATION DETAILS

We use the 7-DoF Franka robot arm for our experiments. We use the same language instruction as
training during evaluation, resize our images to 224x224, use the same state/action space specifica-
tion, and normalize in the same manner as training.

During evaluations, we additionally binarize the policy’s gripper action’s to 0/1 (open/close), as
well as clip action magnitudes. The policy’s action horizon is 10 environment steps, and during
evaluation, we set the open loop horizon to 8: so, during evaluation, we receive 10 actions from the
policy, execute the first 8, and then request a new action chunk. We execute the predicted actions at
a control frequency of 15 Hz.

The policy is served on a NVIDIA H200/H100 throughout our evaluations. As the openpi repository
specifies, inference requires at least 8 GB of VRAM.

A.4.5 EVALUATION CRITERIA: WHITEBOARD

For all whiteboard evaluations, we use the criteria specified in 1 to assign partial success. We
perform 10 trials per policy evaluation, for both the ID and OOD evals.

A.4.6 EVALUATION CRITERIA: PLATES

For all plates evaluations, we use the criteria specified in 2 to assign partial success. We perform 10
trials per policy evaluation, for both the ID and OOD evals.

A.4.7 GENERALIST EVALUATIONS DETAILS

As detailed in3 and 4, we measure policies’ generalist capabilities by evaluating them on 44 tasks,
distributed throughout 9 distinct scenes and 17 different language instructions. Importantly, to en-
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Subtask Cumulative Score
Pick up Eraser 0.2
Approach Whiteboard 0.4
Set Eraser on Whiteboard While Still Grasping It 0.6
Performs the Wiping Motion 0.8
Erases ≥ 90% of Text 1.0
Penalty: -0.1 if any of the above is done, but the eraser got flipped in the process.

Table 1: Subtasks and cumulative score for the whiteboard task.

Subtask Cumulative Score
Picks up Plate 0.2
Moves to Dish Rack 0.4
Rotates and Aligns Over a Groove 0.6
Tries to Insert Plate Into a Groove 0.8
Successfully Inserts Plate Into a Groove 1.0
Penalty: -0.1 if any of the above is done but with the small grooves.
Partial: 0.5 if it tries to do the inserting motion but the plate is misoriented.

Table 2: Subtasks and cumulative scoring for the plates task.

sure fair comparison, we ensure that the initial conditions, camera angle, ligthing, and all other such
factors per task are kept the same across the various policies that we evaluate.

A.5 LIBERO SETUP DETAILS

This section outlines the details of the LIBERO setup that we used for our simulated experiments.

A.5.1 LIBERO PRETRAINING

In order to obtain a base-model to serve as the starting point for RETAIN in LIBERO, we pre-train
π0 on a mixture of LIBERO datasets. Specifically, we use 90 tasks from LIBERO-90, 9 tasks from
LIBERO-object, 9 tasks from LIBERO-spatial, and 9 tasks from LIBERO-goal, for a total of 117
tasks in our pretraining dataset. For all LIBERO datasets, pretraining and finetuning, we utilize
pre-processed RLDS versions gathered from here and here. These datasets consist of LIBERO
demonstrations that have been preprocessed to upscale images, filter out transitions with idle actions,
and remove failure trajectories. More details for the pretraining stage itself can be found in A.6. All
subsequent training and evaluation uses the normalization stats of this pretraining dataset, applying
mean/standard-deviation normalization.

A.5.2 LIBERO FINETUNING DATASETS

As mentioned in 6.1, we finetune on 3 tasks from LIBERO-10: pot-on-stove,
mugs-on-plates, and items-into-basket. For each dataset, we obtain pre-processed and
filtered versions as described above. 17 highlights what these finetuning tasks, and thus also our ID
evals, look like.

The language instructions for each libero fine-tuning dataset are:

• pot-on-stove: ”turn on the stove and put the moka pot on it”

• mugs-on-plates: ”put the white mug on the left plate and put the yellow and white
mug on the right plate”

• items-into-basket: ”put both the alphabet soup and the cream cheese box in the
basket”
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Scene Image Task # Trials Randomization Rubric

put the spoon in the dish
rack 4 swap spoon and carrot position,

2 evals each

1: pick up spoon; 1.5: move
spoon towards dish rack; 2: put
spoon in dish rack (anywhere)

put carrot in bowl 4 swap spoon and carrot position,
2 evals each

1: pick up carrot; 1.5: move car-
rot towards bowl; 2: put carrot
in bowl

put plate in dish rack 2 randomize initial position of the
plate in front of the robot

1: pick up plate; 1.5: move plate
towards the dish rack; 2: put
plate into dish rack (anywhere)”

wipe the table 2 cloth initially on the left and
right side of the open area

1: move down towards cloth;
2: perform lateral ””wiping-
style”” motion

put the plate on the table 2 plate initially on different dish
rack holders (middle and end)

1: moves towards red plate; 1.5:
picks up plate; 2: places / drops
plate onto the table

clean up the table 2 randomize initial position of pa-
per ball on table

1: picks up paper ball; 1.5
moves paper ball towards brown
bin; 2: puts paper ball into bin

close the drawer 4 two top, two bottom drawer 1: moves towards the drawer; 2:
closes drawer

put the stapler on the
notebook 2 put stapler in higher and lower

position on the table
1: picks up stapler; 2: puts sta-
pler on notebook

put stapler in the drawer 4
put stapler in higher and lower
position on the table, open top
and bottom drawer

1: picks up the stapler 2: puts
stapler into the drawer

clean the whiteboard 2 initial eraser position on the left
and right of whiteboard

1: pick up eraser; 2: perform
wiping motions on the white-
board; 3: erase the full smiley

put the marker in the cup 4
swap initial position of marker
and cup, two local modifications
each

1: picks up marker; 1.5: rotates
arm to put marker in roughly up-
right position; 2: puts marker in
cup

Table 3: DROID Generalist evaluation tasks grouped by scene. Each task contains associated trial
counts, randomization details, and evaluation rubrics.
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Scene Image Task # Trials Randomization Rubric

put the black sponge in
the blue bowl 2

any two configurations where
the black sponge is not starting
in the blue bowl

1: picks up object; 2: puts ob-
ject in correct location

put the red bottle in the
black bowl 2

any two configurations where
the red bottle is not starting in
the black bowl

1: picks up object; 2: puts ob-
ject in correct location

put the watermelon in
the purple bowl 2

any two configurations where
the watermelon is not starting in
the purple bowl

1: picks up object; 2: puts ob-
ject in correct location

move the watermelon
from the purple bowl to
the blue bowl

2
any two configurations where
the watermelon starts in the pur-
ple bowl

1: picks up object; 2: puts ob-
ject in correct location

put the tape in the purple
bowl 2

any two configurations where
the tape is not starting in the
purple bowl

1: picks up object; 2: puts ob-
ject in correct location

put the waterbottle on
the left side of the table 2

waterbottle starts on two differ-
ent positions on the left side of
the table

1: picks up object; 2: puts ob-
ject in correct location

Table 4: DROID Generalist evaluation tasks grouped by scene (cont.). Each task contains associated
trial counts, randomization details, and evaluation rubrics.
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We utilize [3x end effector (EEF) Cartesian position, 3x EEF rotation (roll/pitch/yaw), 1x gripper
position] as both our states and actions. Similar to the DROID finetuning dataset, each step in our
datasets consists of 1 base image, 1 wrist image, 7D state, 7D action, and the language instruction.
As described earlier, we use the norm-stats of our pretraining dataset for normalizing states and
actions during both training and inference. The base and wrist camera images go through several
transforms (random crop, resizing to 224x224, and color jitter) during training.

The finetuning is performed with an action horizon of 50 environment steps, and the actions are
padded to be 32-dimensional, thus the policy learns to output action chunks of shape (50, 32).

A.5.3 LIBERO EVALUATION DETAILS

We use the LIBERO simulator for evaluation. Each ID eval is conducted for 20 episodes. Each
OOD eval is conducted with 5 seeds, 10 episodes/seed. 18, 19, and 20 show the 3 types of OOD
variations we test for in each of the 3 tasks.

The Generalist evals consists of 20 tasks, 5 each from LIBERO-object, LIBERO-spatial, LIBERO-
goal, and LIBERO-90, and each task is tested for 10 episodes. 5 highlights a few tasks per LIBERO
eval suite that we use in our generalist evals.

The seed controls OOD randomization such as translation of the objects, spawning random distrac-
tors, etc. We use the same language instruction as training during evaluation, resize our images to
224x224, and use the same state/action spaces.

During the evaluations, we extract the 7D actions by taking the first 7 elements from each 32-
dimensional policy prediction. We let the simulator step for 10 steps before starting execution. The
open loop horizon is set to 5, and follows a similar pattern as the DROID evals.

The evaluation criteria for all libero evals are 0 for failure, 1 for success, as determined by the
simulator environment.

Figure 17: Three LIBERO tasks we use for finetuning: pot-on-stove, mugs-on-plates,
and items-into-basket.
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Figure 18: Three types of out-of-distribution variation of the LIBERO mugs task. The three dif-
ferent type are: (1) small translation to object positions, (2) big translation to object position and
additional distractors, and (3) background change.

Figure 19: Three types of out-of-distribution variation of the LIBERO items-into-basket
task. The three different type are: (1) small translation to object positions, (2) big translation to
object position and additional distractors, and (3) background change and additional distractors.

Figure 20: Three types of out-of-distribution variation of the LIBERO pot-on-stove task. The
three different type are: (1) small translation to object positions, (2) big translation to object position
and additional distractors, and (3) background change.
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Scene Image Task LIBERO Eval Suite

put the bowl on the plate LIBERO-goal

pick up the alphabet soup
and place it in the basket LIBERO-object

pick up the black bowl from
table center and place it on
the plate

LIBERO-spatial

put white bowl on plate LIBERO-90

Table 5: Sample of LIBERO Generalist Evaluations for each evaluation suite.
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A.6 HYPERPARAMETERS

A.6.1 CHOOSING MERGING COEFFICIENT α

For each task that we consider (e.g. mugs-on-plate in LIBERO, plates in DROID), we
test policy performance on several scenes, which are different variations of the same task with
different objects, distractors, and backgrounds etc. To choose what values of α we use, we use
one OOD scene as the “validation” scene, and tune the hyperparameter α for best performance
on that validation scene. Then, we use the rest of the OOD scenes as the “test” scenes, and re-
port the performance of all methods only on the test scenes. In DROID experiments, we only
tune α ∈ {0.25, 0.5, 0.75} on the validation scenes, while in LIBERO experiments we tune
α ∈ {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1} since it is cheap to do so. We find that on DROID
α = 0.5 typically tends to perform well across tasks.

A.6.2 CHOOSING NUMBER OF GRADIENT STEPS

For choosing how long the task-FT and co-FT should go on for, we evaluate checkpoints in ID
evaluation to assess how well they fit the data. We then pick the earliest checkpoint that achieves
maximal performance, to get a checkpoint that learns the target task well but does not overfit to the
fientuning dataset, so that it is the strongest baseline.

A.6.3 REAL-WORLD EXPERIMENTS’ HYPERPARAMETERS

Below are tables specifying the hyperparameters we finalized upon for each of our finetuning runs
for real-world experiments.

Hyperparameter Value
Batch Size 32
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 3e-5
End-LR 2e-6
Warmup-Steps 100
Decay Steps 1000
Gradient Steps 500
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0

Table 6: Training hyperparameters for task-FT on DROID whiteboard .

Using the above trained checkpoints, we applied RETAIN, to both task-FT and co-FT, by checking
different mergings and recording the best ones. Here are the merging hyperparameters.
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Hyperparameter Value
Batch Size 32
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 3e-5
End-LR 2e-6
Warmup-Steps 1000
Decay Steps 10000
Gradient Steps 9999
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0
Cotraining-Mix 80% task, 20% pretrain

Table 7: Training hyperparameters for co-FT on DROID whiteboard .

Hyperparameter Value
Batch Size 32
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 3e-5
End-LR 2e-6
Warmup-Steps 500
Decay Steps 5000
Gradient Steps 1500
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0

Table 8: Training hyperparameters for task-FT on DROID plates .

Hyperparameter Value
Batch Size 32
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 3e-5
End-LR 2e-6
Warmup-Steps 1000
Decay Steps 10000
Gradient Steps 5000
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0
Cotraining-Mix 80% task, 20% pretrain

Table 9: Training hyperparameters for co-FT on DROID plates .

Hyperparameter Value
Merging Weight for task-FT 75% task-FT, 25% base model
Merging Weight for co-FT 50% task-FT, 50% base model

Table 10: Merging hyperparameters for DROID whiteboard .

Hyperparameter Value
Merging Weight for task-FT 50% task-FT, 50% base model
Merging Weight for co-FT 50% task-FT, 50% base model

Table 11: Merging hyperparameters for DROID plates .
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Finally, in our continual learning experiment, we use exactly the same hyperparameters as those
used for plates-co-FT found in 9, just applied sequentially twice to first cotraining on the plates
dataset, then on the whiteboard. In the continual learning setup, the Merging weight is also always
fixed at 50% task-FT, 50% base model.

A.6.4 SIMULATION EXPERIMENTS’ HYPERPARAMETERS

In order to perform our simulation experiments, we had to perform a round of pretraining on 117
LIBERO tasks, as described earlier. Here are the hyperparamters for this pretraining. We back-
tested various checkpoints of this pretraining on the entire libero suite, and settled on step 10,000 as
being a good candidate to serve as a base model, as it performed the best on both seen and unseen
libero tasks.

Hyperparameter Value
Batch Size 64
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 2.5e-5
End-LR 2.5e-6
Warmup-Steps 1000
Decay Steps 30000
Gradient Steps 10000
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0

Table 12: Training hyperparameters for task-FT on LIBERO-items-into-basket, mugs,
pot-on-stove .
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Both task-FT and co-FT on all 3 libero finetunting tasks use the same set of hyperparameters, pro-
vided below. We determine the number of gradient steps to choose by sweeping over all taken
checkpoints, evaluating them on ID and OOD, and picking the best performing ones.

Hyperparameter Value
Batch Size 64
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 2.5e-5
End-LR 2.5e-6
Warmup-Steps 1000
Decay Steps 30000
Gradient Steps 500 (items-into-basket, pot-on-stove), 1000 (mugs)
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0

Table 13: Training hyperparameters for task-FT on LIBERO-items-into-basket, mugs,
pot-on-stove .

Hyperparameter Value
Batch Size 64
Learning Rate Schedule Linear Warmup with Cosine Decay
Peak-LR 2.5e-5
End-LR 2.5e-6
Warmup-Steps 1000
Decay Steps 30000
Gradient Steps 1000 (items-into-basket, pot-on-stove, mugs)
Weight Decay 1e-10
Optimizer Adam(b1=0.9, b2=0.95, eps=1e-8)
Clip Gradient Norm 1.0
Cotraining-Mix 50% task, 50% pretrain

Table 14: Training hyperparameters for co-FT on LIBERO-items-into-basket, mugs,
pot-on-stove .
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As explained earlier and similar to our DROID procedure, after checking all checkpoints and picking
the best-performing one, we then apply RETAIN on it to enhance its performance on OOD and
Generalist evals. In simulation, we check various merging coefficients in the range [0.0, 1.0], and
after doing so, here are our final merging parameters.

Hyperparameter Value
Merging Weight for task-FT 90% task-FT, 10% base model
Merging Weight for co-FT 90% task-FT, 10% base model

Table 15: Merging hyperparameters for LIBERO items-into-basket .

Hyperparameter Value
Merging Weight for task-FT 80% task-FT, 20% base model
Merging Weight for co-FT 90% task-FT, 10% base model

Table 16: Merging hyperparameters for LIBERO mugs .

Hyperparameter Value
Merging Weight for task-FT 90% task-FT, 10% base model
Merging Weight for co-FT 70% task-FT, 30% base model

Table 17: Merging hyperparameters for LIBERO pot-on-stove .
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A.7 DETAILS ON BASELINE METHODS

Here we provide addtional details on the baseline methods we compare against.

Task-FT : We fine-tune all parameters of the base policy according to the behavioral cloning loss
in Eq. (1). All data are sampled from the fine-tuning dataset.

Co-FT : We fine-tune all parameters using the behavioral cloning loss, and each update batch
is sampled from both the pretraining dataset and the finetuning dataset with a fixed weight. See
Appendix A.6 for specific weight values we use for different tasks.

LoRA : LoRA (low rank adaptation) freezes all the weights of the base pretrained policy, and
finetunes an adapter head with a low rank bottleneck. Typically the adapter head has much fewer
parameters than the base pretrained model. The resulting policy is achieved by adding the weights
of the frozen pretrained policy and the low rank adapter head.

Freeze-FT : Similar to Task-FT, but we freeze the parameters in the language model backbone
and finetune only parameters from the action expert and vision encoder.

Scratch : Training a policy from sratch. To make it comparable to the other VLA baseline policies,
we use the same π0 architecture but initialize from the Paligemma VLM weights, without pretraining
on any robot data.

A.8 WHY DOES RETAIN WORK SO WELL?

While we have shown empirically in this work that RETAIN works well across real and simulated
tasks, we don’t understand the full scope of the reasons why model parameter merging works so well
empirically. However, previous work in computer vision and large-language models have also shown
empirical benefits of merging parameters of the pre-trained and fine-tuned model (see Section 2).
Similar to our work, these previous works are also largely empirical and corroborate our findings in
a real-world robotics setting. Specifically, Neyshabur et al. (2020) found that fine-tuning from the
same pre-trained model results in regions where solutions are connected by a linear path along which
error remains low, a phenomenon known as “linear mode connectivity” [2]. [3] and [4] explained
that SGD typically converges to a solution that is on the boundary of this low-error path, while
weight merging is able to find a point centered in this region, which often has slightly worse train
loss but substantially better test error. We attribute the performance gains we see also to this, though
call for more rigorous future work to explain this more rigorously.

A.9 QUALITATIVE ANALYSIS OF SUCCESS AND FAILURE MODE OF RETAIN

Typically, we observe that RETAIN improves the robustness of the merged policy on OOD evalua-
tions. Compared to task-FT policies, which are brittle and will fail in out-of-distribution scenarios
catastrophically and is unable to retry, the RETAIN policies typically exhibits more robust behavior,
and can recover from failure using its generalist knowledge. Typically, we observe that the task-FT
policy either either does the full task successfully, or cannot do the task at all. In comparison, the
RETAIN policies usually at least partially complete the task. However, we do observe that the RE-
TAIN policies sometimes fail due to (1) imprecise execution of the task and stuck in constant retry
model and (2) produces an action that does not solve the task (though still semantically meaining-
ful), and is unable to successfully continue afterwards. We provide two qualitative examples of this
in Fig. 21 and Fig. 22.
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Figure 21: Failure Example of RETAIN in DROID whiteboard task: The arm picks up the eraser,
but drops it on the whiteboard instead of wiping left and right with it.

Figure 22: Failure Example of RETAIN in DROID plates task: the arm is not able to precisely
pick up the green plate, and so constantly retries this until the policy times out.
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