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Abstract

The ability of machine learning (ML) algorithms
to generalize well to unseen data has been stud-
ied through the lens of information theory, by
bounding the generalization error with the input-
output mutual information (MI), i.e., the MI be-
tween the training data and the learned hypoth-
esis. Yet, these bounds have limited practicality
for modern ML applications (e.g., deep learning),
due to the difficulty of evaluating MI in high di-
mensions. Motivated by recent findings on the
compressibility of neural networks, we consider
algorithms that operate by slicing the parameter
space, i.e., trained on random lower-dimensional
subspaces. We introduce new, tighter information-
theoretic generalization bounds tailored for such
algorithms, demonstrating that slicing improves
generalization. Our bounds offer significant com-
putational and statistical advantages over standard
MI bounds, as they rely on scalable alternative
measures of dependence, i.e., disintegrated mu-
tual information and k-sliced mutual information.
Then, we extend our analysis to algorithms whose
parameters do not need to exactly lie on random
subspaces, by leveraging rate-distortion theory.
This strategy yields generalization bounds that
incorporate a distortion term measuring model
compressibility under slicing, thereby tightening
existing bounds without compromising perfor-
mance or requiring model compression. Build-
ing on this, we propose a regularization scheme
enabling practitioners to control generalization
through compressibility. Finally, we empirically
validate our results and achieve the computation
of non-vacuous information-theoretic generaliza-
tion bounds for neural networks, a task that was
previously out of reach.
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1. Introduction
Generalization is a fundamental aspect of machine learn-
ing, where models optimized on training data are expected
to perform similarly on test data. Neural networks (NNs),
in particular, are able to both perform and generalize well,
allowing them to achieve excellent test performance on com-
plex tasks. Despite this empirical success, the architectural
factors influencing how well NNs generalize are not fully
understood theoretically. This has motivated a substantial
body of work using a variety of tools to bound their gener-
alization error (Jiang et al., 2020b), i.e.., the gap between
the average loss on training data (empirical risk) and its
expected loss on a new data from the same distribution (pop-
ulation risk). The goal is to identify when and why a given
model yields a low generalization error, and ultimately, de-
sign architectures or training algorithms that guarantee good
generalization. Common approaches include PAC-Bayes
analysis (Dziugaite & Roy, 2017) and information theory
(Xu & Raginsky, 2017).

Compression is another topic which has provided a fertile
ground for machine learning research. As model architec-
tures have become more and more complex, their evaluation,
training and fine-tuning become even more challenging. For
instance, large language models are parameterized with bil-
lions of parameters. Compressed models, which reduce
the number of trainable parameters without significantly
deteriorating the performance, have been growing in prac-
tical relevance, for example LoRA finetuning of large lan-
guage models (Hu et al., 2021). One compression scheme
which has found success consists in training NNs on ran-
dom, lower-dimensional subspaces. NNs compressed that
way have been shown to yield satisfying test performances
in various tasks while being faster to train (Li et al., 2018).
This framework has recently been applied by Lotfi et al.
(2022) to significantly improve PAC-Bayes generalization
bounds, to the point where they closely match empirically
observed generalization error.

A recent line of work argues that there is actually an inter-
play between compressible models and their ability to gen-
eralize well. The main conclusion is that one can construct
tighter generalization bounds by leveraging compression
schemes (Arora et al., 2018; Hsu et al., 2021; Kuhn et al.,
2021; Sefidgaran et al., 2022).
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In this paper, we seek further understanding on the gen-
eralization ability of learning algorithms trained on ran-
dom subspaces. We introduce new information-theoretic
generalization bounds tailored for such algorithms, which
are tighter than existing ones. Our bounds demonstrate
that algorithms that are “compressible” via random slicing
have significantly better information-theoretic generaliza-
tion guarantees. We also find an intriguing connection to
Sliced Mutual Information (Goldfeld & Greenewald, 2021;
Goldfeld et al., 2022), which we explore in learning prob-
lems where the information-theoretic generalization bounds
are analytically computable. We then leverage the com-
putational and statistical benefits of our sliced approach
to empirically compute nonvacuous information-theoretic
generalization bounds for various neural networks.

We further increase the practicality of our approach by us-
ing the rate-distortion-based framework introduced by Se-
fidgaran et al. (2022) to extend our bounds to the setting
where the weight vector W only approximately lies on ran-
dom subspace. This extension applies when the loss is
Lipschitz w.r.t. the weights, which we can promote using
techniques by Béthune et al. (2024). As Sefidgaran et al.
(2022) did for quantization, this allows us to apply gener-
alization bounds based on projection and quantization to
networks whose weights are unrestricted. We tighten the
bound by using regularization in training to encourage the
weights to be close to the random subspace.

2. Related Work
Compression of neural networks. Our work focuses on
random projection and quantization (Hubara et al., 2016) as
tools for compressing neural networks. Many other com-
pression approaches exist (Cheng et al., 2017), e.g., pruning
(Dong et al., 2017; Blalock et al., 2020), low-rank compres-
sion (Wen et al., 2017), and optimizing architectures via
neural architecture search and meta-learning (Pham et al.,
2018; Cai et al., 2020; Finn et al., 2017). Further exploring
alternative compression approaches from an information-
theoretic generalization bound perspective is an interesting
avenue for future work.

Compressibility and generalization. A body of work has
emerged leveraging various notions of compressibility to ad-
equately explain why neural networks can generalize (Arora
et al., 2018; Suzuki et al., 2020; Simsekli et al., 2020; Bu
et al., 2021; Hsu et al., 2021; Kuhn et al., 2021; Sefidgaran
et al., 2022). In particular, Bu et al. (2021) and Sefidgaran
et al. (2022) connected compressibility and generalization
using the rate-distortion theory, which inspired our analysis.
Sefidgaran et al. (2022) derived a set of theoretical general-
ization bounds, but their applicability to compressible neural
networks is unclear. Bu et al. (2021) established a general-
ization bound for a learning model whose weights W are

optimized and then compressed into Ŵ . They consider com-
pression as a post-processing technique, while we propose
to take compressibility into account during training. Further-
more, Bu et al. (2021) applied the rate-distortion theory for
a slightly different purpose than ours: to compare the popu-
lation risk of the compressed model with that of the original
model. In contrast, we use it to bound the generalization
error of the original model and show that if it is almost com-
pressible on a random subspace, one can obtain significantly
tighter bounds than existing information-theoretic ones.

Conditional MI generalization bounds. Following (Xu &
Raginsky, 2017) and (Bu et al., 2019), which treat the train-
ing data as random, (Steinke & Zakynthinou, 2020) instead
obtain a bound where the dataset is fixed (i.e. conditioned
on a dataset). This framework assumes that two indepen-
dent datasets are available, and random Bernoulli indicator
variables create a random training set by randomly selecting
which of the two datasets to use for the ith training point.
This approach has the advantage of creating a generalization
bound involving the mutual information between the learned
weights and a set of discrete random variables, in which
case the mutual information is always finite. Connections to
other generalization bound strategies and to data privacy are
established by (Steinke & Zakynthinou, 2020). Followup
works tightened these bounds by considering the conditional
mutual information between the indicator variables and ei-
ther the predictions (Harutyunyan et al., 2021; Haghifam
et al., 2022) or loss (Wang & Mao, 2023) of the learned
model rather than the weights. A practical limitation of this
general approach is that it requires a second dataset (or su-
persample) to compute the conditional mutual information,
whereas this extra data could be used to get a better estimate
of the test error (hence, the generalization error) directly.
Additionally, some of these bounds depend on a mutual
information term between low-dimensional variables (e.g.,
functional CMI-based bounds (Harutyunyan et al., 2021)),
which can be evaluated efficiently but does not inform prac-
titioners for selecting model architectures. Exploring slicing
for the conditional MI framework is beyond the scope of
our paper and is a promising direction for future work.

Other generalization bounds for neural networks. Be-
yond the information-theoretic frameworks above, many
methods bound the generalization of neural networks. Clas-
sic approaches in learning theory bound generalization error
with complexity of the hypothesis class (Bartlett & Mendel-
son, 2002; Vapnik & Chervonenkis, 2015), but these fail to
explain the generalization ability of highly flexible deep neu-
ral network models (Zhang et al., 2017). More successful
approaches include the PAC-Bayes framework (including
Lotfi et al., whose use of slicing inspired our work), margin-
based approaches (Koltchinskii et al., 2002; Kuznetsov et al.,
2015; Chuang et al., 2021), flatness of the loss curve (Petzka
et al., 2021), and even empirically-trained prediction not
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based on theoretical guarantees (Jiang et al., 2020a; Las-
sance et al., 2020; Natekar & Sharma, 2020; Schiff et al.,
2021). Each approach has its own benefits and drawbacks;
for instance, many of the tightest predictions are highly
data-driven and as a result may provide limited insight into
the underlying sources of generalization and how to design
networks to promote it.

Our work. Our approach dramatically improves the tight-
ness of input-output information-theoretic generalization
bounds for neural networks, which up to this point have not
seen practical use. That said, our bounds (unsurprisingly)
are still looser than generalization bounds available through
some other frameworks, particularly those employing addi-
tional data (e.g., data-driven PAC-Bayes priors (Lotfi et al.,
2022) or the super-sample of conditional MI bounds (Wang
& Mao, 2023)) or involving some kind of trained or ad
hoc prediction function. Regardless, continuing to improve
information-theoretic bounds is a fruitful endeavor that im-
proves our understanding of the connection between ma-
chine learning and information theory, and gives insights
that can drive algorithmic and architectural innovation.

3. Preliminaries
Let Z be the input data space, W ⊆ RD the hypothesis
space, and ℓ : W × Z → R+ a loss function. For instance,
in supervised learning, Z = {(x, y) ∈ X× {−1, 1}} is the
set of feature-label pairs, w ∈ W is the parameter vector
of a classifier fw : RD → {−1, 1} (e.g., the weights of a
neural network), and ℓ(w, (x, y)) = 1y ̸=fw(x) is the error
made by predicting y as fw(x).

Consider a training dataset Sn ≜ (Z1, . . . , Zn) ∈ Zn con-
sisting of n i.i.d. samples from µ. For any w ∈ W, let
R(w) ≜ EZ∼µ[ℓ(w,Z)] denote the population risk, and
R̂n(w) ≜ 1

n

∑n
i=1 ℓ(w, zi) the empirical risk. Training a

machine learning algorithm aims at minimizing the popula-
tion risk, i.e., solving minw∈W R(w). However, computing
R(w) is difficult in practice, since the data distribution µ is
generally unknown: one would only observe a finite num-
ber of samples from µ. Therefore, a common workaround
is empirical risk minimization, i.e., minw∈W R̂n(w). A
learning algorithm can then be described as the mapping
A : Zn → W, where A(Sn) is a hypothesis learned
from Sn. We assume that A is randomized: its output
W ≜ A(Sn) is a random variable distributed from PW |Sn

.

The generalization error of A is defined as gen(µ,A) ≜
EPW |Sn⊗µ⊗n [R(W ) − R̂n(W )], where the expectation E
is taken with respect to (w.r.t.) the joint distribution of
(W,Sn). The higher gen(µ,A), the more A overfits when
trained on Sn ∼ µ⊗n.

3.1. Information-theoretic generalization bounds

In recent years, there has been a flurry of interest in using
theoretical approaches to bound gen(µ,A) using mutual
information (MI). The most common information-theoretic
bound on generalization error was introduced by Xu & Ra-
ginsky (2017) and depends on the mutual information be-
tween the training data Sn and the hypothesis W learned
from Sn. We recall the formal statement below.

Theorem 3.1 (Xu & Raginsky, 2017). Assume that ℓ(w,Z)
is σ-sub-Gaussian1 under Z ∼ µ for all w ∈ W. Then,
|gen(µ,A)| ≤

√
2σ2 I(W ;Sn)/n, where I(W ;Sn) is the

mutual information between W = A(Sn) and Sn.

The class of σ-sub-Gaussian losses includes Gaussian-
distributed losses ℓ(w,Z) ∼ N (0, σ2) and bounded losses
satisfying 0 ≤ ℓ(w,Z) ≤ 2σ. For example, the 0-1 correct
classification loss satisfies this with σ = 0.5. Subsequently,
Bu et al. (2019) used the averaging structure of the empirical
loss to derive a bound that depends on I(W ;Zi). Evaluat-
ing MI on each individual data point Zi rather than the
entire training dataset Sn has been shown to produce tighter
bounds than Xu & Raginsky (2017) (Bu et al., 2019, §IV).

Theorem 3.2 (Bu et al., 2019). Assume that ℓ(W̃ , Z̃)
is σ-sub-Gaussian under (W̃ , Z̃) ∼ PW ⊗ µ. Then,
|gen(µ,A)| ≤ (1/n)

∑n
i=1

√
2σ2 I(W ;Zi), where

I(W ;Zi) is the mutual information between W = A(Sn)
and Zi.

These and other information-theoretic bounds, however, suf-
fer from the fact that the dimension of W can be large when
using modern ML models, e.g. NNs. Indeed, the sample
complexity of MI estimation scales poorly with dimension
(Paninski, 2003). Collecting more samples of (W,Zi) can
be expensive, especially with NNs, as one realization of
W ∼ PW |Sn

requires one complete training run. Moreover,
McAllester & Stratos (2020) recently proved that estimating
MI from finite data have important statistical limitations
when the underlying MI is large, e.g., hundreds of bits.

3.2. Random subspace training and sliced mutual
information

While modern neural networks use large numbers of pa-
rameters, common architectures can be highly compressible
by random slicing: Li et al. (2018) found that restricting
W ∈ RD during training to lie in a d-dimensional subspace
spanned by a random matrix (with d ≪ D) not only pro-
vides computational advantages, but does not meaningfully
damage the performance of the neural network, for appropri-
ate choice of d (often two orders of magnitude smaller than
D). They interpreted this fact as indicating compressibil-

1A random variable X is σ-sub-Gaussian (σ > 0) under µ if
for t ∈ R, Eµ[e

t(X−Eµ[X])] ≤ eσ
2t2/2.
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ity of the neural network architecture up to some intrinsic
dimension d, below which performance degrades.

Denote by St(d,D) = {Θ ∈ RD×d : Θ⊤Θ = Id} the
Stiefel manifold, equipped with the uniform distribution
PΘ. We consider a learning algorithm A(d) whose hypoth-
esis space is restricted to WΘ,d ≜ {w ∈ RD : ∃w′ ∈
Rd s.t. w = Θw′}, where Θ ∼ PΘ. Note that Θ is not
trained: it is randomly generated from PΘ at the beginning
of training, and frozen during training. In other words, A(d)

trains the parameters on a random d-dimensional subspace
of RD characterized by Θ.

Sliced mutual information. The random d-dimensional
weight subspace is closely related to slicing, which projects
a high dimensional quantity to a random lower dimensional
subspace. Intriguingly, a recent line of work has considered
slicing mutual information, yielding significant sample com-
plexity and computational advantages in high-dimensional
regimes. Goldfeld & Greenewald (2021) and Goldfeld et al.
(2022) slice the arguments of MI via random k-dimensional
projections, thus defining the k-Sliced Mutual Information
(SMI). SIk has been shown to retain many important prop-
erties of MI (Goldfeld et al., 2022), and more importantly,
the statistical convergence rate for estimating SIk(X;Y )
depends on k but not the ambient dimensions dx, dy. This
provides significant advantages over MI, whose computa-
tion generally requires an exponential number of samples
in max(dx, dy) (Paninski, 2003). Similar convergence rates
can be achieved while slicing in only one dimension. Re-
cently, Wongso et al. (2023) empirically connected gener-
alization to SMI between the true class labels Y and the
hidden representations T of NNs.

4. Information-Theoretic Generalization
Bounds for Compressed Models

Motivated by the advantageous properties of sliced mu-
tual information and the practical success of training neural
networks in random subspaces, we seek an input-output
information-theoretic generalization bound for learning al-
gorithms trained on the random subspace WΘ,d. We will
see that improved tightness and statistical properties of such
bounds allow these to scale to larger models than possible
for the traditional bounds in Theorems 3.1 and 3.2, without
significantly damaging the test-time performance of the re-
sulting learned models. To this end, we will derive in this
section new information-theoretic bounds on the generaliza-
tion error for these random subspace algorithms. Using the
terminology in Section 3, the generalization error of A(d) is

gen(µ,A(d)) = EPW ′|Θ,Sn
⊗PΘ⊗µ⊗n [R(ΘW ′)−R̂n(ΘW

′)] .
(1)

Note that the expectation is taken w.r.t. to PΘ, so the error
does not depend on Θ.

A natural strategy to bound the generalization error of A(d)

is by applying Xu & Raginsky (2017): if ℓ(w,Z) is σ-sub-
Gaussian under Z ∼ µ for all (Θ, w) ∈ St(d,D)×WΘ,d,
then by Theorem 3.1,

|gen(µ,A(d))| ≤
√

2σ2

n
I(ΘW ′;Sn) , (2)

where ΘW ′ = A(d)(Sn), Θ ∼ PΘ. However, this bound
does not clearly explain the impact of the intrinsic dimension
d on generalization. In addition, the MI term I(ΘW ′;Sn) is
hard to estimate in modern machine learning applications
since ΘW ′ is high-dimensional.

We derive new upper-bounds on gen(µ,A(d)) to mitigate
these issues. Our strategy consists in applying the disinte-
gration technique on the hypothesis space WΘ,d. In our
setting, disintegration boils down to deriving a bound for a
fixed Θ, then taking the expectation over PΘ. This yields
information-theoretic bounds which are tighter than exist-
ing ones and rely on mild assumptions. Moreover, our
bounds exhibit an explicit dependence on d, which helps
capture the impact of compressing the hypothesis space on
generalization. Finally, their evaluation is computationally
more friendly as it requires estimating MI between lower-
dimensional variables. Specifically, our bounds depend on
the alternative information theory measure called disinte-
grated mutual information (Negrea et al., 2019, Definition
1.1). The disintegrated MI between X and Y given U is de-
fined as IU (X;Y ) = KL(PX,Y |U∥PX|U ⊗ PY |U ), where
KL denotes the Kullback-Leibler divergence and PX,Y |U
the conditional distribution of (X,Y ) given U , PX|U (re-
spectively, PY |U ) the conditional distribution of X (resp.,
Y ) given U .

4.1. A first bound on gen(µ,A(d))

We first bound gen(µ,A(d)) by disintegrating the proof of
Theorem 3.1 (Xu & Raginsky, 2017).
Theorem 4.1. Assume for all w′ ∈ Rd and Θ ∈ St(d,D),
ℓ(Θw′, Z) is σΘ-sub-Gaussian under Z ∼ µ, where σΘ is
a positive constant which may depend on Θ. Then,

|gen(µ,A(d))| ≤
√

2

n
EPΘ

[√
σ2
ΘI

Θ(W ′;Sn)

]
. (3)

Note that sinceW =ΘW ′ impliesW ′=ΘTW , IΘ(W ′;Sn)
has significant parallels with the sliced mutual information
(Goldfeld et al., 2022) with slicing in the first argument only,
denoted SI

(1)
k (W ;Sn). Sliced mutual information, however,

is formulated with W being independent of Θ, which is not
generally true in our setting (except in specific regimes such
as the Gaussian mean estimation example below).

Theorem 4.1 holds under a sub-Gaussianity assumption,
which is slightly different than the one in Theorem 3.1.
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It is immediate that the assumption in Theorem 3.1 im-
plies the assumption in Theorem 4.1 with σΘ = σ. For
instance, consider the supervised learning setting, where
for all w = Θw′ ∈ WΘ,d, ℓ(Θw′, z) = 1fΘw′ (x)̸=y ≤ 1.
Then, by Hoeffding’s lemma, (2) and (3) both hold, with
σΘ = σ = 2. Conversely, if the assumption in Theorem 4.1
holds, then the assumption in Theorem 3.1 is met with
σ = supΘ∈St(d,D) σΘ.

Our bound entails notable advantages over Xu & Ra-
ginsky (2017). First, (3) is tighter than (2), since
EPΘ

[√
IΘ(W ′;Sn)

]
≤
√
I(ΘW ′;Sn) (see Appendix A.3).

This is a natural consequence of the proof technique of The-
orem 4.1, which leverages disintegration, a strategy known
to yield tighter characterizations of concave generalization
bounds by Jensen’s inequality (Hellström et al., 2023, §4.3).

Then, our bound is more tractable in regimes where (2)
is fundamentally intractable, e.g., when D is very large.
Indeed, common estimators for IΘ(W ′;Sn) exhibit faster
convergence rates than I(ΘW ′;Sn) because W ′ has a lower
dimension than ΘW ′ (d≪ D). For instance, the theoretical
guarantees of MINE (Belghazi et al., 2018) clearly support
the favorable computational and statistical properties of our
bounds. By (Goldfeld et al., 2022, Theorem 2), the ap-
proximation error induced by MINE decays rapidly as the
dimensionality decreases. Additionally, some of the assump-
tions of MINE can be relaxed, allowing optimization over
a larger class of distribution in lower-dimensional spaces
(Goldfeld et al., 2022, Remark 6). One may argue that our
bound requires computing the expectation of IΘ(W ′;Sn)
over Θ ∼ PΘ, which makes its evaluation expensive. How-
ever, in our experiments, we estimated this expectation with
a Monte Carlo approximation and found that increasing the
number of samples of Θ had little practical impact on our
bounds. This is consistent with prior work (Li et al., 2018),
which showed that test performance remains relatively sta-
ble across multiple values of Θ for a fixed d, while the
choice of d has a greater impact on the quality of solutions.

4.2. A tighter bound via individual samples

One limitation of Theorem 4.1 is that IΘ(W ′;Sn) = +∞ if
PW ′,Sn|Θ is not absolutely continuous w.r.t PW ′|Θ ⊗ µ⊗n,
therefore the bound is vacuous. For instance, this happens
when W ′ = g(Sn) where g is a smooth, non-constant deter-
ministic function that may depend on Θ. To overcome this
issue, we combine disintegration with the individual-sample
technique introduced by Bu et al. (2019). This allows us to
construct a bound in terms of the individual-sample disinte-
grated MI, IΘ(W ′;Zi).

Theorem 4.2. Assume that (i) for all w′ ∈ Rd and Θ ∈
St(d,D), ℓ(Θw′, Z) is σΘ-sub-Gaussian under Z ∼ µ,
where σΘ is a positive constant which may depend on Θ; or
(ii) for all Θ ∈ St(d,D), ℓ(ΘW̃ ′, Z̃) is σΘ-sub-Gaussian

under (W̃ ′, Z̃) ∼ PW ′|Θ ⊗ µ. Then,

|gen(µ,A(d))| ≤ 1

n

n∑
i=1

EPΘ

[√
2σ2

ΘI
Θ(W ′;Zi)

]
. (4)

Assumption (i) is not stronger than (ii) (e.g., one can adapt
(Bu et al., 2019, Remark 1)), and conversely (e.g., see Gaus-
sian mean estimation in Section 4.3). Note that Theorem 4.2
under assumption (ii) is a particular case of a more general
theorem, which we present in Appendix A.1 for readability
purposes. A key advantage of Theorem A.2 is its broader
applicability as compared to Theorems 4.1 and 4.2. We will
illustrate this in Section 4.3 on linear regression, where the
loss is not sub-Gaussian.

Thanks to the individual-sample technique, our bound in
(4) is no worse than the one in Theorem 4.1. Indeed,
assumption (i) in Theorem 4.2 is the same as the one
in Theorem 4.1, and 1

n

∑n
i=1 EPΘ

[√
2σ2

ΘI
Θ(W ′;Zi)

]
≤√

2
nEPΘ

[√
σ2
ΘI

Θ(W ′;Sn)
]

(Proposition A.6). In particu-
lar, if W ′ is a deterministic function of Sn, the bound in (4)
can be non-vacuous as opposed to (3).

Thanks to disintegration, the bound in Theorem 4.2 is no
worse than the one in Theorem 3.2, i.e., |gen(µ,A(d))| ≤
1
n

∑n
i=1

√
2σ2I(ΘW ′;Zi). This is justified using similar

arguments as in Section 4.1 to compare the sub-Gaussian
conditions and MI terms: see Proposition A.5. Interestingly,
we show in Section 4.3 that Theorem 3.2 cannot be applied
in a simple learning problem, because its assumptions do not
trivially hold. In contrast, assumption (ii) of Theorem 4.1 is
easily verified because we condition on Θ. This illustrates
that, in addition to providing tighter bounds, disintegration
helps formulate alternative sub-Gaussianity assumptions
that can be milder.

4.3. Applications

We illustrate more concretely the benefits of our findings
over Xu & Raginsky (2017) and Bu et al. (2019) in terms
of tightness and applicability. Moreover, we uncover an
interesting connection with the Sliced MI evaluated on
W = A(Sn) and Zi where only W is projected, i.e.,
SI

(1)
d (W ;Zi) = EPΘ

[
IΘ(Θ⊤W ;Zi)

]
.

Countable hypothesis space. Our generalization bounds
provide a clear explanation on why algorithms with low
intrinsic dimension d are likely to generalize well. Indeed,
suppose that for any Θ ∈ St(d,D) and w = Θw′ ∈ WΘ,d,
we have ∥w′∥ ≤ bΘ, where ∥ · ∥ is the Euclidean norm.
Then, using the same argumentation as in (Xu & Raginsky,
2017, §4.1) in Theorem 4.1,

|gen(µ,A(d))| ≤
√

2d

n
EPΘ

[√
σ2
Θ log(2bΘ

√
dn)

]
. (5)
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We make two key observations based on (5). First, the right-
hand side (RHS) term decreases as d shrinks. This confirms
that algorithms trained on lower-dimensional random sub-
space tend to generalize better, as observed in practice (Li
et al., 2018). Then, our bound can help guide architecture
choices for practitioners who wish to control the general-
ization error, thanks to the explicit dependence on d, n and
bΘ. Note that given Θ, achieving ∥w′∥ ≤ bΘ can easily be
achieved in practice by quantizing w′.

Gaussian mean estimation. We now study the following
problem inspired by (Bu et al., 2019, Section IV.A). The
training dataset Sn = (Z1, . . . , Zn) consists of n i.i.d. sam-
ples from N (0D, ID), where 0D ∈ RD is the zero vector.
The objective function is R̂n(w) ≜ 1

n

∑n
i=1 ∥w − Zi∥2.

Consider the models A and A(d) which minimize R̂n(w)
on W = RD and WΘ,d respectively. Then, A(Sn) = Z̄

and A(d)(Sn) = ΘΘ⊤Z̄, where Z̄ ≜ 1
n

∑n
i=1 Zi. Since

W ′ is a deterministic function of Sn given Θ, applying The-
orem 4.1 would give a vacuous bound. Instead, we apply
Theorem 4.2 and obtain

gen(µ,A(d)) ≤ CD,d,n

n∑
i=1

EPΘ

[√
IΘ(Θ⊤Z̄;Zi)

]
, (6)

with CD,d,n ≜ 2
n

√
d
(
1 + 1

n

)2
+ (D − d). The detailed

derivations are in Appendix A.4. For a fixed pair (D,n),
CD,d,n increases as d goes to D. By adapting the proof
of (Goldfeld et al., 2022, Proposition 2.2), one can show
that EPΘ

[√
IΘ(Θ⊤Z̄;Zi)

]
decreases as d→ 0, and by the

data-processing inequality, for any d ≤ D and Θ ∼ PΘ,
IΘ(Θ⊤Z̄;Zi) ≤ I(Z̄;Zi). Therefore, the RHS term in (6)
accurately captures that compressing the hypothesis space
improves generalization. Note that here, IΘ(Θ⊤Z̄;Zi) can
actually be computed in closed form: since Zi and ΘT Z̄
(given Θ) are Gaussian random variables, and Θ⊤Θ = Id,
we have IΘ(Θ⊤Z̄;Zi) = d

2 log(
n

n−1 ). We also show that
the bound is sub-optimal, since it scales in O(1/

√
n) as

n→ +∞, and gen(µ,A(d)) = 2d/n.

This example shows that our findings allow us to derive
generalization bounds where prior work does not apply.
Indeed, for d = D, our bound boils down to the one derived
by Bu et al. (2019); but when d < D, their strategy cannot
be applied: the distribution of ℓ(ΘW ′, Z) = ||ΘW ′ − Z||2
is unknown, making it highly non-trivial to verify the sub-
Gaussian condition by Bu et al. (2019) (in particular, ΘW ′

is not Gaussian). We overcome this issue via disintegration,
i.e., by conditioning on Θ: we prove in Appendix A.4 that
ℓ(ΘW̃ ′, Z̃) = ∥ΘW̃ ′ − Z̃∥2 is sub-Gaussian given Θ (i.e.,
under (W̃ ′, Z̃) ∼ PW ′|Θ⊗µ), which allows the application
of Theorem 4.2. Finally, by Jensen’s inequality and Z̄ =W ,

EPΘ

[√
IΘ(Θ⊤Z̄;Zi)

]
≤
√

SI
(1)
d (W ;Zi), thus our bound

is controlled by SMI. We report gen(µ,A(d)) and this bound
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Figure 1: Gaussian mean estimation: generalization error
and bound against n, for D = 15, d ∈ {1, 5, 10, 15}. Errors
and bounds decrease as d → 1. The bound in Bu et al.
(2019) can only be applied for d = D. The scale is log-log.

in Figure 1. In Appendix A.5, we apply our theorem on
linear regression and obtain a bound that also relies on SMI.

5. Information-Theoretic Generalization
Bounds for Compressible Models

The above bounds require the learned weights W to lie
in WΘ,d. When d is very small, this constraint can be
restrictive and significantly deteriorate the performance of
the model, as we illustrate in Section 6. That said, since
our MI-based bounds generally increase with increasing
d, it is important to keep d small. Motivated by recent
work applying rate-distortion theory to input-output MI
generalization bounds (Sefidgaran et al., 2022), we establish
the following result for approximately compressible weights
and Lipschitz loss.

Theorem 5.1. Consider A : Zn → W s.t. A may take
Θ ∼ PΘ into account to output W . Assume there exists
C > 0 s.t. ℓ(W̃ , Z̃) ≤ C almost surely. Assume for any
z ∈ Z, ℓ(·, z) : W → R+ is L-Lipschitz, i.e., ∀(w1, w2) ∈
W ×W, |ℓ(w1, z)− ℓ(w2, z)| ≤ Lρ(w1, w2), where ρ is a
metric on W. Then,

|gen(µ,A)| ≤ 2LEPW |Θ⊗PΘ

[
ρ(W,ΘΘ⊤W )

]
+
C

n

n∑
i=1

EPΘ

[√
IΘ(Θ⊤W ;Zi)

2

]
. (7)

This result shows a trade-off between distortion and general-
ization, aligning with prior work on generalization through
the rate-distortion theory (e.g., Bu et al. (2021), Sefidgaran
et al. (2022); see Section 2 for a detailed comparison). In
the limit case where d = D, we retrieve the bound by Xu &
Raginsky (2017).

The proof of Theorem 5.1 consists in considering two mod-
els A : Zn → RD and A′ : Zn → WΘ,d such that
A(Sn) = W may depend on Θ ∼ PΘ, and A′(Sn) =

6
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ΘΘ⊤W . We then use the triangle inequality to obtain
|gen(µ,A)| ≤ |gen(µ,A) − gen(µ,A′)| + |gen(µ,A′)|.
Finally, we bound the first term (the distortion term) using
the Lipschitz condition and the second term (the rate term)
using Theorem 4.2.

Using similar arguments and Theorem 4.1, we derive a
second rate-distortion bound based on quantization, which
does not require estimating MI.

Theorem 5.2. Assume the conditions of Theorem 5.1 hold.
Furthermore, suppose that ∥Θ⊤W∥ ≤ M for (W,Θ) ∼
PW |Θ ⊗ PΘ. Consider a function Q quantizing Θ⊤W such
that ρ

(
Θ⊤W,Q(Θ⊤W )

)
≤ δ. Then,

|gen(µ,A)| ≤ 2LEPW |Θ⊗PΘ

[
ρ
(
W,ΘQ(Θ⊤W )

)]
+ CEPΘ

[√
IΘ(Q(Θ⊤W );Sn)

2n

]
(8)

≤ 2L
(
EPW |Θ⊗PΘ

[
ρ(W,ΘΘ⊤W )

]
+ δ
)

(9)

+ C

√
d log(2M

√
d/δ)

2n
. (10)

Note that ∥Θ⊤W∥ ≤ M is a mild assumption, since in
general, this is a result of enforcing Lipschitz continuity
(e.g., the Lipschitz neural networks studied by Béthune et al.
(2024) require weights with bounded norms). We will set
δ = 1/

√
n to reflect the fact that training on more samples

reduces the generalization error.

The MI term in (7) or (8) is evaluated between the training
data Sn and a low-dimensional, potentially quantized projec-
tion of W . This makes our rate-distortion bounds simpler
to estimate than standard information-theoretic ones that
rely on I(Sn;W ). Our bound in (9)-(10) further reduces the
computational complexity by bounding the MI term in (8)
using similar arguments to those in (Xu & Raginsky, 2017,
§4.1). It should be viewed as an interpretable and easily
computable alternative bound that supports our main mes-
sage: almost-compressibility on random subspaces implies
better generalization. Indeed, given that the term in (10)
increases with increasing d, a tighter generalization bound
can be achieved for d < D, provided that the corresponding
distortion in (9) (which measures the rate of compressibility)
is sufficiently small. Practitioners also do not need to quan-
tize the weights to evaluate (9)-(10), making the process
computationally more efficient: assuming the existence of a
quantizer Q as described in Theorem 5.2 is sufficient.

Our theoretical findings provide concrete guidelines on
how to tighten the generalization error bounds in prac-
tice. First, the value of the Lipschitz constant L can be
directly controlled through the design of the neural network,
as we explain in Section 6 and Appendix B.2. The term
EPW |Θ⊗PΘ

[
ρ(W,ΘΘ⊤W )

]
can be regularized by simply
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Figure 2: Illustration of our bound (4) and (Bu et al., 2019)
on binary classification of Gaussian data of dimension 20
with logistic regression trained on WΘ,d

adding a penalty term λEPW |Θ⊗PΘ

[
ρ(W,ΘΘ⊤W )

]
to the

training objective. Depending on the value of the hyperpa-
rameter λ, this regularization can encourage solutions to be
close to the subspace WΘ,d, i.e., having low distortion from
the compressed weights. The choice of d is also important
and can be tuned to balance the MI term with the distortion
required (how small λ needs to be) to achieve low training
error. Indeed, choosing a higher λ increases the importance
of the regularization term, effectively reducing the impor-
tance of the empirical risk. Hence, the empirical risk may
rise, which in most cases will increase the training error.

6. Empirical Analysis
To illustrate our findings and their practical impact, we
train several neural networks for classification, and evaluate
their generalization error and our bounds. This requires
compressing NNs (via random slicing and quantization) and
estimating MI. We explain our methodology below, and
refer to Appendix C.1 for more details and results. We
provide the code to reproduce the experiments2.

Random projections. To sample Θ ∈ RD×d such that
Θ⊤Θ = Id, we construct an orthonormal basis using the sin-
gular value decomposition of a random matrix Γ ∈ RD×d

2Code is available here: https://github.com/
kimiandj/slicing_mi_generalization
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Figure 3: Generalization bounds with NNs for image classi-
fication. The weights are projected and quantized.

whose entries are i.i.d. from N (0, 1). Since the produced
matrix Θ is dense, the projection Θ⊤w induces a runtime of
O(dD). To improve scalability, we use the sparse projector
by Li et al. (2018) and the Kronecker product projector by
Lotfi et al. (2022), which compute Θ⊤w in O(d

√
D) and

O(
√
dD) operations respectively, and require storing only

O(d
√
D) and O(

√
dD) matrix elements respectively.

Quantization. We use the quantizer by Lotfi et al. (2022),
which simultaneously learns quantized weights W ′ and
quantized levels (c1, · · · , cL). This allows us to highly
compress NNs and bypass the estimation of MI: for any
Θ ∼ PΘ, IΘ(W ′;Sn) ≤ HΘ(W ′) ≤ ⌈d × H(p)⌉ + L ×
(16+ ⌈log2 d⌉)+ 2, where HΘ(W ′) denotes the entropy of
W ′ given Θ, and H(p) ≜ −

∑L
l=1 pl log(pl) is the entropy

of the quantized level (pl is the empirical probability of cl).

Estimating MI. In our practical settings, the MI terms aris-
ing in the generalization bounds cannot be computed exactly,
so we resort to two popular estimators: the k-nearest neigh-
bor estimator (kNN-MI, Kraskov et al., 2004) and MINE
(Belghazi et al., 2018). We obtain NaN values with kNN-MI
for d > 2 thus only report the bounds estimated with MINE.
In our experiments, the use of MINE was not a practical
issue because d had low to relatively high values.

6.1. Generalization bounds for models trained on WΘ,d

Binary classification with logistic regression. We consider
the same setting as Bu et al. (2019, §VI): each data point
Z = (X,Y ) consist of features X ∈ Rs and labels Y ∈
{0, 1}, Y is uniformly distributed in {0, 1}, and X|Y ∼
N (µY , 4Is) with µ0 = (−1, . . . ,−1) and µ1 = (1, . . . , 1).
We use a linear classifier and evaluate the generalization

error based on the loss function ℓ(w, z) = 1ŷ ̸=y, where
ŷ is the prediction of input x defined as ŷ ≜ 1w̄T x+w0≥0,
∀w = (w̄, w0) ∈ Rs+1. We train a logistic regression
on WΘ,d and estimate the generalization error. Since ℓ is
bounded by C = 1, we approximate the generalization
error bound from Theorem 4.2 for d < D, and Bu et al.
(2019, Prop. 1) for d = D. Figure 2 reports the results
for s = 20 and different values of n and d: we observe
that our bound holds and accurately reflects the behavior
of the generalization error against (n, d). Our methodology
also provides tighter bounds than Bu et al. (2019), and the
difference increases with decreasing d. On the other hand,
the lower d, the lower generalization error and its bound,
but the higher the test risk (Figure 2). This is consistent
with prior empirical studies (Li et al., 2018) and explained
by the fact that lower values of d induce a more restrictive
hypothesis space, thus make the model less expressive.

Multiclass classification with NNs. Next, we evaluate our
generalization error bounds for neural networks trained on
image classification. Denote by f(w, x) ∈ RK the output
of the NN parameterized by w given an input image x, with
K > 1 the number of classes. The loss is ℓ(w, z) = 1ŷ ̸=y,
with ŷ = argmaxi∈{1,...,K}[f(w, x)]i. We train fully-
connected NNs to classify MNIST and CIFAR-10 datasets,
with D = 199 210 and D = 656 810 respectively: imple-
mentation details are given in Appendix C.2. Even though
we significantly decrease the dimension of the parameters by
slicing, d can still be quite high thus obtaining an accurate
estimation of IΘ(W ′;Sn) remains costly. To mitigate this
issue, in addition to slicing, we discretize W ′ with the quan-
tizer by Lotfi et al. (2022) and evaluate Theorem 4.1 with
IΘ(W ′;Sn) replaced by ⌈d×H(p)⌉+L×(16+⌈log2 d⌉)+2,
as discussed at the beginning of Section 6. Our results in Fig-
ure 3 illustrate that employing slicing followed by quantiza-
tion enables the computation of non-vacuous generalization
bounds for NNs, while still maintaining test performance
for adequate values of d (which is consistent with Li et al.
(2018)). We point out that in these high-dimensional prob-
lems, slicing is unequivocally the key to making information-
theoretic bounds possible to estimate: quantization alone is
far from sufficient in this regime. For example, even binary
quantization of D weights would yield 2D states, requiring
an unimaginably large number of samples to accurately es-
timate the mutual information term. Additional results on
MNIST and Iris datasets are given in Appendix C.2.

6.2. Rate-distortion bounds

We evaluate our rate-distortion generalization bounds for
neural networks trained on image classification. For
q ∈ N∗, let f : W × X → RK be a q-layer feedfor-
ward network with ReLU activations. We train f using
a slightly modified cross-entropy loss defined for w ∈
W and z = (x, y) ∈ X × {1, . . . ,K} as ℓ(w, z) =

8
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Figure 4: Generalization errors and rate-distortion bounds
for feedforward NNs trained on MNIST. Results are av-
eraged over 5 runs. Shaded areas represent the 2.5% and
97.5% percentiles. For each run, expectations are computed
with Monte Carlo estimates over 5 samples of Θ.

− log(p̂(w, x)y), where p̂(w, x) = max(p(w, x), pmin),
p(w, x) = ef(w,x)/1⊤ef(w,x) ∈ (0, 1]K and pmin > 0.
This loss is bounded from above by − log(pmin) and for
any z, ℓ(·, z) is Lipschitz-continuous with constant

√
2. As-

suming that the weight matrix of each layer has bounded
spectral norm (∀i ∈ {1, . . . , q}, ∥W (i)∥2 ≤ M ), we
show that Theorem 5.1 or 5.2 applies with the distortion
ρ(W,ΘΘ⊤W ) =

∑q
i=1 ∥W (i) − (ΘΘ⊤W )(i)∥2 and the

constants C and L specified in Theorem B.2.

We train a 3-layer feedforward NN f to classify MNIST.
The first two layers each contain 1000 neurons and the final
layer has K = 10 neurons, thus the total number of parame-
ters isD = 1000 ·(784+1000+10) = 1 794 000. Our goal
is to evaluate the generalization error and its rate-distortion
bound in Theorem 5.2 for different values of subspace di-
mension d and regularization coefficient λ. To this end, we
parameterize f with w = Θ(Θ⊤w1) + Θ̄(Θ̄⊤w2) ∈ RD,
where Θ ∈ St(d,D) is randomly generated at initialization
and Θ̄ ∈ RD×(D−d) is such that [Θ, Θ̄] ∈ RD×D forms
an orthogonal basis of RD. At each run, we train f on a
random subset of MNIST with n = 1000 samples for 5
different samples of Θ. We set pmin = 1e-4. To estimate
the generalization error, we approximate the population risk
on a test dataset of 10 000 samples. Our results clearly de-
pict the interplay between λ and d and their impact on the
generalization error, bound and risk. Specifically, a higher
λ makes our model more compressible by encouraging its
parameters to lie on the d-dimensional subspace charac-
terized by Θ (see our discussion in Section 5). This has
two main consequences, as predicted by our theory and

illustrated in our plots. First, a higher λ leads to a lower
generalization error (Figure 4c) and a tighter rate-distortion
bound, the distortion term being smaller (Figures 4a and 4b).
Second, as λ increases and d decreases, the train/test risk
become higher (Figure 4c). This is consistent with Li et al.
(2018), as this regime effectively reduces to training on a
low-dimensional random subspace. To further demonstrate
the trade-off between high compressibility/low generaliza-
tion error and high train/test error, we also plot the dis-
tortion (i.e., 2L(E[ρ(W,ΘΘTW )] + 1/

√
n)) and MI term

(C
√
d log(2M

√
dn)/(2n)) against λ, for different values

of d (Figure 4b). Additionally, we plot the test and train
accuracies vs. λ and d (Figure 4d). We observe there exist
combinations of λ and d that yield tighter generalization er-
ror bound while inducing satisfactory training and test errors,
e.g., (λ, d) = (10, 1000). This suggests that with carefully
chosen λ and d, our methodology can tighten generaliza-
tion bounds while preserving model performance. This is a
significant step towards practical relevance of information-
theoretic bounds: to our knowledge, such bounds applied
to neural networks have been fundamentally intractable and
pessimistic, thus lacking practical use beyond very small toy
examples (we refer to Section 2 for an expanded discussion).
In contrast, by taking into account almost-compressibility
via random slicing and quantization, we can derive bounds
that are much easier to compute, and develop a theoretically-
grounded regularization scheme to effectively control the
generalization error in practice.

7. Conclusion
In this work, we combined recent empirical compression
methods for learning models, such as NNs, with generaliza-
tion bounds based on input-output MI. Our results indicate
that random slicing is a very interesting scheme, as it is easy
to implement, performs well, and is highly suitable for prac-
tically computable and tighter information-theoretic bounds.
We also explore a notion of approximate compressibility,
i.e., rate-distortion, where the learned parameters are close
to a quantization of the compressed subspace but do not lie
on it exactly. This framework provides more flexibility, en-
abling the model to maintain good training error even with
a smaller subspace dimension d, while ensuring that the
resulting generalization bounds are as tight as possible and
permitting the use of analytical bounds on the MI instead
of difficult-to-compute MI estimates. Our rate-distortion
approach also motivated a weight regularization technique
to make trained NNs as approximately compressible as pos-
sible and ensure that our bound is small in practice. Future
work includes a more detailed exploration of strategies for
using our bounds to help inform selection and design of NN
architectures, and exploring bounds and regularizers based
on other successful compression methods.
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A. Postponed Proofs for Section 4

Notation. RΘ(w′) = EZ∼µ[ℓ
Θ(w′, Z)] and R̂Θ

n (w
′) ≜ 1

n

∑n
i=1 ℓ

Θ(w′, zi), ∀w = Θw′ ∈ WΘ,d and ℓΘ(w′, z) ≜

ℓ(Θw′, z). The generalization error of A(d) is gen(µ,A(d)) = E[RΘ(W ′) − R̂Θ
n (W

′)] with the expectation taken over
PW ′|Θ,Sn

⊗ PΘ ⊗ µ⊗n.

A.1. Proof of Theorem A.2

Consider three random variables X ∈ X, Y ∈ Y and U ∈ U. Denote by PX,Y,U their joint distribution and by PX , PY , PU

the marginals. Let X̃ (respectively, Ỹ ) be an independent copy of X (resp., Y ) with joint distribution PX̃,Ỹ = PX̃ ⊗ PỸ .
Given U , let fU : X × Y → R be a mapping parameterized by U , and denote by KfU (X̃,Ỹ ) the cumulant generating
function of fU (X̃, Ỹ ), i.e. for t ∈ R,

KfU (X̃,Ỹ )(t) = logE
[
et(f

U (X̃,Ỹ )−E[fU (X̃,Ỹ )])
]

(11)

where the expectations are taken w.r.t. PX|U ⊗ PY |U .

Lemma A.1. Suppose that for any U ∼ PU , there exists b+ ∈ R∗
+ ∪ {+∞} and a convex function φ+(·, U) : [0, b+) → R

such that φ+(0, U) = φ′
+(0, U) = 0 and for t ∈ [0, b+), KfU (X̃,Ỹ )(t) ≤ ψ+(t, U). Then,

EPX,Y,U
[fU (X,Y )]− EPX̃,Ỹ ,U

[fU (X̃, Ỹ )] ≤ EPU

[
inf

t∈[0,b+)

IU (X;Y ) + ψ+(t, U)

t

]
. (12)

Suppose that for any U ∼ PU , there exists b− ∈ R∗
+ ∪ {+∞} and a convex function φ−(·, U) : [0, b−) → R such that

φ−(0, U) = φ′
−(0, U) = 0 and for t ∈ (b−, 0], KfU (X̃,Ỹ )(t) ≤ ψ−(−t, U). Then,

EPX̃,Ỹ ,U
[fU (X̃, Ỹ )]− EPX,Y,U

[fU (X,Y )] ≤ EPU

[
inf

t∈[0,−b−)

IU (X;Y ) + ψ−(t, U)

t

]
. (13)

Proof. Let U ∼ PU . By Donsker-Varadhan variational representation,

IU (X;Y ) = KL(P(X,Y )|U∥PX|U ⊗ PY |U ) (14)

= sup
g∈GU

EP(X,Y )|U [g
U (X,Y )]− logEPX|U⊗PY |U [e

gU (X̃,Ỹ )] (15)

where GU ≜ {gU : X×Y → R s.t. EPX|U⊗PY |U [e
gU (X̃,Ỹ )] <∞}. Therefore, for any t ∈ [0, b+),

KL(P(X,Y )|U∥PX|U ⊗ PY |U ) ≥ tE[fU (X,Y )]− logE[etf
U (X̃,Ỹ )] (16)

≥ t
(
E[fU (X,Y )]− E[fU (X̃, Ỹ )]

)
− ψ+(t, U) (17)

where (17) follows from assuming that for t ∈ [0, b+),KfU (X̃,Ỹ )(t) ≤ ψ+(t, U). Hence,

E[fU (X,Y )]− E[fU (X̃, Ỹ )] ≤ inf
t∈[0,b+)

IU (X;Y ) + ψ+(t, U)

t
. (18)

We obtain the final result (12) by taking the expectation of (18) over PU .

We can prove analogously that (13) holds, assuming for t ∈ [0, b−),KfU (X̃,Ỹ )(t) ≤ ψ−(−t, U).

Theorem A.2. Assume that for Θ ∼ PΘ, there exists C− ∈ R∗
+ ∪ {+∞} s.t. for t ∈ (C−, 0], KℓΘ(W̃ ′,Z̃)(t) ≤ ψ−(−t,Θ),

where ψ−(·,Θ) is convex and ψ−(0,Θ) = ψ′
−(0,Θ) = 0. Then,

gen(µ,A(d)) ≤ 1

n

n∑
i=1

EPΘ

[
inf

t∈[0,−C−)

IΘ(W ′;Zi) + ψ−(t,Θ)

t

]
. (19)
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Assume that for Θ ∼ PΘ, there exists C+ ∈ R∗
+ ∪ {+∞} s.t. for t ∈ [0, C+), KℓΘ(W̃ ′,Z̃)(t) ≤ ψ+(t,Θ), where ψ+(·,Θ)

is convex and ψ+(0,Θ) = ψ′
+(0,Θ) = 0. Then,

gen(µ,A(d)) ≥ 1

n

n∑
i=1

EPΘ

[
inf

t∈[0,C+)

IΘ(W ′;Zi) + ψ+(t,Θ)

t

]
. (20)

Proof of Theorem A.2. The generalization error of A(d) can be written as

gen(µ,A(d)) =
1

n

n∑
i=1

{
EPW ′|Θ⊗PΘ⊗µ[ℓ

Θ(W̃ ′, Z̃i)]− EPW ′|Θ,Zi
⊗PΘ⊗µ[ℓ

Θ(W ′, Zi)]
}
. (21)

Our final bounds (20) and (19) result from applying Lemma A.1 on each term of the sum in (21), i.e. with X =W ′, Y = Zi

and fU (X,Y ) = ℓΘ(W ′, Zi).

A.2. Applications of Theorem A.2

We specify Theorem A.2 under different sub-Gaussian conditions on the loss. A random variable X is said to be σ-sub-
Gaussian (with σ > 0) if for any t ∈ R,

E[et(X−E[X])] ≤ eσ
2t2/2 . (22)

Proof of Theorem 4.1. Define hΘ(w′, s) = (1/n)
∑n

i=1 ℓ
Θ(w′, zi) for w′ ∈ Rd, s = (z1, . . . , zn) ∈ Zn and Θ ∈ RD×d

s.t. Θ⊤Θ = Id. The generalization error of A(d) can be written as,

gen(µ,A(d)) = EPW ′|Θ⊗PΘ⊗µ⊗n

[
hΘ(W̃ ′, S̃n)

]
− EPW ′|Zi,Θ

⊗PΘ⊗µ⊗n

[
hΘ(W ′, Sn)

]
. (23)

Since we assume that ℓΘ(w′, Z) is σ-sub-Gaussian under Z ∼ µ for all w′ and Θ, and Z1, . . . , Zn are i.i.d, then hΘ(w′, Sn)
is σ/

√
n-sub-Gaussian under Sn ∼ µ⊗n for allw′ and Θ. Therefore, hΘ(W̃ ′, S̃n) is σ/

√
n-sub-Gaussian under (W̃ ′, Sn) ∼

PW ′|Θ ⊗ µ⊗n for all Θ, and for t ∈ R,

KhΘ(W̃ ′,S̃n)
(t) ≤ σ2t2

2n
. (24)

We conclude by applying Lemma A.1 with X =W ′, Y = Sn, U = Θ and fU (X,Y ) = hΘ(W ′, Sn), and the fact that,

inf
t>0

IΘ(W ′;Sn) + σ2t2/(2n)

t
=

√
2σ2

n
IΘ(W ′;Sn) . (25)

Proof of Theorem 4.2. Let Θ ∈ RD×d s.t. Θ⊤Θ = Id. Since ℓΘ(W̃ ′, Z̃) is σΘ-sub-Gaussian under (W̃ ′, Z̃) ∼ PW ′ ⊗ µ,
then for any t ∈ R, KℓΘ(W̃ ′,Z̃)(t) ≤ σ2

Θt
2/2. We conclude by applying Theorem A.2 and the fact that for i ∈ {1, . . . , n},

inf
t>0

IΘ(W ′;Zi) + σ2
Θt

2/2

t
=
√
2σ2

ΘI
Θ(W ′;Zi) . (26)

Corollary A.3. Assume that for any Θ ∼ PΘ, ℓΘ(W̃ ′, Z̃) ≤ C almost surely. Then,

|gen(µ,A(d))| ≤ C

n

n∑
i=1

EPΘ

[√
IΘ(W ′;Zi)

2

]
. (27)
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Proof of Corollary A.3. Since for any Θ ∼ PΘ, ℓΘ(W̃ ′, Z̃) ≤ C almost surely, then by Hoeffding’s lemma, we have for all
t ∈ R,

EPW ′|Θ⊗µ

[
e
t{ℓΘ(W̃ ′,Z̃)−EP

W ′|Θ⊗µ[ℓ
Θ(W̃ ′,Z̃)]}] ≤ eC

2t2/8 . (28)

Therefore, KℓΘ(W̃ ′,Z̃)(t) ≤ C2t2/8. We conclude by applying Lemma A.1 and the fact that for i ∈ {1, ..., n},

inf
t>0

IΘ(W ′;Zi) + C2t2/8

t
= C

√
IΘ(W ′;Zi)

2
. (29)

A.3. Tightness of our generalization bounds

Proposition A.4. For any concave and non-decreasing function ϕ : R → R,

EPΘ

[
ϕ
(
IΘ(W ′;Sn)

)]
≤ ϕ

(
I(W ;Sn)

)
. (30)

Proof of Proposition A.4. Let W ∈ WΘ,d. Then, Sn → (W ′,Θ) → W and Sn → W → (W ′,Θ) form two Markov
chains, so equality holds in the data-processing inequality, leading to I(W ;Sn) = I(W ′,Θ;Sn).

By the chain rule of mutual information, and since Θ and Sn are independent,

I(W ′,Θ;Sn) = I(Θ;Sn) + I(W ′;Sn|Θ) = I(W ′;Sn|Θ) . (31)

Since ϕ is non-decreasing,
ϕ
(
I(W ′,Θ;Sn)

)
≥ ϕ

(
I(W ′;Sn|Θ)

)
(32)

Applying the definition of conditional mutual information and Jensen’s inequality yields,

ϕ(I(W ′;Sn|Θ)) = ϕ(EPΘ

[
IΘ(W ′;Sn)

]
) ≥ EPΘ

[
ϕ(IΘ(W ′;Sn))

]
, (33)

which concludes the proof.

Proposition A.5. For any concave and non-decreasing function ϕ : R → R,

1

n

n∑
i=1

EPΘ

[
ϕ
(
IΘ(W ′;Zi)

)]
≤ 1

n

n∑
i=1

[
ϕ
(
I(W ;Zi)

)]
. (34)

Proof of Proposition A.5. Let i ∈ {1, . . . , n}. By applying the same proof techniques of Proposition A.4 with Zi instead of
Sn, one has

EPΘ

[
ϕ
(
IΘ(W ′;Zi)

)]
≤ ϕ

(
I(W ;Zi)

)
. (35)

The final result follows immediately.

Proposition A.6. For any concave and non-decreasing function ϕ : R → R,

1

n

n∑
i=1

EPΘ

[
ϕ
(
IΘ(W ′;Zi)

)]
≤ EPΘ

[
ϕ

(
IΘ(W ′;Sn)

n

)]
. (36)

Proof of Proposition A.6. By adapting the proof of (Bu et al., 2019, Proposition 2), one has

1

n

n∑
i=1

ϕ
(
IΘ(W ′;Zi)

)
≤ ϕ

(
IΘ(W ′;Sn)

n

)
(37)

The result follows immediately by taking the expectation of (37) and applying the linearity of the expectation on the left-hand
side term.
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A.4. Detailed derivations for Gaussian mean estimation

Problem statement. The loss function is defined for any (w, z) ∈ RD × RD as ℓ(w, x) = ∥w − z∥2. Let Z1, . . . , Zn

be n random variables i.i.d. from N (0D, ID). Let d ≤ D and Θ ∼ PΘ s.t. Θ⊤Θ = Id. Consider a model A(d) whose
objective is argminw∈WΘ,d

R̂n(w) where the empirical risk is defined for w ∈ RD as R̂n(w) =
1
n

∑n
i=1 ∥w − Zi∥2. This

is equivalent to solving argminw′∈Rd R̂Θ
n (w

′), where

∀w′ ∈ Rd, R̂Θ
n (w

′) =
1

n

n∑
i=1

∥Θw′ − Zi∥2 . (38)

The gradient of (68) with respect to w′ is,

∇w′R̂Θ
n (w) =

2

n

n∑
i=1

Θ⊤(Θw′ − Zi) , (39)

and solving ∇w′R̂Θ
n (w) = 0 yields (Θ⊤Θ)w′ = Θ⊤Z̄ where Z̄ ≜ (1/n)

∑n
i=1 Zi. Since Θ⊤Θ = Id, we conclude that

the minimizer of (68) is W ′ = Θ⊤Z̄.

Generalization error. We recall that the generalization error of A(d) is defined as,

gen(µ,A(d)) = E[RΘ(W ′)− R̂Θ
n (W

′)] (40)

where the expectation is computed with respect to PW ′|Θ,Sn
⊗ PΘ ⊗ µ⊗n. Since W ′ = Θ⊤Z̄, gen(µ,A(d)) can be written

as

gen(µ,A(d)) = E(Sn,Θ)∼µ⊗n⊗PΘ

[
EZ̃∼µ[∥ΘΘ⊤Z̄ − Z̃∥2]− 1

n

n∑
i=1

∥ΘΘ⊤Z̄ − Zi∥2
]

(41)

Since Z1, . . . , Zn are n i.i.d. samples from N (0D, ID) and Θ⊤Θ = Id, then PΘ⊤Z̄|Θ = N (0d, (1/n)Id) and we have

Eµ⊗n⊗PΘ
[∥ΘΘ⊤Z̄∥2] = Eµ⊗n⊗PΘ

[Tr((ΘΘ⊤Z̄)⊤(ΘΘ⊤Z̄))] (42)

= Eµ⊗n⊗PΘ
[Tr(Z̄⊤ΘΘ⊤ΘΘ⊤Z̄)] (43)

= Tr(Eµ⊗n⊗PΘ
[Θ⊤Z̄(Θ⊤Z̄)⊤]) (44)

=
d

n
. (45)

For i ∈ {1, . . . , n}, E[∥Zi∥2] = Tr(E[ZiZ
⊤
i ]) = D, and

E[(ΘΘ⊤Z̄)⊤Zi] =
1

n

n∑
j=1

E[Z⊤
j ΘΘ⊤Zi] (46)

=
1

n

n∑
j=1

Tr(E[Θ⊤Zi(Θ
⊤Zj)

⊤]) (47)

=
1

n
Tr(E[Θ⊤Zi(Θ

⊤Zi)
⊤]) (48)

=
d

n
. (49)

Equations (48) to (49) can be justified as follows. Since Zi ∼ N (0D, ID), the conditional distribution of Θ⊤Zi given
Θ is N (0d,Θ

⊤Θ), and Θ⊤Θ = Id by definition. Therefore, E[Θ⊤Zi(Θ
⊤Zi)

⊤] = E[E[Θ⊤Zi(Θ
⊤Zi)

⊤|Θ]] = Id. We
conclude that Tr(E[Θ⊤Zi(Θ

⊤Zi)
⊤]) = d.
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We thus obtain,

E[R̂Θ
n (W

′)] = E(Sn,Θ)∼µ⊗n⊗PΘ

[
1

n

n∑
i=1

∥ΘΘ⊤Z̄ − Zi∥2
]

(50)

= E(Sn,Θ)∼µ⊗n⊗PΘ

[
1

n

n∑
i=1

∥ΘΘ⊤Z̄∥2 − 2(ΘΘ⊤Z̄)⊤Zi + ∥Zi∥2
]

(51)

= D − d

n
. (52)

Indeed, by the linearity of expectation, (51) simplifies as

E[R̂Θ
n (W

′)] = Eµ⊗n⊗PΘ
[∥ΘΘ⊤Z̄∥2]− 2

n

n∑
i=1

Eµ⊗n⊗PΘ
[(ΘΘ⊤Z̄)⊤Zi] +

1

n

n∑
i=1

Eµ[∥Zi∥2] (53)

Since (Zi)
n
i=1 are i.i.d. from N (0D, ID), we proved that Eµ⊗n⊗PΘ

[∥ΘΘ⊤Z̄∥2] = d
n (eq. (45)) and E[(ΘΘ⊤Z̄)⊤Zi] =

d
n

(eq. (49)). Additionally,

Eµ[∥Zi∥2] = Eµ[Tr(∥Zi∥2)] = Eµ[Tr(ZiZ
⊤
i )] = Tr(Eµ[ZiZ

⊤
i ]) = Tr(ID) = D (54)

Plugging these identities in (53) yields (52).

On the other hand,
E(Sn,Θ,Z̃)∼µ⊗n⊗PΘ⊗µ[(ΘΘ⊤Z̄)⊤Z̃] = E[ΘΘ⊤Z̄]⊤E[Z̃] = 0 , (55)

therefore,

E[RΘ(W ′)] = E(Sn,Θ)∼µ⊗n⊗PΘ
EZ̃∼µ[∥ΘΘ⊤Z̄ − Z̃∥2] (56)

= E(Sn,Θ)∼µ⊗n⊗PΘ
EZ̃∼µ[∥ΘΘ⊤Z̄∥2 − 2(ΘΘ⊤Z̄)⊤Z̃ + ∥Z̃∥2] (57)

= D +
d

n
. (58)

By plugging (52) and (58) in (41), we conclude that gen(µ,A(d)) = 2d/n.

Generalization error bound. We apply Theorem A.2 to bound the generalization error. To this end, we need to bound the
cumulant generating function of ℓΘ(W̃ ′, Z̃) = ∥ΘΘ⊤Z̄ − Z̃∥2 given Θ.

Since (Z1, . . . , Zn, Z̃) ∼ µ⊗n ⊗ µ with µ = N (0D, ID), then, given Θ, one has Θ⊤Z̄ ∼ N (0d, (1/n)Id) and (ΘΘ⊤Z̄ −
Z̃) ∼ N (0D,ΣΘ) with ΣΘ = ΘΘ⊤/n+ ID. Therefore, for d < D, ℓΘ(W̃ ′, Z̃) = ∥ΘΘ⊤Z̄ − Z̃∥2 is the sum of squares
of D dependent Gaussian random variables, which can equivalently be written as

ℓΘ(W̃ ′, Z̃) =

D∑
k=1

λΘ,kU
2
Θ,k , (59)

UΘ = PΣ
−1/2
Θ (ΘW ′ − Z̃) (60)

where P ∈ RD×D and λΘ = (λΘ,1, . . . , λΘ,D) ∈ RD come from the eigendecomposition of ΣΘ, i.e. ΣΘ = PΛP⊤ with
Λ = diag(λΘ). As a consequence, UΘ ∼ N (0D, ID). Note that, since ΣΘ is positive definite, P is orthogonal and for any
k ∈ {1, . . . , D}, λΘ,k > 0.

By (59), ℓΘ(W̃ ′, Z̃) is a linear combination of independent chi-square variables, each with 1 degree of freedom. Therefore,
ℓΘ(W̃ ′, Z̃) is distributed from a generalized chi-square distribution, and its CGF is given by,

∀t ≤ 1

2
min

k∈{1,...,D}
λΘ,k, KℓΘ(W̃ ′,Z̃)(t) = −t

D∑
k=1

λΘ,k − 1

2

D∑
k=1

log(1− 2λΘ,kt) (61)

=
1

2

D∑
k=1

[−2λΘ,kt− log(1− 2λΘ,kt)] . (62)
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Since for any s < 0, −s− log(1− s) ≤ s2/2, we deduce that

∀t < 0, KℓΘ(W̃ ′,Z̃)(t) ≤
1

2

D∑
k=1

(2λΘ,kt)
2

2
= ∥λΘ∥2t2 . (63)

Since rank(ΘΘ⊤) = rank(Θ⊤Θ) and Θ⊤Θ = Id, then rank(ΘΘ⊤) = d. Moreover, ΘΘ⊤ and Θ⊤Θ share the same
non-zero eigenvalues. Therefore, ΘΘ⊤ has d eigenvalues equal to 1, and (D− d) eigenvalues equal to 0, thus Θ⊤Θ/n+ Id
has d eigenvalues equal to 1 + 1/n and and (D − d) eigenvalues equal to 1, and

∥λΘ∥2 = d

(
1 +

1

n

)2

+ (D − d) . (64)

By combining Theorem A.2 with (63) and (64), we obtain

gen(µ,A(d)) ≤ 2

n

√
d

(
1 +

1

n

)2

+ (D − d)

n∑
i=1

EPΘ

[√
IΘ(W ′;Zi)

]
(65)

Applying Jensen’s inequality on (65) and the fact that W ′ = Θ⊤W with W = argminw∈RD R̂n(w) = Z̄ finally yields,

gen(µ,A(d)) ≤ 2

n

√
d

(
1 +

1

n

)2

+ (D − d)

n∑
i=1

√
SI

(1)
d (W ;Zi) . (66)

A.5. Detailed derivations for linear regression

Summary. Consider n i.i.d. samples (x1, . . . , xn), xi ∈ RD and a response variable y = (y1, . . . , yn), yi ∈ R. The goal
of A(d) is minw∈WΘ,d

R̂n(w) ≜ (1/n)∥y −Xw∥2, where X ∈ Rn×D is the design matrix. We show that if n ≥ D, then
W ′ = (ΘX⊤XΘ⊤)−1ΘX⊤y. Moreover, assume that X is deterministic and yi = x⊤i W

⋆ + εi where W ⋆ ∈ RD and
(εi)

n
i=1 i.i.d. from N (0, σ2). Then, by applying Theorem A.2, we bound gen(µ,A(d)) by a function of I(ϕ(Θ, X)W ; yi),

where ϕ(Θ, X) ≜ (ΘX⊤XΘ⊤)−1Θ(X⊤X) and W ≜ argminw∈RD R̂n(w), which can be interpreted as a generalized
SMI with a non-isotropic slicing distribution that depends on the fixed X . The corresponding derivations are detailed in the
rest of this subsection.

Problem statement. Consider n i.i.d. samples (x1, . . . , xn) and a response variable y = (y1, . . . , yn), where xi ∈ RD

and yi ∈ R. Consder a learning algorithm A(d) whose objective is argminw∈WΘ,d
R̂n(w), with

∀w ∈ RD, R̂n(w) =
1

n

n∑
i=1

(yi − x⊤i w)
2 =

1

n
∥y −Xw∥2 . (67)

where X ∈ Rn×D is the design matrix. This objective is equivalent to finding W ′ = argminw′∈Rd R̂Θ
n (w

′), where

∀w′ ∈ Rd, R̂Θ
n (w

′) =
1

n
∥y −XΘw′∥2 . (68)

We assume the problem is over-determined, i.e. D ≤ n. Solving ∇w′R̂Θ
n (w

′) = 0 yields

W ′ = (ΘX⊤XΘ⊤)−1ΘX⊤y . (69)

On the other hand, we know the solution of argminw∈RD R̂n(w) is the ordinary least squares (OLS) estimator, given by

W = (X⊤X)−1X⊤y . (70)

Hence, by (70) with (69), we deduce that

W ′ = (ΘX⊤XΘ⊤)−1Θ(X⊤X)W (71)
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Generalization error. In the remainder of this section, we assume that X is deterministic and there exists W ⋆ ∈ RD such
that yi = x⊤i W

⋆ + εi where (εi)
n
i=1 are i.i.d. from N (0, σ2). By using similar techniques as in Appendix A.4, one can

show that gen(µ,A(d)) = 2σ2d/n.

Generalization error bound. Since yi ∼ N (x⊤i W
⋆, σ2), and by (69),

x⊤i Θ
⊤W ′ ∼ N (x⊤i ΘXW

⋆, σ2x⊤i Θ
⊤[ΘX⊤XΘ⊤]−1Θxi) (72)

where ΘX = Θ⊤(ΘX⊤XΘ⊤)−1Θ(X⊤X) ∈ RD×D. Therefore,

(ỹi − x⊤i Θ
⊤W̃ ′) ∼ N (x⊤i (ID −ΘX)W ⋆, σ2(1 + x⊤i Θ

⊤[ΘX⊤XΘ⊤]−1Θxi)) , (73)

and
ℓΘ(W̃ ′, ỹi) ∼ σ2

i χ
2(1, λi) , (74)

where σ2
i = σ2(1 + x⊤i Θ

⊤[ΘX⊤XΘ⊤]−1Θxi), λi = (x⊤i (ID − ΘX)W ⋆)2 and χ2(k, λ) denotes the noncentral chi-
squared distribution with k degrees of freedom and noncentrality parameter λ. Hence, the moment-generating function of
ℓΘ(W̃ ′, ỹi) is

∀t < 1

2σ2
i

, E
[
et ℓ

Θ(W̃ ′,ỹi)
]
=
e(λiσ

2
i t)/(1−2σ2

i t)√
1− 2σ2

i t
(75)

and its expectation is E[ℓΘ(W̃ ′, ỹi)] = σ2
i (1 + λi). Therefore, for t < 1/(2σ2

i ) and ui = 2σ2
i t,

KℓΘ(W̃ ′,ỹi)
(t) =

λiui
2(1− ui)

− 1

2
log(1− ui)−

1

2
(1 + λi)ui (76)

=
1

2
{− log(1− ui)− ui}+

λiu
2
i

2(1− ui)
. (77)

Since − log(1− x)− x ≤ x2/2 for x < 0, we deduce that for t < 0,

KℓΘ(W̃ ′,ỹi)
(t) ≤ u2i

4
+

λiu
2
i

2(1− ui)
(78)

= σ4
i t

2 +
2λiσ

4
i t

2

1− 2σ2
i t
. (79)

By applying Theorem A.2, we conclude that

gen(µ,A(d)) ≤ 1

n

n∑
i=1

EΘ

[
inf
t>0

I(W ′; yi) + σ4
i t

2
(
1 + 2λi(1 + 2σ2

i t)
−1
)

t

]
. (80)

By (71), W ′ is the projection of W along ϕ(Θ, X) ≜ (ΘX⊤XΘ⊤)−1Θ(X⊤X). The right-hand side term in (80) can thus
be interpreted as a generalized SMI with a non-isotropic slicing distribution that depends on the fixed X .

As d converges to D, λ = (λ1, . . . , λn) ∈ Rn converges to 0n. Indeed, consider the compact singular value decomposition
(SVD) of XΘ⊤, i.e. XΘ⊤ = USV ⊤ where S ∈ Rd×d is diagonal, U ∈ Rn×d, V ∈ Rd×m s.t. U⊤U = V ⊤V = Id. By
using the pseudo-inverse expression of SVD,

XΘX = XΘ⊤(ΘX⊤XΘ⊤)−1Θ(X⊤X) (81)

= USV ⊤V S−1U⊤X (82)

= UU⊤X (83)

Therefore,
√
λ = X(ID − UU⊤)W ⋆. Since U⊤U = Id with U ∈ Rn×d, then ID − UU⊤ has (D − d) eigenvalues equal

to 1 and d eigenvalues equal to 0. Hence, λ converges to 0n as d→ D.
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B. Postponed Proofs for Section 5
B.1. Proof of Theorems 5.1 and 5.2

Proof of Theorem 5.1. By the triangle inequality, for any pair of models (A,A′),

|gen(µ,A)| ≤ |gen(µ,A)− gen(µ,A′)|+ |gen(µ,A′)| . (84)

Consider A : Zn → W and A′ : Zn → WΘ,d such that A(Sn) = W may depend on Θ ∼ PΘ, and A′(Sn) = Θ(Θ⊤W ).
On the one hand, by applying Lemma A.1 with X = Θ⊤W , Y = Zi, U = Θ and fU (X,Y ) = ℓΘ(Θ⊤W,Zi), we obtain

|gen(µ,A′)| ≤ C

n

n∑
i=1

EPΘ

[√
IΘ(Θ⊤W ;Zi)

2

]
. (85)

On the other hand, by the definition of the generalization error, one can show that

|gen(µ,A)− gen(µ,A′)| = |E[R(W )− R̂n(W )]− E[RΘ(Θ⊤W )− R̂Θ
n (Θ

⊤W )]| (86)

≤ |E[R(W )−RΘ(Θ⊤W )]|+ |E[R̂n(W )− R̂Θ
n (Θ

⊤W )]| (87)

where the expectations are computed over PW |Θ,Sn
⊗ PΘ ⊗ µ⊗n. Additionally,

|E[R(W )−RΘ(Θ⊤W )]| = |EPW |Θ⊗PΘ⊗µ[ℓ(W,Z)− ℓ(ΘΘ⊤W,Z)]| (88)

≤ EPW |Θ⊗PΘ⊗µ|ℓ(W,Z)− ℓ(ΘΘ⊤W,Z)| (89)

≤ LEPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥ , (90)

where (88) follows from the definition of the population risks R(w) and RΘ(Θ⊤w), and (90) results from the assumption
that ℓ(·, z) : W → R+ is L-Lipschitz for all z ∈ Z.

Using similar arguments, one can show that

|E[R̂n(W )− R̂Θ
n (Θ

⊤W )]| ≤ LEPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥ , (91)

and we conclude that

|gen(µ,A)− gen(µ,A′)| ≤ 2LEPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥ . (92)

The final result follows from bounding (84) using (85) and (92).

Proof of Theorem 5.2. Consider A : Zn → W and A′ : Zn → WΘ,d such that A(Sn) =W may depend on Θ ∼ PΘ, and
A′(Sn) = ΘQ(Θ⊤W ). Using the same techniques as in the proof of Theorem 5.1, we obtain

|gen(µ,A)| ≤ 2LEPW |Θ⊗PΘ
∥W −ΘQ(Θ⊤W )∥+ |gen(µ,A′)| (93)

≤ 2LEPW |Θ⊗PΘ
∥W −ΘQ(Θ⊤W )∥+ C EPΘ

[√
IΘ(Q(Θ⊤W );Sn)

2n

]
(94)

where eq. (94) follows from applying Theorem 4.1.

Then, by using the triangle inequality, the fact that ∥Θ∥ = ∥Θ⊤Θ∥ = 1, and the properties of Q,

EPW |Θ⊗PΘ
∥W −ΘQ(Θ⊤W )∥ (95)

≤ EPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥+ EPW |Θ⊗PΘ

∥ΘΘ⊤W −ΘQ(Θ⊤W )∥ (96)

≤ EPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥+ EPW |Θ⊗PΘ

[
∥Θ∥∥Θ⊤W −Q(Θ⊤W )∥

]
(97)

≤ EPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥+ δ . (98)

Finally, since Q(Θ⊤W ) is a discrete random variable and ∥Θ⊤W∥ ≤M , we use the same arguments as in Section 4.1 to
bound IΘ(Q(Θ⊤W );Sn) by d log(2M

√
d/δ).

20



Slicing Mutual Information Generalization Bounds for Neural Networks

B.2. Rate-distortion bounds applied to feedforward neural networks

In the following, we determine the conditions under which feedforward networks meet the assumptions outlined in
Theorems 5.1 and 5.2. Suppose Z = {(x, y) ∈ X× {1, . . . ,K}} is the set of feature-label pairs.

For q ∈ N∗, a q-layer feedforward network is characterized by a mapping f : W ×X → RK such that the output of its i-th
layer, X(i), satisfies X(1) ≜W (1)X and for i ∈ {2, . . . , q}, X(i) ≜W (i)(ψi(X

(i−1))), where ψi is an activation function
applied element-wise, W (i) ∈ Rd

(i)
out×d

(i)
in , and X is the input feature vector.

For any such feedforward network f , we denote by f̄ : WΘ,d ×X → RK a feedforward network with the same architecture
as f (i.e., same number of layers and neurons, and same type of activation functions), but with its parameter space restricted
to WΘ,d. Denote by X̄(i) and W̄ (i) the output and weight matrix of the i-th layer of f̄ .

Theorem B.1. Let f be a q-layer feedforward neural network. Assume that for i ∈ {2, . . . , q − 1}, ψi is αi-Lipschitz
continuous and ψi(0) = 0. Assume for i ∈ {1, . . . , q}, ∥W (i)∥2 ≤M and ∥W̄ (i)∥2 ≤M . Then, for i ∈ {1, . . . , q},

∥X(i) − X̄(i)∥2 ≤M i−1∥X∥2

 i∏
j=1

αj

 i∑
j=1

∥W (j) − W̄ (j)∥2 , (99)

where α1 ≜ 1.

Proof. We prove this result by induction. By definition, ∥X(1) − X̄(1)∥2 = ∥(W (1) − W̄ (1))X∥2. Since the spectral norm
is consistent with the Euclidean norm, ∥X(1) − X̄(1)∥2 ≤ ∥W (1) − W̄ (1)∥2∥X∥2, so (99) is true for i = 1.

Now, let i > 1 and assume that (99) holds for j ∈ {1, . . . , i− 1}. Then,

∥X(i) − X̄(i)∥2 = ∥W (i)ψi(X
(i−1))− W̄ (i)ψi(X̄

(i−1))∥2 (100)

= ∥(W (i) − W̄ (i))ψi(X
(i−1)) + W̄ (i)(ψi(X

(i−1))− ψi(X̄
(i−1)))∥2 (101)

≤ ∥W (i) − W̄ (i)∥2∥ψi(X
(i−1))∥2 + ∥W̄ (i)∥2∥ψi(X

(i−1))− ψi(X̄
(i−1))∥2 , (102)

where (102) results from applying the triangle inequality and ∥Mx∥2 ≤ ∥M∥2∥x∥2. Since ψi is αi-Lipschitz continuous
and ψi(0) = 0, we obtain

∥X(i) − X̄(i)∥2 ≤ αi

(
∥W (i) − W̄ (i)∥2∥X(i−1)∥2 + ∥W̄ (i)∥2∥X(i−1) − X̄(i−1)∥2

)
. (103)

By recursively using the definition of X(i) and ∥W (i)ψi(X
(i−1))∥2 ≤ αi∥W (i)∥2∥X(i−1)∥2, one can show that

∥X(i−1)∥2 ≤ ∥X∥2
i−1∏
j=1

αj∥W (j)∥2 ≤M i−1∥X∥2
i−1∏
j=1

αj . (104)

Additionally, since we assume (99) holds for j ∈ {1, . . . , i− 1},

∥X(i−1) − X̄(i−1)∥2 ≤M i−2∥X∥2

i−1∏
j=1

αj

 i−1∑
j=1

∥W (j) − W̄ (j)∥2 . (105)

By plugging (104) and (105) in (103), we obtain

∥X(i) − X̄(i)∥2 ≤ ∥X∥2

 i∏
j=1

αj

M i−1∥W (i) − W̄ (i)∥2 + ∥W̄ (i)∥2M i−2
i−1∑
j=1

∥W (j) − W̄ (j)∥2

 (106)

≤M i−1∥X∥2

 i∏
j=1

αj

 i∑
j=1

∥W (j) − W̄ (j)∥2 , (107)

which concludes the proof.
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Theorem B.2. Let f and f̄ be two q-layer feedforward neural networks satisfying the assumptions in Theorem B.1. Denote
by A (respectively, Ā) the learning algorithm consisting in training f (resp., f̄ ) using the loss function ℓ : W × Z → R+,
where Z = X×{1, . . . ,K}. Let ℓ̃ : RK ×{1, . . . ,K} → R+ be the mapping such that for any w ∈ W and z = (x, y) ∈ Z,
ℓ(w, z) = ℓ̃(f(w, x), y) (resp., ℓ(w, z) = ℓ̃(f̄(w, x), y)). Assume that ℓ̃ is β-Lipschitz w.r.t. the first variable. Suppose
additionally that ∀X ∈ X, ∥X∥2 ≤ R. Then,

|gen(µ,A)− gen(µ, Ā)| ≤ 2βMq−1R

(
q∏

i=1

αi

)
E
[ q∑

i=1

∥W (i) − W̄ (i)∥2
]
. (108)

Proof. By definition of the generalization error,

|gen(µ,A)− gen(µ, Ā)| = |E[R(W )− R̂n(W )]− E[R(W̄ )− R̂n(W̄ )]| (109)

= |E[R(W )−R(W̄ )− (R̂n(W )− R̂n(W̄ ))]| (110)

≤ E[|R(W )−R(W̄ )|+ |R̂n(W )− R̂n(W̄ )|] (111)

For any (W, W̄ ) ∼ PW |Sn
⊗ PW̄ |Sn

,

|R(W )−R(W̄ )| = |EZ∼µ[ℓ(W,Z)]− EZ∼µ[ℓ(W̄ , Z)]| (112)

≤ |E(X,Y )∼µ[ℓ̃(f(W,X), Y )− ℓ̃(f̄(W̄ ,X), Y )]| (113)

≤ E(X,Y )∼µ

[
|ℓ̃(f(W,X), Y )− ℓ̃(f̄(W̄ ,X), Y )|

]
(114)

≤ β E
[
∥f(W,X)− f̄(W̄ ,X)∥2

]
. (115)

We bound (115) using Theorem B.1 and we obtain,

|R(W )−R(W̄ )| ≤ βMq−1E
[
∥X∥2

]( q∏
i=1

αi

)
q∑

i=1

∥W (i) − W̄ (i)∥2 (116)

≤ βMq−1R

(
q∏

i=1

αi

)
q∑

i=1

∥W (i) − W̄ (i)∥2 . (117)

Similarly,

|R̂n(W )− R̂n(W̄ )| =

∣∣∣∣∣ 1n
n∑

i=1

ℓ(W,Zi)−
1

n

n∑
i=1

ℓ(W̄ , Zi)

∣∣∣∣∣ (118)

=

∣∣∣∣∣ 1n
n∑

i=1

ℓ̃(f(W,Xi), Yi)−
1

n

n∑
i=1

ℓ̃(f̄(W̄ ,Xi), Yi)

∣∣∣∣∣ (119)

≤ 1

n

n∑
i=1

|ℓ̃(f(W,Xi), Yi)− ℓ̃(f̄(W̄ ,Xi), Yi)| (120)

≤ β

n

n∑
i=1

∥f(W,Xi)− f̄(W̄ ,Xi)∥2 (121)

≤ β

n
Mq−1

(
n∑

i=1

∥Xi∥2

)(
q∏

i=1

αi

)
q∑

i=1

∥W (i) − W̄ (i)∥2 (122)

≤ βMq−1R

(
q∏

i=1

αi

)
q∑

i=1

∥W (i) − W̄ (i)∥2 . (123)

We obtain the final result by plugging (117) and (123) in (111).
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Figure 5: Generalization bounds on MNIST classification with neural networks trained on WΘ,d

Figure 6: Generalization bounds on Iris dataset classification with neural networks trained on WΘ,d

C. Additional Experimental Details for Section 6
C.1. Methodological details

Architecture for MINE. In all our experiments, the MI terms are estimated with MINE (Belghazi et al., 2018) based on a
fully-connected neural network with one single hidden layer of dimension 100. The network is trained for 200 epochs and a
batch size of 64, using the Adam optimizer (Kingma & Ba, 2017) with default parameters (on PyTorch).

Quantization method. We use the quantization scheme of Lotfi et al. (2022) with minor modifications. We learn
c = [c1, ..., cL] ∈ RL quantization levels in 16-precision during training using the straight through estimator, and quantize
the weights W ′ = [W1, · · · ,Wd] ∈ Rd into Ŵi = cq(i), where q(i) = argmink∈{1,...,L} |Wi − ck|. Post quantization,
arithmetic coding is employed for further compression, to take into account the fact that quantization levels are not uniformly
distributed in the quantized weights. Denote by pk the empirical probability of ck. Arithmetic coding uses at most
⌈d×H(p)⌉+ 2 bits, where H(p) = −

∑L
k=1 pk log2 pk. The total bit requirement for the quantized weights, the codebook

c, and the probabilities (p1, . . . , pL) is bounded by ⌈d×H(p)⌉+ L× (16 + ⌈log2 d⌉) + 2.

C.2. Additional details and empirical results

Binary classification with logistic regression (Section 6.1). We consider the binary classification problem solved with
logistic regression as described in (Bu et al., 2019, §VI), with features dimension s = 20, hence D = s+ 1 (weights and
intercept). We train our model on WΘ,d for different values of d < D, using n training samples. We compute the test
error on ⌊20n/80⌋ observations. For each value of n and d, we approximate the generalization error for 30 samples of Θ
independently drawn from the SVD-based projector (see Section 6). We estimate the MI term in the bounds via MINE (with
the aforementioned architecture) using 30 samples of (W ′, Zi) ∼ PW ′|Sn,Θ ⊗ µ for each Θ.

Classification with NNs (Section 6.1). We consider a feedforward neural network with 2 fully-connected layers of width
200 to classify MNIST (LeCun & Cortes, 2010) and CIFAR-10 (Krizhevsky et al., 2009). The random projections are
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Figure 7: Influence of the number of quantization levels L on the generalization error and our bounds, for MNIST
classification with NNs.

sampled using the Kronecker product projector, in order to scale better with the high-dimensionality of our models (see
Appendix C.2). We train our NNs on WΘ,d for different values of d, including the intrinsic dimensions reported in (Li
et al., 2018). We approximate the generalization error for 30 samples of Θ and estimate our MI-based bounds given by
Theorem A.2. The MI terms are estimated using MINE over 100 samples of (W ′, Zi) ∼ PW ′|Sn,Θ ⊗ µ for each Θ. As
MINE requires multiple runs, which can be very expensive, we only estimate MI for datasets and models of reasonable
sizes: see Figure 5 for results on MNIST. For MNIST and CIFAR-10, we quantize W ′ and evaluate our quantization-based
generalization bounds. To train our NNs, we run Adam (Kingma & Ba, 2017) with default parameters for 30 epochs and
batch size of 64 or 128.

We also classify the Iris dataset (Fisher, 1936). We train a two-hidden-layer NN with width 100 (resulting in D = 10 903
parameters) on WΘ,d. We use Adam with a learning rate of 0.1 as optimizer, for 200 epochs and batch size of 64. We
approximate the generalization error for 20 samples of Θ independently drawn from the SVD-based projector. We evaluate
our generalization bounds (Theorem 4.2) using MINE over 500 samples of (W ′, Zi) ∼ PW ′|Θ,Sn

⊗ µ for each Θ. We
report results for d ∈ {5, 10, 15, 20, 50, 100} in Figure 6. We obtain over 95% accuracy at d = 10 already, and both the best
train and test accuracy is achieved for d = 50. As expected, our bound is an increasing function of d and all of our bounds
are non-vacuous.

Influence of the number of quantization levels. We analyze the influence of the quantization levelsL on the generalization
error and our bounds in practice. We consider the MNIST classification task with NNs in Section 6.1 and train for different
values of L. We report the results in Figure 7 for several values of d. We observe that for all tested dimensions, the
generalization error increases with increasing L. Our bound exhibits the same behavior, as anticipated given the dependence
on L (see paragraph “Quantization” in Section 6). This experiment illustrates that (i) the more aggressive the compression,
the better the generalization, (ii) our bounds accurately reflect the behavior of the generalization error, and is tighter for
lower values of d and L.

Classification with NNs (Section 6.2). We consider a feedforward neural network f with 3 fully-connected layers and
ReLU activations, as formally described in Appendix B.2. We parameterize f with w = Θ(Θ⊤w1) + Θ̄(Θ̄⊤w2) ∈ RD,
where Θ ∈ St(d,D) is randomly generated at initialization and Θ̄ ∈ RD×(D−d) is such that [Θ, Θ̄] ∈ RD×D forms an
orthogonal basis of RD. The projection matrix Θ is generated with the sparse projector by Li et al. (2018). Each run consists
in randomly selecting a subset of MNIST of n = 1000 samples and training f on that dataset for 5 different samples of Θ.
For each Θ, we train for 20 epochs using the Adam optimizer with a batch size of 256, learning rate η = 0.01 for w1 and
η/10 for w2, and other parameters set to their default values (Kingma & Ba, 2017). During training, we clamp the norm
of each layer’s weight matrix at the end of each iteration to satisfy the condition in Theorem B.2. All hyperparameters,
including C and M , were chosen so that the neural network trained on MNIST with d = D achieves a training accuracy of
at least 99% in almost all runs.

24


