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Abstract

Learning neural implicit representations has achieved remarkable performance
in 3D reconstruction from multi-view images. Current methods use volume ren-
dering to render implicit representations into either RGB or depth images that
are supervised by multi-view ground truth. However, rendering a view each time
suffers from incomplete depth at holes and unawareness of occluded structures
from the depth supervision, which severely affects the accuracy of geometry in-
ference via volume rendering. To resolve this issue, we propose to learn neural
implicit representations from multi-view RGBD images through volume rendering
with an attentive depth fusion prior. Our prior allows neural networks to per-
ceive coarse 3D structures from the Truncated Signed Distance Function (TSDF)
fused from all depth images available for rendering. The TSDF enables access-
ing the missing depth at holes on one depth image and the occluded parts that
are invisible from the current view. By introducing a novel attention mecha-
nism, we allow neural networks to directly use the depth fusion prior with the
inferred occupancy as the learned implicit function. Our attention mechanism
works with either a one-time fused TSDF that represents a whole scene or an
incrementally fused TSDF that represents a partial scene in the context of Si-
multaneous Localization and Mapping (SLAM). Our evaluations on widely used
benchmarks including synthetic and real-world scans show our superiority over
the latest neural implicit methods. Please see our project page for code and data at
https://machineperceptionlab.github.io/Attentive_DF_Prior/.

1 Introduction

3D reconstruction from multi-view images has been studied for decades. Traditional methods like
Structure from Motion (SfM) [61], Multi-View Stereo (MVS) [62], and Simultaneous Localization
and Mapping (SLAM) [49] estimate 3D structures as point clouds by maximizing multi-view color
consistency. Current methods [84, 28] mainly adopt data-driven strategies to learn depth estimation
priors from large scale benchmarks using deep learning models. However, the reconstructed 3D point
clouds lack geometry details, due to their discrete representation essence, which makes them not
friendly to downstream applications.

More recent methods use implicit functions such as signed distance functions (SDFs) [77] or occu-
pancy functions [51] as continuous representations of 3D shapes and scenes. Using volume rendering,
we can learn neural implicit functions by comparing their 2D renderings with multi-view ground truth
including color [88, 97], depth [88, 3, 97] or normal [88, 76, 16] maps. Although the supervision of
using depth images as rendering target can provide detailed structure information and guide impor-
tance sampling along rays [88], both the missing depth at holes and the unawareness of occluded
structures make it hard to significantly improve the reconstruction accuracy. Hence, how to more
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effectively leverage depth supervision for geometry inference through volume rendering is still a
challenge.

To overcome this challenge, we introduce to learn neural implicit through volume rendering with an
attentive depth fusion prior. Our key idea is to provide neural networks the flexibility of choosing
geometric clues, i.e., the geometry that has been learned and the Truncated Signed Distance Function
(TSDF) fused from all available depth images, and combining them into neural implicit for volume
rendering. We regard the TSDF as a prior sense of the scene, and enable neural networks to directly
use it as a more accurate representation. The TSDF enables accessing the missing depth at holes
on one depth image and the occluded structures that are invisible from the current view, which
remedies the demerits of using depth ground truth to supervise rendering. To achieve this, we
introduce an attention mechanism to allow neural networks to balance the contributions of currently
learned geometry and the TSDF in the neural implicit, which leads the TSDF into an attentive depth
fusion prior. Our method works with either known camera poses or camera tracking in the context
of SLAM, where our prior could be either a one-time fused TSDF that represents a whole scene
or an incrementally fused TSDF that represents a partial scene. We evaluate our performance on
benchmarks containing synthetic and real-world scans, and report our superiority over the latest
methods with known or estimated camera poses. Our contributions are listed below.

i) We present a novel volume rendering framework to learn neural implicit representations from
RGBD images. We enable neural networks to use either currently learned geometry or the one
from depth fusion in volume rendering, which leads to a novel attentive depth fusion prior for
learning neural implicit functions inheriting the merits of both the TSDF and the inference.

ii) We introduce a novel attention mechanism and a neural network architecture to learn attention
weights for the attentive depth fusion prior in neural rendering with either known camera poses
or camera pose tracking in SLAM.

iii) We report the state-of-the-art performance in surface reconstruction and camera tracking on
benchmarks containing synthetic and real-world scans.

2 Related Work

Learning 3D implicit functions using neural networks has made huge progress [61, 62, 46, 51, 88, 78,
73, 76, 16, 56, 34, 25, 11, 93, 42, 44, 9, 43, 4, 33, 5, 19, 26, 47, 20, 70, 12, 48, 55, 17, 27, 79, 35, 32,
21, 7, 58, 86, 52]. We can learn neural implicit functions from 3D ground truth [23, 8, 54, 45, 68, 39,
69], 3D point clouds [94, 41, 15, 1, 92, 2, 10] or multi-view images [46, 14, 51, 77, 88, 78, 73, 76, 16].
We briefly review methods with multi-view supervision below.

2.1 Multi-view Stereo

Classic multi-view stereo (MVS) [61, 62] employs multi-view photo consistency to estimate depth
maps from multiple RGB images. They rely on matching key points on different views, and are
limited by large viewpoint variations and complex illumination. Without color, space carving [30] is
also an effective way of reconstructing 3D structure as voxel grids.

Recent methods employ data driven strategy to train neural networks to predict depth maps from
either depth supervision [84] or multi-view photo consistency [95].

2.2 Neural Implicit from Multi-view Supervision

Early works leverage various differentiable renderers [63, 38, 26, 89, 37, 80, 50, 36, 67] to render the
learned implicit functions into images, so that we can measure the error between rendered images and
ground truth images. These methods usually require masks to highlight the object, and use surface
rendering to infer the geometry, which limits their applications in scenes. Similarly, DVR [50] and
IDR [87] predict the radiance near surfaces.

With volume rendering, NeRF [46] and its variations [53, 47, 57, 60, 97, 3, 75, 6, 98, 67] model
geometry and color together. They can generate plausible images from novel viewpoints, and do not
need masks during rendering procedure. UNISURF [51] and NeuS [77] learn occupancy functions
and SDFs by rendering them with colors using revised rendering equations. Following methods
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Figure 1: Overview of our method.

improve accuracy of implicit functions using additional priors or losses related to depth [88, 3, 97],
normals [88, 76, 16], and multi-view consistency [14].

Depth images are also helpful to improve the inference accuracy. Depth information can guide
sampling along rays [88] or provide rendering supervision [88, 3, 97, 96, 24, 31, 82, 98], which helps
neural networks to estimate surfaces.

2.3 Neural Implicit with SLAM

Given RGBD images, more recent methods [91, 81, 72, 59] employ neural implicit representations
in SLAM. iMAP [66] shows that an MLP can serve as the only scene representation in a realtime
SLAM system. NICE-SLAM [97] introduces a hierarchical scene representation to reconstruct large
scenes with more details. NICER-SLAM [96] uses easy-to-obtain monocular geometric cues without
requiring depth supervision. Co-SLAM [74] jointly uses coordinate and sparse parametric encodings
to learn neural implicit functions. Segmentation priors [29, 18] show their potentials to improve the
performance of SLAM systems. With segmentation priors, vMAP [29] represents each object in the
scene as a neural implicit in a SLAM system.

Instead of using depth ground truth to only supervise rendering, which contains incomplete depth and
unawareness of occlusion, we allow our neural network to directly use depth fusion priors as a part of
neural implicit, and determine where and how to use depth priors along with learned geometry.

3 Method

Overview. We present an overview of our method in Fig. 1. Given RGBD images {Ij , Dj}Jj=1 from
J view angles, where Ij and Dj denote the RGB and depth images, available either all together or in
a streaming way, we aim to infer the geometry of the scene as an occupancy function f which predicts
the occupancy f(q) at arbitrary locations q = (x, y, z). Our method works with camera poses {Mj}
that are either known or estimated by our camera tracking method in the context of SLAM.

We learn the occupancy function through volume rendering using the RGBD images {Ij , Dj}Jj=1 as
supervision. We render f with a color function c which predicts an RGB color c(q) at locations q
into an RGB image I ′j and a depth image D′

j , which are optimized to minimize their rendering errors
to the supervision {Ij , Dj}.
We start from shooting rays {Vk} from current view Ij , and sample queries q along each ray Vk. For
each query q, we employ learnable feature grids Gl, Gh, and Gc covering the scene to interpolate its
hierarchical geometry features tl, th, and a color feature tc by trilinear interpolation. Each feature is
further transformed into an occupancy probability or RGB color by their corresponding decoders fl,
fh, and fc. For queries q inside the bandwidth of a TSDF grid Gs fused from available depth images
{Di}, we leverage its interpolation from Gs as a prior of coarse occupancy estimation. The prior
is attentive by a neural function fa which determines the occupancy function f(q) by combining
currently learned geometry and the coarse estimation using the learned attention weights from fa.

Lastly, we use the occupancy function f(q) and the color function c(q) to render I ′ and D′ through
volume rendering. With a learned f , we run the marching cubes [40] to reconstruct a surface.
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Depth Fusion and Bandwidth Awareness. With known or estimated camera poses {Mj}, we get a
TSDF by fusing depth images {Dj} that are available either all together or in a streaming way. Our
method can work with a TSDF that describes either a whole scene or just a part of the scene, and we
will report the performance with different settings in ablation studies. We use the TSDF to provide a
coarse occupancy estimation which removes the limit of the missing depth or the unawareness of
occlusion on single depth supervision. The TSDF is a grid which predicts signed distances at any
locations inside it through trilinear interpolation. The predicted signed distances are truncated with a
threshold µ into a range of [−1, 1] which covers a band area on both sides of the surface in Fig. 1.

Since the TSDF predicts signed distances for queries within the bandwidth with higher confidence
than the ones outside the bandwidth, we only use the depth fusion prior within the bandwidth. This
leads to different ways of learning geometries, as shown in Fig. 1. Specifically, for queries q within
the bandwidth, we model the low-frequency surfaces using a low resolution feature grid Gl, learn
the high-frequency details as a complementation using a high resolution feature grid Gh, and let our
attention mechanism to determine how to use the depth fusion prior from the TSDF Gs. Instead, we
only use the low resolution feature grid Gl to model densities outside the bandwidth during volume
rendering. Regarding color modeling, we use the feature grid Gc with the same size for interpolating
color of queries over the scene.

Feature Interpolation. For queries q sampled along rays, we use the trilinear interpolation to obtain
its features hl, hh, and hc from learnable Gl, Gh, Gc and occupancy estimation os from Gs. Both
feature grids and the TSDF grid cover the whole scene and use different resolutions, where learnable
feature vectors are associated with vertices on each feature grid. Signed distances at vertices on Gs

may change if we incrementally fuse depth images in the context of SLAM.

Occupancy Prediction Priors. Similar to NICE-SLAM [97], we use pre-trained decoders fl and fh
to predict low frequency occupancies ol and high frequency ones oh from the interpolated features
tl and th, respectively. We use fl and fh as an MLP decoder in ConvONet [54] respectively, and
minimize the binary cross-entropy loss to fit the ground truth. After pre-training, we fix the parameters
in fl and fh, and use them to predict occupancies below,

ol = fl(q, tl), oh = fh(q, th), olh = ol + oh, (1)

where we enhance fh by concatenating fl as fh ← [fh, fl] and denote olh as the occupancy predicted
at query q by the learned geometry.

Color Predictions. Similarly, we use the interpolated feature tc and an MLP decoder fc to predict
color at query q, i.e., c(q) = fc(q, tc). We predict color to render RGB images for geometry
inference or camera tracking in SLAM. The decoder is parameterized by parameters θ which are
optimized with other learnable parameters in the feature grids.

Attentive Depth Fusion Prior. We introduce an attention mechanism to leverage the depth fusion
prior. We use a deep neural network to learn attention weights to allow networks to determine how to
use the prior in volume rendering.

As shown in Fig. 1, we interpolate a signed distance s ∈ [−1, 1] at query q from the TSDF Gs

using trilinear interpolation, where Gs is fused from available depth images. We formulate this
interpolation as s = fs(q) ∈ [−1, 1]. We normalize s into an occupancy os ∈ [0, 1], and regard os as
the occupancy predicted at query q by the depth fusion prior.

For query q within the bandwidth, our attention mechanism trains an MLP fa to learn attention
weights α and β to aggregate the occupancy olh predicted by the learned geometry and the occupancy
os predicted by the depth fusion prior, which leads the TSDF to an attentive depth fusion prior. Hence,
our attention mechanism can be formulated as,

[α, β] = fa(olh, os), and α+ β = 1. (2)

We implement fa using an MLP with 6 layers. The reason why we do not use a complex network
like Transformer is that we want to justify the effectiveness of our idea without taking too much
credit from complex neural networks. Regarding the design, we do not use coordinates or positional
encoding as a part of input to avoid noisy artifacts. Moreover, we leverage a Softmax normalization
layer to achieve α+ β = 1, and we do not predict only one parameter α and use 1− α as the second
weight, which also degenerates the performance. We will justify these alternatives in experiments.
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For query q outside the bandwidth, we predict the occupancy using the feature tl interpolated from
the low frequency grid Gl and the decoder fl to describe the relatively simpler geometry. In summary,
we eventually formulate our occupancy function f as a piecewise function below,

f(q) =

{
α× olh + β × os, fs(q) ∈ (−1, 1)
ol, fs(q) = 1 or −1 (3)

Volume Rendering. We render the color function c and occupancy function f into RGB I ′ and depth
D′ images to compare with the RGBD supervision {I,D}.
With camera poses Mj , we shoot a ray Vk from view Ij . Vk starts from the camera origin m and
points a direction of r. We sample N points along the ray Vk using stratified sampling and uniformly
sampling near the depth, where each point is sampled at qn = m + dnr and dn corresponds to
the depth value of qn on the ray. Following UNISURF [51], we transform occupancies f(qn) into
weights wn which is used for color and depth accumulation along the ray Vk in volume rendering,

wn = f(qn)

n−1∏
n′=1

(1− f(qn′)), I(k)′ =

N∑
n′=1

wn′ × c(qn′), D(k)′ =

N∑
n′=1

wn′ × dn′ . (4)

Loss. With known camera pose Mj , we render the scene into the color and depth images at randomly
sampled K pixels on the j-th view, and optimize parameters by minimizing the rendering errors,

LI =
1

JK

J,K∑
j,k=1

||Ij(k)−I ′j(k)||1, LD =
1

JK

J,K∑
j,k=1

||Dj(k)−D′
j(k)||1, min

θ,Gl,Gh,Gc

LD+λLI . (5)

In the Context of SLAM. We can jointly do camera tracking and learning neural implicit from
streaming RGBD images. To achieve this, we regard the camera extrinsic matrix Mj as learnable
parameters, and optimize them by minimizing our rendering errors. Here, we follow [97] to weight
the depth rendering loss to decrease the importance at pixels with large depth variance along the ray,

min
Mj

1

JK

J,K∑
j,k=1

1

V ar(D′
j(k))

||Dj(k)−D′
j(k)||1 + λ1LI , (6)

where V ar(D′
j(k)) =

∑N
n=1 wn(D

′
j(k) − dn)

2. Moreover, with streaming RGBD images, we
incrementally fuse the most current depth image into TSDF Gs. Specifically, the incremental fusion
includes a pre-fusion and an after-fusion stage. The pre-fusion aims to use a camera pose coarsely
estimated by a traditional method to fuse a depth image onto a current TSDF to calculate a rendering
error for a more accurate pose estimation at current frame. The after-fusion stage will refuse the depth
image onto the current TSDF for camera tracking at the next frame. Please refer to our supplementary
materials for more details.

We do tracking and mapping iteratively. For mapping procedure, we render E frames each time and
back propagate rendering errors to update parameters. E frames include the current frame and E − 1
key frames that have overlaps with the current frame. For simplicity, we merely maintain a key frame
list by adding incoming frames with an interval of 50 frames for fair comparisons.

Details. The optimization is performed at three stages, which makes optimization converge better.
We first minimize LD by optimizing low frequency feature grid Gl, and then both low and high
frequency feature grid Gl and Gh, and finally minimize Eq 5 by optimizing Gl, Gh, and Gc. Our
bandwidth from the TSDF Gs covers 5 voxels on both sides of the surface. We shoot K = 1000 or
5000 rays for reconstruction or tracking from each view, and render E = 5 or 10 frames each time for
fair comparison with other methods. We set λ = 0.2, λ1 = 0.5 in loss functions. We sample N = 48
points along each ray for rendering. More implementation details can be found in our supplementary
materials.

4 Experiments and Analysis

4.1 Experimental Setup

Datasets. We report evaluations on both synthetic datasets and real scans including Replica [64] and
ScanNet [13]. For fair comparisons, we report results on the same scenes from Replica and ScanNet

5



Table 1: Reconstruction Comparisons on Replica.
COLMAP [62] TSDF [90] iMAP [66] DI [22] NICE [97] Vox [83] DROID [71] NICER [96] Ours vMAP [29] Ours*

DepthL1 ↓ - 6.56 7.64 23.33 3.53 - - - 3.01 - 2.60
Acc. ↓ 8.69 1.56 6.95 19.40 2.85 2.67 5.50 3.65 2.77 3.20 2.59
Comp. ↓ 12.12 3.33 5.33 10.19 3.00 4.55 12.29 4.16 2.45 2.39 2.28
Ratio ↑ 67.62 87.61 66.60 72.96 89.33 86.59 63.62 79.37 92.79 92.99 93.38

as the latest methods. Specifically, we report comparisons on all 8 scenes in Replica. As for ScanNet,
we report comparison on scene 50, 84, 580, and 616 used by MonoSDF [88], and also scene 59, 106,
169, and 207 used by NICE-SLAM [97]. We mainly report average results over the dataset, please
refer to our supplementary materials for results on each scene.

Metrics. With the learned occupancy function f , we reconstruct the surface of a scene by extracting
the zero level set of f using the marching cubes algorithm [40]. Following previous studies [97, 22],
we use depth L1 [cm], accuracy [cm], completion [cm], and completion ratio [<5cm%] as metrics
to evaluate reconstruction accuracy on Replica. Additionally, we report Chamfer distance (L1),
precision, recall, and F-score with a threshold of 0.05 to evaluate reconstruction accuracy on ScanNet.
To evaluate the accuracy in camera tracking, we use ATE RMSE [65] as a metric. We follow the
same parameter setting in these metrics as [97].

4.2 Evaluations

Evaluations on Replica. We use the same set of RGBD images as [66, 96]. We report evaluations in
surface reconstruction and camera tracking in Tab. 1, Tab. 2 and Tab. 3, respectively.

TSDF Ours

Figure 2: Merits of attentive depth fusion prior.

We jointly optimize camera poses and learn ge-
ometry in the context of SLAM. The depth fu-
sion prior Gs incrementally fuses depth images
using estimated camera poses. We report the
accuracy of reconstruction from Gs as “TSDF”.
Compared to this baseline, we can see that our
method improves the reconstruction using the
geometry learned through volume rendering and
occupancy prediction priors. We visualize the
advantage of learning geometry in Fig. 2. Note
that the holes in TSDF are caused by the absence
of RGBD scans. We can see that our neural im-
plicit keeps the correct structure in TSDF and
plausibly completes the missing structures in
TSDF. We further visualize the attention weights
β learned for depth fusion in Fig. 3. We visu-
alize the cross sections on 4 scenes, where β
learned in bandwidth are shown in color red.
Generally, the neural implicit mostly focuses
more on the depth fusion priors in areas where TSDF is complete, while focusing more on the learned
geometry in areas where TSDF is incomplete. In the area where TSDF is complete, the network also
pays some attention to the inferred occupancy because the occupancy interpolated from TSDF may
not be accurate, especially on the most front of surfaces in Fig. 3.

(a) (b) (c) (d)

JetColormapFunction.png

0

1

Figure 3: Visualization of attention on depth fusion.

Moreover, our method outperforms
the latest implicit-based SLAM meth-
ods like NICE-SLAM [97] and
NICER-SLAM [96]. We present vi-
sual comparisons in Fig. 6, where
our method produces more accu-
rate and compact geometry. For
method using GT camera poses like
vMAP [29] and MonoSDF [88], we
achieve much better performance as
shown by “Ours*” in Tab. 1 and “Ours”
in Tab. 2. Although we require the ab-
solute dense depth maps, compared
to MonoSDF [88] that can work with
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Table 2: Reconstruction Comparison with MonoSDF on Replica.

Test Split Train Split
Normal C.↑ Chamfer-L1 ↓ F-score ↑ Normal C.↑ Chamfer-L1 ↓ F-score ↑

MonoSDF [88] 90.56 4.26 76.42 91.80 3.59 85.67

Ours 90.69 2.43 92.47 91.05 2.73 90.52

Table 3: Camera Tracking Comparisons (ATE RMSE) on Replica.

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

NICE-SLAM [97] 1.69 2.04 1.55 0.99 0.90 1.39 3.97 3.08 1.95
NICER-SLAM [96] 1.36 1.60 1.14 2.12 3.23 2.12 1.42 2.01 1.88

Ours 1.39 1.55 2.60 1.09 1.23 1.61 3.61 1.42 1.81

scaled depth maps, our method only can use the views in front of the current time step, where
MonoSDF [88] can utilize all views during the whole training process.

N
IC

E
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L
A

M
O

u
rs

Scene 59 (ScanNet) Scene 169  (ScanNet) Off-4  (Replica)(a) (b) (c)

Figure 4: Visual comparisons in camera tracking.

In camera tracking, our results in
Tab. 3 achieve the best in average. We
compare the estimated trajectories on
scene off-4 in Fig. 4 (c). The compar-
ison shows that our attentive depth fu-
sion prior can also improve the camera
tracking performance through volume
rendering.

Evaluations on ScanNet. We further
evaluate our method on ScanNet. For
surface reconstruction, we compare
with the latest methods for learning
neural implicit from multiview images. We report both their results and ours with GT camera poses,
where we also fuse every 10 depth images into the TSDF Gs and render every 10 frames for fair
comparisons. Numerical comparisons in Tab. 4 show that our method achieves the best performance
in terms of all metrics, where we use the culling strategy introduced in MonoSDF [88] to clean the
reconstructed mesh. We highlight our significant improvements in visual comparisons in Fig. 7.
We see that our method can reconstruct sharper, more compact and detailed surfaces than other
methods. We detail our comparisons on every scene with the top results reported by GO-Surf [75]
and NICE-SLAM [97] in Tab. 5 and Tab. 6. The comparisons in Tab. 5 show that our method achieves
higher reconstruction accuracy while GO-Surf produces more complete surfaces. We present visual
comparisons with error maps in Fig. 5.

Figure 5: Visual comparison of Error maps (Red: Large).

In camera tracking, we compare with the
latest methods. We incrementally fuse
the most current depth frames into TSDF
Gs which is used for attentive depth fu-
sion priors in volume rendering. Numer-
ical comparisons in Tab. 7 show that our
results are better on 2 out of 4 scenes
and achieve the best in average. Track-
ing trajectory comparisons in Fig. 4 (a)
and (b) also show our superiority.

Figure 6: Visual comparisons of error maps (Red: Large) in surface reconstructions on Replica.
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Figure 7: Visual comparisons in surface reconstructions on ScanNet.

Table 4: Reconstruction Comparisons on ScanNet.

Acc ↓ Comp ↓ Chamfer-L1 ↓ Prec ↑ Recall ↑ F-score ↑
COLMAP [62] 0.047 0.235 0.141 0.711 0.441 0.537
UNISURF [51] 0.554 0.164 0.359 0.212 0.362 0.267
NeuS [77] 0.179 0.208 0.194 0.313 0.275 0.291
VolSDF [85] 0.414 0.120 0.267 0.321 0.394 0.346
Manhattan-SDF [16] 0.072 0.068 0.070 0.621 0.586 0.602
NeuRIS [76] 0.050 0.049 0.050 0.717 0.669 0.692
MonoSDF [88] 0.035 0.048 0.042 0.799 0.681 0.733

Ours 0.034 0.039 0.037 0.913 0.894 0.902

Table 5: Reconstruction Comparison with GO-Surf on ScanNet.

GO-Surf [75] Ours
Scene ID 0050 0084 0580 0616 Avg. 0050 0084 0580 0616 Avg.

Acc ↓ 0.056 0.073 0.057 0.026 0.053 0.030 0.039 0.041 0.026 0.034
Comp ↓ 0.024 0.017 0.024 0.023 0.022 0.043 0.014 0.035 0.063 0.039
Chamfer-L1 ↓ 0.040 0.045 0.040 0.025 0.038 0.037 0.026 0.038 0.045 0.037

Table 6: Reconstruction Comparison with NICE-SLAM on ScanNet.

NICE [97] Ours
Scene ID 0050 0084 0580 0616 Avg. 0050 0084 0580 0616 Avg.

Acc ↓ 0.030 0.031 0.032 0.026 0.030 0.030 0.039 0.041 0.026 0.034
Comp ↓ 0.053 0.020 0.031 0.076 0.045 0.043 0.014 0.035 0.063 0.039
Chamfer-L1 ↓ 0.041 0.025 0.032 0.051 0.037 0.037 0.026 0.038 0.045 0.037

4.3 Ablation Studies

We report ablation studies to justify the effectiveness of modules in our method on Replica. We use
estimated camera poses in ablation studies.

Effect of Depth Fusion. We first explore the effect of different ways of depth fusion on the
performance. According to whether we use GT camera poses or incremental fusion, we try 4
alternatives with Gs obtained by fusing all depth images at the very beginning using GT camera poses
(Offline) or fusing the current depth image incrementally (Online), and using tracking to estimate
camera poses (Tracking) or GT camera poses (GT) in Tab. 8. The comparisons show that our method
can work well with either GT or estimated camera poses and fusing depth either all together or
incrementally in a streaming way. Additional conclusion includes that GT camera poses in either
depth fusion and rendering do improve the reconstruction accuracy, and the structure fused from
more recent frames is more important than the whole structure fused from all depth images.
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Table 7: Camera Tracking Comparisons (ATE RMSE) on ScanNet.

Scene ID 0059 0106 0169 0207 Avg.

iMAP [66] 32.06 17.50 70.51 11.91 33.00
DI [22] 128.00 18.50 75.80 100.19 80.62
NICE [97] 12.25 8.09 10.28 5.59 9.05
CO [74] 12.29 9.57 6.62 7.13 8.90
Ours 10.50 7.48 9.31 5.67 8.24

Table 8: Ablation Studies on Depth Fusion.

TSDF Offline+GT Online+GT Offline+Tracking Online+Tracking (Ours)

DepthL1 ↓ 6.56 2.79 2.73 2.75 3.01
Acc. ↓ 1.56 2.62 2.62 2.82 2.77
Comp. ↓ 3.33 2.45 2.36 2.40 2.45
Ratio ↑ 87.61 92.78 92.79 92.97 92.79

Table 9: Ablation Studies on Attention.
w/o Attention Low Low + High High (Ours)

DepthL1 ↓ 1.86 2.75 2.96 1.44
Acc. ↓ 2.69 2.96 3.85 2.54
Comp. ↓ 2.81 3.14 2.91 2.41
Ratio ↑ 91.46 89.73 93.63 93.22

Effect of Attention. We explore the effect of
attention on the performance in Tab. 9. First
of all, we remove the attention mechanism,
and observe a severe degeneration in accuracy,
which indicates that the attention plays a big
role in directly applying depth fusion priors in
neural implicit. Then, we try to apply attention of depth fusion priors on geometries predicted by
different features including low frequency tl, high frequency th, and both of them. The comparisons
show that adding details from depth fusion priors onto low frequency surfaces does not improve the
performance. More analysis on attention mechanism can be found in Fig. 9.

Table 10: Ablation Studies on Attention Alternatives.
Coordinates Sigmoid Softmax (Ours)

DepthL1 ↓ 1.81 1.96 1.44
Acc. ↓ 2.66 2.86 2.54
Comp. ↓ 2.74 2.66 2.41
Ratio ↑ 93.13 93.27 93.22

Attention Alternatives. Our preliminary re-
sults show that using softmax normalization
layer achieves better performance than other
alternatives. Since we merely need two atten-
tion weights α and β to combine the learned
geometry and the depth fusion prior, one alter-
native is to use a sigmoid function to predict
one attention weight and use its difference to 1 as another attention weight. However, sigmoid can not
effectively take advantage of the depth fusion prior. We also try to use coordinates as an input, which
pushes the network to learn spatial sensitive attentions. While the reconstructed surfaces turn out to
be noisy in Fig. 8. This indicates that our attention learned a general attentive pattern for all locations
in the scene. We also report the numerical comparisons in Tab. 10. Please refer to our supplementary
materials for more results related to attention alternatives.

Figure 8: Visual comparison of error maps with different attention alternatives (Red: Large).

Effect of Bandwidth. We further study the effect of bandwidth on the performance in Tab. 11. We
try to use attentive depth fusion priors everywhere in the scene with no bandwidth. The degenerated
results indicate that the truncated area outside the bandwidth does not provide useful structures
to improve the performance. Moreover, wider bandwidth may cause more artifacts caused by the
calculation of the TSDF Gs while narrower bandwidth brings more incomplete structures, neither of
which improves the performance. Instead of using low frequency geometry outside the bandwidth,
we also try to use high frequency surfaces. We can see that low frequency geometry is more suitable
to describe the scene outside the bandwidth.
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Table 11: Ablation Studies on the Effect of Bandwidth.

w/o Bandwidth Bandwidth=3 Bandwidth=5 (Ours) Bandwidth=7 High Low (Ours)

DepthL1 ↓ 1.87 1.61 1.44 2.01 124.21 1.44
Acc. ↓ 2.40 2.85 2.54 2.93 25.06 2.54
Comp. ↓ 3.49 2.61 2.41 2.73 3.62 2.41
Ratio ↑ 90.94 92.84 93.22 93.55 86.92 93.22

Table 12: Ablation Studies on Prediction Priors.
w/o Fix Fix fl Fix fh Fix fl + fh (Ours)

DepthL1 ↓ 125.95 43.46 F 1.44
Acc. ↓ 127.62 67.83 F 2.54
Comp. ↓ 56.73 18.79 F 2.41
Ratio ↑ 5.27 103.51 F 93.22

Effect of Prediction Priors. Prediction priors
from decoders fl and fh are also important for
accuracy improvements. Instead of using fixed
parameters in these decoders, we try to train fl
(Fix fh) or fh (Fix fl) with other parameters.
Numerical comparisons in Tab. 12 show that
training fl or fh cannot improve the performance, or even fails in camera tracking (Fix fh).

More Analysis on How Attention Works. Additionally, we do a visual analysis on how attention
works in Fig. 9. We sample points on the GT mesh, and get the attention weights in Fig. 9 (a). At
each point, we show its distance to the mesh from the TSDF in Fig. 9 (b) and the mesh from the
inferred occupancy in Fig. 9 (c), respectively. Fig. 9 (d) indicates where the former is smaller than
the latter. The high correlation between Fig. 9 (a) and Fig. 9 (d) indicates that the attention network
focuses more on the occupancy producing smaller errors to the GT surface. Instead, the red in Fig. 9
(e) indicates where the interpolated occupancy is larger than the inferred occupancy is not correlated
to the one in Fig. 9 (a). The uncorrelation indicates that the attention network does not always focus
on the larger occupancy input but the one with smaller errors, even without reconstructing surfaces.

(a) Attention on TSDF (b) Error distances to 
the mesh from TSDF

(c) Error distances to the mesh 
from inferred occupancies

(d) Binary map for 
smaller errors (red) of TSDF

(e) Binary map for 
larger (red) interpolated occupancies

Figure 9: Analysis on Attentions. (a) Map the attention weights on occupancies interpolated from
TSDF. (b) The point-to-surface distances to the mesh reconstructed from TSDF. (c) The point-to-
surface distances to the mesh reconstructed from the inferred occupancies. (d) Binary map indicating
smaller errors (red) of TSDF. (e) Binary map indicating larger (red) interpolated occupancies than the
inferred occupancies.

5 Conclusion

We propose to learn neural implicit through volume rendering with attentive depth fusion priors. Our
novel prior alleviates the incomplete depth at holes and the unawareness of occluded structures when
using depth images as supervision in volume rendering. We also effectively enable neural networks
to determine how much depth fusion prior can be directly used in the neural implicit. Our method can
work well with depth fusion from either all depth images together or the ones available in a streaming
way, using either known or estimated camera poses. To this end, our novel attention successfully
learns how to combine the learned geometry and the depth fusion prior into the neural implicit for
more accurate geometry representations. The ablation studies justify the effectiveness of our modules
and training strategy. Our experiments on benchmarks with synthetic and real scans show that our
method learns more accurate geometry and camera poses than the latest neural implicit methods.
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