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Abstract001

Large language models have emerged as a pow-002
erful tool for accelerating science and decision003
making. Towards further improving LLM util-004
ity in these domains we study the application005
of LLMs to the novel task of interactive graph006
discovery: given a ground truth graph G∗ cap-007
turing variable relationships and a budget of I008
edge experiments over R rounds, minimize the009
distance between the predicted graph ĜR and010
G∗ at the end of the R-th round. To solve this011
task we propose IGDA, a LLM-based pipeline012
incorporating two key components: 1) an LLM013
uncertainty-driven method for edge experiment014
selection 2) a local graph update strategy uti-015
lizing binary feedback from experiments to016
improve predictions for unselected neighbor-017
ing edges. Experiments on eight different real-018
world graphs show our approach often outper-019
forms all baselines including a state-of-the-art020
numerical method for interactive graph discov-021
ery. Further, we conduct a rigorous series of022
ablations dissecting the impact of each pipeline023
component. Overall, our results show IGDA024
to be a powerful method for graph discovery025
complementary to existing numerically driven026
approaches.027

1 Introduction028

The research process can vary widely across dif-029

ferent domains ranging from medicine to ML. One030

common phase shared between all disciplines is031

the experimental design process during which re-032

searchers read relevant literature and then propose033

high-priority experiments to carry out. Based on034

experimental outcomes researchers can update their035

understanding of the problem of interest, leading036

to future rounds of research and discovery.037

We can formalize this process as the follow-038

ing graph discovery task: given a set of vari-039

ables X1, ..., Xn find a graph G∗ on the nodes040

X1, ..., Xn whose edges capture causal relation-041

ships between the parent (source) and child (tar-042

get). Often, observational data can be collected 043

for the variables X1, ..., Xn. This data can then 044

be used to predict an initial graph G0 using sta- 045

tistical causal discovery techniques (Spirtes and 046

Zhang, 2016). Recently, large language models 047

(LLMs) have emerged as a competitive alternative 048

method for predicting causal graphs (Kıcıman et al., 049

2024; Abdulaal et al., 2024; Chen et al., 2024). Un- 050

like pre-existing statistical methods, LLMs require 051

no observational data (Kıcıman et al., 2024), in- 052

stead relying purely on semantic metadata such 053

as variable names and descriptions. Another re- 054

lated line a work (Yang et al., 2024) investigates 055

the abilities of LLMs to act as in-context black-box 056

optimizers. Given an objective function f and an 057

evaluation budget B, the LLM is tasked with find- 058

ing a maximizer x∗ of f by sequentially proposing 059

queries {xi}Bi=1 and observing their associated val- 060

ues {f(xi)}Bi=1. Taken together, these directions 061

suggest a powerful new application of LLMs: in- 062

teractive graph discovery. 063

Given an initial predicted graph Ĝ0 and a series 064

of experiment rounds 1, ..., R, the interactive graph 065

discovery problem involves minimizing some dis- 066

tance d(Ĝk, G
∗) between the predicted graph Ĝk 067

at round k and the true graph G∗ (unknown to 068

the learner) through a sequence of targeted exper- 069

iments on edges e = (X,Y ) testing the effect 070

of the parent variable X on the child variable Y . 071

The edge experiment operation is kept purpose- 072

fully abstract, requiring only that binary feedback 073

be given indicating the presence or absence of an 074

edge. In practice this operation can be implemented 075

via any number of experimental procedures (e.g. 076

via hard interventions in the formal causal sense 077

(Pearl, 2009) or empirical methods such as random- 078

ized controlled trials (Sibbald and Roland, 1998)). 079

The IGD problem setup captures the process re- 080

searchers go through everyday when designing and 081

prioritizing experiments, guided by their prior ex- 082

perience, to study numerous potential relationships 083
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between any number of variables.084

The interactive graph discovery problem requires085

the agent to solve two key sub-tasks:086

1. Experiment selection: Selecting which edges087

(Xi, Xj) to target for experimentation in the088

next round.089

2. Graph updates: Updating the predicted graph090

from Ĝk−1 to Ĝk given binary feedback based091

on the outcome of the previous experiments.092

We propose to solve this task with the Interac-093

tive Graph Discovery Agent (IGDA): a novel LLM094

agent uncertainty-driven approach as an alternative095

to existing statistical methods (Olko et al., 2024;096

Scherrer et al., 2022). While statistical models can097

work well in some settings, they crucially rely on098

the abundance of domain specific observational and099

interventional numerical data. For many problems,100

such data might be hard or impossible acquire.101

LLMs, however, potentially contain relevant latent102

knowledge derived from vast amounts of variable103

semantic metadata contained in their pre-training104

or internet corpora. Further, we find that, via a105

combination of broad background knowledge and106

reasoning abilities, advanced LLMs (Grattafiori107

et al., 2024) are capable of updating their predic-108

tions and confidences when presented with exper-109

imental feedback revealing unexpected relation-110

ships between a subset of edges. This makes LLM111

based approaches a powerful alternative to statisti-112

cal methods when numerical data is not available.113

In particular, IGDA predicts and maintains un-114

certainty estimates for each unknown edge e ∈115

Ĝk. Edges are then selected for experimentation116

by prioritizing those with the highest uncertainty.117

When feedback is received on the selected edges,118

pairwise-local updates on both edge predictions119

and uncertainty estimates are performed for each120

edge in Ĝ sharing a parent or child variable with121

an experimented edge. This process continues for122

R rounds with I edges selected for experimenta-123

tion each round. We benchmark IGDA on eight124

real world graphs, finding uncertainty driven selec-125

tion with local updates outperforms baselines. In126

summary, we make the following contributions:127

• The interactive graph discovery problem as a128

novel setting for evaluating LLM capabilities.129

• LLM-based uncertainty-guided edge experiment130

selection as a policy for prioritizing edge experi-131

mentation.132

• A local update strategy for robustly updating133

the predicted graph Gk with binary experiment134

feedback. 135

• Ablations rigorously evaluating the contribution 136

of each pipeline component and other discovery 137

strategies. 138

2 Background and Related Work 139

LLMs as Agents Recently LLMs have been ap- 140

plied to across a variety of domains including 141

math, science, coding, writing and more (Yao et al., 142

2023; DeepSeek-AI et al., 2025; Jiang et al., 2025; 143

Veličković et al., 2024). For example, Tree of 144

Thoughts (ToT) (Yao et al., 2023) applies LLMs 145

to solve crosswords augmented with the ToT al- 146

gorithm. Deepseek R1 DeepSeek-AI et al. (2025) 147

deploys LLMs to solve hard math problems aug- 148

mented with improved "thinking" abilities using 149

RL. Veličković et al. (2024) combines LLMs with 150

evolutionary algorithms to generate competitive 151

and diverse solutions to competitive coding prob- 152

lems. These examples underscore the broad appli- 153

cability of LLM capability supported by domain 154

specfic algorithms. 155

Causal Discovery and LLMs. The causal dis- 156

covery task involves learning causal relationships 157

from observed empirical data (Peters et al., 2017; 158

Spirtes and Zhang, 2016). Many proposed algo- 159

rithms exist (Spirtes et al., 1993; Yu et al., 2019; 160

Nauta et al., 2019; Zheng et al., 2018; Chicker- 161

ing, 2002) attempting to solve the causal discovery 162

problem. However, these methods are known to 163

struggle on real world graphs where observations 164

are noisy or common structural assumptions are 165

violated (Chevalley et al., 2023; Tu et al., 2019). 166

Recently, LLMs have emerged as an alternative 167

approach to causal discovery (Kıcıman et al., 2024; 168

Abdulaal et al., 2024; Vashishtha et al., 2023; Li 169

et al., 2024; Lampinen et al., 2023). Kıcıman et al. 170

(2024) first investigated the capability of LLMs to 171

act as zero-shot causal discovery agents using only 172

semantic information and pairwise prompting on 173

each variable pair. Follow-up work (Abdulaal et al., 174

2024) further improves LLM predictions with ob- 175

servational data by selecting for predictions which 176

maximize data likelihood. Vashishtha et al. (2023) 177

utilize triplet prompting to prevent cycles when the 178

causal graph is acyclic. They show only a topo- 179

logical ordering on variables is required for many 180

common causal reasoning tasks (Chu et al., 2023). 181

Other works (Zhou et al., 2024; Chen et al., 2024) 182

benchmark LLMs across a range of causality re- 183

lated tasks including causal discovery and causal 184
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inference confirming that LLMs struggle with inte-185

grating numerical data.186

Another line of work more related to our pro-187

posed interactive causal discovery problem studies188

how to incorporate background knowledge into189

causal discovery algorithms (Meek, 2013). De-190

fine a set of background knowledge as the tuple191

K = (F,R), where F specifies a set of “forbidden”192

graph edges and R specifies a set of “required”193

graph edges. Meek (2013) presents an algorithm194

for constructing a causal graph consistent with K by195

leveraging an assumed structural directed acyclic196

graph (DAG) property. Building on Meek (2013),197

Chickering (2002) proposes a greedy search algo-198

rithm that performs well in practice.199

Most related are statistical methods from the200

causal discovery literature which aim to efficiently201

choose a sequence of interventions to discover202

causal structure (Scherrer et al., 2022; Olko et al.,203

2024). In particular, Gradient based Interventional204

Targeting (GIT) (Olko et al., 2024) utilizes exist-205

ing neural causal discovery methods (Lippe et al.,206

2022) to learn a distribution over possible graph207

structures and variable assignments. For each208

round of intervention, GIT prioritizes variables209

whose simulated interventional distribution have210

large gradient with respect to the structural training211

loss.212

In contrast to these works, our proposed algo-213

rithm utilizes LLMs to reason about the seman-214

tic/physical, as opposed to formal/structural, rela-215

tionships between variables and edges in causal216

graphs. For this reason we are not required to make217

any structural assumptions on an underlying DAG,218

as is common in the causal discovery literature.219

This is desirable as in practice many real-world220

causal graphs are cyclic and poorly structured (Zhu221

et al., 2024; Huang et al., 2021). Additionally our222

method does not rely on observational or interven-223

tional data for real world graphs which may be ex-224

pensive to acquire but crucial for good performance225

with statistical methods. Further, we note we suc-226

ceed at designing a competitive graph discovery227

agent despite the difficulty LLMs have understand-228

ing graph data when applied naively (Guo et al.,229

2023).230

LLMs as Optimizers. Another growing line of231

work utilizes LLMs as black-box optimizers (Yang232

et al., 2024; Roohani et al., 2024). Yang et al.233

(2024) introduce the notion of an LLM as a generic234

optimizer and use it to optimize performance ob-235

jectives stemming from a range of tasks includ- 236

ing linear regression and mathematical word prob- 237

lems (Cobbe et al., 2021). Other works (Madaan 238

et al., 2023; Havrilla et al., 2024) examine the self- 239

refinement capabilities of LLMs where the LLM 240

must reason and self-improve on earlier responses. 241

A growing number of papers apply LLMs to op- 242

timal experiment design and discovery (Roohani 243

et al., 2024; AI4Science and Quantum, 2023; Gao 244

et al., 2024; Majumder et al., 2024; Jansen et al., 245

2024). Roohani et al. (2024) apply LLMs to gene 246

discovery tasks which aim to find highly-influential 247

parent genes affecting the regulation of a down- 248

stream target gene. Majumder et al. (2024); Jansen 249

et al. (2024) both present benchmarks evaluating 250

the ability of LLMs to perform real-world and syn- 251

thesized discovery tasks. 252

3 Method 253

Setup. As input we are given a set of variables 254

X1, ..., Xn with associated metadata including vari- 255

able names and variable descriptions. We use the 256

notation Y → X to indicate when variable Y has 257

a direct effect on variable X and the set of parents 258

of a variable X as Pa(X) = {Xi : Xi → X}. 259

We can then consider the directed ground truth 260

graph G∗ = {(Xi, Xj) : Xi ∈ Pa(Xj)} with un- 261

labeled and unweighted edges. The only assumed 262

graph structure is simplicity i.e. no self-edges or 263

multi-edges. No additional structure on the graph 264

(such as acyclicity) is assumed. We can frame 265

the prediction of G∗ as an edge-wise binary clas- 266

sification problem over the complete graph Kn, 267

where an edge (Xi, Xj) has the label lij = 1 if 268

Xi → Xj and lij = 0 otherwise. G∗ can then be 269

written as a collection of ground truth labelings 270

G∗ = {(Xi, Xj , lij) : 1 ≤ i ̸= j ≤ n}. 271

The interactive graph discovery task then aims 272

to learn G∗ by interacting with the discovery en- 273

vironment via experiments on each edge (Xi, Xj). 274

We define an experiment on an edge (Xi, Xj) as an 275

operation revealing the ground truth label li,j . This 276

experiment operation is purposefully kept abstract 277

for generality and could correspond to any number 278

of real-world experimental experimental strategies 279

including formal do operations (Pearl, 2009) or 280

empirical randomized control trials (Sibbald and 281

Roland, 1998). Interactive graph discovery then 282

proceeds in two phases: 283

Phase 1 (Zero-shot prediction): Produce 284

an initial graph prediction Ĝ0 using available 285
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Figure 1: Diagram of the interactive graph discovery process through LLMs. The process begins by predicting
edges and confidences for each edge. Interactive discovery then proceeds by selecting the most uncertain edges for
experimentation. The LLM then updates its predictions and confidences for edges adjacent to the selected edge.
Note: only edges predicted as present are shown.

variables X1, ..., Xn plus semantic metadata.286

Phase 2 (Interactive Discovery): Over a se-287

ries of R rounds, propose I edge experiments288

on (Xi, Xj) each round and receive binary289

feedback on lij . Use this to produce an up-290

dated prediction Ĝr−1 → Ĝr291

We evaluate the accuracy of a prediction Ĝ using292

the F1 objective, i.e.293

F1(G∗, Ĝ) =
2 · PrecisionĜ · RecallĜ
PrecisionĜ + RecallĜ

294

where PrecisionĜ and RecallĜ are computed295

with the label predictions (Xi, Xj , l̂ij) ∈ Ĝ and296

lij as ground truth. The goal of the interactive dis-297

covery process is then to maximize F1(G∗, ĜR).298

Method. Our proposed method IGDA begins by299

generating a zero-shot graph prediction Ĝ0. A pre-300

diction for each variable pair (Xi, Xj), 1 ≤ i ̸=301

j ≤ n, is generated by prompting an LLM to rea-302

son about Xi → Xj in a manner similar to the303

pairwise-prompting strategy utilized in Kıcıman304

et al. (2024). In addition, we prompt the LLM305

to reason about its confidence in the prediction306

and output a confidence score from 1 - 100. Sec-307

tion D shows the exact prompt used. To obtain a308

reliable confidence estimate we sample the LLM309

K = 16 times. We denote the initial confidence for310

(Xi, Xj) as c0ij and set it to be the (signed) average311

over K = 16 output confidences. The initial edge312

label l0ij is then taken as the boolean l0ij = 1c0ij≥0.313

This gives us the initial prediction Ĝ0.314

Next, in each experimentation round r ≤ R, we 315

sort the confidence scores {crij : 1 ≤ i, j ≤ n} 316

by absolute value and experiment on the I edges 317

with the lowest absolute confidence (and highest 318

uncertainty). This reveals the ground truth labels 319

lij for for each experimented edge (Xi, Xj). Using 320

this feedback, we update the predicted edge labels 321

for experimented edges to lr+1
ij = lij and the con- 322

fidences to cr+1
ij = 100. Additionally, we prompt 323

the LLM, conditioned on the ground truth label lij , 324

to update its prediction and confidence for each 325

edge (Xi, Xk) or (Xl, Xj), 1 ≤ k, l ≤ n which 326

shares a node with (Xi, Xj) and has absolute con- 327

fidence less than 100. We call each update to an 328

edge (Xl, Xk) a local update. It may be that an 329

edge (Xl, Xk) is adjacent to multiple experimented 330

edges (Xi1 , Xj1), (Xi2 , Xj2) in a single round and 331

thus receives multiple local updates. To manage 332

these cases we set the next confidence cr+1
lk to the 333

(signed) average of all individual local updates to 334

crlk. Then we set lr+1
lk = 1clk≥0 as before. This 335

continues until the final round R is reached. 336

We call the complete discovery pipeline the Inter- 337

active Graph Discovery Agent (IGDA). A diagram 338

of the full pipeline is shown in Figure 1. We report 339

all prompts in D. 340

4 Results 341

We evaluate our approach on seven real-world 342

graphs. The graphs range in size from 8 to 30 nodes 343

(variables) and vary widely in structure (some are 344

acyclic while others are cyclic). Details for each 345

graph can be found in Appendix E. To produce ini- 346
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tial zero-shot graph predictions Ĝ0 for all graphs347

we utilize pairwise causal prompting as in Kıcıman348

et al. (2024) with Meta-Llama-3-70B-Instruct349

(Grattafiori et al., 2024) as the base LLM. We chose350

Meta-Llama-3-70B-Instruct as at the time of351

our experiments it was the best open-source model352

with advanced reasoning and instruction following353

capabilities For the interactive discovery phase we354

then initialize all methods using Ĝ0. We compare355

our method against several baselines:356

Random selection: Starting from Ĝ0 we ran-357

domly select edges for experimentation. After358

receiving binary feedback we update incorrect359

predictions on experiment edges for the next360

round. We do not allow edges to be selected361

for experimentation twice.362

Static confidence selection: We select edges363

for experimentation based on the initial con-364

fidence scores cij . No updates are performed365

beyond fixing incorrect predictions in the ex-366

perimentation set.367

Gradient-based Intervention Targeting368

(GIT): We adapt the statistical GIT method369

(Olko et al., 2024) by selecting the node at370

each round which has a) not already been se-371

lected and b) has the largest loss gradient un-372

der a neural causal model (Lippe et al., 2022)373

trained with all available observational and374

interventional training data. We initially train375

the model with 5000 observational datapoints376

sampled from the ground-truth graph. 100 ad-377

ditional interventional datapoints on the exper-378

iment node are sampled from the ground-truth379

graph and added to the training set after each380

round of experimentation.381

Meta-Llama-3-70B-Instruct is used as the382

base LLM when applicable. To assess performance,383

we plot the mean F1 score, averaged over five in-384

dependent runs, against the percentage of edges385

selected in each graph. Results are shown in Figure386

2.387

Uncertainty driven experiment selection with388

local updates performs best. Uncertainty driven389

experiment selection with the LLM utilizing exper-390

imental feedback for local updates performs best391

on nearly all graphs. Further, it outperforms the392

random selection baselines at nearly every round393

on every graph, at times by up to 0.5 absolute F1394

score. The only exception to this is the Arctic395

sea ice graph where local updates initially perform 396

poorly. We attribute this to the highly cyclic and 397

thus harder-to-predict graph structure. Addition- 398

ally, the method significantly outperforms the statis- 399

tical GIT baseline on both Az and Covid graphs and 400

remains competitive on the rest. Figure 3 plots the 401

average rank of all methods over all timesteps, con- 402

firming IGDA’s strong performance. Notably, even 403

on graphs where the LLM proposes a poor zero- 404

shot initial prediction, the LLM is able to recover 405

quickly, converging to the correct structure with 406

local updates. This suggests the LLM is able to 407

effectively utilize experiment feedback even when 408

lacking detailed domain knowledge. 409

Local updates can outperform random selection 410

even with few experiments. Allowing the LLM 411

to make local edge updates using experiment feed- 412

back quickly improves the predicted graph even 413

when relatively few edges are selected. This behav- 414

ior is particularly desirable, as in practice it may be 415

expensive to experiment on even a small fraction 416

of all edges. On some graphs, where the initial 417

LLM confidence estimates are good, the static con- 418

fidence selection baseline without local updates is 419

also able to quickly outperform random selection. 420

Yet, even when the initial confidence estimates are 421

subpar, local updates compensate and allow for the 422

prediction to quickly improve with just a few edge 423

experiments. This again demonstrates the broad 424

effectiveness of local updates even when initial 425

predictions are poor. 426

Static uncertainty driven selection performs bet- 427

ter than random selection. Despite not fully 428

utilizing experimental feedback, static uncertainty 429

driven selection still outperforms the random selec- 430

tion baseline on five out of seven graphs. This 431

method performs particularly well on AZ and 432

Covid graphs where the initial LLM predictions are 433

already reasonably good. On these graphs static un- 434

certainty selection quickly outperforms randomly 435

selection and is competitive even with local up- 436

dates. This shows that, on a subset of the graphs, 437

the LLM’s confidence in its predictions are well- 438

calibrated, allowing our selection policy to prevent 439

wasting experiments on edges which are most likely 440

already correct. However, we also see the LLM’s 441

confidence estimates can be poorly calibrated on 442

graphs for which the initial predictions are inac- 443

curate. See for example the Asphyxia and Neuro- 444

pathic pain graphs, which start with initial F1 score 445

less than 0.2. On these graphs the static confidence 446
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Figure 2: Results on real world graphs showing F1 score of the predicted graph against percentage of edges in the
graph selected. IGDA almost always outperforms both the random baseline and static selection via uncertainty. Note:
static confidence selection without local updates is deterministic and thus has no confidence intervals. Additionally,
GIT is not reported on the Arctic graph because the graph is cyclic. Note: GIT uses synthetically generated
numerical observational/interventional data. IGDA receies only binary edge feedback.

Figure 3: Average rank of each method when numbered
from 0 to 2 across each timestep on each graph. The full
LLM driven update agent consistently achieves rank 0
across all timesteps. Note: lower is better.

selection component struggles to outperform the447

random baseline.448

GIT performance heavily depends on availabil-449

ity of both observational and interventional data450

With ample data (5000 observational samples and451

100 interventional samples per node) the statistical452

GIT methods performs well on most graphs where453

it is applicable (i.e. the graph is acyclic). However,454

we find this good performance heavily depends on455

the availability of such data, with decreases in both456

observational and interventional sample sizes sig-457

nificantly impacting results. In Figure 4 we plot458

the performance of GIT on the Asphyxia graph459

with varying amounts of data demonstrating this460

effect. Results on more graphs are presented in the461

Figure 4: GIT with varying amounts of observational
and interventional data. Decreasing either observational
or interventional sample sizes can decrease performance
by over 0.2 F1 score.

appendix. In contrast, IGDA does not depend at 462

all on the availability of numerical observational 463

or interventional data. Instead, IGDA relies on 464

the complementary availability of semantic meta- 465

data of graph variables within either its pretraining 466

dataset or on the internet. This gives IGDA a clear 467

advantage over GIT in low-data regimes. 468

In an effort to better understand the factors be- 469

hind IGDA’s success we conduct a number of abla- 470

tions in the following section. 471

4.1 Ablations 472

Impact of experiment improvements versus up- 473

date improvements As a starting point we de- 474

fine the net graph improvement in a round r as 475

the difference between the number of edges cor- 476

rectly classified in in Ĝr versus in Ĝr−1. If an 477

6



Figure 5: % Improvement from experiments vs. LLM prediction updates across timesteps. Improvement directly
from LLM updates peaks early but then falls off. Improvement from experiments stays constant or improves with
more experiments as confidence scores become better calibrated.

edge (Xi, Xj) is correctly classified in Ĝr but not478

in Ĝr−1 we say it has been improved. Recall there479

are two potential mechanisms of improvement for480

(Xi, Xj): 1) (Xi, Xj) was selected for experimen-481

tation in the previous round r − 1 and feedback on482

the experiment was received at the start of round483

r 2) The prediction for (Xi, Xj) was updated by484

the LLM after receiving experiment feedback for485

an adjacent edge (Xk, Xl). We call the former im-486

provements experiment improvements and the latter487

update improvements. In a given round r we are488

interested in how much of the net improvement for489

a graph is due to experiment improvements ver-490

sus update improvements. To examine this, we491

plot both quantities in Figure 5 for the discovery492

processes discussed in the previous section. In ad-493

dition, we plot the net graph improvement and total494

number of edges changed from each round.495

In all seven graphs we see both the total num-496

ber of changed edges and the net improved edges497

peak at the first round and then decay towards zero.498

Notably, on some graphs there is a significant gap499

between net improvement and total change, indicat-500

ing many edges changed during dynamic updates501

are misclassified after previously being correctly502

classified. This decline in total and net change is503

reflected in the number of update improvements504

which peak early and sharply decline to zero. This505

observation supports our intuition above that al-506

lowing the LLM to dynamically update edge pre-507

dictions without direct experimental feedback on508

the edge can dramatically improve performance509

at small percentages of experiments. In contrast,510

experiment improvement accounts for a smaller511

percentage (less than 40%) of edge improvements512

early on. However, in most graphs the number of 513

experiment improvements stays nearly constant un- 514

til at least 50% of edges are already selected. As a 515

result, improvement from experiments grows to ac- 516

count for 90% of all edge improvements for rounds 517

performed during this period. This demonstrates 518

improvements from experiment and updates com- 519

plement each other, with update improvement 520

driving net improvement early and experiment 521

improvement driving net improvement later on. 522

Our analysis here also confirms the effective- 523

ness of allowing the LLM agent to update both 524

the prediction and confidence for an edge. Even 525

when only considering improvements from exper- 526

iments when doing local updates, we see a major 527

improvement over the static confidence baseline. 528

This suggests the updates made to edge confi- 529

dence scores are equally important in achieving 530

good performance, allowing for sustained experi- 531

ment improvement throughout the discovery pro- 532

cess. See Section B for an ablation investigating 533

the effect of selecting edges using LLM generated 534

confidence scores. 535

Impact of the LLM Model Size The above 536

experiments exclusively use a single base LLM ( 537

Meta-Llama-3-70B-Instruct) to perform both 538

the initial round of zero-shot edge predictions and 539

dynamically update edge predictions/confidences 540

using experiment feedback. Now, we examine 541

the impact of changing both the base model 542

size and type. In Figure 6 we initialize the 543

discovery process with zero-shot predictions 544

made by Meta-Llama-3-70B-Instruct 545

and run local updates using the smaller 546
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Figure 6: Performance of LLM driven interactive dis-
covery on different sized models. Small LLMs (8B
params) underperform the random baseline.

Meta-Llama-3-8B-Instruct as well as two547

models from the Qwen2 series.548

We find the original549

Meta-Llama-3-70B-Instruct consistently550

performs best on all graphs at every time step.551

The other 70B model, Qwen2-72B-Instruct,552

performs similarly but consistently worse. In553

contrast, on the Asia and Covid graphs, both 8B554

models perform worse than even the random base-555

line. Surprisingly Meta-Llama-3-8B-Instruct556

performs reasonably well on the Sangiovese graph,557

performing similarly even to the 9x larger Qwen2558

70B model. Overall however these results indicate559

performance on the interactive graph discovery560

task can be substantially improved with model561

scale.562

We next investigate the performance of different563

models on the initial zero-shot edge prediction task.564

Using the pairwise confidence estimation prompt565

in Section D we prompt each of four models to566

produce a zero-shot prediction Ĝ0 with edge con-567

fidence values. Using the predicted confidence568

estimates we run greedy static confidence selection569

procedure as in 4. Ranks for each selection proce-570

dure averaged over all graphs are plotted in Figure571

10. F1 scores in each graph are reported in Figure572

9 in the Appendix.573

Impact of Memorization The success of LLMs574

in discovery stems from their immense background575

knowledge acquired during pre-training. This back-576

ground knowledge informs the model during edge577

prediction and confidence calibration, allowing for578

strong performance even zero-shot. However, if579

benchmark graphs are contained verbatim in pre-580

training data, memorization becomes a significant581

Figure 7: Performance curves of uncertainty driven
selection + local prompting vs. baselines on the Brain
graph (Zhu et al., 2024) recently published in July 2024.

confounding factor. To investigate to what extent 582

memorization impacts performance we find a re- 583

cently published graph (published in July 2024) 584

from Zhu et al. (2024) modeling the gene regula- 585

tory network underlying 29 protein transcription 586

factors. Because Meta-Llama-3-70B-Instruct 587

finished training in 2023 this graph is guaranteed 588

to be memorization free. Figure 7 plots the per- 589

formance of uncertainty driven edge selection + 590

local updates compared to the static selection and 591

random baseline. 592

Figure 7 shows our confidence driven selection + 593

local update approach performs very well even on 594

graphs with minimal memorization contamination. 595

As previously observed, local prediction updates al- 596

low for fast improvement over the random baseline 597

even with a small number of experiments. Sur- 598

prisingly, the static confidence selection approach 599

also works well here. This indicates zero-shot edge 600

confidence scores can be well calibrated on graphs 601

with no contamination from memorization. We ad- 602

ditionally note this graph has a complex structure 603

with many cycles of varying lengths. This shows 604

our method performs well even on graphs which 605

strongly violate often assumed DAG conditions. 606

5 Conclusions and Future Work 607

In this work we proposed IGDA as a novel applica- 608

tion of LLMs to interactive graph discovery. Our 609

experiments confirm the proposed IGDA method 610

significantly outperforms baselines. Our ablations 611

confirm both uncertainty driven edge selection and 612

local updates using experiment feedback as impor- 613

tantly contributing to the method’s good perfor- 614

mance. Further, this method is complementary to 615

existing statistical methods which utilize numerical 616

data for experiment design or causal discovery (e.g. 617

GIT (Olko et al., 2024)). 618
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6 Limitations and Broader Impact619

Limitations IGDA does not leverage numerical620

observational/interventional causal data. Instead621

the agent utilizes available semantic variable metat-622

data from pre-training. Future work might inves-623

tigate methods leveraging both numerical and se-624

mantic data.625

Broader Impact As with any work studying gen-626

erative models, we note generative modeling can627

suffer from pre-existing biases in the training data.628

This behavior may help propagate existing societal629

biases present today.630
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Figure 8: Ablating confidence based edge selection and
local update prompting.

A Implementation Details812

For a python implementation of IGDA go813

to https://anonymous.4open.science/r/814

IGDA-7AFB/README.md.815

B Impact of Confidence Based Selection816

and Local Prompting817

We now ablate the impact of two key components818

of our discovery strategy: 1) confidence based edge819

selection and 2) local update prompting. To ablate820

1) we directly prompt the LLM to generate a list of821

edges to experiment on instead of selecting via con-822

fidence. This requires us to put the entire current823

predicted graph Ĝr in-context. When dynamically824

updating Ĝr after receiving experimental feedback825

we remove all confidence estimates but retain the826

local prompting strategy. To ablate 2) we retain827

the same confidence edge selection proposed but828

replace local update prompts after with a single829

global update prompt containing the current pre-830

diction Ĝr and all recently received experiment831

feedback. We report the results of running the in-832

teractive discovery process with these methods in833

Figure 8.834

We find both ablations struggle to perform better835

than the random baseline. Local updates without836

confidence selection perform well early on but fall837

off quickly. F1 score on the Covid graph even re-838

gresses after the initial improvements, likely due to839

incorrect local updates and a poor experiment selec-840

tion policy. This suggests in addition to providing a841

strong experiment selection procedure, maintaining842

running confidence estimates for each edge reduces843

the variance of local updates from experiment feed-844

back. Turning to the ablation for local prompting,845

we again find performance not much better than 846

the random baseline. Surprisingly, even on Covid 847

where the static confidence selection performs well, 848

confidence based selection + global updates still 849

struggles. This indicates the base LLM is not able 850

to correctly update the predicted graph when giving 851

everything in context at once. This further moti- 852

vate the practical importance of the local prompting 853

procedure, which greatly simplifies the context the 854

LLM must consider in each model call. Addition- 855

ally, we note that for large enough graphs, putting 856

everything in context is simply not feasible. By 857

contrast, local prompting is easily scalable to larger 858

graphs, albeit at a quadratic cost. 859

C Static Confidence Selection over 860

Multiple Models 861

Figure 9 reports the results of applying static confi- 862

dence experiment selection using various models. 863

Figure 9: Static confidence selection over multiple mod-
els.
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Figure 10: Static confidence based selection
ranks for different models averaged across graphs.
Meta-Llama-3-70B-Instruct is the only model to
consistently outperform random guessing. Note: lower
is better.

D Prompts864

Zero-shot Confidence Estimation Prompt

[ht] {task_description} Your goal is to un-
derstand the direct causal parents of {tar-
get}. Another variable is a direct causal
parent of {target} if an experiment on the
variable affects {target} and there are no
other causal parents between the variable
and {target}. Now, you must determine
whether {parent} is a causal parent of {tar-
get}. Here is a list of all other variables to
consider:
{variables_info}
Do some brainstorming, comparing rele-
vant characteristics of both variables and
then print your judgment at the end of
your response enclosed in the tags deci-
sion YES/NO/decision . Print YES if {par-
ent} is causal. Otherwise print NO. You
should also print your confidence from a
scale from 1 - 100 (with 100 being most
confident) in the tags confidence ... /confi-
dence .
Information about {target}: {target_info}
Information about {parent}: {parent_info}

865

Parent Update Prompt

You are a causal discovery expert. You have
been given the following list of variables
and tasked with predicting the true causal
graph through a sequence of experiments
on edges.
{variables_info}
Note: each edge has an associated con-
fidence value from 1 - 100. The
presence of an edge is represented as
(A− >B,CONFIDENCE) where A is the
parent and B is the child. The absence of
an edge is represented as (NOT A− >B,
CONFIDENCE)
From one experiment you have discovered
{experiment_feedback} Previously you pre-
dicted {experiment_prediction}
Now you should update your belief about
the other edges of {parent} based on the
results of the experiment. Consider the pre-
dicted edge
{other_edge_prediction}
Now you should reason about how to
update your belief about the above edge
based on the experiment. This means you
can either keep your confidence the same,
update your confidence, or change your
prediction entirely. At the end of your
response give your updated prediction at
the end of your response in the format de-
cision PARENT/NOT CAUSAL/decision>
confidence CONFIDENCE/confidence .
Print ’PARENT’ if the edge should be
present and ’NOT CAUSAL’ if the edge
should be absent.
You should do this in three steps.
Step 1: Brainstorm what physical causal
connection there may be, if any.
Step 2: Reason about what the experiment
feedback tells you. Think carefully about
how similar the new child is to the experi-
mental child.
Step 3: Give your final decision.

866
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Child Update Prompt

You are a causal discovery expert. You have
been given the following list of variables
and tasked with predicting the true causal
graph through a sequence of experiments
on edges.
{variables_info}
Note: each edge has an associated con-
fidence value from 1 - 100. The pres-
ence of an edge is represented as (A− >
B,CONFIDENCE) where A is the parent
and B is the child. The absence of an edge
is represented as (NOT A− >B, CONFI-
DENCE)
From one experiment you have discovered
{experiment_feedback} Previously you pre-
dicted {experiment_prediction}
Now you should update your belief about
the other edges of {child} based on the
results of the experiment. Consider the pre-
dicted edge
{other_edge_prediction}
Now you should reason about how to
update your belief about the above edge
based on the experiment. This means you
can either keep your confidence the same,
update your confidence, or change your
prediction entirely. At the end of your
response give your updated prediction at
the end of your response in the format
decision PARENT/NOT CAUSAL/decision
confidence CONFIDENCE/confidence .
Print ’PARENT’ if the edge should be
present and ’NOT CAUSAL’ if the edge
should be absent.
You should do this in three steps.
Step 1: Brainstorm what physical causal
connection there may be, if any.
Step 2: Reason about what the experiment
feedback tells you. Think carefully about
how similar the new parent is to the experi-
ment parent.
Step 3: Give your final decision.

867

E Causal Graphs 868

Figure 11: Arctic sea ice causal graph.

Figure 12: Asia causal graph.
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Figure 13: Asphyxia causal graph.

Figure 14: Alzheimers causal graph.

Figure 15: Covid causal graph.

Figure 16: Neuropathic pain causal graph.

Figure 17: Sangiovese causal graph.

Figure 18: Brain causal graph.

F GIT Ablations 869

Figure 19 plot GIT performance (Olko et al., 2024) 870

over six causal graphs with varying amounts of 871

observational and interventional data. 872
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Figure 19: GIT ablations with varying amounts of observational and interventional data.
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