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Abstract

Large language models have emerged as a pow-
erful tool for accelerating science and decision
making. Towards further improving LLM util-
ity in these domains we study the application
of LLMs to the novel task of interactive graph
discovery: given a ground truth graph G* cap-
turing variable relationships and a budget of
edge experiments over R rounds, minimize the
distance between the predicted graph Gr and
G™ at the end of the R-th round. To solve this
task we propose IGDA, a LLM-based pipeline
incorporating two key components: 1) an LLM
uncertainty-driven method for edge experiment
selection 2) a local graph update strategy uti-
lizing binary feedback from experiments to
improve predictions for unselected neighbor-
ing edges. Experiments on eight different real-
world graphs show our approach often outper-
forms all baselines including a state-of-the-art
numerical method for interactive graph discov-
ery. Further, we conduct a rigorous series of
ablations dissecting the impact of each pipeline
component. Overall, our results show IGDA
to be a powerful method for graph discovery
complementary to existing numerically driven
approaches.

1 Introduction

The research process can vary widely across dif-
ferent domains ranging from medicine to ML. One
common phase shared between all disciplines is
the experimental design process during which re-
searchers read relevant literature and then propose
high-priority experiments to carry out. Based on
experimental outcomes researchers can update their
understanding of the problem of interest, leading
to future rounds of research and discovery.

We can formalize this process as the follow-
ing graph discovery task: given a set of vari-
ables Xi,..., X, find a graph G* on the nodes
X1, ...,X, whose edges capture causal relation-
ships between the parent (source) and child (tar-

get). Often, observational data can be collected
for the variables X1, ..., X,,. This data can then
be used to predict an initial graph G using sta-
tistical causal discovery techniques (Spirtes and
Zhang, 2016). Recently, large language models
(LLMs) have emerged as a competitive alternative
method for predicting causal graphs (Kiciman et al.,
2024; Abdulaal et al., 2024; Chen et al., 2024). Un-
like pre-existing statistical methods, LLMs require
no observational data (Kiciman et al., 2024), in-
stead relying purely on semantic metadata such
as variable names and descriptions. Another re-
lated line a work (Yang et al., 2024) investigates
the abilities of LLMs to act as in-context black-box
optimizers. Given an objective function f and an
evaluation budget B, the LLM is tasked with find-
ing a maximizer x* of f by sequentially proposing
queries {xi}ile and observing their associated val-
ues {f(z;)}2.,. Taken together, these directions
suggest a powerful new application of LLMs: in-
teractive graph discovery.

Given an initial predicted graph Gy and a series
of experiment rounds 1, ..., Rz, the interactive graph
discovery problem involves minimizing some dis-
tance d(G, G*) between the predicted graph G,
at round k£ and the true graph G* (unknown to
the learner) through a sequence of targeted exper-
iments on edges e = (X,Y) testing the effect
of the parent variable X on the child variable Y.
The edge experiment operation is kept purpose-
fully abstract, requiring only that binary feedback
be given indicating the presence or absence of an
edge. In practice this operation can be implemented
via any number of experimental procedures (e.g.
via hard interventions in the formal causal sense
(Pearl, 2009) or empirical methods such as random-
ized controlled trials (Sibbald and Roland, 1998)).
The IGD problem setup captures the process re-
searchers go through everyday when designing and
prioritizing experiments, guided by their prior ex-
perience, to study numerous potential relationships



between any number of variables.

The interactive graph discovery problem requires
the agent to solve two key sub-tasks:

1. Experiment selection: Selecting which edges
(Xi, X;) to target for experimentation in the
next round.

2. Graph updates: Updating the predicted graph
from Gy_1 to Gy, given binary feedback based
on the outcome of the previous experiments.

We propose to solve this task with the Interac-

tive Graph Discovery Agent IGDA): a novel LLM

agent uncertainty-driven approach as an alternative

to existing statistical methods (Olko et al., 2024;

Scherrer et al., 2022). While statistical models can

work well in some settings, they crucially rely on

the abundance of domain specific observational and
interventional numerical data. For many problems,
such data might be hard or impossible acquire.

LLMs, however, potentially contain relevant latent

knowledge derived from vast amounts of variable

semantic metadata contained in their pre-training

or internet corpora. Further, we find that, via a

combination of broad background knowledge and

reasoning abilities, advanced LLMs (Grattafiori
et al., 2024) are capable of updating their predic-
tions and confidences when presented with exper-
imental feedback revealing unexpected relation-

ships between a subset of edges. This makes LLM

based approaches a powerful alternative to statisti-

cal methods when numerical data is not available.
In particular, IGDA predicts and maintains un-
certainty estimates for each unknown edge e €

Gr. Edges are then selected for experimentation

by prioritizing those with the highest uncertainty.

When feedback is received on the selected edges,
pairwise-local updates on both edge predictions
and uncertainty estimates are performed for each
edge in G sharing a parent or child variable with
an experimented edge. This process continues for

R rounds with I edges selected for experimenta-

tion each round. We benchmark IGDA on eight

real world graphs, finding uncertainty driven selec-
tion with local updates outperforms baselines. In
summary, we make the following contributions:

* The interactive graph discovery problem as a
novel setting for evaluating LLLM capabilities.

» LLM-based uncertainty-guided edge experiment
selection as a policy for prioritizing edge experi-
mentation.

* A local update strategy for robustly updating
the predicted graph G, with binary experiment

feedback.

* Ablations rigorously evaluating the contribution
of each pipeline component and other discovery
strategies.

2 Background and Related Work

LLMs as Agents Recently LLMs have been ap-
plied to across a variety of domains including
math, science, coding, writing and more (Yao et al.,
2023; DeepSeek-Al et al., 2025; Jiang et al., 2025;
Velickovi¢ et al., 2024). For example, Tree of
Thoughts (ToT) (Yao et al., 2023) applies LLMs
to solve crosswords augmented with the ToT al-
gorithm. Deepseek R1 DeepSeek-Al et al. (2025)
deploys LLMs to solve hard math problems aug-
mented with improved "thinking" abilities using
RL. Velickovi¢ et al. (2024) combines LLMs with
evolutionary algorithms to generate competitive
and diverse solutions to competitive coding prob-
lems. These examples underscore the broad appli-
cability of LLM capability supported by domain
specfic algorithms.

Causal Discovery and LLMs. The causal dis-
covery task involves learning causal relationships
from observed empirical data (Peters et al., 2017;
Spirtes and Zhang, 2016). Many proposed algo-
rithms exist (Spirtes et al., 1993; Yu et al., 2019;
Nauta et al., 2019; Zheng et al., 2018; Chicker-
ing, 2002) attempting to solve the causal discovery
problem. However, these methods are known to
struggle on real world graphs where observations
are noisy or common structural assumptions are
violated (Chevalley et al., 2023; Tu et al., 2019).
Recently, LLMs have emerged as an alternative
approach to causal discovery (Kiciman et al., 2024;
Abdulaal et al., 2024; Vashishtha et al., 2023; Li
et al., 2024; Lampinen et al., 2023). Kiciman et al.
(2024) first investigated the capability of LLMs to
act as zero-shot causal discovery agents using only
semantic information and pairwise prompting on
each variable pair. Follow-up work (Abdulaal et al.,
2024) further improves LLLM predictions with ob-
servational data by selecting for predictions which
maximize data likelihood. Vashishtha et al. (2023)
utilize triplet prompting to prevent cycles when the
causal graph is acyclic. They show only a topo-
logical ordering on variables is required for many
common causal reasoning tasks (Chu et al., 2023).
Other works (Zhou et al., 2024; Chen et al., 2024)
benchmark LLMs across a range of causality re-
lated tasks including causal discovery and causal



inference confirming that LLMs struggle with inte-
grating numerical data.

Another line of work more related to our pro-
posed interactive causal discovery problem studies
how to incorporate background knowledge into
causal discovery algorithms (Meek, 2013). De-
fine a set of background knowledge as the tuple
K = (F, R), where F specifies a set of “forbidden”
graph edges and R specifies a set of “required”
graph edges. Meek (2013) presents an algorithm
for constructing a causal graph consistent with C by
leveraging an assumed structural directed acyclic
graph (DAG) property. Building on Meek (2013),
Chickering (2002) proposes a greedy search algo-
rithm that performs well in practice.

Most related are statistical methods from the
causal discovery literature which aim to efficiently
choose a sequence of interventions to discover
causal structure (Scherrer et al., 2022; Olko et al.,
2024). In particular, Gradient based Interventional
Targeting (GIT) (Olko et al., 2024) utilizes exist-
ing neural causal discovery methods (Lippe et al.,
2022) to learn a distribution over possible graph
structures and variable assignments. For each
round of intervention, GIT prioritizes variables
whose simulated interventional distribution have
large gradient with respect to the structural training
loss.

In contrast to these works, our proposed algo-
rithm utilizes LLMs to reason about the seman-
tic/physical, as opposed to formal/structural, rela-
tionships between variables and edges in causal
graphs. For this reason we are not required to make
any structural assumptions on an underlying DAG,
as is common in the causal discovery literature.
This is desirable as in practice many real-world
causal graphs are cyclic and poorly structured (Zhu
et al., 2024; Huang et al., 2021). Additionally our
method does not rely on observational or interven-
tional data for real world graphs which may be ex-
pensive to acquire but crucial for good performance
with statistical methods. Further, we note we suc-
ceed at designing a competitive graph discovery
agent despite the difficulty LLMs have understand-
ing graph data when applied naively (Guo et al.,
2023).

LLMs as Optimizers. Another growing line of
work utilizes LLMs as black-box optimizers (Yang
et al., 2024; Roohani et al., 2024). Yang et al.
(2024) introduce the notion of an LLM as a generic
optimizer and use it to optimize performance ob-

jectives stemming from a range of tasks includ-
ing linear regression and mathematical word prob-
lems (Cobbe et al., 2021). Other works (Madaan
et al., 2023; Havrilla et al., 2024) examine the self-
refinement capabilities of LLMs where the LLM
must reason and self-improve on earlier responses.
A growing number of papers apply LLMs to op-
timal experiment design and discovery (Roohani
et al., 2024; Al4Science and Quantum, 2023; Gao
et al., 2024; Majumder et al., 2024; Jansen et al.,
2024). Roohani et al. (2024) apply LLMs to gene
discovery tasks which aim to find highly-influential
parent genes affecting the regulation of a down-
stream target gene. Majumder et al. (2024); Jansen
et al. (2024) both present benchmarks evaluating
the ability of LLMs to perform real-world and syn-
thesized discovery tasks.

3 Method

Setup. As input we are given a set of variables
X1, ..., X, with associated metadata including vari-
able names and variable descriptions. We use the
notation Y — X to indicate when variable Y has
a direct effect on variable X and the set of parents
of a variable X as Pa(X) = {X; : X; - X}.
We can then consider the directed ground truth
graph G* = {(X;, X;) : X; € Pa(X;)} with un-
labeled and unweighted edges. The only assumed
graph structure is simplicity i.e. no self-edges or
multi-edges. No additional structure on the graph
(such as acyclicity) is assumed. We can frame
the prediction of G* as an edge-wise binary clas-
sification problem over the complete graph I,
where an edge (X;, X;) has the label [;; = 1 if
X; — Xj and [;; = 0 otherwise. G* can then be
written as a collection of ground truth labelings
G* = {(Xi,Xj,lij) 1< #] < n}

The interactive graph discovery task then aims
to learn G* by interacting with the discovery en-
vironment via experiments on each edge (X;, X;).
We define an experiment on an edge (X;, X;) as an
operation revealing the ground truth label /; ;. This
experiment operation is purposefully kept abstract
for generality and could correspond to any number
of real-world experimental experimental strategies
including formal do operations (Pearl, 2009) or
empirical randomized control trials (Sibbald and
Roland, 1998). Interactive graph discovery then
proceeds in two phases:

Phase 1 (Zero-shot prediction): Produce
an initial graph prediction G using available
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Figure 1: Diagram of the interactive graph discovery process through LLMs. The process begins by predicting
edges and confidences for each edge. Interactive discovery then proceeds by selecting the most uncertain edges for
experimentation. The LLM then updates its predictions and confidences for edges adjacent to the selected edge.

Note: only edges predicted as present are shown.

variables X7, ..., X, plus semantic metadata.

Phase 2 (Interactive Discovery): Over a se-
ries of R rounds, propose I edge experiments
on (X, X;) each round and receive binary
feedback on [;;. Use this to produce an up-

A~

dated prediction G,,_1; — G,

We evaluate the accuracy of a prediction G using
the F1 objective, i.e.

N 2 -Precisiong - Recall »
F1(G*,G) = G b

Precisioné + Recallé

where Precisiongs and Recall s are computed
with the label predictions (X;, X j,iij) e G and
l;j as ground truth. The goal of the interactive dis-
covery process is then to maximize F'1(G*, Gr).

Method. Our proposed method IGDA begins by
generating a zero-shot graph prediction Go. A pre-
diction for each variable pair (X;, X;), 1 < i #
J < n, is generated by prompting an LL.M to rea-
son about X; — X in a manner similar to the
pairwise-prompting strategy utilized in Kiciman
et al. (2024). In addition, we prompt the LLM
to reason about its confidence in the prediction
and output a confidence score from 1 - 100. Sec-
tion D shows the exact prompt used. To obtain a
reliable confidence estimate we sample the LLM
K = 16 times. We denote the initial confidence for
(Xi, X;) as cgj and set it to be the (signed) average
over K = 16 output confidences. The initial edge
label I{); is then taken as the boolean [; = Lo -

This gives us the initial prediction G.

Next, in each experimentation round r < R, we
sort the confidence scores {c; : 1 < 4,j < n}
by absolute value and experiment on the I edges
with the lowest absolute confidence (and highest
uncertainty). This reveals the ground truth labels
l;; for for each experimented edge (X;, X;). Using
this feedback, we update the predicted edge labels
for experimented edges to lfj“ = l;; and the con-

fidences to c:;r 1'— 100. Additionally, we prompt
the LLM, conditioned on the ground truth label /;;,
to update its prediction and confidence for each
edge (X;, Xj) or (X;,X;), 1 < k,l < n which
shares a node with (X;, X;) and has absolute con-
fidence less than 100. We call each update to an
edge (X, Xi) a local update. It may be that an
edge (X7, X},) is adjacent to multiple experimented
edges (Xi,, X;,), (Xi,, Xj,) in a single round and
thus receives multiple local updates. To manage
these cases we set the next confidence cf,j ! to the
(signed) average of all individual local updates to
cj.- Then we set l;}jl = 1., >0 as before. This
continues until the final round R is reached.

We call the complete discovery pipeline the Inter-
active Graph Discovery Agent (IGDA). A diagram
of the full pipeline is shown in Figure 1. We report
all prompts in D.

4 Results

We evaluate our approach on seven real-world
graphs. The graphs range in size from 8 to 30 nodes
(variables) and vary widely in structure (some are
acyclic while others are cyclic). Details for each
graph can be found in Appendix E. To produce ini-



tial zero-shot graph predictions G for all graphs
we utilize pairwise causal prompting as in Kiciman
et al. (2024) with Meta-Llama-3-70B-Instruct
(Grattafiori et al., 2024) as the base LLM. We chose
Meta-Llama-3-7@0B-Instruct as at the time of
our experiments it was the best open-source model
with advanced reasoning and instruction following
capabilities For the interactive discovery phase we
then initialize all methods using Go. We compare
our method against several baselines:

Random selection: Starting from Gy we ran-
domly select edges for experimentation. After
receiving binary feedback we update incorrect
predictions on experiment edges for the next
round. We do not allow edges to be selected
for experimentation twice.

Static confidence selection: We select edges
for experimentation based on the initial con-
fidence scores ¢;;. No updates are performed
beyond fixing incorrect predictions in the ex-
perimentation set.

Gradient-based Intervention Targeting
(GIT): We adapt the statistical GIT method
(Olko et al., 2024) by selecting the node at
each round which has a) not already been se-
lected and b) has the largest loss gradient un-
der a neural causal model (Lippe et al., 2022)
trained with all available observational and
interventional training data. We initially train
the model with 5000 observational datapoints
sampled from the ground-truth graph. 100 ad-
ditional interventional datapoints on the exper-
iment node are sampled from the ground-truth
graph and added to the training set after each
round of experimentation.

Meta-Llama-3-7@0B-Instruct is used as the
base LLLM when applicable. To assess performance,
we plot the mean F1 score, averaged over five in-
dependent runs, against the percentage of edges
selected in each graph. Results are shown in Figure
2.

Uncertainty driven experiment selection with
local updates performs best. Uncertainty driven
experiment selection with the LLM utilizing exper-
imental feedback for local updates performs best
on nearly all graphs. Further, it outperforms the
random selection baselines at nearly every round
on every graph, at times by up to 0.5 absolute F1
score. The only exception to this is the Arctic

sea ice graph where local updates initially perform
poorly. We attribute this to the highly cyclic and
thus harder-to-predict graph structure. Addition-
ally, the method significantly outperforms the statis-
tical GIT baseline on both Az and Covid graphs and
remains competitive on the rest. Figure 3 plots the
average rank of all methods over all timesteps, con-
firming IGDA’s strong performance. Notably, even
on graphs where the LLM proposes a poor zero-
shot initial prediction, the LLM is able to recover
quickly, converging to the correct structure with
local updates. This suggests the LLM is able to
effectively utilize experiment feedback even when
lacking detailed domain knowledge.

Local updates can outperform random selection
even with few experiments. Allowing the LLM
to make local edge updates using experiment feed-
back quickly improves the predicted graph even
when relatively few edges are selected. This behav-
ior is particularly desirable, as in practice it may be
expensive to experiment on even a small fraction
of all edges. On some graphs, where the initial
LLM confidence estimates are good, the static con-
fidence selection baseline without local updates is
also able to quickly outperform random selection.
Yet, even when the initial confidence estimates are
subpar, local updates compensate and allow for the
prediction to quickly improve with just a few edge
experiments. This again demonstrates the broad
effectiveness of local updates even when initial
predictions are poor.

Static uncertainty driven selection performs bet-
ter than random selection. Despite not fully
utilizing experimental feedback, static uncertainty
driven selection still outperforms the random selec-
tion baseline on five out of seven graphs. This
method performs particularly well on AZ and
Covid graphs where the initial LLM predictions are
already reasonably good. On these graphs static un-
certainty selection quickly outperforms randomly
selection and is competitive even with local up-
dates. This shows that, on a subset of the graphs,
the LLM’s confidence in its predictions are well-
calibrated, allowing our selection policy to prevent
wasting experiments on edges which are most likely
already correct. However, we also see the LLM’s
confidence estimates can be poorly calibrated on
graphs for which the initial predictions are inac-
curate. See for example the Asphyxia and Neuro-
pathic pain graphs, which start with initial F1 score
less than 0.2. On these graphs the static confidence
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Figure 2: Results on real world graphs showing F1 score of the predicted graph against percentage of edges in the
graph selected. IGDA almost always outperforms both the random baseline and static selection via uncertainty. Note:
static confidence selection without local updates is deterministic and thus has no confidence intervals. Additionally,
GIT is not reported on the Arctic graph because the graph is cyclic. Note: GIT uses synthetically generated

numerical observational/interventional data. IGDA receies only binary edge feedback.
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Figure 3: Average rank of each method when numbered
from 0 to 2 across each timestep on each graph. The full
LLM driven update agent consistently achieves rank 0
across all timesteps. Note: lower is better.

selection component struggles to outperform the
random baseline.

GIT performance heavily depends on availabil-
ity of both observational and interventional data
With ample data (5000 observational samples and
100 interventional samples per node) the statistical
GIT methods performs well on most graphs where
it is applicable (i.e. the graph is acyclic). However,
we find this good performance heavily depends on
the availability of such data, with decreases in both
observational and interventional sample sizes sig-
nificantly impacting results. In Figure 4 we plot
the performance of GIT on the Asphyxia graph
with varying amounts of data demonstrating this
effect. Results on more graphs are presented in the
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Figure 4: GIT with varying amounts of observational
and interventional data. Decreasing either observational
or interventional sample sizes can decrease performance
by over 0.2 F1 score.

appendix. In contrast, IGDA does not depend at
all on the availability of numerical observational
or interventional data. Instead, IGDA relies on
the complementary availability of semantic meta-
data of graph variables within either its pretraining
dataset or on the internet. This gives IGDA a clear
advantage over GIT in low-data regimes.

In an effort to better understand the factors be-
hind IGDA’s success we conduct a number of abla-
tions in the following section.

4.1 Ablations

Impact of experiment improvements versus up-
date improvements As a starting point we de-
fine the net graph improvement in a round r as
the difference between the number of edges cor-
rectly classified in in G‘r versus in ér,l. If an
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Figure 5: % Improvement from experiments vs. LLM prediction updates across timesteps. Improvement directly
from LLM updates peaks early but then falls off. Improvement from experiments stays constant or improves with
more experiments as confidence scores become better calibrated.

edge (X;, X;) is correctly classified in G,. but not
in ér,l we say it has been improved. Recall there
are two potential mechanisms of improvement for
(Xi, Xj): D) (Xi, X;) was selected for experimen-
tation in the previous round r» — 1 and feedback on
the experiment was received at the start of round
r 2) The prediction for (X;, X;) was updated by
the LLM after receiving experiment feedback for
an adjacent edge (X}, X;). We call the former im-
provements experiment improvements and the latter
update improvements. In a given round r we are
interested in how much of the net improvement for
a graph is due to experiment improvements ver-
sus update improvements. To examine this, we
plot both quantities in Figure 5 for the discovery
processes discussed in the previous section. In ad-
dition, we plot the net graph improvement and total
number of edges changed from each round.

In all seven graphs we see both the total num-
ber of changed edges and the net improved edges
peak at the first round and then decay towards zero.
Notably, on some graphs there is a significant gap
between net improvement and total change, indicat-
ing many edges changed during dynamic updates
are misclassified after previously being correctly
classified. This decline in total and net change is
reflected in the number of update improvements
which peak early and sharply decline to zero. This
observation supports our intuition above that al-
lowing the LLM to dynamically update edge pre-
dictions without direct experimental feedback on
the edge can dramatically improve performance
at small percentages of experiments. In contrast,
experiment improvement accounts for a smaller
percentage (less than 40%) of edge improvements

early on. However, in most graphs the number of
experiment improvements stays nearly constant un-
til at least 50% of edges are already selected. As a
result, improvement from experiments grows to ac-
count for 90% of all edge improvements for rounds
performed during this period. This demonstrates
improvements from experiment and updates com-
plement each other, with update improvement
driving net improvement early and experiment
improvement driving net improvement later on.

Our analysis here also confirms the effective-
ness of allowing the LLM agent to update both
the prediction and confidence for an edge. Even
when only considering improvements from exper-
iments when doing local updates, we see a major
improvement over the static confidence baseline.
This suggests the updates made to edge confi-
dence scores are equally important in achieving
good performance, allowing for sustained experi-
ment improvement throughout the discovery pro-
cess. See Section B for an ablation investigating
the effect of selecting edges using LLM generated
confidence scores.

Impact of the LLM Model Size The above
experiments exclusively use a single base LLM (
Meta-Llama-3-70B-Instruct) to perform both
the initial round of zero-shot edge predictions and
dynamically update edge predictions/confidences
using experiment feedback. Now, we examine
the impact of changing both the base model
size and type. In Figure 6 we initialize the
discovery process with zero-shot predictions
made by Meta-Llama-3-70B-Instruct
and run local updates using the smaller
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Figure 6: Performance of LLM driven interactive dis-
covery on different sized models. Small LLMs (8B
params) underperform the random baseline.

Meta-Llama-3-8B-Instruct as well as two
models from the Qwen?2 series.

We find the original
Meta-Llama-3-70B-Instruct consistently
performs best on all graphs at every time step.
The other 70B model, Qwen2-72B-Instruct,
performs similarly but consistently worse. In
contrast, on the Asia and Covid graphs, both 8B
models perform worse than even the random base-
line. Surprisingly Meta-Llama-3-8B-Instruct
performs reasonably well on the Sangiovese graph,
performing similarly even to the 9x larger Qwen2
70B model. Overall however these results indicate
performance on the interactive graph discovery
task can be substantially improved with model
scale.

We next investigate the performance of different
models on the initial zero-shot edge prediction task.
Using the pairwise confidence estimation prompt
in Section D we prompt each of four models to
produce a zero-shot prediction Go with edge con-
fidence values. Using the predicted confidence
estimates we run greedy static confidence selection
procedure as in 4. Ranks for each selection proce-
dure averaged over all graphs are plotted in Figure
10. F1 scores in each graph are reported in Figure
9 in the Appendix.

Impact of Memorization The success of LLMs
in discovery stems from their immense background
knowledge acquired during pre-training. This back-
ground knowledge informs the model during edge
prediction and confidence calibration, allowing for
strong performance even zero-shot. However, if
benchmark graphs are contained verbatim in pre-
training data, memorization becomes a significant

Brain

00 02 06 08

04
% of graph edges selected

Figure 7: Performance curves of uncertainty driven
selection + local prompting vs. baselines on the Brain
graph (Zhu et al., 2024) recently published in July 2024.

confounding factor. To investigate to what extent
memorization impacts performance we find a re-
cently published graph (published in July 2024)
from Zhu et al. (2024) modeling the gene regula-
tory network underlying 29 protein transcription
factors. Because Meta-Llama-3-7@0B-Instruct
finished training in 2023 this graph is guaranteed
to be memorization free. Figure 7 plots the per-
formance of uncertainty driven edge selection +
local updates compared to the static selection and
random baseline.

Figure 7 shows our confidence driven selection +
local update approach performs very well even on
graphs with minimal memorization contamination.
As previously observed, local prediction updates al-
low for fast improvement over the random baseline
even with a small number of experiments. Sur-
prisingly, the static confidence selection approach
also works well here. This indicates zero-shot edge
confidence scores can be well calibrated on graphs
with no contamination from memorization. We ad-
ditionally note this graph has a complex structure
with many cycles of varying lengths. This shows
our method performs well even on graphs which
strongly violate often assumed DAG conditions.

5 Conclusions and Future Work

In this work we proposed IGDA as a novel applica-
tion of LLMs to interactive graph discovery. Our
experiments confirm the proposed IGDA method
significantly outperforms baselines. Our ablations
confirm both uncertainty driven edge selection and
local updates using experiment feedback as impor-
tantly contributing to the method’s good perfor-
mance. Further, this method is complementary to
existing statistical methods which utilize numerical
data for experiment design or causal discovery (e.g.
GIT (Olko et al., 2024)).



6 Limitations and Broader Impact

Limitations IGDA does not leverage numerical
observational/interventional causal data. Instead
the agent utilizes available semantic variable metat-
data from pre-training. Future work might inves-
tigate methods leveraging both numerical and se-
mantic data.

Broader Impact As with any work studying gen-
erative models, we note generative modeling can
suffer from pre-existing biases in the training data.
This behavior may help propagate existing societal
biases present today.
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Figure 8: Ablating confidence based edge selection and
local update prompting.

A Implementation Details

For a python implementation of IGDA go
to https://anonymous.4open.science/r/
IGDA-7AFB/README . md.

B Impact of Confidence Based Selection
and Local Prompting

We now ablate the impact of two key components
of our discovery strategy: 1) confidence based edge
selection and 2) local update prompting. To ablate
1) we directly prompt the LLM to generate a list of
edges to experiment on instead of selecting via con-
fidence. This requires us to put the entire current
predicted graph G, in-context. When dynamically
updating G, after receiving experimental feedback
we remove all confidence estimates but retain the
local prompting strategy. To ablate 2) we retain
the same confidence edge selection proposed but
replace local update prompts after with a single
global update prompt containing the current pre-
diction G, and all recently received experiment
feedback. We report the results of running the in-
teractive discovery process with these methods in
Figure 8.

We find both ablations struggle to perform better
than the random baseline. Local updates without
confidence selection perform well early on but fall
off quickly. F1 score on the Covid graph even re-
gresses after the initial improvements, likely due to
incorrect local updates and a poor experiment selec-
tion policy. This suggests in addition to providing a
strong experiment selection procedure, maintaining
running confidence estimates for each edge reduces
the variance of local updates from experiment feed-
back. Turning to the ablation for local prompting,
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we again find performance not much better than
the random baseline. Surprisingly, even on Covid
where the static confidence selection performs well,
confidence based selection + global updates still
struggles. This indicates the base LLM is not able
to correctly update the predicted graph when giving
everything in context at once. This further moti-
vate the practical importance of the local prompting
procedure, which greatly simplifies the context the
LLM must consider in each model call. Addition-
ally, we note that for large enough graphs, putting
everything in context is simply not feasible. By
contrast, local prompting is easily scalable to larger
graphs, albeit at a quadratic cost.

C Static Confidence Selection over
Multiple Models

Figure 9 reports the results of applying static confi-
dence experiment selection using various models.

Figure 9: Static confidence selection over multiple mod-
els.
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Figure 10:  Static confidence based selection

ranks for different models averaged across graphs.

Meta-Llama-3-70B-Instruct is the only model to
consistently outperform random guessing. Note: lower
is better.

D Prompts

Zero-shot Confidence Estimation Prompt

[ht] {task_description} Your goal is to un-
derstand the direct causal parents of {tar-
get}. Another variable is a direct causal
parent of {target} if an experiment on the
variable affects {target} and there are no
other causal parents between the variable
and {target}. Now, you must determine
whether {parent} is a causal parent of {tar-
get}. Here is a list of all other variables to
consider:

{variables_info}

Do some brainstorming, comparing rele-
vant characteristics of both variables and
then print your judgment at the end of
your response enclosed in the tags deci-
sion YES/NO/decision . Print YES if {par-
ent} is causal. Otherwise print NO. You
should also print your confidence from a
scale from 1 - 100 (with 100 being most
confident) in the tags confidence ... /confi-
dence .

Information about {target}: {target_info}
Information about {parent}: {parent_info}
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Parent Update Prompt

You are a causal discovery expert. You have
been given the following list of variables
and tasked with predicting the true causal
graph through a sequence of experiments
on edges.

{variables_info}

Note: each edge has an associated con-
fidence value from 1 - 100. The
presence of an edge is represented as
(A— >B,CONFIDENCE) where A is the
parent and B is the child. The absence of
an edge is represented as (NOT A— >B,
CONFIDENCE)

From one experiment you have discovered
{experiment_feedback} Previously you pre-
dicted {experiment_prediction}

Now you should update your belief about
the other edges of {parent} based on the
results of the experiment. Consider the pre-
dicted edge

{other_edge_prediction}

Now you should reason about how to
update your belief about the above edge
based on the experiment. This means you
can either keep your confidence the same,
update your confidence, or change your
prediction entirely. At the end of your
response give your updated prediction at
the end of your response in the format de-
cision PARENT/NOT CAUSAL/decision>
confidence CONFIDENCE/confidence .
Print "PARENT"” if the edge should be
present and "NOT CAUSAL’ if the edge
should be absent.

You should do this in three steps.

Step 1: Brainstorm what physical causal
connection there may be, if any.

Step 2: Reason about what the experiment
feedback tells you. Think carefully about
how similar the new child is to the experi-
mental child.

Step 3: Give your final decision.




Child Update Prompt E Causal Graphs

You are a causal discovery expert. You have
been given the following list of variables
and tasked with predicting the true causal
graph through a sequence of experiments
on edges.

{variables_info}

Note: each edge has an associated con-
fidence value from 1 - 100. The pres-
ence of an edge is represented as (A— >
B,CONFIDENCE) where A is the parent
and B is the child. The absence of an edge
is represented as (NOT A— >B, CONFI-
DENCE)

From one experiment you have discovered
{experiment_feedback} Previously you pre-
dicted {experiment_prediction }

Now you should update your belief about
the other edges of {child} based on the
results of the experiment. Consider the pre-
dicted edge

{other_edge_prediction}

Now you should reason about how to
update your belief about the above edge
based on the experiment. This means you
can either keep your confidence the same,
update your confidence, or change your
prediction entirely. At the end of your
response give your updated prediction at
the end of your response in the format
decision PARENT/NOT CAUSAL/decision
confidence CONFIDENCE/confidence .
Print "PARENT” if the edge should be
present and "NOT CAUSAL’ if the edge
should be absent.

You should do this in three steps.

Step 1: Brainstorm what physical causal
connection there may be, if any.

Step 2: Reason about what the experiment
feedback tells you. Think carefully about
how similar the new parent is to the experi-
ment parent.

Step 3: Give your final decision.

Figure 11: Arctic sea ice causal graph.
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Figure 12: Asia causal graph.
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Figure 18: Brain causal graph.

F GIT Ablations

Figure 19 plot GIT performance (Olko et al., 2024)
over six causal graphs with varying amounts of
observational and interventional data.
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Figure 19: GIT ablations with varying amounts of observational and interventional data.
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