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ABSTRACT

The primary goal of out-of-distribution (OOD) detection tasks is to identify in-
puts with semantic shifts, i.e., if samples from novel classes are absent in the
in-distribution (ID) dataset used for training, we should reject these OOD samples
rather than misclassifying them into existing ID classes. However, we find the
current definition of “semantic shift” is ambiguous, which renders certain OOD
testing protocols intractable for the post-hoc OOD detection methods based on a
classifier trained on the ID dataset. In this paper, we offer a more precise definition
of the Semantic Space and the Covariate Space for the ID distribution, allowing
us to theoretically analyze which types of OOD distributions make the detection
task intractable. To avoid the flaw in the existing OOD settings, we further define
the “Tractable OOD” setting which ensures the distinguishability of OOD and ID
distributions for the post-hoc OOD detection methods. Finally, we conduct sev-
eral experiments to demonstrate the necessity of our definitions and validate the
correctness of our theorems.

1 INTRODUCTION

Out-of-distribution (OOD) detection has gained increasing attention in recent years due to its crucial
role in ensuring algorithmic reliability. While deep learning models excel on in-distribution (ID)
samples, i.e., those belonging to the same classes as the training set, these models often struggle
when faced with unseen OOD classes Hendrycks & Gimpel (2017). For example, a model trained
on a fruit classification dataset may generate arbitrary and incorrect results when presented with
an image of an animal. Their primary objective of OOD detection is to enable models to identify
inputs that fall outside the ID distribution and reject them, rather than blindly classifying them
into existing ID classes, thus mitigating potential security risks. Existing OOD detection research
has made significant progress Hendrycks & Gimpel (2017); Liang et al. (2018); Lee et al. (2018);
Hendrycks et al. (2019); Hsu et al. (2020); Liu et al. (2020); Huang et al. (2021). Particularly in
the more extensively studied and widely adopted post-hoc OOD detection methods Hendrycks &
Gimpel (2017); Liang et al. (2018); Lee et al. (2018); Liu et al. (2020); Huang et al. (2021); Sun
et al. (2022); Sun & Li (2022); Song et al. (2022); Djurisic et al. (2023); Kim et al. (2023); Xu
et al. (2024), they leave the original model training unchanged and instead utilize the features or
prediction outputs of the test data to assess whether a sample is OOD, making the OOD detection
process highly efficient.

However, we find the current definition of OOD detection setting to be flawed, which renders certain
OOD testing protocols intractable for the post-hoc OOD detection methods and thus undermines the
significance of the OOD detection task. In existing OOD literature, OOD samples are typically
defined as data exhibiting semantic shifts relative to the training set Yang et al. (2024a), in which the
concept of “semantic shift” lacks clear definition and boundaries. For the example shown in Fig. 1,
if an ID dataset contains classes of dog breeds like “collie”, “husky”, and “chihuahua”, while the
OOD data includes a novel breed “beagle”, the OOD detection task is well-defined as the model
can identify the OOD class by the “breed-specific feature” it learns from the “breed-separated”
training setup. However, if the model is trained on an object classification dataset that aggregates
the different dog breeds into a single class “dog”, while the OOD data still includes the novel breed
“beagle” that is absent in the ID data, whether to consider this variation on dog breeds a “semantic
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(a) Two Training Setups vs. Two Testing Protocols (b) Feature Space of the Intractable Case

Figure 1: An illustration of the intractable OOD detection setting. (a) shows two training setups
and two testing protocols. After being trained under the “breed-aggregated” setup, the model will
struggle to identify a novel dog breed in the “OOD-breed” testing protocol. (b) demonstrates the
feature distribution in this intractable case, where the ID classes are well-separated along the object-
specific feature, while the OOD class differs from the ID classes only along the breed-specific feature
dimension.

shift” becomes ambiguous under the current OOD definition. We find that distinguishing between
ID and OOD dog breeds in this case will become intractable because the classifier, when trained
under the “breed-aggregated” setup, primarily focuses on “object-specific feature” and will see the
“breed-specific feature” as covariate factors, as can be seen in Fig. 1(b). This illustrates that, despite
the testing OOD data being from a novel class different from the ID data as defined in existing OOD
literature, it remains unsolvable for post-hoc OOD detection methods to identify the OOD data.
Therefore, we believe that the scope of “semantic shift” should be more precisely defined based on
the characteristics of the training data, rather than by the object classes as in existing works.

To address this issue, we first provide a more precise definition for the Semantic Space and the
corresponding Covariate Space in this paper. Specifically, we construct the Semantic Space using a
linear span of representative feature vectors from each ID class. These representative feature vectors
are the centers of each ID class’s distribution, capturing the overall characteristics of the samples
within that class. With the defined Semantic Space, we can represent the Covariate Space using
direct sum decomposition and then identify the range of shifts that a model cannot distinguish when
it is exposed solely to the ID data. Our theoretical analysis shows that: “if two classes do not
exhibit any shift in the Semantic Space, they will be indistinguishable by a post-hoc OOD detection
model based on a classifier trained only on the ID dataset”. This theorem well explains the difficulty
of distinguishing ambiguous OOD classes, such as the intractable case in Fig. 1, where the shift
occurs only within the Covariate Space for the model trained under the “breed-aggregated” setup.
Furthermore, we propose the “Tractable OOD” setting, where the OOD shift must occur within
the Semantic Space we define, thereby mitigating the issue of undetectability. Finally, extensive
experiments are conducted to effectively demonstrate the necessity of our definitions and the validity
of the theoretical analysis.

Our main contributions can be summarized as follows:

• We provide more accurate definitions for the Semantic Space and the Covariate Space
within the OOD detection tasks. Based on these definitions, we introduce the “Tractable
OOD” setting, which ensures the OOD detection task is tractable.

• We present a theoretical analysis that proves the intractability of detecting OOD classes
that exhibit no shift within the defined Semantic Space. The analysis enhances our under-
standing of the flaw in the current OOD detection definition.
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• We conduct several experiments, further validating the necessity of our definitions and the
correctness of our theorems.

2 PROBLEM SETUP

Below, we provide the notions for Out-of-Distribution (OOD) detection as described in most existing
works Morteza & Li (2022); Du et al. (2024b); Yang et al. (2024b).

Labeled ID distribution. Let the input space X be a d-dimensional space Rd. The label space for
ID data is denoted as YI = {y1, ..., yk}. The ID data is independently and identically sampled from
the joint distribution (x, y) ∼ PI defined over X × YI .

OOD distribution. The input of the OOD distribution is also from the space X but with OOD label
YO = {yo}, where yo /∈ YI . The OOD data is drawn from the joint distribution (x, y) ∼ PO

defined over X × YO. For OOD detection, only the input x is available for use by the models.

However, the definition above lacks explicit connections between the input and the label, complicat-
ing the analysis of the model’s training process on these data. In real-world tasks, samples sharing
the same label inevitably exhibit common features, e.g., school buses are typically yellow. There-
fore, following the previous setup in Morteza & Li (2022), we assume that the input of each class can
be modeled as a Gaussian distribution in this paper. To further simplify the theoretical analysis, we
also assume that all the classes in the input space are linearly separable, allowing the model trained
on these data to be treated as a linear classifier. The modified definition of the OOD detection task
is as follows:

OOD Detection in Gaussians. For the class-conditional ID distribution (x, yi) ∼ PI |yi, we
assume the input follows a Gaussian distribution x ∼ N (µi, I), where µi denotes the representa-
tive feature vector. In addition, all the representative feature vectors in the input space are linearly
separable. Similarly, the OOD input follows a Gaussian distribution N (µo, I) with µo as the repre-
sentative feature vector. There exists a shift between OOD and ID distributions, with the minimum
distance between them denoted as δ:

∥µo − µi∥22 ≥ δ, i ∈ {1, ..., k}. (1)

Remark. Defining the OOD problem as described above simplifies the analysis by avoiding the
complexities introduced by nonlinear transformations during feature extraction in deep neural net-
work training. Our experimental results demonstrate that this simplification does not compromise
the validity of the conclusions presented in the subsequent sections.

Building on the OOD detection setup above, we now introduce our definitions of the Semantic Space
and the Covariate Space for the ID distribution.

Definition 1 (Semantic Space). The Semantic Space S based on ID distributions is

S = span({µ1 − µ2, ...,µk − µk−1}). (2)

Remark. The definition of the Semantic Space relies on the differences between the representative
feature vectors. This approach ensures that each class’s representative feature vector has distinct
components in the Semantic Space while removing any common elements shared across all repre-
sentative feature vectors.

Definition 2 (Covariate Space). The Covariate Space C is defined using direct sum decomposition

X = S ⊕ C. (3)

Remark. It is important to note that the defined Covariate Space is determined by the Semantic
Space, meaning the Covariate Space also depends on the ID data in our definition. For instance, in
object classification tasks, the image background is considered part of the Covariate Space, whereas
it is not in scene recognition tasks.

To better understand the defined Semantic Space and Covariate Space, we present the following
proposition which explains the practical significance of the definition.

3
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Proposition 1. After decomposing the representative feature vector of any ID distribution into
components within the Semantic Space and the Covariate Space, the feature component within the
Covariate Space remains a constant vector cconst

µi = si + ci, si ∈ S, ci ≡ cconst ∈ C, i ∈ {1, ..., k}. (4)

See proof in Appendix A.1. The proposition shows our definition ensures that the covariate com-
ponents of the representative feature vectors remain constant across different ID classes. In other
words, variations in a sample’s feature vector within the Covariate Space do not influence the deter-
mination of its class in the ID label space.

With the definitions of Semantic Space and Covariate Space established, we can briefly analyze
the intractable case in Fig. 1. Under the “breed-separated” setup, where different classes represent
distinct dog breeds, the differences between the representative feature vectors of each class capture
the distinctions between breeds. According to our definition, the “breed-specific feature” belongs to
the Semantic Space. However, under the “breed-aggregated” setup, since different classes represent
different objects, the differences between the representative feature vectors do not reflect breed
distinctions, placing the “breed-specific feature” within the Covariate Space. Thus, we conclude
that the range of the Semantic Space and the Covariate Space depends on the training setups, and
post-hoc OOD detection models should be sensitive only to shifts within the Semantic Space. In the
next section, we provide a concrete theoretical analysis to support this conclusion.

3 THEORETICAL ANALYSIS

In this section, we investigate the classifier trained on the ID distribution to enable a theoretical
analysis of the OOD detection process in post-hoc algorithms based on this classifier.

As discussed in the previous section, we can use a linear classifier f : X → YI with a weight matrix
W to represent the model used in the post-hoc algorithms. The prediction probabilities pi for each
class are then obtained through a softmax layer

f(x) = softmax(Wx) = [p1(x), ..., pk(x)]
⊤,

pi(x) =
exp (Wi,:x)∑k
j=1 exp (Wj,:x)

, i ∈ {1, ..., k}. (5)

Before conducting the theoretical analysis, we introduce two mild assumptions to simplify the anal-
ysis process.

Assumption 1. Throughout the entire training process, the expected prediction probability of the
linear classifier for each class is equal

Ex[pi(x)] =
1

k
, i ∈ {1, ..., k}. (6)

Assumption 1 requires a balanced ID distribution across all classes, ensuring that the classification
model does not develop any inherent bias toward a particular class during training.

Assumption 2. The sign of the covariance between the prediction probability for a specific class i
and the jth element of the input vector x matches that of its corresponding weight Wij

Wij · Cov(pi(x),xj) ≥ 0, i ∈ {1, ..., k}, j ∈ {1, ..., d}. (7)

Assumption 2 is intuitively straightforward: when Wij is positive, pi defined in Eq. (5) is a mono-
tonically increasing function of xj , resulting in a covariance that is likely positive. Conversely, when
Wij is negative, the covariance is likely negative. We propose Assumption 2 because calculating
the analytical solution for the covariance is highly complex due to the involvement of the softmax
function in pi. Therefore, Assumption 2 is introduced for simplification. We validate the above two
assumptions in our experiments, with the results presented in Appendix C.

After presenting the two assumptions above, we introduce the following important proposition,
which provides a formal conclusion regarding the ability of a linear classifier trained on the ID

4
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distribution to perceive features in the defined Semantic Space and Covariate Space. The proof is in
Appendix A.3.

Proposition 2. Assume Assumption 1 and Assumption 2 hold, the weight matrix W of the linear
classifier f , after being trained on the ID distribution, can always be decomposed into a simplified
weight matrix W̃ and an orthogonal matrix Q. The last d − r columns of W̃ are all zero vectors,
and the first r rows of Q form an orthogonal basis for the Semantic Space S. r is the rank of the
Semantic Space S.

W = W̃Q,

s.t. W̃:,r+1 = ... = W̃:,d = 0,

span({Q1,:, ...,Qr,:}) = S.
(8)

Remark. The proposition shows that part of the weight matrix W becomes zero after a specific
orthogonal transformation. This indicates that a particular subspace of the input vector has no effect
on the classifier’s output. Specifically, according to the proof in Appendix A.3, the Covariate Space
component of the input corresponds to the zero weights in the simplified weight matrix W̃ , implying
that the classifier trained on the ID distribution is insensitive to the Covariate Space component.

After deriving the above proposition, we can further present the following theorem, which proves the
indistinguishability between certain input distributions. The proof can be found in Appendix A.4.

Theorem 1. For any two classes of data with Gaussian distributions N (µa, I) and N (µb, I) within
the input space X , if their representative feature vectors µa and µb are identical in the Semantic
Space S, they are indistinguishable to the linear classifier f trained on the ID distribution

if projS(µa) = projS(µb),

KL(f(N (µa, I))||f(N (µb, I))) = 0.
(9)

Remark. The theorem shows that the model’s output distribution is only related to the Semantic
Space components of the representative feature vector of the input distribution and is independent
of the corresponding Covariate Space components.

Finally, we can derive the following corollary, which proves the intractability of the post-hoc OOD
detection models in detecting certain samples, like the case in Fig. 1.

Corollary 1. If the representative feature vector µo of an OOD distribution N (µo, I) is the same
as any of the ID distribution in the Semantic Space S, it becomes intractable for any post-hoc OOD
detection method to identify the class.

Remark. The corollary can be easily derived from Theorem 1. Since the representative feature vec-
tor of the OOD distribution is the same as that of a certain ID distribution in the Semantic Space,
Theorem 1 implies that the output distributions of these two after passing through the linear classi-
fier f trained on the ID distribution will be identical. Consequently, any post-hoc OOD detection
method based on the classifier’s output will be unable to distinguish between these two distributions,
rendering the OOD detection in this case an intractable problem.

Given the intractability under the current ambiguous definition of OOD classes, as demonstrated in
Corollary 1, we propose a more rigorous definition of OOD setting as below, ensuring the OOD
detection task is tractable for the post-hoc model trained on the ID dataset.

Definition 4 (Tractable OOD). We define the input from a Gaussian N (µo, I) a δ-OOD distribution
if its representative feature vector µo is greater than δ away from the vector of any ID distributions
in the Semantic Space S

∥so − si∥22 ≥ δ, i ∈ {1, ..., k},
where so = projS(µo), si = projS(µi).

(10)

The definition ensures that the representative feature vector of the OOD distribution differs from any
ID distribution within the Semantic Space, thereby avoiding the situation in Corollary 1, where the
OOD output distribution is identical to one of the ID output distribution. Additionally, we quantify
the degree of the shift using δ. Generally, a larger δ increases the distance between the OOD and the
known ID distributions, making it easier for models to identify the OOD samples.

5
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Table 1: AUROC (%) of three OOD detection methods in the Synthetic Data experiments

w/o shift in Semantic Space with shift in Semantic Space

so [σ, σ, 0, 0]⊤ [0, σ, 0, 0]⊤

co [0, 0, σ, σ]⊤ [0, 0,−σ, σ]⊤ [0, 0,−σ,−σ]⊤ [0, 0, σ, σ]⊤ [0, 0,−σ, σ]⊤ [0, 0,−σ,−σ]⊤

MSP Hendrycks & Gimpel (2017) 50.8 50.7 51.4 79.3 79.7 79.6

EBO Liu et al. (2020) 51.0 51.1 51.4 73.4 74.8 74.8

GradNorm Huang et al. (2021) 51.5 50.6 51.8 75.3 75.0 76.4

4 EXPERIMENTS

We conduct two experiments to demonstrate the necessity of our definitions and the correctness of
the proposed theorem. The first experiment is based on data synthesized from Gaussian distributions
in a low-dimensional feature space, allowing us to better understand the optimization process of the
linear classifier and the proposed Proposition 2. The second experiment considers a more practical
scenario, using data from ImageNet-1K Deng et al. (2009) as the training set and a ResNet-18 He
et al. (2016) as the classifier. This experiment aims to demonstrate that our simplification regarding
“OOD Detection in Gaussians” does not compromise the validity of our theoretical analysis.

We use AUROC as our metric, which is commonly employed in existing OOD detection studies
Yang et al. (2021; 2022; 2023; 2024b), to evaluate the performance of OOD detection methods in
our experiments. For specific training hyperparameter settings across all experiments, please refer
to Appendix B.

4.1 SYNTHETIC DATA

Experimental settings. We adopt a four-dimensional vector space as the input space X in the
“Synthetic Data” experiments. For easier understanding, the first two dimensions are referred to
as the Semantic Space, while the remaining two are designated as the Covariate Space during data
generation, keeping the two spaces unscrambled. Additionally, we also conduct experiments in the
scrambled case, with the results presented in Appendix C.

We set four ID classes for training and identify the representative feature vectors as follows:

µ1 = [σ, σ, σ, σ]⊤, µ2 = [σ,−σ, σ, σ]⊤,

µ3 = [−σ, σ, σ, σ]⊤, µ4 = [−σ,−σ, σ, σ]⊤,
(11)

where σ is a constant that determines the position of the representative feature vectors.

During training, data is randomly sampled from the ID distribution N (µi, I) with label i ∈
{1, 2, 3, 4}. The training objective is to optimize a linear classifier f with a weight matrix
W ∈ Rk×d, where k = 4 denotes the number of classes and d = 4 represents the input dimension.

During testing, data is randomly sampled from the OOD distribution N (µo, I) as well as from
one of the ID distribution N (µ1, I). We investigate the capacity of the OOD detection model to
distinguish between these two distributions. Specifically, the components of the OOD representative
feature vectors µo are chosen as follows:

µo = so + co,

so ∈ {[σ, σ, 0, 0]⊤, [0, σ, 0, 0]⊤},
co ∈ {[0, 0, σ, σ]⊤, [0, 0,−σ, σ]⊤, [0, 0,−σ,−σ]⊤}.

(12)

In the Semantic Space, no shift occurs when so = [σ, σ, 0, 0]⊤, whereas a shift is introduced when
so = [0, σ, 0, 0]⊤. In the Covariate Space, there is no shift when co = [0, 0, σ, σ]⊤, but shifts occur
when co takes on the values of the other two vectors.

Performance of OOD detection methods. Since the input vectors are directly provided as ground
truth features for training the linear classifier, we exclude OOD detection methods that might in-
volve manipulation of the feature space to avoid potential “cheating”. The results of three tested
methods are shown in Table 1. When the OOD representative feature vector does not exhibit shifts

6
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(a) Final Weight Matrix

 

(b) Weight Training Process

Figure 2: Visualization of the weight matrix W in the linear classifier: (a) the final optimized weight
matrix, (b) the variations of the weights for each input dimension corresponding to the first class.

Table 2: AUROC (%) of OOD detection methods across different shift degree δ

δ 0.25σ 0.50σ 0.75σ 1.00σ

so [0.75σ, σ, 0, 0]⊤ [0.5σ, σ, 0, 0]⊤ [0.25σ, σ, 0, 0]⊤ [0, σ, 0, 0]⊤

co [0, 0, σ, σ]⊤

MSP Hendrycks & Gimpel (2017) 59.1 71.7 77.0 81.0

EBO Liu et al. (2020) 59.4 67.9 72.4 76.0

GradNorm Huang et al. (2021) 58.0 67.2 73.4 76.8

in the Semantic Space (the three left columns of the results), all the OOD detection methods fail
to distinguish between the OOD and ID distributions, with detection AUROC around 50%, regard-
less of whether there is a shift in the Covariate Space. This indicates that the OOD detection task
becomes intractable for these post-hoc methods, which aligns with our proposed Corollary 1. In
contrast, when the OOD representative feature vector includes a shift in the Semantic Space (the
three right columns of the results), the OOD detection methods can effectively identify the OOD
samples, achieving high AUROC scores.

Additionally, both sets of experimental results clearly show that the changes in the Covariate Space
of the OOD representative feature vector do not influence the performance of the OOD detection
methods. The findings strongly support our Theorem 1, which asserts that when the representative
feature vectors of two classes share identical components in the Semantic Space, the post-hoc OOD
detection model will yield indistinguishable outputs for them.

Weight matrix of the classifier. The final optimized weight matrix W in the linear classifier is
shown in Fig. 2(a). The last two columns of the optimized weight matrix are nearly zero vectors,
which confirms the validity of Proposition 2.

To further investigate the optimization process of the weight matrix during training, we display the
variations of the weights for each input dimension corresponding to the first ID class, as shown in
Fig. 2(b). The figure shows that the absolute values of the weights corresponding to the Semantic
Space (W11,W12) gradually increase, while those associated with the Covariate Space (W13,W14)
gradually converge to zero. This result aligns with the conclusion reached in the proof of Proposition
2 in Appendix A.3.

Effect of the shift degree δ. We conduct an experiment to analyze the impact of the distance δ in our
definition of “Tractable OOD” on OOD detection performance. The results, presented in Table 2,
show that as δ increases, the detection AUROC of the OOD detection models improves. Conversely,
when δ is too small, the OOD detection models struggle to differentiate OOD samples, indicating
that the OOD detection test is not well-defined in such cases. The findings highlight the crucial role
of the δ parameter in determining the tractability of an OOD detection test setting.

4.2 IMAGENET DOGS

Experimental Settings. Since real-world images, unlike the synthetic data, do not have explicitly
defined Semantic Space and Covariate Space, we indirectly control the range of the Semantic Space
through the selection of ID training data. Notably, ImageNet-1K Deng et al. (2009) contains a

7
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Table 3: AUROC (%) of post-hoc OOD detection methods in the image-level experiments

Training Setup breed-separated breed-aggregated
Testing Protocol OOD-breed OOD-breed OOD-object

MSP Hendrycks & Gimpel (2017) 73.2 ± 0.7 50.8 ± 1.3 82.4 ± 0.9
ODIN Liang et al. (2018) 74.5 ± 1.0 52.3 ± 1.5 81.6 ± 0.4

EBO Liu et al. (2020) 74.9 ± 1.5 51.5 ± 1.6 81.5 ± 0.4
GradNorm Huang et al. (2021) 61.0 ± 1.0 52.3 ± 1.8 66.7 ± 2.1

RMDS Ren et al. (2021) 75.4 ± 0.4 48.4 ± 2.8 81.1 ± 0.5
KNN Sun et al. (2022) 74.1 ± 0.8 50.0 ± 1.5 77.4 ± 1.3
DICE Sun & Li (2022) 71.1 ± 1.7 52.2 ± 0.4 79.2 ± 1.4

ASH Djurisic et al. (2023) 73.8 ± 1.0 52.2 ± 0.6 80.1 ± 1.4
Relation Kim et al. (2023) 71.7 ± 1.5 50.6 ± 1.7 80.4 ± 0.6
SCALE Xu et al. (2024) 70.6 ± 0.5 52.2 ± 1.0 77.1 ± 1.2

substantial number of dog-related classes (126 classes representing various dog breeds). Thus, we
utilize the classes within this “dog subset” to manage the Semantic Space of the ID distribution, as
illustrated in Fig. 1.

Specifically, in the “breed-separated” setup, we randomly select 100 classes from the “dog subset” as
ID data for training. As a comparison, in the “breed-aggregated” setup, we aggregate the previously
selected 100 dog classes into a single class and then randomly select 99 additional non-dog classes
from ImageNet-1K, resulting in a total of 100 classes for training. As analyzed at the end of Sec. 2,
the Semantic Spaces obtained under these two setups are different.

During testing, in the “OOD-breed” protocol, we use the test set of the 100 selected dog classes as
ID data and the test set of the remaining 26 dog classes as OOD data. This testing protocol evaluates
the OOD detection model’s ability to identify novel dog classes under the two training setups. In
the “OOD-object” protocol, the test set of the selected 99 non-dog classes serves as ID data, and
20 other non-dog classes from ImageNet-1K are randomly selected as OOD data. This protocol is
designed to assess the Semantic Space learned under the ’breed-aggregated’ training setup.

We employ a classifier with the ResNet-18 He et al. (2016) as the backbone to verify whether our
theoretical analysis holds when using a deep neural network-based nonlinear classifier.

Performance of OOD detection methods. The performances of existing post-hoc OOD detection
methods on our training setups and testing protocols are summarized in Table 3. To ensure that the
results are not influenced by the random selection of classes, we use three different random seeds to
sample the classes for each experiment and report both the mean and variance of the outcomes.

When the training setup is “breed-separated”, most OOD detection methods achieve an AUROC
of over 70% on the “OOD-breed” testing protocol. This indicates that the methods are capable
of distinguishing the novel dog classes from the ID dog classes and accurately identifying them
as OOD samples. In contrast, when the training setup is “breed-aggregated”, the AUROCs of all
OOD detection methods on the “OOD-breed” testing protocol drop to around 50%, indicating that
these methods struggle to differentiate between OOD and ID dog classes. The experimental results
align with our hypothesis: post-hoc OOD detection methods are effective at detecting shifts in the
Semantic Space but fail to recognize shifts in the Covariate Space. This confirms that our theoretical
analysis holds within high-dimensional image-based input spaces and when nonlinear classifiers are
applied.

Finally, the results from the “OOD-object” testing protocol, where the AUROCs of OOD detec-
tion methods approach 80%, indicate that the Semantic Space learned by the model in the “breed-
aggregated” setup likely represents a high-level semantic feature space. The model can only dis-
tinguish between broad categories such as “dog” vs. “ice cream”, rather than finer breed-level
distinctions like “chihuahua” vs. “beagle”.

Distributions of confidence values. We present the distribution of confidence values obtained by
EBO Liu et al. (2020) across different training setups for ID and OOD samples in the “OOD-breed”
testing protocol, as shown in Fig. 3. Under the “breed-separated” training setup, there is a significant
difference in the distribution of confidence values between novel dog classes and ID dog classes,
allowing the model to effectively distinguish between them. In contrast, when the training setup is
“breed-aggregated”, the distributions of confidence values for ID and OOD dog classes are nearly
identical, further supporting the conclusion of Theorem 1.
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(a) Breed-Separated (b) Breed-Aggregated

Figure 3: The distributions of EBO’s Liu et al. (2020) confidence output under two training setups.
In the “breed-separated” training setup, the confidence distributions for ID and OOD dogs show a
significant difference, while in the “breed-aggregated” training setup, the two confidence distribu-
tions are almost overlapping.

(a) Breed-Separated (b) Breed-Aggregated

Figure 4: The ID classification ACC and the OOD detection AUROC of EBO during the training
process. The OOD detection performance rises along with the ID classification performance in the
“breed-separated” training setup. However, the OOD detection AUROC remains around 50% under
the “breed-aggregated” training setup.

Variation of performance during training. We also investigate the variation in OOD detection
performance of EBO Liu et al. (2020) throughout the training process, as illustrated in Fig. 4. In
the “breed-separated” training setup, both the classification accuracy for ID classes and the AUROC
for OOD detection increase in sync as training progresses. This indicates that the model is gradu-
ally learning the “breed-specific feature”, improving both its classification performance and OOD
detection capability. However, when the training setup is “breed-aggregated”, the AUROC for OOD
detection remains unchanged regardless of the number of training epochs. This suggests that the
model fails to capture the “breed-specific feature” during the training, as the absence of the feature
hinders its ability to identify novel dog classes.

Feature visualization. Finally, we visualize the features of all dog classes learned by the model in
both the “breed-separated” and “breed-aggregated” setups using t-SNE Van der Maaten & Hinton
(2008), as shown in Fig. 5. In the “breed-separated” setup, features of different ID dog classes are
well-separated, with most OOD dog classes positioned in the gap between the ID features. This
allows the post-hoc OOD detection methods to effectively identify these “outliers” as OOD data.
However, in the “breed-aggregated” setup, the features of all dog classes cluster closely together
with no clear separation. This lack of differentiation makes it intractable for the post-hoc methods
to detect novel dog classes as OOD samples.

5 RELATED WORK

OOD Detection Method. Existing OOD detection methods can be grouped into three main cate-
gories. The majority of works focus on post-hoc methods Hendrycks & Gimpel (2017); Liang et al.

9
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(a) Breed-Separated (b) Breed-Aggregated

Figure 5: The t-SNE visualization of the features of ID and OOD dogs extracted by the ResNet-
18 trained under “breed-separated” and “breed-aggregated” setups. The separability between OOD
and ID features in the “breed-separated” setup is significantly higher than in the “breed-aggregated”
setup.

(2018); Lee et al. (2018); Liu et al. (2020); Huang et al. (2021); Sun et al. (2022); Sun & Li (2022);
Song et al. (2022); Djurisic et al. (2023); Kim et al. (2023); Xu et al. (2024), which leave the orig-
inal model training process unchanged and instead utilize the features or prediction outputs of the
test data to assess whether a sample is OOD. Another approach involves training-based methods Hsu
et al. (2020); Du et al. (2022); Ming et al. (2023); Lu et al. (2024), which alter the model architecture
or training process to improve the model’s ability to predict OOD classes. A third approach incor-
porates external OOD data during training Hendrycks et al. (2019); Yu & Aizawa (2019); Yang et al.
(2021), helping the model distinguish between ID and OOD data throughout the training phase. Due
to the variability in training modifications within the latter two categories, making unified analysis
challenging, this paper focuses on the post-hoc OOD detection methods.

OOD Detection Theory. Compared to the research on OOD detection methods, fewer works study
the theory of OOD detection. Several works on OOD detection theory aim to provide guarantees or
bounds for the OOD detection task. One study provides theoretical guarantees for their proposed
OOD detection method under Gaussian Mixtures Morteza & Li (2022). The theory in Fang et al.
(2022) focuses on the PAC learnability of OOD detection in different scenarios. Another line of
research explores factors that can enhance OOD detection performance. The additional unlabeled
data is proved to be beneficial for the OOD detection task in Du et al. (2024a). Another work shows
that ID labels can also significantly improve OOD detection performance Du et al. (2024b). In
contrast to the aforementioned works, we focus more on the flaws in the current definition of OOD
detection settings and address these issues by offering a more precise definition. An interesting
study explores the issues with using deep generative models for OOD detection Zhang et al. (2021).
In comparison, we study the challenges present in post-hoc methods based on classification models.

6 CONCLUSION AND DISCUSSION

In this paper, we identify flaws in the existing OOD detection settings and introduce a more precise
definition of the Semantic Space and the corresponding Covariate Space for the OOD detection task.
Based on this definition, we theoretically analyze cases where OOD detection becomes intractable
for post-hoc methods. To address the issue, we further propose the “Tractable OOD” setting, which
ensures the distinguishability between OOD and ID distributions during the OOD testing process.
Finally, we conduct extensive experiments that validate our theoretical analysis.

Limitation. The theoretical analysis is conducted in low-dimensional spaces for simplification,
under the assumption of linear separability between Gaussian-like classes. Although experimental
results confirm the validity of our theorem with high-dimensional image inputs and nonlinear classi-
fiers, there remains a lack of theoretical proof for more general training scenarios. Future work can
explore the definitions of Semantic Space and Covariate Space and theoretically study their impact
on OOD detection tasks without imposing restrictions on the input space and classifier.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

For any two different representative feature vectors µi,µj(i, j ∈ {1, ..., k}, i < j) from ID distri-
butions, we get their decomposition within the Semantic Space and the Covariate Space as follows

µi = si + ci, si ∈ S, ci ∈ C,
µj = sj + cj , sj ∈ S, cj ∈ C. (13)

By subtracting the two equations and making some adjustments, we obtain

(µi − µj)− (si − sj) = (ci − cj). (14)

According to our definition of the Semantic Space that S = span({µ1 − µ2, ...,µk − µk−1}), we
know that

(µi − µi+1) + ...+ (µj−1 − µj) = µi − µj ∈ S. (15)

Since si, sj ∈ S, it implies that
si − sj ∈ S. (16)

Substituting Eq. (15) and Eq. (16) into Eq. (14), we know that

ci − cj ∈ S. (17)

However, since ci, cj ∈ C,
ci − cj ∈ C. (18)

According to the definition of direct sum decomposition X = S ⊕ C,

S ∩ C = 0. (19)

We can finally obtain
ci − cj = 0, (20)

which implies
ci = cj ≡ cconst. (21)

We have completed this proof.

A.2 NECESSARY LEMMA FOR PROPOSITION 2

To prove Proposition 2, we first propose the following lemma to ensure that the training process of
the linear classifier remains unaffected by an orthogonal transformation.

Lemma 1. Given an orthogonal matrix Q, training a linear classifier f1(·) with a weight matrix
W on the ID distribution (x, y) ∼ PI is equivalent to training a linear classifier f2(·) with another
weight matrix W̃ = W · Q⊤ on the orthogonally transformed distribution (x, y) ∼ P̃I . The
orthogonally transformed distribution P̃I denotes the distribution of (Qx, y) when (x, y) is sampled
from the original ID distribution (x, y) ∼ PI .

Proof of Lemma 1. We only need to prove that if, at a certain training step n, the weight matrices of
the two linear classifiers satisfy condition Wn = W̃n ·Q, and after their respective next optimization
steps, the two weight matrices still satisfy Wn+1 = W̃n+1 ·Q, then it can be demonstrated that the
two training setups are equivalent.

We can find that the outputs of the two models f1(x1) and f2(x2) are consistent when their inputs
follows the relation x2 = Qx1

f1(x1) = softmax(Wx1)

= softmax((W̃ ·Q)(Q⊤x2))

= softmax(W̃x2)

= f2(x2).

(22)
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Since the training loss consists of cross-entropy loss and L2 regularization loss as follows (In the
proofs of this lemma and subsequent Proposition 2, we assume that the training loss consists solely
of these two components, consistent with the classification training in most works.)

L1 = −Ex,y∼PI
[onehot(y)⊤ · log(f1(x))] +

λ

2
∥W ∥22,

L2 = −Ex,y∼P̃I
[onehot(y)⊤ · log(f2(x))] +

λ

2
∥W̃ ∥22,

(23)

where L1 and L2 denote the training loss of the two setups, and onehot(y) refers to the one-hot
vector of the label y.

We can then bridge the gradient of the two setups.

∂L1

∂W
= Ex,y∼PI

[(f1(x)− onehot(y))x⊤] + λW

= Ex,y∼PI
[(f2(Qx)− onehot(y))x⊤] + λW̃ ·Q

= Ex,y∼PI
[(f2(Qx)− onehot(y))x⊤Q⊤] ·Q+ λW̃ ·Q

= Ex,y∼PI
[(f2(Qx)− onehot(y))(Qx)⊤] ·Q+ λW̃ ·Q

= Ex,y∼P̃I
[(f2(x)− onehot(y))x⊤] ·Q+ λW̃ ·Q

=
∂L2

∂W̃
·Q.

(24)

After a single optimization step, the gradient decent process of the two classifiers are

Wn+1 = Wn − η
∂L1

∂Wn
,

W̃n+1 = W̃n − η
∂L2

∂W̃n

,

(25)

where η is the learning rate.

We can then use Eq. (24) to obtain

Wn+1 = Wn − η
∂L1

∂Wn
,

= W̃n ·Q− η
∂L2

∂W̃n

·Q,

= (W̃n − η
∂L2

∂W̃n

) ·Q,

= W̃n+1 ·Q,

(26)

We have completed this proof.

A.3 PROOF OF PROPOSITION 2

With Lemma 1 established, we can construct an orthogonal matrix Q to obtain the orthogonally
transformed distribution P̃I , ensuring the Semantic Space and the Covariate Space are decoupled.
The construction process of the orthogonal matrix Q is as follows.

We first apply the Gram-Schmidt orthogonalization to obtain a set of orthonormal basis vectors for
the Semantic Space S

{q1, ..., qr} = GS({µ1 − µ2, ...,µk − µk−1}), (27)

where GS(·) represents the Gram-Schmidt orthogonalization. Note that the input vector set {µ1 −
µ2, ...,µk−µk−1} may not be linearly independent, so during the Gram-Schmidt orthogonalization
process, zero vectors may appear. We skip these vectors and only retain the non-zero vectors as the
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basis, denoted as {q1, ..., qr}, r ≤ k − 1. Therefore, the number r of basis vectors corresponds to
the rank of the Semantic Space.

We then extend this orthonormal basis to d dimensions, yielding a set of orthonormal basis vectors
for the input space X .

{q1, ..., qr, qr+1, ..., qd} = GS({q1, ..., qr, e1, ..., ed}),
ei = [0, ..., 0, 1, 0, ..., 0]⊤,

(28)

where ei is a standard basis vector with the ith component is 1 and all other components are
0. We concatenate the Semantic Space basis vectors {q1, ..., qr} with the standard basis vectors
{e1, ..., ed} before the Gram-Schmidt orthogonalization, ensuring the completeness of the final d-
dimensional basis. Since the input space X is decomposed into the direct sum of subspaces S and C,
it is easy to see that {qr+1, ..., qd} forms a set of orthonormal basis vectors for the Covariate Space
C.

At this point, we obtain the orthonormal bases for both the Semantic Space and the Covariate Space

span({q1, ..., qr}) =span({µ1 − µ2, ...,µk − µk−1}) = S,
span({qr+1, ..., qd}) = C. (29)

Thus, each representative feature vector can be expressed in terms of these basis vectors

µi = si + cconst, si ∈ S, cconst ∈ C,
si = si1q1 + ...+ sirqr,

cconst = cr+1qr+1 + ...+ cdqd.

(30)

Based on the basis vectors, we can construct an orthogonal matrix Q to decompose the Semantic
Space and the Covariate Space

Q = [q1, ..., qr, qr+1, ..., qd]
⊤. (31)

At this point, we complete the construction of the orthogonal matrix Q, and we obtain the new input
distribution (x, y) ∼ P̃I . After the orthogonal transformation, the ID representative feature vectors
become

µ̃i = Q · µi = [si1, ..., sir, cr+1, ..., cd]
⊤, i ∈ {1, ..., k}. (32)

Since a Gaussian distribution remains Gaussian after an orthogonal transformation, the input distri-
bution of each ID class can now be expressed as follows

N (µ̃i, I), i ∈ {1, ..., k}. (33)

As a result, after applying Lemma 1, the proof of Proposition 2 reduces to studying the training pro-
cess of a new linear classifier with a simplified weight matrix W̃ = W ·Q⊤ within the orthogonally
transformed distribution P̃I , where the ID distribution follows

P̃I |yi = (N (µ̃i, I), yi), i ∈ {1, ..., k}, µ̃i = [si1, ..., sir, cr+1, ..., cd]
⊤. (34)

The last d − r dimensions of the representative feature vectors are constants and do not vary with
the input label.

The output of the new linear classifier is now as follows

f(x) = softmax(W̃x) = [p̃1(x), ..., p̃k(x)]
⊤,

p̃i(x) =
exp (W̃i,:x)∑k
j=1 exp (W̃j,:x)

, i ∈ {1, ..., k}.
(35)

Considering the training process, the total loss is set as

Loss = −Ex,y[

k∑
i=1

I{y = i}log(p̃i(x))] +
λ

2
∥W̃ ∥22, (36)
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where the first term is the cross-entropy loss, and the second term is the L2 regularization loss.
I{y = i} represents the indicator, which equals 1 when y = i, and 0 otherwise. The partial derivative
of the loss function with respect to the classifier’s weight of class i on a specific input dimension j
is then computed as follows

∂Loss

∂W̃ij

= Ex,y[(p̃i(x)− I{y = i})xj ] + λW̃ij . (37)

Now we examine the last d − r columns of the simplified matrix W̃ . Since when j > r, the value
of xj is independent with the input label y. We can derive the first term of Eq. (37) as follows

Ex,y[(p̃i(x)− I{y = i})xj ] = Ex,y[p̃i(x)xj ]− Ex,y[I{y = i}xj ]

= Ex,y[p̃i(x)xj ]− Ey[I{y = i}]Ex[xj ]

= Ex,y[p̃i(x)xj ]−
1

k
· cj

= Ex,y[p̃i(x)]Ex,y[xj ] + Cov(p̃i(x),xj)−
cj
k

(38)

Applying Assumption 1, we obtain

Ex,y[(p̃i(x)− I{y = i})xj ] = Ex,y[p̃i(x)]Ex,y[xj ] + Cov(p̃i(x),xj)−
cj
k

=
1

k
· cj + Cov(p̃i(x),xj)−

cj
k

= Cov(p̃i(x),xj)

(39)

Substituting this result back into Eq. (37), the expression for the partial derivative becomes

∂Loss

∂W̃ij

= Cov(p̃i(x),xj) + λW̃ij . (40)

We multiply the partial derivative by the weight W̃ij itself to analyze the direction of the weight
update

W̃ij ·
∂Loss

∂W̃ij

= W̃ij · Cov(p̃i(x),xj) + λW̃ 2
ij . (41)

After applying Assumption 2,

W̃ij ·
∂Loss

∂W̃ij

≥ λW̃ 2
ij ≥ 0. (42)

The derivation shows that for a given weight W̃ij of class i on the jth input dimension, j > r, the
partial derivative of the loss function with respect to that weight has the same sign as the weight
itself. This means that the absolute value of the weight will continuously decrease throughout the
training process due to gradient descent optimization.

Next, we will further prove that W̃ij converges to 0 when j > r. Considering the gradient descent
process

W̃n+1,ij = W̃n,ij − η
∂Loss

∂W̃n,ij

, (43)

where n denotes the training steps, W̃n,ij is the weight in training step n, and η refers to the learning
rate. In the training setup, the learning rate η is set to a small value to ensure the convergence of the
training process. Therefore, we assume in the training process,

|W̃n,ij | ≥ |η ∂Loss

∂W̃n,ij

|. (44)

Combined with Eq. (42), we obtain

W̃n,ij · η
∂Loss

∂W̃n,ij

≥ (η
∂Loss

∂W̃n,ij

)2. (45)
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Squaring both sides of Eq. (43) and substituting Eq. (42) and Eq. (45),

W̃ 2
n+1,ij = W̃ 2

n,ij + (η
∂Loss

∂W̃n,ij

)2 − 2W̃n,ij · η
∂Loss

∂W̃n,ij

= W̃ 2
n,ij + ((η

∂Loss

∂W̃n,ij

)2 − W̃n,ij · η
∂Loss

∂W̃n,ij

)− W̃n,ij · η
∂Loss

∂W̃n,ij

≤ W̃ 2
n,ij − W̃n,ij · η

∂Loss

∂W̃n,ij

= W̃ 2
n,ij − η · (W̃n,ij ·

∂Loss

∂W̃n,ij

)

≤ W̃ 2
n,ij − η · λW̃ 2

ij

= (1− ηλ)W̃ 2
n,ij

(46)

Thus, the final convergence result is

|W̃n+1,ij | ≤ (1− ηλ)
1
2 |W̃n,ij | ≤ (1− ηλ)

n
2 |W̃1,ij |

n→∞−−−−→ 0. (47)

The equation holds because η and λ are set to small positive values, which ensures 0 < (1−ηλ) < 1.

The result implies that once the training has converged, W̃ij converges to 0 when j > r, which
means

W̃:,r+1 = ... = W̃:,d = 0. (48)

We have completed this proof.

A.4 PROOF OF THEOREM 1

Since the representative feature vectors of the two classes of data N (µa, I) and N (µb, I) are identi-
cal in the Semantic Space S, we assume the decomposition of the two representative feature vectors
is as follows

µa = s+ ca,

µb = s+ cb,

s ∈ S, ca, cb ∈ C.
(49)

Using the same method from the proof of Proposition 2 to construct the orthogonal basis vectors and
the orthogonal matrix, we can express the two representative feature vectors in terms of the basis

µa = s1q1 + ...+ srqr + ca,r+1qr+1 + ...+ ca,dqd,

µb = s1q1 + ...+ srqr + cb,r+1qr+1 + ...+ cb,dqd.
(50)

According to the linear transformation of Gaussians, we can derive the output distribution Pa of the
input distribution N (µa, I) after being transformed by the weight matrix W

oa = Wxa,

x ∼ N (µa, I),

oa ∼ Pa = N (Wµa,WIW⊤).

(51)

Based on Proposition 2 that W = W̃ ·Q, we can conclude

Wµa = W̃Qµa

= W̃ [q1, ..., qr, qr+1, ..., qd]
⊤(s1q1 + ...+ srqr + ca,r+1qr+1 + ...+ ca,dqd)

= W̃ [s1, ..., sr, ca,r+1, ..., ca,d]
⊤

= [W̃:,1, ..., W̃:,r, 0, ..., 0][s1, ..., sr, ca,r+1, ..., ca,d]
⊤

= s1W̃:,1 + ...+ srW̃:,r.

(52)
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This implies the output distribution of the input distribution N (µa, I) is

oa ∼ Pa = N (s1W̃:,1 + ...+ srW̃:,r,WIW⊤). (53)

It can be observed that the output distribution is independent of the Covariate Space component ca
of the input’s representative feature vector µa.

Using the same method, we can obtain the output distribution of the other input distribution
N (µb, I)

ob ∼ Pb = N (s1W̃:,1 + ...+ srW̃:,r,WIW⊤), (54)

which is the same as the output of N (µa, I). It implies

KL(Pa||Pb) = 0. (55)

Since the classifier output just includes an additional softmax layer after applying the weight matrix
W

f(x) = softmax(Wx) = softmax(o). (56)

Thus, the KL divergence between the classifier’s output of the two distributions is

KL(f(N (µa, I))||f(N (µb, I)))

=KL(softmax(Pa)||softmax(Pb))

=0

(57)

We have completed this proof.
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B TRAINING DETAILS IN EXPERIMENTS

The specific parameter settings for the experiment “Synthetic Data” are as follows. The value of σ,
which determines the position of the representative feature vectors, is set to 2. For each epoch, 1000
data points are randomly sampled from the four ID Gaussian distributions for training. The SGD
optimizer is used for training, with a learning rate of 0.01, weight decay set to 0.01, and momentum
set to 0.9. The model is trained for a total of 5000 epochs.

The parameter settings for the experiment “ImageNet Dogs” are as follows. The model is trained
using the training set of the selected ID classes from the ImageNet-1K. In the “breed-aggregated”
training setup, as dog classes are merged into one, the training data is balanced to ensure that each
class has an equal sampling probability. The classifier used is ResNet-18, with the output set to 100
classes. The preprocessing methods for all images follow the standard ImageNet-1K preprocessing.
The batch size is set to 128. We train the model using the SGD optimizer with an initial learning
rate of 0.1, weight decay of 1e-4, and momentum of 0.9. A StepLR scheduler is used to adjust the
learning rate, reducing it by a factor of 0.1 every 30 epochs. The total number of training epochs is
set to 100.

C VALIDATION OF PROPOSED ASSUMPTIONS.

We investigate the validity of the two proposed assumptions in the “Synthetic Data” experiment. As
shown in Fig. 6, the model maintains a balanced prediction for the four ID classes throughout the
entire training process, with no bias toward any specific class. This demonstrates the correctness of
Assumption 1.

Figure 6: The model’s prediction numbers for the four ID classes during the training process.

Additionally, we present the product of the weight Wij and the corresponding covariance
Cov(pi(x),xj) over the course of training, as shown in Fig. 7. It can be observed that this product
is either positive or approaches zero throughout the training process, which validates the correct-
ness of Assumption 2. Notably, when the absolute value of Wij is small, the value of the product
Wij ·Cov(pi(x),xj) tends to be a positive value close to zero. However, due to fluctuations in data
sampling, this product may occasionally result in a small negative value during practical training
iterations. This is a normal occurrence and does not affect the validity of our assumption.
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Figure 7: The product of the weight W1j and the corresponding covariance Cov(p1(x),xj) during
training.

Table 4: AUROC (%) of OOD detection methods on data with orthogonal transformation

w/o shift in Semantic Space with shift in Semantic Space

so [σ, σ, 0, 0]⊤ [0, σ, 0, 0]⊤

co [0, 0, σ, σ]⊤ [0, 0,−σ, σ]⊤ [0, 0,−σ,−σ]⊤ [0, 0, σ, σ]⊤ [0, 0,−σ, σ]⊤ [0, 0,−σ,−σ]⊤

MSP Hendrycks & Gimpel (2017) 51.1 50.7 51.5 79.3 79.7 79.5

EBO Liu et al. (2020) 51.4 51.3 51.5 73.4 74.8 74.7

GradNorm Huang et al. (2021) 50.8 45.5 45.7 64.2 70.0 66.2

D TRAINING ON DATA WITH ORTHOGONAL TRANSFORMATIONS.

We also conduct experiments where the Semantic Space and the Covariate Space are scrambled,
which is a more generalized input condition. Specifically, we randomly generate a fixed orthogonal
matrix Q and apply it to each input data before training the classifier. The results in Table 4 show
that this scrambling does not affect the performance of the OOD detection methods, as the outcomes
remain consistent with those shown in Table 1. We further decompose the optimized weight matrix
W as shown in Fig. 8, revealing that it can be expressed as the product of a simplified weight matrix
W̃ and an orthogonal matrix Q. This confirms the validity of our Proposition 2 in the generalized
input condition.

-6.791E-02 7.409E-01 -8.876E-01 -1.223E+00

-1.640E+00 2.907E-01 3.829E-02 2.373E-01
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-7.183E-01 4.318E-01 -3.560E-01 -4.134E-01

6.599E-01 1.885E-01 -3.900E-01 -6.139E-01

-2.148E-01 -7.637E-01 1.818E-01 -5.810E-01

4.911E-02 4.413E-01 8.295E-01 -3.388E-01

  

   

Figure 8: The optimized weight matrix W when the Semantic Space and the Covariate Space are
scrambled. The weight matrix W can be decomposed into a simplified weight matrix W̃ and an
orthogonal matrix Q as demonstrated in our Proposition 2.
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