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Abstract

Users of natural language interfaces, frequently001
powered by Large Language Models (LLMs),002
must often repeat their full set of preferences003
each time they make a similar request. We004
describe an approach to LLM-based dialogue005
modeling in which persistent user constraints006
and preferences – collectively termed standing007
instructions – are provided as additional con-008
text for such interfaces. For example, when a009
user states I’m hungry, a previously expressed010
preference for Persian food can be automati-011
cally added to the LLM prompt, influencing012
the search for relevant restaurants. We develop013
NLSI, a language-to-program dataset consist-014
ing of over 2.4K English dialogues spanning015
17 domains, in which each dialogue is paired016
with a user profile (a set of user-specific stand-017
ing instructions) and corresponding structured018
representations (a sequence of API calls). A019
key challenge in NLSI is to identify which020
subset of the standing instructions is applica-021
ble to a given dialogue. NLSI contains diverse022
phenomena, from simple preferences to interde-023
pendent instructions such as triggering a hotel024
search whenever the user is booking tickets to025
an event. We conduct experiments on NLSI026
using prompting with large language models027
and various retrieval approaches, achieving a028
maximum of 46% exact match on API predic-029
tion. Our results demonstrate the challenges030
in identifying the relevant standing instructions031
and their interpretation into API calls.032

1 Introduction033

Large language models (LLMs) such as such as034

GPT-3 (Brown et al., 2020), GPT-4 (OpenAI,035

2023), and Llama-2 (Touvron et al., 2023) are in-036

creasingly being used with tools and APIs (Schick037

et al., 2023; Qin et al., 2023) to provide additional038

functionality to users. For example, ChatGPT al-039

lows several external plugins such as OpenTable040

for searching and reserving restaurants or book-041

GetRestaurants(city="San 
Leandro", cuisine="Persian",  
price_range="moderate") 

GetMovies(..) 
GetRestaurants(..)

 

GetFlights(..) APIs

>If I am looking for Flights and airlines is American Airlines then look for 
economy 
>My preferred account type is savings   
>If I ask for restaurants, my default location is San Leandro  
>My preferred movie theater name is Regal Jack London  
>If restaurant price range is moderate then look for Persian cuisine 
… 

If I ask for restaurants, my default location is San Leandro 
If restaurant price range is moderate then look for Persian cuisine. 

User Specific Standing Instructions

Relevant Standing Instructions

Interpretation

I'm hungry, something not too 
fancy please

User
Utterance

Figure 1: Parsing an utterance into a structured output,
in the presence of a user-specific set of standing instruc-
tions. A model for the task needs to identify (explicitly
or implicitly) the subset of instructions applicable to the
utterance and interpret the utterance into API calls.

ing travel through Expedia.1 These applications 042

must learn to identify which service the user is 043

seeking while respecting preferences across diverse 044

domains that are unique to each user. Understand- 045

ing such preferences can aid in personalising the 046

user experience by providing tailored responses, 047

increased accuracy in recommendations and sav- 048

ing user time. However, in most cases, users must 049

verbalise their preferences in detail during the in- 050

teraction, including for repeated requests. 051

Past work has explored learning preferences 052

from user-system interactions over time (Micarelli 053

et al., 2007; Salemi et al., 2023). These preferences 054

can be hard to learn while also requiring signifi- 055

cant amounts of training data. Further, these learnt 056

preferences are implicit and usually cannot be in- 057

terpreted or edited by the user. 058

We propose incorporating personalised standing 059

instructions explicitly as additional context while 060

1https://openai.com/blog/chatgpt-plugins
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interpreting a user’s requests. Standing instructions061

are user-provided natural language statements to062

change or prescribe system behaviour under cer-063

tain circumstances. For example, in Fig. 1, the064

user wishes to look for some nearby restaurants.065

In the absence of standing instructions, the user066

might have to interact for multiple turns with the067

system to arrive at their preferred restaurant cuisine068

and location. By looking up the relevant stand-069

ing instructions for restaurants, the system can di-070

rectly search for Persian restaurants in San Lean-071

dro, saving the user’s time as well as providing072

customised/localised recommendations. Explicit073

natural language instructions are also both control-074

lable and interpretable. A user can inspect and edit075

their standing instructions, especially for prefer-076

ences that change over time. Further, the generated077

outputs can be directly linked to the relevant stand-078

ing instructions, improving the user’s trust in the079

system (Liu et al., 2023).080

Our work is related to Gupta et al. (2022), which081

conditions a dialogue model’s response on a set082

of developer guidelines. Their work focuses on083

controlling response generation in open-domain084

dialogue systems with a focus on reducing toxic-085

ity and enhancing safety. More recently, OpenAI086

released “Custom Instructions,” which lets users087

set preferences for all their future conversations.2088

However, not much is known about how it operates,089

and no evaluations of its usage have been docu-090

mented.091

This work makes the following contributions:092

(i) We systematically study the incorporation093

of standing instructions in a task-oriented setup.094

We develop and introduce NLSI (Natural Lan-095

guage Standing Instructions),3 an English-language096

dataset in which every example consists of a con-097

versation between the user and a dialogue agent,098

accompanied by a collection of standing instruc-099

tions (user profile) and a sequence of API calls re-100

flecting user intents. (ii) We investigate six reason-101

ing types for using standing instructions that range102

from a single instruction for a specific attribute to103

more complex situations such as the user proposing104

multiple preferences for same aspect, etc. These105

reasoning types introduce challenges pertaining to106

subset selection of relevant standing instructions107

and then inferring the structured API calls and their108

arguments. These include instructions that spec-109

2https://openai.com/blog/
custom-instructions-for-chatgpt

3Code and data will be released on publication.

ify a single preference to more complex ones that 110

involve multi-hop, cross-domain, and conflict rea- 111

soning. (iii) We use this dataset to benchmark a 112

variety of methods involving the selection and inter- 113

pretation of user utterances in presence of standing 114

instructions. We observe that our LLM-based meth- 115

ods are far from perfect, raising new challenges in 116

retrieval, reasoning, and semantic parsing. 117

2 Task Overview 118

We are interested in translating a user utterance 119

into a sequence of API calls in the context of user- 120

specific standing instructions (Figure 1). Consider 121

a conversational context x, which consists of di- 122

alogue history between the user and the agent (if 123

any) and the user’s current utterance. We assume 124

a user profile u consisting of a sequence of nat- 125

ural language instructions u1, u2, ...uM . In this 126

setting, instruction following consists of a selection 127

task (which obtains a set of standing instructions 128

z from the user profile u that are relevant to x) 129

followed by an interpretation task (which predicts 130

API calls y based on the conversational context and 131

the relevant subset of standing instructions z). We 132

assume access to a schema s that lists the valid API 133

method names and their keyword arguments (slots). 134

Formally, an agent of this kind is described by a 135

generative model: 136

z ∼ p(· | x, u) 137

y ∼ p(· | x, z, s) 138

3 Dataset: NLSI 139

Existing related datasets have focused on generat- 140

ing safer responses in open-domain dialogue via 141

natural language guidelines (Gupta et al., 2022), 142

personalized text generation by conditioning on a 143

set of past user-written documents like emails or re- 144

views (Salemi et al., 2023), or conditioning on past 145

user feedback for tasks such as ethical reasoning 146

and word scrambling (Madaan et al., 2022). Due 147

to the lack of datasets that study the use of natural 148

language standing instructions in a language-to- 149

program setup, we created NLSI. 150

3.1 Reasoning Types 151

In the context of standing instructions, various 152

types of reasoning might be needed to predict API 153

calls. Following a single standing instruction may 154

be easier than composing and reasoning over sev- 155

eral instructions. Furthermore, reasoning across 156
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PLAIN MULTIHOP MULTIPREFERENCE

Relevant
Standing
Instructions
(z)

>I always go to Santa Rosa if I’m looking
for Movies.
>I like fantasy movies the best.

>If I’m looking for a flight, American Air-
lines is my go-to.
>If I’m flying American Airlines, check for
Economy seating class.

>If I ask for Events, my preferred event
type is Music.
>When the event type is Music, search for
Blues as the category.
>Search for the event name Greensky Blue-
grass if the category is Blues.
>If I ask for Events, my preferred event type
is Sports.

Conversation
(x)

User: I want to go out to watch a movie,
please help me find a good one.

User: Can you get on and get me a round
trip ticket?
Agent: Where will you go? Where are you
coming from?
User: I’m going to SFO from New York
City.

User: My schedule is free today and I plan
to go to an event in Seattle, WA. I want to
look for events in that area.

API calls (y)

GetMovies(
genre=" fantasy",
location ="Santa Rosa")

GetFlights(
destination ="SFO",
origin ="New york",
airlines =" American

Airlines",
seating_class =" Economy ")

GetEvents(
city="Seattle , WA",
event_type ="Music",
category ="Blues",
event_name =" Greensky

Bluegrass ")
GetEvents(

city="Seattle , WA",
event_type =" Sports ")

Table 1: Some examples from NLSI. User profile is not shown for brevity. (1) In PLAIN, the instructions usually
represent a domain matching problem. (2) In MULTIHOP, note that the seating class attribute Economy is dependent
on choosing the instruction with American Airlines. (3) For the example for MULTIPREFERENCE, as there are
two preferences for the same attribute event_type, there are two separate API calls. Further, the API call with
event_type Music has additional attributes. Additional examples are provided in the Appendix.

several instructions in the same domain, like book-157

ing hotels, may be easier than across domains.158

Thus, to enable comparisons at different difficul-159

ties, we designated six reasoning types for NLSI.160

While these are not exhaustive, they allow us to161

systematically study a range of situations ranging162

from simple domain matching to more complex163

reasoning (examples in Table 1):164

NONEAPPLICABLE For these examples, no165

standing instructions from the user profile are re-166

quired for interpreting the user’s utterance (z = ∅).167

PLAIN These examples use the standing instruc-168

tions directly: each argument can be predicted from169

a single standing instruction. All the relevant stand-170

ing instructions, z, belong to the same domain.171

MULTIHOP These examples contain at least one172

standing instruction in z that is relevant to the dia-173

logue x only due to the presence of another stand-174

ing instruction in z. These are of the form “if A175

then B” and “if B then C”, where A, B, and C are176

slot names from the same domain. These examples177

test multi-hop reasoning abilities of the model.178

MULTIDOMAIN These examples are like MUL-179

TIHOP except that there is at least one relevant in-180

struction in z that links two domains. These exam-181

ple types typically involve triggering API(s) from182

an additional domain while being consistent on any 183

shared arguments such as location. For example, in- 184

voking a hotel search when user requests for places 185

to visit. These examples challenge multi-domain 186

understanding in addition to multi-hop reasoning. 187

MULTIPREFERENCE These examples contain 188

standing instructions catering towards multiple 189

preferences for the same attribute. The interpre- 190

tation task for such examples requires placing mul- 191

tiple API calls respecting the different constraints 192

(Music or Sports when picking an event type). 193

CONFLICT These examples include instructions 194

in the profile u that conflict with the last user utter- 195

ance in the dialogue x. The model should grace- 196

fully handle such situations and give preference to 197

the user’s request. 198

Examples can contain standing instructions 199

demonstrating multiple reasoning types. In NLSI, 200

we associate each example with a single type as 201

based on the above ordering (a type occurring later 202

in the above ordering gets precedence). 203

3.2 Dataset Creation 204

We constructed NLSI in a semi-automatic fashion 205

by extending Schema Guided Dataset (SGD, Ras- 206

togi et al., 2020). SGD consists of 16K multi-turn 207

conversations across 20 domains like airlines or 208
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restaurants. We chose SGD because the dialogues209

in that dataset include natural and rich conversa-210

tions and the accompanying annotations make it211

possible to construct the ground truth API labels.212

The process outlined below intends to repurpose213

an existing dataset for studying the selection and214

interpretation tasks. In a real-world setting, a user215

might provide explicit preferences through another216

interface, or else such preferences would be in-217

ferred from the user’s continuous interaction with218

the system. We briefly discuss the dataset creation219

below and provide details in Appendix A.220

Extracting standing instructions: We first iden-221

tified which slots within the SGD schema can be222

translated into standing instructions based on the223

slot descriptions provided in the original dataset.224

For example, theatre_name is inclined to be a225

persistent user preference unlike movie_title or226

date which are likely to change with every interac-227

tion.228

Each conversation in SGD originated229

from a sequence of templated actions that230

a user or agent should take alternately. For231

example, the second conversation in Ta-232

ble 1 was based on a template sequence like233

Inform(airline_ticket) → Request(origin,234

dest) → Inform(origin, dest) →235

Offer(airlines) → Confirm(airlines),236

Request(seating_class). These templates237

were then specialized by binding the variables,238

and the resulting sequence was paraphrased into239

a synthetic conversation that constituted this240

SGD example. We reverse-engineer the original241

SGD creation process to construct the standing242

instructions for NLSI.243

To convert an SGD dialogue to an NLSI di-244

alogue with standing instructions, we retained245

the first one or three turns as the conversational246

context x, and converted the remaining turns247

into the relevant standing instructions z. Con-248

tinuing our example, the natural language turns249

that specified airlines=“American Airlines”,250

seating_class=“Economy” were converted to251

standing instructions. We ignored any turns that252

could not be converted into instructions as they253

were also not needed to predict y from x with z.254

Forming user profiles: The above process pro-255

vides us with the relevant standing instructions z256

for the given example from SGD, but these are only257

part of the full user profile u. A user will have addi-258

tional preferences that are not relevant to the given 259

example. To emulate this, for the given example, 260

we create u by augmenting z with M randomly 261

sampled instructions from other examples. These 262

“distractor” instructions are sampled from domains 263

unrelated to the current domain(s). 264

API calls: The outputs of the interpretation task 265

are API calls y, in line with the recent works of 266

integrating LLMs with tools and plugins (Schick 267

et al., 2023; Qin et al., 2023). The API calls 268

are of the format GetDomain(slot_1=value_1, 269

slot_2=value_2). The argument names and val- 270

ues are derived from annotations in the SGD ex- 271

amples, which are either mentioned in the user’s 272

utterance or inferred in the standing instructions. 273

Dataset Statistics: We construct a balanced test 274

set based on the different reasoning types – 340 275

per reasoning type, leading to a total of 2040 exam- 276

ples across 17 domains. The train set contains at 277

most 10 examples per domain with a minimum of 278

five examples per reasoning type, for a total of 150 279

examples. The remaining examples form the devel- 280

opment set (251). There are 10.4 ± 3.0 instructions 281

in a user profile (min: 3, max: 22) and there are 282

2.1 ±1.7 relevant standing instructions per exam- 283

ple in the dataset (min: 0, max: 10). There are 17 284

function calls corresponding to the 17 domains. 285

4 Methods 286

Given the recent success of using LLMs to gen- 287

erate outputs in structured prediction tasks (Roy 288

et al., 2023; Schick et al., 2023; Heck et al., 2023), 289

we use an LLM-based method to interpret a user 290

utterance into a structured API call. We use in- 291

context learning (Dong et al., 2023) by providing 292

K demonstrations, where K is tuned on the dev set. 293

These demonstrations are obtained by retrieving ex- 294

amples from the training set that are most similar 295

to the current dialogue of the test example utter- 296

ance using the BM25 similarity measure (Robert- 297

son et al., 1994) as in Rubin et al. (2022); Roy 298

et al. (2023). The examples are arranged in a best- 299

first order. We describe the different paradigms 300

(Fig. 2) used for the interpretation task by selecting 301

the instructions implicitly (DIRECT Interpretation), 302

jointly (SELECT-AND-INTERPRET) or explicitly 303

(SELECT-THEN-INTERPRET). 304
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Task Specific 
Instructions

+
Schema

User Profile

User Utterance

API calls

User Profile

User Utterance

API calls

Task Specific 
Instructions

+
Schema

Gold 
Standing Instructions

User Utterance

API calls

Relevant 
Standing Instructions

User Utterance

API calls

Task Specific 
Instructions

+
Schema

User Profile

User Utterance

Relevant 
Standing Instructions

API calls

User Profile

User Utterance

Relevant Standing 
Instructions

API calls

{K 
examples

{Test 
example

Prediction

Task Specific 
Instructions

User Profile

User Utterance

User Profile

User Utterance

Relevant 
Standing Instructions

Gold 
Standing Instructions

DIRECT SELECT-AND-INTERPRET

Selection

SELECT-THEN-INTERPRET

Interpretation

Figure 2: Illustration of different prompting methods. The blocks in red are the expected output generation and every
other block is part of the input. The green bits are repeated K times, providing K demonstrations for in-context
learning. DIRECT Interpretation conditions the generation of API calls on the user profile and user utterance.
SELECT-AND-INTERPRET requires the generation of the appropriate standing instructions based on user profile and
user utterance followed by API generation. SELECT-THEN-INTERPRET receives the predicted standing instructions
from a separate Selection Model (see left) in addition to the user utterance and then generates the API calls. The
selection step only generates the standing instructions based on the user profile and the user utterance.

4.1 Direct Interpretation305

In the DIRECT method, we do not have any ex-306

plicit selection of standing instructions from the307

user profile, and directly interpret the dialogue con-308

text into API calls. The input to the LLM (Fig. 2)309

consists of (i) instructions about the interpretation310

task including the information about using standing311

instructions, (ii) the schema of the dataset (list of312

functions and arguments that can be used when gen-313

erating API calls) s, (iii) user profile u, (iv) user’s314

dialogue x, and (v) API calls y. Of these, (iii)-(v)315

are repeated for every demonstration example and316

the test example only consists of the user profile317

and the dialogue. We also include the list of cate-318

gorical slots and their categories as well as a list319

of boolean slots while describing the schema. This320

setup allows us to evaluate the ability of implicit321

selection of the relevant standing instructions for322

the interpretation task.323

4.2 Joint Selection and Interpretation324

Inspired by the effectiveness of techniques like325

Chain-of-Thought prompting (Wei et al., 2022)326

across several tasks (Chu et al., 2023), we also327

treat the direct interpretation task with a two-step328

approach: generate the relevant standing instruc-329

tions z ⊆ u and then generate the corresponding330

API calls y. Such explicit selection can enhance 331

the transparency of the system by exposing the rel- 332

evant subset of instructions to the user (Liu et al., 333

2023). To implement the method, the input prompt 334

to the LLM is modified such that the demonstra- 335

tions include the set of all standing instructions u, 336

the relevant standing instructions z, and then the 337

API calls y (Fig. 2). We refer to this method as 338

SELECT-AND-INTERPRET. 339

4.3 Selection Then Interpretation 340

Here we treat selection and interpretation with two 341

separate models. The interpretation model is sim- 342

ilar to the one described for DIRECT, except that 343

instead of user profile, the relevant standing instruc- 344

tions are used directly. By decoupling the selection 345

task from the interpretation task, we can explore 346

popular methods of information retrieval for selec- 347

tion. We now describe various approaches for the 348

selection step. 349

ORACLE: The selection step simply returns the 350

true z. This setup measures the standalone perfor- 351

mance of the interpretation task when given the 352

correct standing instructions. 353

BM25: The selection step sets z to the N instruc- 354

tions from the user profile u that are most similar to 355

the dialogue x using BM25 (Robertson et al., 1994), 356
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where N is tuned on the dev set. To compute the357

corpus statistics for BM25, each instruction in u is358

considered a document, and so too is each standing359

instruction from the train examples.360

CONTRIEVER: As above, but replace BM25361

with cosine similarity. The dialogue x and each362

standing instruction in u is embedded into R768363

with a pretrained sentence encoder, CONTRIEVER364

(Izacard et al., 2022). Both BM25 and CON-365

TRIEVER have been used as baselines in similar366

past work (Gupta et al., 2022; Salemi et al., 2023).367

ICL: We also experiment with using LLMs for368

the selection task. The fixed input prompt to the369

LLM consists of instructions for the selection task,370

followed by exactly six demonstrations, each con-371

sisting of a dialogue x, user profile u, and relevant372

standing instructions z and then the test example373

(see Fig. 2, Selection). We randomly sampled the374

six demonstrations from the training set, one per375

reasoning type, and used the same demonstrations376

for all the test examples.377

ICL-DYNAMIC: Similar to ICL, except that378

now K = 6 demonstrations are dynamically re-379

trieved from the train split by using the ones that380

are similar to the dialogue in the current example381

through BM25.382

MULTI-PASS: In our preliminary experiments383

with LLM-based selection methods, we observed384

that the LLMs consistently missed a subset of rele-385

vant instructions in the MULTIHOP and MULTIDO-386

MAIN reasoning types. The standing instructions387

predicted from ICL are added to the prompt to per-388

form a new selection step by instructing the LLMs389

to find standing instructions missing from the cur-390

rent prediction. Though the process can be iterated391

across multiple steps, we found the best results392

with only one additional round of selection.393

5 Experiments394

We benchmark the dataset on the above methods to395

explain the various challenges on the benchmark.396

We used GPT-3.5 (text-davinci-003), GPT-4 as397

the base LLMs from GPT family. We use LLaMA398

2 (7B) for the selection task and CodeLLaMA 2399

(7B) for the interpretation task from the LLaMA 2400

family (Touvron et al., 2023).401

5.1 Evaluation 402

For both selection and interpretation tasks, we 403

report exact match and sample F1 score. For 404

the interpretation task, the exact match requires 405

predicting every function call and its arguments 406

equal to the ground truth. We treat function_name- 407

argument_name-argument_value as triples when 408

computing F1 similar to the evaluation in dialogue 409

state tracking (Dey et al., 2022). For the selection 410

task, an exact match is when the set of predicted 411

instructions exactly matches the ground truth set 412

of instructions. We post-process the outputs for 413

both the tasks (see Appendix B), e.g. we exclude 414

any predicted instructions not present in the user 415

profile. 416

5.2 Results 417

We report the results for the different methods 418

in Table 2. Overall, across all the methods, 419

using GPT-4 as the base LLM has better results 420

Within the different ways of incorporating the 421

selection task with the interpretation task, we 422

find that DIRECT interpretation gives the best 423

result (as per EM), closely followed by the 424

SELECT-AND-INTERPRET and then ICL when 425

using GPT-3.5 and LLaMA 2. This trend shifts 426

for GPT-4 where MULTI-PASS has the best 427

results followed by ICL and DIRECT. Despite 428

the success of chain-of-thought methods in tasks 429

like mathematical reasoning (Wei et al., 2022) 430

and multi-hop question answering (Yoran et al., 431

2023), we find that generating for selection and 432

then generating API call within the same prompt 433

may not be suitable for incorporating standing 434

instructions. 435

436

Models struggle to effectively incorporate 437

standing instructions The best-performing 438

configuration across all the methods only has an 439

exact match of 46%. Considering the ORACLE 440

method has an exact match of 58.5%, there is a 441

considerable gap in performance. Incorporating 442

standing instructions to interpret the user’s 443

context is not a trivial problem and would require 444

approaches beyond contemporary prompting 445

methods. Even with the gold standing instructions 446

in ORACLE, the models fail to achieve perfect 447

exact match for interpretation, which shows the 448

difficulty of the interpretation task. We attribute 449

this to the examples in our dataset that require 450

understanding from different contexts - standing 451
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GPT-3.5 GPT-4 LLaMA 2 (7B)
Method Selection Interpretation Selection Interpretation Selection Interpretation

EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑ EM↑ F1↑

DIRECT N/A N/A 32.0 66.4 N/A N/A 42.0 67.9 N/A N/A 15.1 47.8
SELECT-AND-INTERPRET 25.9 50.3 28.0 65.9 46.5 67.6 40.2 73.2 12.0 26.2 15.0 47.7
SELECT-THEN-INTERPRET

BM25 17.3 3.0 11.2 39.7 17.3 3.0 11.8 40.8 17.3 3.0 7.8 30.9
CONTRIEVER 14.6 51.5 17.2 57.5 14.6 51.5 25.4 62.7 14.6 51.5 9.3 40.6
ICL 33.5 48.1 24.7 61.6 65.9 67.7 44.7 75.5 6.1 23.9 3.7 22.9
ICL-DYNAMIC 29.0 32.2 19.5 54.9 60.1 61.3 40.7 73.4 12.6 21.2 7.4 29.6
MULTI-PASS 24.3 52.1 20.6 57.2 68.5 70.2 46.0 76.6 8 14.3 5.3 22.0
ORACLE N/A N/A 55.9 82.8 N/A N/A 58.5 84.1 N/A N/A 36.5 68.7

Table 2: Results of the different methods on the NLSI dataset for the interpretation task and selection task evaluated
on sample F1 and Exact Match (EM) by using different base LLMs from GPT and LLaMA families (LLaMA 2 (7B)
for selection and CodeLLaMA 2 (7B) for interpretation). DIRECT has the highest score on exact match followed by
SELECT-AND-INTERPRET for GPT-3.5 and LLaMA 2 (7B) while MULTI-PASS is best followed by ICL for GPT-4.
For the selection task, LLM based models are better for GPT models while LLaMA 2 struggles on this task.

instructions, list of valid APIs, and the current452

dialogue. Further, the relevance of standing453

instructions can be dependent on each other. This454

may explain why we found that standard retrieval455

approaches fail at this task. Our findings align456

with the observations made in other tasks that457

find the retrieval of some form of context from a458

separate memory to be challenging (Weir et al.,459

2023; Majumder et al., 2023).460

461

Comparison across selection methods We find462

that LLM-based selection methods surpass tradi-463

tional methods based on lexical statistics and em-464

bedding similarity for the GPT family as also seen465

in Sun et al. (2023). Further, the gap between466

the ORACLE setting in the selection module and467

the best-performing configuration is substantial on468

both exact match and F1, suggesting that selecting469

the relevant standing instructions explicitly from470

the user profile in the context of the conversation471

is itself challenging. This is most reflected in the472

LLaMA 2 (7B) results where the selection task has473

results worse than the BM25 and CONTRIEVER.474

5.3 Results by reasoning type475

We break down the examples by reasoning type476

in Table 3 with GPT-4 and investigate the accu-477

racy of different methods (See Appendix C for re-478

maining results) We observe that different methods479

display varying trends across different reasoning480

types and there is no one consistent winner among481

these methods. We find that PLAIN is the easiest482

reasoning type for all the methods, suggesting that483

LLMs do have the capacity to follow simple stand-484

ing instructions. The methods perform worse on485

more complex MULTIDOMAIN examples (<17%)486

Type ORACLE DIRECT JOINT ICL ICL-D MULTI-P

NONEAPPLICABLE 68.2 57.3 48.8 61.4 62.6 61.1
PLAIN 77.9 67.6 70.5 69.7 65.0 70.8
MULTIHOP 65.5 56.4 47.3 59.1 57.9 60.2
MULTIPREFERENCE 55.8 24.1 32.6 42.6 38.2 44.7
MULTIDOMAIN 30.9 16.1 12.6 12.0 07.6 14.4
CONFLICT 70.2 35.0 32.0 33.5 22.3 34.4

Table 3: Per reasoning type exact match on the in-
terpretation task (GPT-4). JOINT is SELECT-AND-
INTERPRET, ICL-D is ICL-DYNAMIC and MULTI-P
is MULTI-PASS. All the methods find PLAIN easiest
while struggling at MULTIDOMAIN. There is no consis-
tent winning method.

or MULTIPREFERENCE examples. These examples 487

require sharing arguments across multiple domains, 488

following individual standing instructions under 489

respective domains, and reasoning across different 490

standing instructions. Also, MULTI-PASS has im- 491

provement over MULTIDOMAIN and MULTIPREF- 492

ERENCE suggesting that another round of selection 493

can benefit the reasoning types where complex rea- 494

soning over the instructions is required. 495

5.4 Qualitative Analysis 496

We analyse 100 erroneous examples each from the 497

DIRECT and ICL from GPT-3.5. We identify the 498

most prominent error in an example and discuss 499

trends of errors across these three experiments. We 500

list some of these examples in Appendix B. The 501

prominent errors include the hallucination of slot 502

names and slot values while generating the API 503

calls (Example 1) as well as missing some argu- 504

ments (Example 3). Within the MULTIPREFER- 505

ENCE reasoning type, the models tend to exclude 506

the second API call. Further, if one of the repeating 507

argument/slot has a standing instruction dependent 508

on its value, the model does not include this con- 509
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ditional dependence when generating the API call510

(Example 2). Within the MULTIDOMAIN reason-511

ing type, one common error is excluding the API512

call for one of the two domains (Example 3). Fur-513

ther, DIRECT also suffers from over-generation of514

API calls. This is partly because the model may515

confuse demonstrations from PLAIN or CONFLICT516

with MULTIDOMAIN or MULTIPREFERENCE. An-517

other possible reason is that the model incorrectly518

considers many irrelevant instructions in the pro-519

file while generating the API calls. For ICL we520

find that missing or incorrectly predicted standing521

instructions in the selection step also lead to erro-522

neous arguments in the generated API calls.523

6 Related Work524

NL guidelines: Gupta et al. (2022) collected and525

released a dataset of NL guidelines that govern the526

safe response generation in dialogue systems. Com-527

pared to theirs, we showcase a more challenging528

retrieval setup: we have more applicable instruc-529

tions on average, with rich phenomena such as530

MULTIHOP or MULTIPREFERENCE. Moreover,531

we are concerned with generating structured repre-532

sentations as a more complex final task. Irfan et al.533

(2021) consider a variant of standing instructions534

in a barista setting where the instruction consists of535

the favourite drink and snack of the corresponding536

user. Similarly, Joshi et al. (2017) provide a user537

profile consisting of age, gender, and favourite food538

item structured as a dictionary to enhance person-539

alisation. Our work offers more diverse scenarios540

and domains. We also explore the complexity of541

selecting relevant standing instructions. OpenAI542

also provides “Custom Instructions” similar to the543

notion of standing instructions but lacks a reported544

systematic evaluation (See Appendix C).545

The use of declarative NL specifications has546

been explored in past work. For example, Ye et al.547

(2023) use an LLM to generate a declarative task548

specification, coupled with an off-the-shelf auto-549

mated theorem prover to derive the final answer.550

Weir et al. (2023) discuss methods to generate551

user-NPC dialogues based on game quest specifica-552

tions. Constitutional AI (Bai et al., 2022) identifies553

whether some model response violates a given rule,554

and then revises the response accordingly.555

Closely related to the use of standing instruc-556

tions is also learning from feedback (Labutov et al.,557

2018; Tandon et al., 2022; Madaan et al., 2022),558

where the goal is to maintain a memory of user-559

provided feedback and use it to augment the knowl- 560

edge used by question-answering models at test 561

time. Analogously, standing instructions can also 562

be seen as a form of memory. 563

Personalisation: Personalisation in dialogue has 564

been extensively studied (Li et al. (2016); Zhang 565

et al. (2018); Majumder et al. (2020); inter-alia) 566

where the personality traits are provided through 567

NL statements. However, all these works focus on 568

providing a persona to the bot to generate more 569

engaging responses rather than assisting the users 570

in completing their request. 571

In a broader sense, learning from preferences has 572

been fundamental to improving user experience. 573

These include personalised review generation (Li 574

et al., 2020), personalised search results through 575

collaborative filtering (Micarelli et al., 2007) or 576

leveraging a profile of user interests (Speretta and 577

Gauch, 2005). Salemi et al. (2023) explored per- 578

sonalised text generation with LLMs on tasks such 579

as article generation given past articles authored 580

by the user. Our work provides incorporation of 581

preferences explicitly through standing instructions 582

allowing better understanding of a generated result. 583

7 Conclusion 584

We proposed the use of standing instructions - a 585

set of natural language statements that contain the 586

user’s preferences to enhance the interpretation of 587

the user’s requests. To facilitate this, we created 588

NLSI, a dataset based on the SGD dataset. This en- 589

abled us to explore two tasks: standing instruction 590

selection and interpretation task of generating API 591

calls which are conditioned on the selected instruc- 592

tions and conversational context. We experimented 593

with several methods for the selection and inter- 594

pretation tasks. Our results show that while LLMs 595

are somewhat capable of incorporating standing 596

instructions as an additional context, their usage 597

of standing instructions is far from perfect. The 598

models struggle at selecting the instructions in the 599

user profile that were relevant for the given dia- 600

logue, which in turn affects the interpretation task. 601

Moreover, as reasoning types become more intri- 602

cate and involve complex reasoning or interactions 603

among the respective standing instructions, the in- 604

terpretation of these instructions becomes increas- 605

ingly challenging for the methods. This calls for 606

the development of new approaches in incorporat- 607

ing standing instructions, reasoning-based retrieval, 608

and memory-augmented representations. 609
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8 Ethics Statement610

Our dataset is based on SGD (Rastogi et al., 2020)611

which consists of fictional conversations. The real612

world named entities such as restaurant names613

for the dataset were sampled from Freebase while614

date/times were sampled synthetically. No human615

names or any personal information is present in616

the dataset. Our task involves API call generation617

in a constratined setup which generally does not618

produce harmful or toxic responses.619

9 Limitations620

Our task setup is limited to generating API calls621

for the current turn. In an ideal scenario, the LLM622

or the service should also display the results in a623

user-friendly format, like natural language or Mark-624

down, and perhaps confirm with the user before625

executing the call. Our dataset is not accompanied626

by the results from respective API calls or replies627

from the system due to the unavailability of re-628

sults from the base dataset. The different reasoning629

types in our dataset are not exhaustive and future630

work could look into expanding them.631

As our dataset is derived from an existing task-632

oriented dialogue dataset, it is useful for testing633

methods, but we caution readers that it is only a634

synthetic dataset. Preferences stated explicitly by635

a human user would likely take a wider range of636

natural language forms. Preferences deduced from637

the user’s past history might take a non-linguistic638

form, as in recommendation systems; they might be639

uncertain or soft constraints that cannot be passed640

directly as arguments to simple search APIs.641
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A Dataset Construction Details873

Forming examples for different reasoning types:874

We do not need to extract any standing instructions875

z for examples in NONEAPPLICABLE. For exam-876

ples in PLAIN, each (domain, slot, value) triple877

was extracted and written in natural language via878

an if-else template. Since each slot is indepen-879

dent of each other, this set of instructions form z.880

MULTIHOP examples were formed by creating a881

hierarchy of slots associated with the same domain882

(like seating_class is dependent on airlines). If883

the subsequent dialogue states contained the same884

dependent slots, then that example was categorized 885

as a MULTIHOP example, where the primary slot 886

value was obtained from the dialogue or one of 887

the standing instructions. MULTIDOMAIN exam- 888

ples were dialogues from SGD that were inherently 889

multi-domain because they required API calls from 890

different domains. These reasoning types were cre- 891

ated through a deterministic process based on the 892

existing SGD data. 893

MULTIPREFERENCE examples were formed by 894

duplicating one of the ground truth standing instruc- 895

tions from PLAIN, MULTIHOP and MULTIDO- 896

MAIN, and substituting a value with another rele- 897

vant entity. Meanwhile, CONFLICT examples were 898

formed with examples from PLAIN or MULTIHOP. 899

We added information that conflicts with the gold 900

standing instruction like asking for Mexican restau- 901

rants when the standing instruction is about prefer- 902

ence for Italian restaurants. 903

Sampling instructions for user profile :We 904

drew M uniformly from the range [3, 12]. In par- 905

ticular, we drew the distractor instructions before 906

splitting the dataset into train/dev/test, so training 907

examples were constructed with some distractors 908

sourced from the test set. Given this dataset, how- 909

ever, our experiments followed the usual protocol 910

of holding out the test set while constructing our 911

systems. 912

Post-processing: We also included several 913

rounds of post-processing on the dataset to remove 914

undesirable or unrealistic situations that arise either 915

through the noise in the base dataset or our extrac- 916

tion process. We removed domain mismatches such 917

as music and bus booking in case of MULTIDO- 918

MAIN. We unified domains such as Restaurant_1, 919

Restaurant_3 as Restaurants. Restaurant_2 was 920

renamed as HouseStays. We also deduplicated the 921

slot names under these domains like location and 922

area was converted to area. Similarly, the Services 923

domain was expanded as Salons, Doctors, and Den- 924

tists instead. All the examples were constructed 925

only from the domains and examples available in 926

the training set of SGD. In addition to removing 927

domains whose combination doesn’t make sense 928

in the MULTIDOMAIN reasoning type, we also re- 929

move MULTIDOMAIN examples which do not have 930

any attributes for the second domain. 931

The instructions obtained through the above pro- 932

cess were templated. For paraphrasing the tem- 933

plated instructions, we prompted GPT-3 to generate 934
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paraphrases with three distinct prompts to promote935

diversity.936

Prompt 1: Write a colloquial paraphrase for the937

given sentences. Refrain from using if then format938

Prompt 2: Reword the following in your own words.939

Keep the same meaning. Change the sentence940

structure to exclude if then format:941

Prompt 3: Reword the following in your own words.942

Keep the same meaning. Make the sentences sound943

like instructions or commands.944

Change the sentence structure to exclude if-then945

format. If the sentence starts with “If I ask for946

xyz”, also reword that xyz part.947

We replace the templated standing instruction ran-948

domly with one of the paraphrases leading to 4097949

unique instructions across the dataset.950

B Experiment Details951

For the selection experiments involving BM25 and952

Contriever, N was varied from 1 to 10 and cho-953

sen according to the best exact match on the dev954

set (N=4 for BM25, N=2 for CONTRIEVER). For955

LLMs, the K for demonstrations was varied among956

{3,5,8} (with K=5 being best for ICL-DYNAMIC957

and other interpretation tasks). For the MULTI-958

PASS experiments, we varied K for three additional959

rounds and found that providing one additional pass960

had the best results on the development set. We use961

temperature of 0 while decoding from the LLMs962

unless specified otherwise. We will provide the963

prompt templates for the different experiments. We964

use LLaMA 2 7B4 for the selection experiments.965

As our API calls are similar to the python syntax966

of a function, we use CodeLLamA 2 7B (instruc-967

tion fine-tuned) 5 for the interpretation experiments.968

We also found CodeLLaMA 2 (7B)’s results to be969

better than LLaMA 2 (7B) for the interpretation970

task on the validation set. We use 2 24GB GPUs,971

batch size of 1, full precision models for the these972

experiments. It takes approx 48 hours to make a973

pass over the entire test set.974

For evaluation, all the outputs were converted975

to lowercase and double quotes were unified to a976

fixed unicode. Using “vs” and “versus” was unified977

to “versus”. The models were not penalised if they978

produced subcategory instead of event_type arising979

due to the noise in the base dataset. For the inter-980

pretation evaluation, the API calls were converted981

4https://huggingface.co/meta-llama/
Llama-2-7b-hf

5https://huggingface.co/codellama/
CodeLlama-7b-Instruct-hf

to function_name-slot-value triples per slot-value 982

per API call. In the case of examples multiple API 983

calls, the models had a tendency to include every 984

attribute in a single API call instead of separate 985

API calls. To penalise this in the exact match, if 986

the number of predicted API calls was not equal to 987

ground truth API calls the model received an exact 988

match of 0. 989

C Additional Results 990

C.1 Scenario Type results for GPT-3.5 and 991

LLaMA 2 992

We report the results by reasoning type for experi- 993

ments using base LLM as GPT-3.5 in Table 5 and 994

LLaMA 2 in Table 6. The trends are similar to the 995

trends discussed in Section 5.3. 996

C.2 Qualtitative Analysis 997

We list some examples exhibiting prominient errors 998

discussed in Section 5.4 in Table 7. 999

C.3 OpenAI’s Custom Instructions 1000

OpenAI also recently reported the introduction of 1001

custom instructions6 that allow the users to add 1002

requirements or preferences that ChatGPT should 1003

consider when generating the responses. This is 1004

similar to our notion of standing instructions. To 1005

test the effectiveness of this feature (free version), 1006

we use the instructions from the user profile as 1007

“custom instructions”. We pose the API generation 1008

task as a standalone task and hope for the model to 1009

directly incorporate the standing instructions from 1010

the custom instructions. We also use the ICL setup 1011

to provide examples about the task as discussed in 1012

Section 4.3. As this effort requires manual copy- 1013

pasting of examples, we randomly selected and 1014

evaluated 17 examples per type, amounting to 102 1015

test examples. While not directly comparable with 1016

Table 2, the exact match for the interpretation task 1017

on this subset is 15.6 and the slot F1 score is 45.5. 1018

Thus, the model does not necessarily incorporate 1019

the correct custom instructions every time. It is 1020

prone to copying arguments from the demonstra- 1021

tion example as well as hallucinating the arguments 1022

and their values. For some examples, the model 1023

is prone to over-generation of API calls and other 1024

unrelated text. We remark that due to the opacity 1025

of the “custom instructions” UI, we do not know 1026

6https://openai.com/blog/
custom-instructions-for-chatgpt

12

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt


CONFLICT NONEAPPLICABLE MULTIDOMAIN

User Profile
(u)

>When I request Restaurants, I prefer Ital-
ian cuisine.
>If I’m looking for a doctor, I’d rather have
a General Practitioner.
>If I’m opening a bank account, I want it to
be a savings account.
>I’d like to get a Doctor in San Rafael if I
can.
. . .

>Request Restaurants with Filipino cuisine
as my preference.
>Request Music by Iggy Azalea as my pre-
ferred artist.
>If I’m looking to go to the movies, my go-
to theatre is Airport Stadium Cinemas.
>If I’m looking for a flight, my go-to airline
is Alaska Airlines.
>Request Events, specifically Sports events.

>When I request Movies, I typically enjoy
ones that are comedic.
>My first choice when requesting Travel is
Vegas
>When it comes to Hotels, I prefer ones that
are rated 1-star.
>My go-to theater for Movies is AMC Bay
Street.
>If I’m looking into Travel, I should also
check out Hotels
>I’d like my travel to be kid-friendly.
. . .

Relevant
Standing
Instructions (z)

>I’d like to get a Doctor in San Rafael if I
can. None

>My first choice when requesting Travel is
Vegas
>If I’m looking into Travel, I should also
check out Hotels.
>When it comes to Hotels, I prefer ones that
are rated 1-star.
I’d like my travel to be kid-friendly.

Conversation
(x) User: I need to find a Gynecologist

User: Can you help me find some attrac-
tions to see?
Agent: Where should I look?
User: How about in KL?

User: User: Any good tourist traps out
there?

API calls (y)

GetDoctors(
type=" Gynecologist",
location ="San Rafael ")

GetTravel(
location ="KL")

GetTravel(
good_for_kids ="True"
location ="Vegas")

GetHotels(
average_rating ="1",
location ="Vegas")

Table 4: Some examples from NLSI. (1) In CONFLICT, user requests for an attribute that is against the standing
instructions (“Gynecologist” v/s “General Practionier”). (2) In NONEAPPLICABLE, the user makes a request which
is not affected by the standing instructions. (3) In MULTIDOMAIN, the examples contain an instruction which
requires invoking a hotel search for the same location when user requests for places to visit.

Type ORACLE DIRECT JOINT ICL-D ICL MULTI-P

NONEAPPLICABLE 65.3 45.9 37.9 54.4 58.5 29.4
PLAIN 80.3 56.2 56.5 41.8 28.5 36.5
MULTIHOP 65.3 41.8 34.1 27.6 19.1 34.1
MULTIPREFERENCE 40.0 11.5 11.5 8.8 4.1 9.7
MULTIDOMAIN 23.2 3.5 3.2 0.6 0.3 1.2
CONFLICT 70.3 34.1 26.2 17.1 6.8 14.7

Table 5: Per reasoning type exact match on the inter-
pretation task (GPT-3.5). ICL-D is ICL-DYNAMIC
and MULTI-P is MULTI-PASS. All the methods find
PLAIN easiest and struggle on MULTIDOMAIN. Differ-
ent methods show different trends without a consistent
winner.

Type ORACLE DIRECT JOINT ICL ICL-D MULTI-P

NONEAPPLICABLE 45 24.4 23.8 4.1 27.9 17.6
PLAIN 62.1 36.2 37.1 8.8 7.4 5.3
MULTIHOP 48.2 17.1 17.4 1.5 1.5 2.9
MULTIPREFERENCE 19.4 5.3 4.4 0.9 1.5 0.6
MULTIDOMAIN 3.2 1.2 0.6 0.3 0.3 0.0
CONFLICT 48.8 8.2 7.4 7.4 6.5 5.8

Table 6: Per reasoning type exact match on the inter-
pretation task (LLaMA 2). JOINT is SELECT-AND-
INTERPRET, ICL-D is ICL-DYNAMIC and MULTI-P
is MULTI-PASS. All the methods find PLAIN easiest
while struggling at MULTIDOMAIN. There is no consis-
tent winning method.

the prompt or exact LLM API call and we have 1027

observed nondeterminism in the outputs. 1028
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Reasoning
Type Conversation Gold SI Gold API Predicted API Error

PLAIN
User: I am looking for a place
of interest to visit.

>If I’m looking to go some-
where, my top choice is New
York City.

GetTravel(category="Tourist
Attraction",
location="New York City)

GetTravel(category="Place
of Interest",
location="New York City")
GetMusic(genre="Country")
GetMedia(genre="Drama",
directed_by="Qui Sheng")
. . .

Hallucination

MULTI
PREFER-
ENCE

User: I fancy watching a movie
at home this evening

>When I request Media, my fa-
vorite type is adventure.
>If you’re looking for an ad-
venture movie, search for one
directed by Joel Coen.
>When I request Media, my fa-
vorite type is biographical.

GetMedia(directed_by="Joel
Coen",
genre="adventure")
GetMedia(genre="biographical")

GetMedia(genre="adventure"),
GetMedia(genre="biographical")

Skipped
Instruc-
tion

MULTI
DOMAIN

User: I’m looking for some
interesting attractions to visit,
specifically a Museum. Can
you help me find any?

>I prefer London as my desti-
nation when I travel.
>If I’m looking into Travel, I
should also check out Hotels.
>I prefer to stay in hotels that
have a two-star rating when I
am making reservations.

GetTravel(category="Museum",
location="London")
GetHotels(average_rating="2",
location="London")

GetTravel(category="Museum")
Missing
API Pre-
diction

Table 7: Examples of prominent errors across the DIRECT and ICL methods (with GPT-3). The incorrectly predicted
or missing arguments and function calls are marked in red. The DIRECT models tend to produce several unrelated
API calls (first example). Both DIRECT and ICL have a tendency to miss an argument that is only dependent on one
of the attributes in MULTIPREFERENCE, in this case missing the director Joel Coen. Majority of predictions in
MULTIDOMAIN fail at generating the API calls for the second domain.
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