
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO REASON AS ACTION ABSTRACTIONS
WITH SCALABLE MID-TRAINING RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models excel with reinforcement learning (RL), but fully unlock-
ing this potential requires a mid-training stage. Intuitively, an effective mid-
training stage should both learn a strong policy prior and enable fast learning
through online interactions. We formalize this intuition by presenting the first
theoretical result on how mid-training shapes post-training: it acquires strong pol-
icy priors by efficiently pruning the action space and accelerates RL convergence
by shortening the effective planning horizon. Moreover, we prove that temporal
abstractions simultaneously compress the size of the action set and reduce the de-
cision horizon, thereby improving regret minimization after training. Building on
these insights, we introduce Reasoning as Action Abstractions (RA3), a scalable
mid-training algorithm. Specifically, we derive a temporal variational bound and
optimize it by iteratively discovering temporally-consistent latent structures via
RL, then fine-tuning on the bootstrapped data. Experiments on code generation
tasks demonstrate the effectiveness of our approach. Across multiple base mod-
els, RA3 improves the average performance on HumanEval and MBPP by 8 and
4 points over the base model and the next-token prediction baseline. Furthermore,
RA3 achieves faster convergence and higher asymptotic performance in RLVR on
HumanEval+, MBPP+, LiveCodeBench, and Codeforces.

1 INTRODUCTION

The potential of reinforcement learning (RL) as a universal policy-improvement operator has been
demonstrated with remarkable success in training large language models (LLMs), spanning appli-
cations in preference optimization (Ouyang et al., 2022), mathematics (Guo et al., 2025; Zeng et al.,
2025b), code generation (Yang et al., 2025; Zeng et al., 2025a), and agentic tasks (Team et al., 2025;
Zhou et al., 2025b). A key factor behind these successes is the strengthened policy prior, typically
obtained through mid-training (Wang et al., 2025c; Su et al., 2025), which is continued pre-training
on expert data sampled from the optimal policy. Despite its widespread use, the precise role of
mid-training in shaping post-training RL remains poorly understood. Without such understanding,
it is difficult to design principled and effective mid-training algorithms. Heuristic metrics, such as
the performance or entropy of the initial RL policy, provide only indirect signals and do not by
themselves guarantee improved downstream performance.

In this paper, we propose the first theoretical analysis of how mid-training shapes post-training RL.
We identify two key factors of mid-training algorithms that determine their effectiveness during
RL: the efficiency of pruning the decision space and the effective planning horizon. The first factor
governs the initial policy prior of RL, while the second decides the policy’s potential to be improved
through online interactions. To minimize regret in post-training RL, an ideal mid-training algorithm
should extract from finite expert demonstrations the complete set of action subsets sufficient for all
tasks, and enable fast selection among them during RL. Our results show that pruning efficiency is
inversely related to the cardinality of the smallest near-optimal action subset, and that post-training
RL converges faster when actions are temporally extended. These findings suggest that mid-training
should operate in the space of action abstractions rather than primitive actions. Intuitively, learning
high-level transferable “skills” promotes generalization, while planning is simplified by the reduced
action space and shorter decision horizon.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To uncover this action hierarchy, we derive a temporal variational lower bound for the next-token
prediction (NTP) objective. It can be optimized by iterative expectation-maximization, which in-
volves a self-supervised RL step that uses the log-likelihood of expert data as reward to discover
the hidden latent sequence, and a supervised fine-tuning step on the bootstrapped data. With an
appropriate latent prior, the KL divergence enforces temporal consistency, ensuring that the latents
function as coherent action abstractions. These design choices yield a scalable mid-training algo-
rithm, Reasoning as Action Abstractions (RA3), where the KL penalty naturally determines when
rational rollouts are necessary, thereby controlling computational cost.

We evaluate RA3 on code generation tasks using Qwen and Llama base models ranging in size
from 1B to 8B. The mid-training dataset consists of 3.5M code snippets totaling 1B tokens. Our re-
sults show that fine-tuning on data bootstrapped with action abstractions substantially reduces cross-
entropy loss and improves performance across multiple benchmarks, including HumanEval, MBPP,
and their extended variants. On average, RA3 achieves a 4 point gain over NTP and an 8 point gain
over the base models. Furthermore, RA3 accelerates RLVR convergence and attains higher asymp-
totic performance on HumanEval+, MBPP+, LiveCodeBench, and CodeForces. Together, these
findings highlight the scalability and advantages of learning action abstractions in mid-training.

2 BACKGROUND

Imitation Learning. A task M = (S,A, R, γ) is an MDP defined by the state space S, action
space A, reward R, and the discount factor γ < 1. In the language space, states are contexts
that include all the previous tokens, and each action is a single token. The state transition is either
deterministic by appending the new action tokens to the previous context or governed by the external
environment. An expert policy is the policy that maximizes the expected state-action value:

πE ∈ argmax
π

Eat∼π

[
R(st, at) + γV π

M(st+1)
]
= Eat∼π

[∑
t
γtR(st, at)

]
.

It is worth noting that when the task is inherently solvable within one step, such as math problems
where r(s0, agt) = 1, the expert policy should deterministically output the ground-truth answer agt
at s0, i.e., πE(agt|s0) = 1, to maximize the return. Since most mid-training math data has explicit
human reasoning before agt, we instead focus on the multi-step decision-making domains, such as
code generation and agentic tasks, where the expert trajectories are a sequence of actions.

Next-token prediction (NTP) during mid-training can be viewed as an imitation learning process on
an offline expert dataset DE , collected by rolling out πE on the sampled tasks M ∼ p(M). Its
objective is to maximize the conditional log-likelihood:

JNTP(π) = E(s0:T ,a0:T)∼DE

[
log π(a0:T | s0:T)

]
= EDE

[
T∑

t=0

log π(at | st)

]
, (2.1)

where st ∈ S, at ∈ A, T is the total number of tokens in one expert demonstration, π is the training
policy, and s0 is the beginning of the sentence (BOS) token. The formula in (2.1) applies directly to
actions at coarser granularity than tokens, such as sentence-level actions.

NTP is adopted in different stages of LLM training, including pre-training, continued pre-training
(or mid-training, if the goal is to acquire reasoning foundations before RLVR), and supervised fine-
tuning. We primarily focus on the mid-training stage during the three-stage training procedure:
pre-training, mid-training, and RLVR post-training.

RL with Verifiable Reward. The goal of post-training RL is to maximize the expected return. A
common setup for RLVR is to use a binary outcome-based reward in a single-step MDP, defined as
r(s, o) = verifier(s, o) to measure if the model response o is identical to the ground-truth answer
corresponding to the prompt question s. We adopt Group Relative Policy Optimization (GRPO)
(Shao et al., 2024; Guo et al., 2025) as our default RLVR algorithm in experiments. Its objective is

JGRPO(π) =
1

G

G∑
i=1

(
min

(
π(oi | s)
πold(oi | s)

Ai, clip
(

π(oi | s)
πold(oi | s)

, 1± ϵ

)
Ai

)
− βDKL(π, πref)

)
,

where oi ∼ πold(·|s), ϵ, β are hyperparameters, and the advantage is calculated within the group G:

Ai =
(
r(s, oi)− mean({r(s, oi)}Gi=1)

)
/
(
std({r(s, oi)}Gi=1)

)
. (2.2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 HOW MID-TRAINING SHAPES POST-TRAINING RL

The goal of post-training RL is to minimize the regret

min
π

EM∼p(M)[V
∗
M(s0)− V π

M(s0)], (3.1)

i.e., to learn π that is near-optimal across tasks M. In this section, we demystify two key factors
that determine the effectiveness of mid-training: (1) the efficiency with which the algorithm prunes
the decision space from expert demonstrations, and (2) its impact on the convergence speed of post-
training RL. The first factor governs the learned prior of the initial RL policy, while the second
determines the extent to which the policy can be further improved through online interactions.

An effective mid-training stage should extract from finite expert demonstrations the complete set of
action subsets sufficient to solve all tasks, and facilitate efficient selection among them during RL for
fast convergence. This perspective highlights that the efficiency of mid-training lies in pruning away
useless actions and structuring the decision space so that online RL can improve policies effectively.

3.1 MID-TRAINING ACQUIRES STRONG POLICY PRIORS VIA EFFICIENT ACTION PRUNING

We first generalize the primitive action space A defined in Section 2 to a more general decision
space Z , which includes temporally-extended actions. These are defined analogously to Markov
options (Puterman, 1994; Sutton et al., 1999; Precup, 2000), representing the high-level abstraction
of a sequence of primitive actions. Akin to a high-level intention, each z ∈ Z governs a length-τ
low-level primitive action sequence ai, · · · , ai+τ , where τ ∼ p(·|s, z). Notably, all the results for
Z also hold for A since A is a special instantiation of Z , with τ restricted to 1 and aj = zj .

To quantify the quality of an action set, we define MZ′ = (S,Z ′, R, γ) in a way similar to M,
except with action space restricted to Z ′. We say that Z ′ is near-optimal for M if near-optimal
policies can be constructed using only the actions in Z ′. The goal of mid-training is thus to prune
away with high probability all “bad” action subsets Z ′ that are sub-optimal. Formally, we define:
Definition 3.1 (Near-Optimal Task Action Subset). An action subset Z ′ ⊂ Z is called ϵ-optimal for
task M if the optimal values in M and MZ′ satisfy ∆(M,Z ′) := V ∗

M(s0)− V ∗
MZ′ (s0) < ϵ.

Definition 3.2 (Minimal Size of Near-Optimal Action Subset). Z ⊂ Z is an ϵ-optimal action subset
if it is ϵ-optimal for all tasks. Let |Z| denote the minimal size of such subset Z .

According to Definition 3.1, A itself is an optimal action set since ∆(M,A) = 0. Thus, Z always
exists and |Z| is finite. We then define the bad action subsets that need to be pruned.
Definition 3.3 (Bad Action Subset). Z ′ is (ϵ, σ)-bad if EM∼p(M)[1(∆(M,Z ′) ≥ ϵ)] ≥ σ.

Now we are ready to give our first result on the pruning efficiency during mid-training.
Theorem 3.4 (Pruning Efficiency). Denote |DE | as the rollout number in the mid-training data. If

|DE | = Θ
(
|Z| log(|Z|/δ)/σ

)
,

then with probability at least 1− δ, all the (ϵ, σ)-bad action subsets can be pruned away from Z .

We defer all proofs to Appendix A. Theorem 3.4 shows that the number of expert samples required
for action-space pruning during mid-training decreases as both |Z| and |Z| become smaller. In
particular, when the action space is restricted to primitive actions (Z = A), the sample complexity is
substantially higher compared to using temporally extended actions. This highlights the importance
of pruning efficiency, which we analyze next.

Lemma 3.5 (Regret Decomposition). For any Ẑ ⊆ Z , the post-training RL regret in (3.1) satisfies

EM∼p(M)

[
V ∗
M(s0)− V π

M(s0)
]
= EM∼p(M)[∆(M, Ẑ)]︸ ︷︷ ︸

pruning error

+EM∼p(M)[V
∗
MẐ

(s0)− V π
MẐ

(s0)︸ ︷︷ ︸
post-training RL error

].

Lemma 3.5 formalizes the connection between mid-training and post-training RL: the mid-training
stage should identify a subspace that simultaneously minimizes both the pruning error and the post-
training RL error. The importance of pruning efficiency in Theorem 3.4 follows directly: with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

higher pruning efficiency, i.e., smaller |Z| and |Z|, the probability that bad action subsets survive
after mid-training decreases, leading to a smaller expected pruning error. Consequently, learning
action abstractions enables mid-training to have a higher chance of selecting “good” action subsets
and yielding a strong policy prior to alleviate the burden on subsequent post-training RL.

3.2 MID-TRAINING ACCELERATES RL CONVERGENCE WITH SHORTER DECISION HORIZON

The above analysis mainly considers the influence of mid-training on the pruning error and fixed
the post-training RL error. Next, we analyze how mid-training shapes post-training RL. Our result
below is based on value iteration due to its simplicity.
Theorem 3.6 (RL Convergence Rate). To achieve an ε-optimality that satisfies ∥VN − V ∗∥∞ ≤
ε, the required number of iterations N is lower-bounded by N ≥ 1

1−γ log Rmax
ε(1−γ) , where γ =

sups,0 E[γτ |s, z] ≤ γ and Rmax = maxs,a R(s, a).

The above result reveals that the reasoning structures acquired during mid-training influence the
convergence through the duration τ of the temporally-extended actions. For actions that last longer,
γ is smaller and RL converges faster to optimality than mid-training with NTP, where τ = 1 and
γ = γ. This makes intuitive sense as each Bellman backup jumps across τ steps in one shot, which
shortens the effective planning horizon and shrinks the error faster per iteration. Similar 1/(1 − γ)
dependency also appears in the bound for broader RL algorithms such as policy gradient (Agarwal
et al., 2021; Zhang et al., 2023), which we omit due to the requirements of additional assumptions.

type

back

scroll

click

click

pay

click

click

scroll

search
for item

check
option 1

check
option 2

compare
and pay

def longest_increasing_path(grid):

 # base case

 if not grid or not grid[0]: return 0

 # init DP table for best path length from each cell

 R, C = len(grid), len(grid[0]); dirs = ((1,0),(-1,0),(0,1),(0,-1))

 cells = sorted((grid[r][c],r,c) for r in range(R) for c in range(C))

 dp = [[1] * C for _ in range(R)]; ans=1

 # apply DP transition from lower-valued neighbors

 for v, r, c in cells:

 for dr, dc in dirs:

 nr, nc = r + dr, c + dc

 if grid[nr][nc] < v and dp[nr][nc] + 1 > dp[r][c]:

 dp[r][c] = dp[nr][nc] + 1

 if dp[r][c] > ans: ans = dp[r][c]

 # finalize with the global optimum

 return ans

Figure 1: (Left): The probabilistic graphical model of the action hierarchy. (Middle & Right):
Examples of primitive actions in expert demonstrations (blue) and the hidden high-level temporal
abstractions (green), in web agent and code generation domains, respectively.

4 FROM PRIMITIVE ACTIONS TO TEMPORAL ABSTRACTIONS

In Section 3, we analyze the benefits of leveraging temporal action abstractions during mid-training
from two perspectives: its efficiency in pruning the action space and its ability to accelerate subse-
quent RL. Intuitively, there are high-level “skills” that are shared across tasks, utilizing which helps
generalization and makes planning easier, since the action space shrinks and the decision horizon
reduces. We illustrate this with two examples in Figure 1. In what follows, we introduce a principled
way to extract the temporal abstractions from the primitive actions in the mid-training data.

4.1 TEMPORAL VARIATIONAL BOUND

We begin by seeking an alternative way to maximize the likelihood beyond predicting the next
tokens. Specifically, we give a sequential Evidence Lower Bound (ELBO) of the NTP objective:
Theorem 4.1 (Temporal ELBO). The next-token prediction objective in (2.1) is lower bounded by

JNTP(π) ≥ J (π, q) = E(s0:T ,a0:T)∼DE ,zt∼q

[
T∑

t=0

log π(at|st, zt)−DKL

(
q(zt|st, z0:t−1) || p(zt|st, z0:t−1)

)]
,

where p(zt|st, zt−1) is the prior distribution of zt.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The ELBO introduces a sequence of latents z0:T to model the observed primitive actions a0:T .
The intuition behind it is that there are hidden thoughts or intentions, i.e., z0:T , behind the expert
decisions a0:T ∼ DE , which are not present in the mid-training data. The amortized variational
inference leverages the parameterized q(zt|st, z0:t−1) as an approximation of the true posterior of
z. Optimizing the ELBO is equivalent to modeling the distribution of the latents z0:T and using the
inferred latents to better model the likelihood p(a0:T | s0:T).
We maximize the ELBO by alternatively optimizing q and π, in an Expectation-Maximization (EM)
manner. In each EM iteration i, the E step fixes πi and updates q to maximize the ELBO, i.e.,

qi = argmax
q

J (πi, q) = argmax
q

EDE ,zt∼q

[
T∑

t=0

log πi(at | st, zt)−DKL
(
q || p

)︸ ︷︷ ︸
RL reward at step t

]
. (4.1)

This corresponds to a T -horizon RL procedure with the per-step reward defined as the log-likelihood
of the observed expert actions, with a KL penalty that we will discuss later. Intuitively, (4.1) encour-
ages the sequence of latents z0:T sampled from qi to “explain” the expert decisions a0:T .

The M -step then fixes the updated qi and optimizes π:
πi+1 = argmax

π
J (π, qi) = argmax

π
EDE ,zt∼qi

[
log π(at | st, zt)

]
, (4.2)

which is simply imitating the expert trajectories that are bootstrapped with the inferred latents zt.

4.2 TEMPORALLY-CONSISTENT LATENTS AS ACTION ABSTRACTIONS

We have transformed the maximization of likelihood on primitive actions a0:T to an ELBO objective
that learns from the bootstrapped sequence with latent trajectories sampled from the variational pos-
terior q(zt|st, z0:t−1). Recall that our analyses in Section 3 reveal the benefits of learning compact
sets of high-level action abstractions. We will show in the following how to fulfill this goal with a
properly defined latent prior.

Specifically, the latent zt in the ELBO is defined per-step for every t ∈ [0, T]. To let zt represent an
abstraction of temporally-extended actions that spans across τ ∼ p(·|st, zt) timesteps, it is equiva-
lent to let zt = zt+1 = · · · = zt+τ

1. This can be achieved by setting the prior p(zt+1|st+1, zt) in
Theorem 4.1 to have a large probability mass on zt, and uniformly distributed at all other positions:

p(zt | st, zt−1) = αδ(zt−1) + (1− α)U(zt), (4.3)
where α ∈ [0, 1] is a hyperparameter, δ(·) is the Dirac delta function, and U(·) is the uniform
distribution over Z . The delta function helps preserve a temporally-consistent latent as a high-level
action abstraction, and the uniform distribution encourages learning a diverse reasoning foundation.

5 RA3: A SCALABLE MID-TRAINING ALGORITHM

In the context of LLMs, the action abstraction z serves a similar role as the rational or intention, and
the primitive action a is the actual answer or operation in the environment. Taking code generation
as an example, zt can be the reasoning before writing the next code block at+τ .

In addition to the theoretical benefits discussed in Section 3, the temporal consistency of the latents
also makes it possible to scale up the optimization on mid-training-sized data. Specifically, gen-
erating rationals z0:T corresponds to T rollouts, whose size is proportional to the total number of
tokens in the data. This prohibits us from making full use of the high-quality data in the mid-training
corpus, which typically contains billions of tokens. Fortunately, the temporal consistency of latents
rescues us from sampling rollout zt at each timestep t, as it is kept unchanged for τ steps.

To avoid redundant sampling, we define two types of latents: z = <act> and z that begins with
<think>. For latents zt = zt−1 that are temporally-consistent, at is directly generated without
sampling new rationals since it fall under the same high-level intention as at−1. For this reason, we
use zt = <act> to indicate zt = zt−1. Whenever <act> is sampled, the rollout stops immediately.
By doing so, full rollouts are only sampled when <think> is the first token, significantly reducing
the RL inference cost. Besides, we may rewrite the KL term in the ELBO as follows.

1The notation here deviates slightly from Section 2, where all τ identical latents are written as a single z.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 5.1. With the prior defined in (4.3), the KL term in Theorem 4.1 satisfies

DKL

(
q(zt|st, z0:t−1) || p(zt|st, z0:t−1)

)
= DKL

(
Bern(qact) || Bern(α)

)
−(1− qact)H

(
q(zt|st, z0:t−1)

)
,

where qact = q(zt = <act> | st, z0:t−1), Bern(·) is the Bernoulli distribution, and

DKL

(
Bern(qact) || Bern(α)

)
= Ez∼q

[
1(zt = <act>) log

qact

α
+ 1(zt ̸= <act>) log

1− qact

1− α

]
.

The KL is decomposed into two terms: a KL term between Bernoulli distributions and an entropy
term that encourages diversity. By setting α > qact, the KL discourages unnecessary thinking since it
assigns a larger penalty to zt ̸= <act> than zt = <act>. The penalty difference defines a threshold,
guiding the model to generate new rationals only when they improve the log-likelihood reward by
more than this threshold. In implementation, instead of tuning α, we apply reward shaping and
set a fixed penalty only to zt ̸= <act>. The proposition also indicates that the additional training
cost compared to NTP can be adjusted by α. In the extreme case where α = 1, our algorithm
degenerates to NTP, since DKL(Bern(qact) ||Bern(1)) is infinite for all qact < 1, i.e., the q policy
receives an infinite penalty for generating any rationals. We provide the pseudocode in Algorithm 1.

Algorithm 1 Reasoning as Action Abstractions (RA3) for Mid-Training
1: Input: Base LLM π0, mid-training dataset DE , penalty hyperparameter c.
2: for EM iteration i in 1, 2, · · · do
3: Optimize qi = argmaxq EDei

E ,zt∼q[
∑T

t=0 log πi(at|st, zt)− c1(zt ̸= <act>)] via RL.
4: Fine-tune πi+1 = argmaxπ EDmi

E ,zt∼qi

[
log π(at | st, zt)

]
via NTP.

We enforce the two types of actions discussed above by incorporating a simple format reward
in the RL step that assigns zero rewards for wrong formats, which we omit in the pseudocode
for clarity. We optimize the T -horizon RL using policy gradient, with advantages calculated in
a similar way to (2.2) in GRPO: after sampling G length-T rollouts, we set the baselines as
b(st′) =

∑G
g=1

∑T
t=t′ r

g
t /G that are independent on the actions, and combine it with the state-

action value to calculate the advantage at each step.

6 RELATED WORK

LLM Mid-Training. RL has long been utilized for training language models (Nguyen et al., 2017;
Paulus et al., 2017; Jaques et al., 2020; Ramamurthy et al., 2022; Ouyang et al., 2022). However,
its potential as a universal policy-improvement operator has not been fully unlocked until recently,
when reasoning models learn to cast intermediate thoughts as actions and optimize them via RL
(Guo et al., 2025; Zeng et al., 2025b; Liu et al., 2025; Team et al., 2025). This paradigm also guides
the design of the policy prior. To obtain strong initial policies in terms of both performance and
exploration diversity, mid-training (Xu et al., 2025; Wang et al., 2025c; Su et al., 2025) plays an im-
portant role, which performs reasoning or agentic continued pre-training on high-quality expert data.
Previous work that leverages next-token prediction during mid-training is an imitation learning pro-
cess, where the data comes from rollouts of optimal expert policies, such as humans’ demonstrations
of device-controlling and code-writing (Rawles et al., 2023; Huang et al., 2024; Bai et al., 2024).
Anchoring our findings, it is observed that learning the action hierarchy with abstraction-based rea-
soning performs better than training on primitive actions alone (Xu et al., 2024; Chen et al., 2024;
Wang et al., 2025b; Xue et al., 2025). For this reason, some mid-training datasets augment the ex-
pert data with synthetic reasoning distilled from frontier LLMs (Wang et al., 2025b; LI et al., 2024).
However, the distributional shift makes it unclear how well the student LLM can benefit from these
action abstractions, compared to RA3, which learns its own reasoning via RL. Besides, RA3 is more
preferred considering the cost of augmenting trajectories with reasoning distillation on a large scale.
In fact, for the code generation domain that we are interested in, most mid-training-sized datasets
mainly contain human code from the internet, without costly relabeling.

Self-Supervised RL. Optimizing the temporal variational bound involves a self-supervised RL step
with log-prob of the expert action as reward (Zhong et al., 2025; Ruan et al., 2025; Zhou et al., 2025a;
Dong et al., 2025; Wang et al., 2025a). Compared to Zhong et al. (2025); Ruan et al. (2025) that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

also uses EM-style updates, we are motivated to learn action abstractions with the ELBO derived for
temporal sequences. Moreover, Dong et al. (2025) hand-crafts an entropy-based rule to determine
reasoning positions and trains on only 4k samples with instructed reasoning models. In contrast,
RA3 is theoretically grounded, scales to mid-training setups, and enables the model to autonomously
learn when to skip unnecessary reasoning by generating temporally consistent latents.

Markov Options. RL based on options (Sutton et al., 1999; Precup, 2000; Bacon et al., 2017)
enables agents to represent courses of actions at extended time scales and learn in the MDP with
them. It greatly helps long-horizon complex tasks by naturally introducing hierarchical structures
(Jong et al., 2008). Our analysis of the decision space size is partly inspired by (Brunskill & Li,
2013; 2014). Different from their study on option transfer in lifelong and multi-task RL, we are
mainly interested in mid-training algorithm design and its impact on post-training RL in LLMs.

7 EXPERIMENTS

Experiment Setups. We focus on Python code generation in our experiments. The granularity of
primitive actions a is a single line of code. For the two types of latents z, to avoid additional fine-
tuning on special tokens, we remove the newline character \n at the end of a and set <act>=\n,
<think>=\n#. That is, after line at, the model either only outputs \n before at+1 or generates a
comment line as a high-level abstraction to guide the code writing. The format reward is non-zero for
the think action if it begins and ends with \n and the first non-space token is #. This design ensures
that the reasoning bootstrapped data has the correct syntax. The RL step of RA3 is implemented in
a similar way to multi-turn RL: the code line at from the training corpus and the reasoning comment
zt alternate as turns. We adopt asynchronous rollout with the SGLang engine (Zheng et al., 2024),
as batched inference often incurs idle time between turns. That is, batched rollouts must wait for all
zt to be generated before proceeding to the next turn, which is especially undesirable in our setting,
where temporal consistency in z is intended to reduce unnecessary reasoning.

We implement RA3 on three pre-trained models: Qwen-2.5-1.5B (Hui et al., 2024), Llama-3.2-1B,
and Llama-3.1-8B (Dubey et al., 2024). For the mid-training data, we select the Python data within
the continued pre-training corpus of Huang et al. (2024), which consists of a large portion of high-
quality internet data (2.36M code snippets, 834M tokens) and a small portion of code-only synthetic
data (129K snippets, 120M tokens). This leads to a total mid-training size of 3.5M code snippets
with 1B tokens. Each EM iteration involves 400 gradient updates, with the first 40 being the RL
policy gradient. The hyperparameters of our E step is the same as NTP: batch size of 512 with a
learning rate of 2e − 5. The RL step of RA3 sets the maximum length of z as 16, with a sampling
temperature of 1.0 and a group size of G = 3. The entropy coefficient is set to 0.001 and we do not
regularize the reference KL. The RL batch size is set to 1024 with a learning rate of 2e− 6. We set
the penalty c = 0.05. AdamW optimizer is used (Loshchilov & Hutter, 2017) in experiments.

0 10 20 30 40
Step

2.0

1.5

1.0

0.5

Re
wa

rd

RA3 RL Reward

Llama-3.2-1B
Qwen-2.5-1.5B
Llama-3.1-8B

......

class Solution(object):

 def deleteNodes(self, head, indices):

 # Create the dummy head of the original

list

 dummy = ListNode(0)

 dummy.next = head

 # Point the current node to the dummy head

 cur = dummy

 # Iterate through the indices list

 i = 0

 while cur.next and len(indices) > 0:

 # Check if the current index is reached

 if i == indices[0]:

 i += 1

 cur = cur.next

 return dummy.next

......

seen = [False] * n

result = 0

for i in range(n):

 if not seen[i]:

 dq = deque()

 seen[i] = True

 dq.append(i)

 ans = 0

 while dq:

 node = dq.popleft()

 ans += 1

 nxt = node // 2

 if not seen[nxt]:

 seen[nxt] = True

 dq.append(nxt)

 result = max(result, ans)

return result

......

Initialize the queue for BFS

seen = [False] * n

result = 0

Iterate until all elements are seen

for i in range(n):

 if not seen[i]:

 # Perform BFS from the current element

 dq = deque()

 seen[i] = True

 dq.append(i)

 ans = 0

 # Keep a counter during BFS traversal

 while dq:

 # Update global result

 result = max(result, ans)

return result

......

class Solution(object):

 def deleteNodes(self, head, indices):

 dummy = ListNode(0)

 dummy.next = head

 cur = dummy

 i = 0

 while cur.next and len(indices) > 0:

 if i == indices[0]:

 cur.next = cur.next.next

 indices.pop(0)

 i += 1

 continue

 i += 1

 cur = cur.next

 return dummy.next

training data bootstrapped data training data bootstrapped data

Figure 2: (Left): Curve of RL training reward. (Right): Examples of the data from mid-training and
after reasoning bootstrapping, where skills are abstracted, such as dummy head creation and BFS.

Mid-Training Results. We begin by analyzing the results during the EM steps of RA3. The RL
training reward in the first E step is given in Figure 2. We find that the model can quickly learn to
maximize the reward, so that most of the compute can be allocated to reasoning bootstrapping and
fine-tuning in the M step. We also provide two examples of data in Figure 2.

For the M step, an important metric is the cross-entropy (CE) loss, i.e., the negative log-likelihood
of the next token. It can be observed from Figure 3 that fine-tuning on reasoning-bootstrapped
data significantly accelerates learning speed. This supports the scope of mid-training we defined in
Section 2: the expert policy rollouts are sequences of primitive actions, such as the raw coding lines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

There are hidden reasoning trajectories that the expert follows to make decisions, but are unavailable
in the data. The learning is much easier when such reasoning traces are extracted via RL.

0 400 800 1200 1600
Step

0.5

0.6

0.7

0.8

CE
 L

os
s

Llama-3.2-1B
NTP
RA3

0 400 800 1200 1600
Step

0.4

0.5

0.6

0.7

0.8

CE
 L

os
s

Qwen-2.5-1.5B
NTP
RA3

0 400 800 1200 1600
Step

0.4

0.5

0.6

0.7

CE
 L

os
s

Llama-3.2-8B
NTP
RA3

Figure 3: Data bootstrapped with reasoning learned in the E step reduces the CE loss in the M step.

To better assess the algorithms, we evaluate the resulting models on the HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), HumanEval+, and MBPP+ (Liu et al., 2023) benchmarks using
Ben Allal et al. (2022). We test the improvement of each EM iteration of RA3 by the average scores
on these benchmarks, and compare with the NTP checkpoints that are trained on the same data. The
results are shown in Figure 4. It can be observed that learning to reason as action abstractions not
only gives lower CE loss, but also achieves higher evaluation performance with fewer data.

0 1 2 3 4 5 6
Iteration

24

26

28

30

M
ea

n
Ac

cu
ra

cy

Llama-3.2-1B
NTP
RA3

0 1 2 3 4 5 6
Iteration

38

40

42

44

M
ea

n
Ac

cu
ra

cy

Qwen-2.5-1.5B
NTP
RA3

0 1 2 3 4 5 6
Iteration

42

44

46

48

50

M
ea

n
Ac

cu
ra

cy

Llama-3.1-8B
NTP
RA3

Figure 4: Evaluation results during mid-training, with accuracies averaged across four benchmarks.

We also report the pass@k results of the best checkpoint for NTP and RA3 in Table 1. The result
reveals the generalization benefits of learning with temporal action abstractions.

Table 1: Mid-training performance: pass@k on HumanEval, MBPP, HumanEval+, and MBPP+.

Model Method HumanEval MBPP HumanEval+ MBPP+ Avg.

p@1 p@5 p@1 p@5 p@1 p@5 p@1 p@5 p@1 p@5

Llama 3.2 1B
Base 18.9 30.4 25.8 37.0 17.1 25.7 31.5 47.9 23.3 35.3
NTP 21.3 34.1 27.8 45.8 17.7 29.5 34.4 51.8 25.3 40.3
RA3 25.0 38.1 32.8 46.1 22.0 33.5 39.4 54.6 29.8 43.1

Qwen 2.5 1.5B
Base 37.2 53.7 38.6 56.5 32.3 48.1 43.4 61.0 37.9 54.8
NTP 41.5 57.3 43.4 59.2 35.4 53.3 46.6 64.8 41.7 58.7
RA3 48.2 63.6 45.8 61.3 42.7 59.0 49.7 64.9 46.6 62.2

Llama 3.1 8B
Base 36.6 57.5 45.2 59.1 30.5 54.7 51.6 65.7 41.0 59.3
NTP 48.2 62.0 48.6 62.9 42.7 60.1 51.1 67.4 47.7 63.1
RA3 50.0 66.2 48.0 63.0 44.5 61.3 53.2 67.8 48.9 64.6

Post-Training RLVR Results. We then study the impact of mid-training on post-training RL. We
use GRPO as the default RLVR algorithm, and leverage the off-the-shelf DeepCoder codebase (Luo
et al., 2025). We use the AReaL-boba-2-RL-Code dataset (Fu et al., 2025) for training, which
contains 7.7K data, filtered from TACO (Li et al., 2023), Mattern et al. (2025), and LiveCodeBench
(Jain et al., 2024). We run independent RLVR training with different random seeds (3 for small
models and 2 for the 8B model), and the evaluation results are reported in Figure 5.

We observe that mid-training significantly improves the RLVR performance compared to the base
models. Besides, RA3 is able to learn more effectively during RLVR, in terms of both convergence
speed and asymptotic performance, supporting our theoretical results in Section 2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: RLVR training results (mean and standard error) from different mid-training models.

Ablation Study. We first investigate the effect of the KL penalty c when training the Qwen model.
Recall that c regulates the temporal consistency of the latent action z by setting a threshold for when
additional reasoning is necessary. As shown in Figure 6, a small c causes the q-policy to generate
redundant z values at most timesteps. This behavior is expected: for almost every step, there exists
some zt ̸= <act> that explains at+1 more effectively (i.e., yields higher log-likelihood RL reward)
than the null action zt = <act>. However, such behavior offers no advantage over primitive-action
NTP, since neither the effective planning horizon nor the decision space is reduced. Moreover, the
computational overhead of RA3 can be controlled through c: a large penalty c = 0.2 requires that
<think> improves the expert log-likelihood by at least 0.2 to be rewarded, an unlikely event. In this
regime, the policy learns to output only <act>, and RA3 degenerates into NTP. In our default setup,
RA3 is efficient by generating short-length reasoning at fewer than 40% of coding lines.

0 10 20 30 40
Step

2

4

6

8

10

Av
g.

 L
en

gt
h

c = 0.01
c = 0.03
c = 0.05
c = 0.2

c = 0.01 c = 0.03 c = 0.05 c = 0.2
Penalty

39.8

40.0

40.2

40.4

40.6

M
ea

n
Ac

cu
ra

cy

c = 0.01 c = 0.03 c = 0.05 c = 0.2
Penalty

2

4

6

8

10

Av
g.

 L
en

gt
h

c = 0.01 c = 0.03 c = 0.05 c = 0.2
0.0

0.2

0.4

0.6

0.8

Fu
ll

Ro
llo

ut
 R

at
io

Figure 6: We study the effect of penalty c on (a) the behavior of the RL step, (b) the mean accuracy
of HumanEval and MBPP, (c) the average length of z, and (d) the ratio of full rollout samples.

8 CONCLUSION

An effective mid-training stage should extract from expert demonstrations the action subsets suffi-
cient for all tasks and structure the decision space to enable fast, efficient reinforcement learning
(RL) convergence. In this paper, we present the first formal analysis of how mid-training design
choices influence post-training RL. Our findings highlight two critical roles mid-training should
play: (i) mid-training should perform efficient action space pruning, which determines the learned
policy prior, and (ii) mid-training should accelerate subsequent RL convergence with shorter effec-
tive planning horizons, which reflects the policy’s potential for improvement through online inter-
action. We show that both perspectives favor learning in the space of temporally-extended actions
over the large space of primitive actions used in next-token prediction. Building on these insights,
we propose a novel mid-training algorithm based on the temporal variational bound. This method
iteratively uncovers temporally consistent reasoning trajectories via RL and fine-tunes on the result-
ing bootstrapped data. Experiments on code generation tasks validate the advantages of reasoning
as action abstraction, improving both the generalizability of the initial policy and the effectiveness
of subsequent RLVR, in terms of convergence speed and asymptotic performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461–12495, 2024.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, 2022.

Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement learning. arXiv
preprint arXiv:1309.6821, 2013.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning.
In International conference on machine learning, pp. 316–324. PMLR, 2014.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yijie Chen, Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, and Jie Zhou. Comments
as natural logic pivots: Improve code generation via comment perspective. arXiv preprint
arXiv:2404.07549, 2024.

Qingxiu Dong, Li Dong, Yao Tang, Tianzhu Ye, Yutao Sun, Zhifang Sui, and Furu Wei. Reinforce-
ment pre-training. arXiv preprint arXiv:2506.08007, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
Jiaheng Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier
code large language models. arXiv preprint arXiv:2411.04905, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline rein-
forcement learning. arXiv preprint arXiv:2010.05848, 2020.

10

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nicholas K Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction in reinforcement
learning. In Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 1, pp. 299–306, 2008.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin,
Shaokun Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, et al. Scaling up rl: Unlocking di-
verse reasoning in llms via prolonged training. arXiv preprint arXiv:2507.12507, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level, 2025. Notion Blog.

Justus Mattern, Sami Jaghouar, Manveer Basra, Jannik Straube, Matthew Di Ferrante, Felix
Gabriel, Jack Min Ong, Vincent Weisser, and Johannes Hagemann. Synthetic-1: Two mil-
lion collaboratively generated reasoning traces from deepseek-r1, 2025. URL https://www.
primeintellect.ai/blog/synthetic-1-release.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. Reinforcement learning for bandit neural
machine translation with simulated human feedback. arXiv preprint arXiv:1707.07402, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. arXiv preprint arXiv:1705.04304, 2017.

Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts
Amherst, 2000.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming, 1994.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from
latent thoughts. arXiv preprint arXiv:2503.18866, 2025.

11

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://www.primeintellect.ai/blog/synthetic-1-release
https://www.primeintellect.ai/blog/synthetic-1-release

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan
Li, Jialong Wu, Xuanzhong Chen, et al. Scaling agents via continual pre-training. arXiv preprint
arXiv:2509.13310, 2025.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Haozhe Wang, Haoran Que, Qixin Xu, Minghao Liu, Wangchunshu Zhou, Jiazhan Feng, Wanjun
Zhong, Wei Ye, Tong Yang, Wenhao Huang, et al. Reverse-engineered reasoning for open-ended
generation. arXiv preprint arXiv:2509.06160, 2025a.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents.
arXiv preprint arXiv:2508.09123, 2025b.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025c.

Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, Young Jin
Kim, Yunsheng Li, Liliang Ren, Yelong Shen, et al. Phi-4-mini-reasoning: Exploring the limits
of small reasoning language models in math. arXiv preprint arXiv:2504.21233, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv:2509.02479, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. arXiv preprint arXiv:2502.01718, 2025a.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025b.

Shenao Zhang, Boyi Liu, Zhaoran Wang, and Tuo Zhao. Model-based reparameterization policy
gradient methods: Theory and practical algorithms. Advances in Neural Information Processing
Systems, 36:68391–68419, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

Han Zhong, Yutong Yin, Shenao Zhang, Xiaojun Xu, Yuanxin Liu, Yifei Zuo, Zhihan Liu, Boyi
Liu, Sirui Zheng, Hongyi Guo, et al. Brite: Bootstrapping reinforced thinking process to enhance
language model reasoning. arXiv preprint arXiv:2501.18858, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025a.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478, 2025b.

A PROOFS

A.1 PROOF OF THEOREM 3.4

Proof. For an (ϵ, σ)-bad action subset Z ′, according to Definition 3.3, we know that

Pr
M∼p(M)

[∆(M,Z ′) ≥ ϵ] ≥ σ.

Therefore, for a randomly drawn task M ∼ p(M), the probability that Z ′ is not pruned away is no
more than 1− σ.

With |DE | independent expert demonstrations in mid-training, we reject Z ′ if V ∗
Mi(s0) <

V ∗
Mi

Z′
(s0) + ϵ for any i ∈ [1, |DE |]. The probability that Z ′ is not pruned away during mid-training

is thus no more than (1− σ)|DE |. We denote it as

p
(
survive(Z ′)) ≤ (1− σ)|DE | ≤ e−σ|DE |,

where the second inequality holds since 1 + x ≤ ex for all real x.

Let B = {Ẑ ⊆ Z : |Ẑ| = |Z|} be the set of all |Z|-length subsets. We care about the event that
there exist some bad subsets of actions that are not pruned away, i.e., survive:

p

(⋃
Z′∈B

survive(Z ′)

)
≤
∑
Z′∈B

p
(
survive(Z ′)

)
≤
(
|Z|
|Z|

)
e−σ|DE | = Θ

(
|Z||Z|

)
e−σ|DE |,

where the inequalities hold by applying a union bound over all candidate subsets.

Plugging in |DE | = Θ(|Z| log(|Z|/δ)/σ) gives us

p

(⋃
Z′∈B

survive(Z ′)

)
≤ δ,

i.e., all the (ϵ, σ)-bad action subsets Z ′ are pruned away from Z with probability at least 1− δ.

A.2 PROOF OF LEMMA 3.5

Proof. Since the policy π selects actions from Ẑ , it is an admissible policy in both M and MẐ .
Since the dynamics, rewards, and discount factors are identical for M and MẐ , we have V π

M =
V π
MẐ

. The results then follow from basic algebra.

A.3 PROOF OF THEOREM 3.6

Proof. We first define the value iteration operator T in the temporally extended action space Z as

(T V)(s) = max
z∈Z

{
Eτ,s′

[
Rτ + γτV (s′) | s, z

]}
,

where p(s′|s, z) =
∑

j γ
jp(s′, τ = j|s, z), p(s′, τ = j|s, z) is the joint probability of transitioning

to s′ in τ steps after taking action z at s, and Rτ =
∑τ

k=1 γ
kRk.

For any functions V1, V2 and any state s, we have

(T V1)(s)− (T V2)(s) = max
z∈Z

{
Eτ,s′

[
Rτ + γτV1(s

′) | s, z
]}

−max
z∈Z

{
Eτ,s′

[
Rτ + γτV2(s

′) | s, z
]}

≤ max
z∈Z

E
[
γτV1(s

′)− V2(s
′) | s, z

]
,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where the inequality holds since max f −max g ≤ max(f − g) for any f, g.

Let ∥·∥∞ be the sup norm on functions V : S 7→ R. Then

(T V1)(s)− (T V2)(s) ≤ max
z∈Z

{
E
[
γτ
]
· ∥V1 − V2∥∞

}
≤ γ ∥V1 − V2∥∞ .

Since the above inequality holds for all s ∈ S, taking the supremum over s gives us
∥T V1 − T V2∥∞ ≤ γ ∥V1 − V2∥∞. Therefore, T is a γ-contraction on (RS , ∥·∥∞).

By Banach’s fixed-point theorem, T has a unique fixed point V ∗ and value iteration Vn+1 = T Vn

converges geometrically:

∥Vn − V ∗∥∞ ≤ γn ∥V0 − V ∗∥∞ ≤ γnRmax/(1− γ),

where the last inequality holds since V0 = 0 and the maximum value satisfies Vmax =
∑

t γ
tRmax =

Rmax/(1− γ).

In order to get ∥VN − V ∗∥∞ ≤ ε, we obtain

N ≥ 1

1− γ
log

Rmax

ε(1− γ)
.

A.4 PROOF OF THEOREM 4.1

Proof. For the maximum likelihood objective, after introducing the sequence z0:T of latents, we
have

log p(a0:T | s0:T) = log
∑
z0:T

p(a0:T , z0:T | s0:T)

= log
∑
z0:T

p(a0:T , z0:T | s0:T)
q(z0:T | s0:T)
q(z0:T | s0:T)

= logEz0:T∼q(·|s0:T)

[
p(a0:T , z0:T | s0:T)

q(z0:T | s0:T)

]
≥ Ez0:T∼q(·|s0:T)

[
log

p(a0:T , z0:T | s0:T)
q(z0:T | s0:T)

]
, (A.1)

where the last inequality follows from Jensen’s inequality.

From the probabilistic graphical model, we obtain that

q(z0:T | s0:T) = q(z0 | s0:T)
T∏

t=1

q(zt | s0:T , z0:t−1)

= q(z0 | s0)
T∏

t=1

q(zt | st, z0:t−1). (A.2)

Besides, we have from the Bayes rule that

p(a0:T , z0:T | s0:T) = p(a0, z0 | s0:T)
T∏

t=1

p(zt, at | s0:T , z0:t−1, a0:t−1)

= p(a0, z0 | s0:T)
T∏

t=1

p(zt | s0:T , z0:t−1, a0:t−1)p(at | s0:T , z0:t, a0:t−1)

= p(a0, z0 | s0)
T∏

t=1

p(zt | st, z0:t−1)p(at | st, zt)

= p(z0 | s0)
T∏

t=1

p(zt | st, z0:t−1)

T∏
t=0

p(at | st, zt). (A.3)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Plugging (A.2) and (A.3) into (A.1) gives us

log p(a0:T | s0:T) ≥ Ez0:T∼q(·|s0:T)

[
log

p(z0 | s0)
∏T

t=1 p(zt | st, z0:t−1)
∏T

t=0 p(at | st, zt)
q(z0 | s0)

∏T
t=1 q(zt | st, z0:t−1)

]

= Ezt∼q(·|st,z0:t−1)

[
T∑

t=0

log p(at | st, zt)− log
q(zt | st, z0:t−1)

p(at | st, zt)

]

= Ezt∼q(·|st,z0:t−1)

[
T∑

t=0

log p(at | st, zt)−DKL

(
q(zt | st, z0:t−1) || p(zt | st, zt−1)

)]
,

where p(zt|st, zt−1) is the prior distribution of the latent zt.

B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We use LLMs only to polish the paper, such as improving clarity and grammar, without altering its
substance or original ideas.

15

	Introduction
	Background
	How Mid-Training Shapes Post-Training RL
	Mid-Training Acquires Strong Policy Priors via Efficient Action Pruning
	Mid-Training Accelerates RL Convergence with Shorter Decision Horizon

	From Primitive Actions to Temporal Abstractions
	Temporal Variational Bound
	Temporally-Consistent Latents as Action Abstractions

	RA3: A Scalable Mid-Training Algorithm
	Related Work
	Experiments
	Conclusion
	Proofs
	Proof of Theorem 3.4
	Proof of Lemma 3.5
	Proof of Theorem 3.6
	Proof of Theorem 4.1

	Statement on the Use of Large Language Models

