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ABSTRACT

Large language models excel with reinforcement learning (RL), but fully unlock-
ing this potential requires a mid-training stage. Intuitively, an effective mid-
training stage should both learn a strong policy prior and enable fast learning
through online interactions. We formalize this intuition by presenting the first
theoretical result on how mid-training shapes post-training: it acquires strong pol-
icy priors by efficiently pruning the action space and accelerates RL convergence
by shortening the effective planning horizon. Moreover, we prove that temporal
abstractions simultaneously compress the size of the action set and reduce the de-
cision horizon, thereby improving regret minimization after training. Building on
these insights, we introduce Reasoning as Action Abstractions (RA3), a scalable
mid-training algorithm. Specifically, we derive a temporal variational bound and
optimize it by iteratively discovering temporally-consistent latent structures via
RL, then fine-tuning on the bootstrapped data. Experiments on code generation
tasks demonstrate the effectiveness of our approach. Across multiple base mod-
els, RA3 improves the average performance on HumanEval and MBPP by 8 and
4 points over the base model and the next-token prediction baseline. Furthermore,
RA3 achieves faster convergence and higher asymptotic performance in RLVR on
HumanEval+, MBPP+, LiveCodeBench, and Codeforces.

1 INTRODUCTION

The potential of reinforcement learning (RL) as a universal policy-improvement operator has been
demonstrated with remarkable success in training large language models (LLMs), spanning appli-
cations in preference optimization (Ouyang et al., 2022), mathematics (Guo et al., 2025; Zeng et al.,
2025b), code generation (Yang et al., 2025; Zeng et al., 2025a), and agentic tasks (Team et al., 2025;
Zhou et al., 2025b). A key factor behind these successes is the strengthened policy prior, typically
obtained through mid-training (Wang et al., 2025c; Su et al., 2025), which is continued pre-training
on expert data sampled from the optimal policy. Despite its widespread use, the precise role of
mid-training in shaping post-training RL remains poorly understood. Without such understanding,
it is difficult to design principled and effective mid-training algorithms. Heuristic metrics, such as
the performance or entropy of the initial RL policy, provide only indirect signals and do not by
themselves guarantee improved downstream performance.

In this paper, we propose the first theoretical analysis of how mid-training shapes post-training RL.
We identify two key factors of mid-training algorithms that determine their effectiveness during
RL: the efficiency of pruning the decision space and the effective planning horizon. The first factor
governs the initial policy prior of RL, while the second decides the policy’s potential to be improved
through online interactions. To minimize regret in post-training RL, an ideal mid-training algorithm
should extract from finite expert demonstrations the complete set of action subsets sufficient for all
tasks, and enable fast selection among them during RL. Our results show that pruning efficiency is
inversely related to the cardinality of the smallest near-optimal action subset, and that post-training
RL converges faster when actions are temporally extended. These findings suggest that mid-training
should operate in the space of action abstractions rather than primitive actions. Intuitively, learning
high-level transferable “skills” promotes generalization, while planning is simplified by the reduced
action space and shorter decision horizon.
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To uncover this action hierarchy, we derive a temporal variational lower bound for the next-token
prediction (NTP) objective. It can be optimized by iterative expectation-maximization, which in-
volves a self-supervised RL step that uses the log-likelihood of expert data as reward to discover
the hidden latent sequence, and a supervised fine-tuning step on the bootstrapped data. With an
appropriate latent prior, the KL divergence enforces temporal consistency, ensuring that the latents
function as coherent action abstractions. These design choices yield a scalable mid-training algo-
rithm, Reasoning as Action Abstractions (RA3), where the KL penalty naturally determines when
rational rollouts are necessary, thereby controlling computational cost.

We evaluate RA3 on code generation tasks using Qwen and Llama base models ranging in size
from 1B to 8B. The mid-training dataset consists of 3.5M code snippets totaling 1B tokens. Our re-
sults show that fine-tuning on data bootstrapped with action abstractions substantially reduces cross-
entropy loss and improves performance across multiple benchmarks, including HumanEval, MBPP,
and their extended variants. On average, RA3 achieves a 4 point gain over NTP and an 8 point gain
over the base models. Furthermore, RA3 accelerates RLVR convergence and attains higher asymp-
totic performance on HumanEval+, MBPP+, LiveCodeBench, and CodeForces. Together, these
findings highlight the scalability and advantages of learning action abstractions in mid-training.

2 BACKGROUND

Imitation Learning. A task M = (S,A, R, γ) is an MDP defined by the state space S, action
space A, reward R, and the discount factor γ < 1. In the language space, states are contexts
that include all the previous tokens, and each action is a single token. The state transition is either
deterministic by appending the new action tokens to the previous context or governed by the external
environment. An expert policy is the policy that maximizes the expected state-action value:

πE ∈ argmax
π

Eat∼π

[
R(st, at) + γV π

M(st+1)
]
= Eat∼π

[∑
t
γtR(st, at)

]
.

It is worth noting that when the task is inherently solvable within one step, such as math problems
where r(s0, agt) = 1, the expert policy should deterministically output the ground-truth answer agt
at s0, i.e., πE(agt|s0) = 1, to maximize the return. Since most mid-training math data has explicit
human reasoning before agt, we instead focus on the multi-step decision-making domains, such as
code generation and agentic tasks, where the expert trajectories are a sequence of actions.

Next-token prediction (NTP) during mid-training can be viewed as an imitation learning process on
an offline expert dataset DE , collected by rolling out πE on the sampled tasks M ∼ p(M). Its
objective is to maximize the conditional log-likelihood:

JNTP(π) = E(s0:T ,a0:T )∼DE

[
log π(a0:T | s0:T )

]
= EDE

[
T∑

t=0

log π(at | st)

]
, (2.1)

where st ∈ S, at ∈ A, T is the total number of tokens in one expert demonstration, π is the training
policy, and s0 is the beginning of the sentence (BOS) token. The formula in (2.1) applies directly to
actions at coarser granularity than tokens, such as sentence-level actions.

NTP is adopted in different stages of LLM training, including pre-training, continued pre-training
(or mid-training, if the goal is to acquire reasoning foundations before RLVR), and supervised fine-
tuning. We primarily focus on the mid-training stage during the three-stage training procedure:
pre-training, mid-training, and RLVR post-training.

RL with Verifiable Reward. The goal of post-training RL is to maximize the expected return. A
common setup for RLVR is to use a binary outcome-based reward in a single-step MDP, defined as
r(s, o) = verifier(s, o) to measure if the model response o is identical to the ground-truth answer
corresponding to the prompt question s. We adopt Group Relative Policy Optimization (GRPO)
(Shao et al., 2024; Guo et al., 2025) as our default RLVR algorithm in experiments. Its objective is

JGRPO(π) =
1

G

G∑
i=1

(
min

(
π(oi | s)
πold(oi | s)

Ai, clip
(

π(oi | s)
πold(oi | s)

, 1± ϵ

)
Ai

)
− βDKL(π, πref)

)
,

where oi ∼ πold(·|s), ϵ, β are hyperparameters, and the advantage is calculated within the group G:

Ai =
(
r(s, oi)− mean({r(s, oi)}Gi=1)

)
/
(
std({r(s, oi)}Gi=1)

)
. (2.2)
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3 HOW MID-TRAINING SHAPES POST-TRAINING RL

The goal of post-training RL is to minimize the regret

min
π

EM∼p(M)[V
∗
M(s0)− V π

M(s0)], (3.1)

i.e., to learn π that is near-optimal across tasks M. In this section, we demystify two key factors
that determine the effectiveness of mid-training: (1) the efficiency with which the algorithm prunes
the decision space from expert demonstrations, and (2) its impact on the convergence speed of post-
training RL. The first factor governs the learned prior of the initial RL policy, while the second
determines the extent to which the policy can be further improved through online interactions.

An effective mid-training stage should extract from finite expert demonstrations the complete set of
action subsets sufficient to solve all tasks, and facilitate efficient selection among them during RL for
fast convergence. This perspective highlights that the efficiency of mid-training lies in pruning away
useless actions and structuring the decision space so that online RL can improve policies effectively.

3.1 MID-TRAINING ACQUIRES STRONG POLICY PRIORS VIA EFFICIENT ACTION PRUNING

We first generalize the primitive action space A defined in Section 2 to a more general decision
space Z , which includes temporally-extended actions. These are defined analogously to Markov
options (Puterman, 1994; Sutton et al., 1999; Precup, 2000), representing the high-level abstraction
of a sequence of primitive actions. Akin to a high-level intention, each z ∈ Z governs a length-τ
low-level primitive action sequence ai, · · · , ai+τ , where τ ∼ p(·|s, z). Notably, all the results for
Z also hold for A since A is a special instantiation of Z , with τ restricted to 1 and aj = zj .

To quantify the quality of an action set, we define MZ′ = (S,Z ′, R, γ) in a way similar to M,
except with action space restricted to Z ′. We say that Z ′ is near-optimal for M if near-optimal
policies can be constructed using only the actions in Z ′. The goal of mid-training is thus to prune
away with high probability all “bad” action subsets Z ′ that are sub-optimal. Formally, we define:
Definition 3.1 (Near-Optimal Task Action Subset). An action subset Z ′ ⊂ Z is called ϵ-optimal for
task M if the optimal values in M and MZ′ satisfy ∆(M,Z ′) := V ∗

M(s0)− V ∗
MZ′ (s0) < ϵ.

Definition 3.2 (Minimal Size of Near-Optimal Action Subset). Z ⊂ Z is an ϵ-optimal action subset
if it is ϵ-optimal for all tasks. Let |Z| denote the minimal size of such subset Z .

According to Definition 3.1, A itself is an optimal action set since ∆(M,A) = 0. Thus, Z always
exists and |Z| is finite. We then define the bad action subsets that need to be pruned.
Definition 3.3 (Bad Action Subset). Z ′ is (ϵ, σ)-bad if EM∼p(M)[1(∆(M,Z ′) ≥ ϵ)] ≥ σ.

Now we are ready to give our first result on the pruning efficiency during mid-training.
Theorem 3.4 (Pruning Efficiency). Denote |DE | as the rollout number in the mid-training data. If

|DE | = Θ
(
|Z| log(|Z|/δ)/σ

)
,

then with probability at least 1− δ, all the (ϵ, σ)-bad action subsets can be pruned away from Z .

We defer all proofs to Appendix A. Theorem 3.4 shows that the number of expert samples required
for action-space pruning during mid-training decreases as both |Z| and |Z| become smaller. In
particular, when the action space is restricted to primitive actions (Z = A), the sample complexity is
substantially higher compared to using temporally extended actions. This highlights the importance
of pruning efficiency, which we analyze next.

Lemma 3.5 (Regret Decomposition). For any Ẑ ⊆ Z , the post-training RL regret in (3.1) satisfies

EM∼p(M)

[
V ∗
M(s0)− V π

M(s0)
]
= EM∼p(M)[∆(M, Ẑ)]︸ ︷︷ ︸

pruning error

+EM∼p(M)[V
∗
MẐ

(s0)− V π
MẐ

(s0)︸ ︷︷ ︸
post-training RL error

].

Lemma 3.5 formalizes the connection between mid-training and post-training RL: the mid-training
stage should identify a subspace that simultaneously minimizes both the pruning error and the post-
training RL error. The importance of pruning efficiency in Theorem 3.4 follows directly: with
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higher pruning efficiency, i.e., smaller |Z| and |Z|, the probability that bad action subsets survive
after mid-training decreases, leading to a smaller expected pruning error. Consequently, learning
action abstractions enables mid-training to have a higher chance of selecting “good” action subsets
and yielding a strong policy prior to alleviate the burden on subsequent post-training RL.

3.2 MID-TRAINING ACCELERATES RL CONVERGENCE WITH SHORTER DECISION HORIZON

The above analysis mainly considers the influence of mid-training on the pruning error and fixed
the post-training RL error. Next, we analyze how mid-training shapes post-training RL. Our result
below is based on value iteration due to its simplicity.
Theorem 3.6 (RL Convergence Rate). To achieve an ε-optimality that satisfies ∥VN − V ∗∥∞ ≤
ε, the required number of iterations N is lower-bounded by N ≥ 1

1−γ log Rmax
ε(1−γ) , where γ =

sups,0 E[γτ |s, z] ≤ γ and Rmax = maxs,a R(s, a).

The above result reveals that the reasoning structures acquired during mid-training influence the
convergence through the duration τ of the temporally-extended actions. For actions that last longer,
γ is smaller and RL converges faster to optimality than mid-training with NTP, where τ = 1 and
γ = γ. This makes intuitive sense as each Bellman backup jumps across τ steps in one shot, which
shortens the effective planning horizon and shrinks the error faster per iteration. Similar 1/(1 − γ)
dependency also appears in the bound for broader RL algorithms such as policy gradient (Agarwal
et al., 2021; Zhang et al., 2023), which we omit due to the requirements of additional assumptions.
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def longest_increasing_path(grid):

   # base case

   if not grid or not grid[0]: return 0

   # init DP table for best path length from each cell

   R, C = len(grid), len(grid[0]); dirs = ((1,0),(-1,0),(0,1),(0,-1))

   cells = sorted((grid[r][c],r,c) for r in range(R) for c in range(C))

   dp = [[1] * C for _ in range(R)]; ans=1

   # apply DP transition from lower-valued neighbors

   for v, r, c in cells:

       for dr, dc in dirs:

           nr, nc = r + dr, c + dc

           if grid[nr][nc] < v and dp[nr][nc] + 1 > dp[r][c]:

               dp[r][c] = dp[nr][nc] + 1

       if dp[r][c] > ans: ans = dp[r][c]

   # finalize with the global optimum

   return ans

Figure 1: (Left): The probabilistic graphical model of the action hierarchy. (Middle & Right):
Examples of primitive actions in expert demonstrations (blue) and the hidden high-level temporal
abstractions (green), in web agent and code generation domains, respectively.

4 FROM PRIMITIVE ACTIONS TO TEMPORAL ABSTRACTIONS

In Section 3, we analyze the benefits of leveraging temporal action abstractions during mid-training
from two perspectives: its efficiency in pruning the action space and its ability to accelerate subse-
quent RL. Intuitively, there are high-level “skills” that are shared across tasks, utilizing which helps
generalization and makes planning easier, since the action space shrinks and the decision horizon
reduces. We illustrate this with two examples in Figure 1. In what follows, we introduce a principled
way to extract the temporal abstractions from the primitive actions in the mid-training data.

4.1 TEMPORAL VARIATIONAL BOUND

We begin by seeking an alternative way to maximize the likelihood beyond predicting the next
tokens. Specifically, we give a sequential Evidence Lower Bound (ELBO) of the NTP objective:
Theorem 4.1 (Temporal ELBO). The next-token prediction objective in (2.1) is lower bounded by

JNTP(π) ≥ J (π, q) = E(s0:T ,a0:T )∼DE ,zt∼q

[
T∑

t=0

log π(at|st, zt)−DKL

(
q(zt|st, z0:t−1) || p(zt|st, z0:t−1)

)]
,

where p(zt|st, zt−1) is the prior distribution of zt.

4
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The ELBO introduces a sequence of latents z0:T to model the observed primitive actions a0:T .
The intuition behind it is that there are hidden thoughts or intentions, i.e., z0:T , behind the expert
decisions a0:T ∼ DE , which are not present in the mid-training data. The amortized variational
inference leverages the parameterized q(zt|st, z0:t−1) as an approximation of the true posterior of
z. Optimizing the ELBO is equivalent to modeling the distribution of the latents z0:T and using the
inferred latents to better model the likelihood p(a0:T | s0:T ).
We maximize the ELBO by alternatively optimizing q and π, in an Expectation-Maximization (EM)
manner. In each EM iteration i, the E step fixes πi and updates q to maximize the ELBO, i.e.,

qi = argmax
q

J (πi, q) = argmax
q

EDE ,zt∼q

[
T∑

t=0

log πi(at | st, zt)−DKL
(
q || p

)︸ ︷︷ ︸
RL reward at step t

]
. (4.1)

This corresponds to a T -horizon RL procedure with the per-step reward defined as the log-likelihood
of the observed expert actions, with a KL penalty that we will discuss later. Intuitively, (4.1) encour-
ages the sequence of latents z0:T sampled from qi to “explain” the expert decisions a0:T .

The M -step then fixes the updated qi and optimizes π:
πi+1 = argmax

π
J (π, qi) = argmax

π
EDE ,zt∼qi

[
log π(at | st, zt)

]
, (4.2)

which is simply imitating the expert trajectories that are bootstrapped with the inferred latents zt.

4.2 TEMPORALLY-CONSISTENT LATENTS AS ACTION ABSTRACTIONS

We have transformed the maximization of likelihood on primitive actions a0:T to an ELBO objective
that learns from the bootstrapped sequence with latent trajectories sampled from the variational pos-
terior q(zt|st, z0:t−1). Recall that our analyses in Section 3 reveal the benefits of learning compact
sets of high-level action abstractions. We will show in the following how to fulfill this goal with a
properly defined latent prior.

Specifically, the latent zt in the ELBO is defined per-step for every t ∈ [0, T ]. To let zt represent an
abstraction of temporally-extended actions that spans across τ ∼ p(·|st, zt) timesteps, it is equiva-
lent to let zt = zt+1 = · · · = zt+τ

1. This can be achieved by setting the prior p(zt+1|st+1, zt) in
Theorem 4.1 to have a large probability mass on zt, and uniformly distributed at all other positions:

p(zt | st, zt−1) = αδ(zt−1) + (1− α)U(zt), (4.3)
where α ∈ [0, 1] is a hyperparameter, δ(·) is the Dirac delta function, and U(·) is the uniform
distribution over Z . The delta function helps preserve a temporally-consistent latent as a high-level
action abstraction, and the uniform distribution encourages learning a diverse reasoning foundation.

5 RA3: A SCALABLE MID-TRAINING ALGORITHM

In the context of LLMs, the action abstraction z serves a similar role as the rational or intention, and
the primitive action a is the actual answer or operation in the environment. Taking code generation
as an example, zt can be the reasoning before writing the next code block at+τ .

In addition to the theoretical benefits discussed in Section 3, the temporal consistency of the latents
also makes it possible to scale up the optimization on mid-training-sized data. Specifically, gen-
erating rationals z0:T corresponds to T rollouts, whose size is proportional to the total number of
tokens in the data. This prohibits us from making full use of the high-quality data in the mid-training
corpus, which typically contains billions of tokens. Fortunately, the temporal consistency of latents
rescues us from sampling rollout zt at each timestep t, as it is kept unchanged for τ steps.

To avoid redundant sampling, we define two types of latents: z = <act> and z that begins with
<think>. For latents zt = zt−1 that are temporally-consistent, at is directly generated without
sampling new rationals since it fall under the same high-level intention as at−1. For this reason, we
use zt = <act> to indicate zt = zt−1. Whenever <act> is sampled, the rollout stops immediately.
By doing so, full rollouts are only sampled when <think> is the first token, significantly reducing
the RL inference cost. Besides, we may rewrite the KL term in the ELBO as follows.

1The notation here deviates slightly from Section 2, where all τ identical latents are written as a single z.

5
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Proposition 5.1. With the prior defined in (4.3), the KL term in Theorem 4.1 satisfies

DKL

(
q(zt|st, z0:t−1) || p(zt|st, z0:t−1)

)
= DKL

(
Bern(qact) || Bern(α)

)
−(1− qact)H

(
q(zt|st, z0:t−1)

)
,

where qact = q(zt = <act> | st, z0:t−1), Bern(·) is the Bernoulli distribution, and

DKL

(
Bern(qact) || Bern(α)

)
= Ez∼q

[
1(zt = <act>) log

qact

α
+ 1(zt ̸= <act>) log

1− qact

1− α

]
.

The KL is decomposed into two terms: a KL term between Bernoulli distributions and an entropy
term that encourages diversity. By setting α > qact, the KL discourages unnecessary thinking since it
assigns a larger penalty to zt ̸= <act> than zt = <act>. The penalty difference defines a threshold,
guiding the model to generate new rationals only when they improve the log-likelihood reward by
more than this threshold. In implementation, instead of tuning α, we apply reward shaping and
set a fixed penalty only to zt ̸= <act>. The proposition also indicates that the additional training
cost compared to NTP can be adjusted by α. In the extreme case where α = 1, our algorithm
degenerates to NTP, since DKL(Bern(qact) ||Bern(1)) is infinite for all qact < 1, i.e., the q policy
receives an infinite penalty for generating any rationals. We provide the pseudocode in Algorithm 1.

Algorithm 1 Reasoning as Action Abstractions (RA3) for Mid-Training
1: Input: Base LLM π0, mid-training dataset DE , penalty hyperparameter c.
2: for EM iteration i in 1, 2, · · · do
3: Optimize qi = argmaxq EDei

E ,zt∼q[
∑T

t=0 log πi(at|st, zt)− c1(zt ̸= <act>)] via RL.
4: Fine-tune πi+1 = argmaxπ EDmi

E ,zt∼qi

[
log π(at | st, zt)

]
via NTP.

We enforce the two types of actions discussed above by incorporating a simple format reward
in the RL step that assigns zero rewards for wrong formats, which we omit in the pseudocode
for clarity. We optimize the T -horizon RL using policy gradient, with advantages calculated in
a similar way to (2.2) in GRPO: after sampling G length-T rollouts, we set the baselines as
b(st′) =

∑G
g=1

∑T
t=t′ r

g
t /G that are independent on the actions, and combine it with the state-

action value to calculate the advantage at each step.

6 RELATED WORK

LLM Mid-Training. RL has long been utilized for training language models (Nguyen et al., 2017;
Paulus et al., 2017; Jaques et al., 2020; Ramamurthy et al., 2022; Ouyang et al., 2022). However,
its potential as a universal policy-improvement operator has not been fully unlocked until recently,
when reasoning models learn to cast intermediate thoughts as actions and optimize them via RL
(Guo et al., 2025; Zeng et al., 2025b; Liu et al., 2025; Team et al., 2025). This paradigm also guides
the design of the policy prior. To obtain strong initial policies in terms of both performance and
exploration diversity, mid-training (Xu et al., 2025; Wang et al., 2025c; Su et al., 2025) plays an im-
portant role, which performs reasoning or agentic continued pre-training on high-quality expert data.
Previous work that leverages next-token prediction during mid-training is an imitation learning pro-
cess, where the data comes from rollouts of optimal expert policies, such as humans’ demonstrations
of device-controlling and code-writing (Rawles et al., 2023; Huang et al., 2024; Bai et al., 2024).
Anchoring our findings, it is observed that learning the action hierarchy with abstraction-based rea-
soning performs better than training on primitive actions alone (Xu et al., 2024; Chen et al., 2024;
Wang et al., 2025b; Xue et al., 2025). For this reason, some mid-training datasets augment the ex-
pert data with synthetic reasoning distilled from frontier LLMs (Wang et al., 2025b; LI et al., 2024).
However, the distributional shift makes it unclear how well the student LLM can benefit from these
action abstractions, compared to RA3, which learns its own reasoning via RL. Besides, RA3 is more
preferred considering the cost of augmenting trajectories with reasoning distillation on a large scale.
In fact, for the code generation domain that we are interested in, most mid-training-sized datasets
mainly contain human code from the internet, without costly relabeling.

Self-Supervised RL. Optimizing the temporal variational bound involves a self-supervised RL step
with log-prob of the expert action as reward (Zhong et al., 2025; Ruan et al., 2025; Zhou et al., 2025a;
Dong et al., 2025; Wang et al., 2025a). Compared to Zhong et al. (2025); Ruan et al. (2025) that
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also uses EM-style updates, we are motivated to learn action abstractions with the ELBO derived for
temporal sequences. Moreover, Dong et al. (2025) hand-crafts an entropy-based rule to determine
reasoning positions and trains on only 4k samples with instructed reasoning models. In contrast,
RA3 is theoretically grounded, scales to mid-training setups, and enables the model to autonomously
learn when to skip unnecessary reasoning by generating temporally consistent latents.

Markov Options. RL based on options (Sutton et al., 1999; Precup, 2000; Bacon et al., 2017)
enables agents to represent courses of actions at extended time scales and learn in the MDP with
them. It greatly helps long-horizon complex tasks by naturally introducing hierarchical structures
(Jong et al., 2008). Our analysis of the decision space size is partly inspired by (Brunskill & Li,
2013; 2014). Different from their study on option transfer in lifelong and multi-task RL, we are
mainly interested in mid-training algorithm design and its impact on post-training RL in LLMs.

7 EXPERIMENTS

Experiment Setups. We focus on Python code generation in our experiments. The granularity of
primitive actions a is a single line of code. For the two types of latents z, to avoid additional fine-
tuning on special tokens, we remove the newline character \n at the end of a and set <act>=\n,
<think>=\n#. That is, after line at, the model either only outputs \n before at+1 or generates a
comment line as a high-level abstraction to guide the code writing. The format reward is non-zero for
the think action if it begins and ends with \n and the first non-space token is #. This design ensures
that the reasoning bootstrapped data has the correct syntax. The RL step of RA3 is implemented in
a similar way to multi-turn RL: the code line at from the training corpus and the reasoning comment
zt alternate as turns. We adopt asynchronous rollout with the SGLang engine (Zheng et al., 2024),
as batched inference often incurs idle time between turns. That is, batched rollouts must wait for all
zt to be generated before proceeding to the next turn, which is especially undesirable in our setting,
where temporal consistency in z is intended to reduce unnecessary reasoning.

We implement RA3 on three pre-trained models: Qwen-2.5-1.5B (Hui et al., 2024), Llama-3.2-1B,
and Llama-3.1-8B (Dubey et al., 2024). For the mid-training data, we select the Python data within
the continued pre-training corpus of Huang et al. (2024), which consists of a large portion of high-
quality internet data (2.36M code snippets, 834M tokens) and a small portion of code-only synthetic
data (129K snippets, 120M tokens). This leads to a total mid-training size of 3.5M code snippets
with 1B tokens. Each EM iteration involves 400 gradient updates, with the first 40 being the RL
policy gradient. The hyperparameters of our E step is the same as NTP: batch size of 512 with a
learning rate of 2e − 5. The RL step of RA3 sets the maximum length of z as 16, with a sampling
temperature of 1.0 and a group size of G = 3. The entropy coefficient is set to 0.001 and we do not
regularize the reference KL. The RL batch size is set to 1024 with a learning rate of 2e− 6. We set
the penalty c = 0.05. AdamW optimizer is used (Loshchilov & Hutter, 2017) in experiments.
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......

class Solution(object):

   def deleteNodes(self, head, indices):

       # Create the dummy head of the original 

list

       dummy = ListNode(0)

       dummy.next = head

       # Point the current node to the dummy head

       cur = dummy

       # Iterate through the indices list

       i = 0

       while cur.next and len(indices) > 0:

           # Check if the current index is reached

           if i == indices[0]:

               ......

           i += 1

           cur = cur.next

       return dummy.next

......

seen = [False] * n

result = 0

for i in range(n):

   if not seen[i]:

       dq = deque()

       seen[i] = True

       dq.append(i)

       ans = 0

       while dq:

           node = dq.popleft()

           ans += 1

           nxt = node // 2

           if not seen[nxt]:

               seen[nxt] = True

               dq.append(nxt)

       result = max(result, ans)

return result

......

# Initialize the queue for BFS

seen = [False] * n

result = 0

# Iterate until all elements are seen

for i in range(n):

   if not seen[i]:

       # Perform BFS from the current element

       dq = deque()

       seen[i] = True

       dq.append(i)

       ans = 0

       # Keep a counter during BFS traversal

       while dq:

           ......

       # Update global result

       result = max(result, ans)

return result

......

class Solution(object):

   def deleteNodes(self, head, indices):

       dummy = ListNode(0)

       dummy.next = head

       cur = dummy

       i = 0

       while cur.next and len(indices) > 0:

           if i == indices[0]:

               cur.next = cur.next.next

               indices.pop(0)

               i += 1

               continue

           i += 1

           cur = cur.next

           return dummy.next

training data bootstrapped data training data bootstrapped data

Figure 2: (Left): Curve of RL training reward. (Right): Examples of the data from mid-training and
after reasoning bootstrapping, where skills are abstracted, such as dummy head creation and BFS.

Mid-Training Results. We begin by analyzing the results during the EM steps of RA3. The RL
training reward in the first E step is given in Figure 2. We find that the model can quickly learn to
maximize the reward, so that most of the compute can be allocated to reasoning bootstrapping and
fine-tuning in the M step. We also provide two examples of data in Figure 2.

For the M step, an important metric is the cross-entropy (CE) loss, i.e., the negative log-likelihood
of the next token. It can be observed from Figure 3 that fine-tuning on reasoning-bootstrapped
data significantly accelerates learning speed. This supports the scope of mid-training we defined in
Section 2: the expert policy rollouts are sequences of primitive actions, such as the raw coding lines.
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There are hidden reasoning trajectories that the expert follows to make decisions, but are unavailable
in the data. The learning is much easier when such reasoning traces are extracted via RL.
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Figure 3: Data bootstrapped with reasoning learned in the E step reduces the CE loss in the M step.

To better assess the algorithms, we evaluate the resulting models on the HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), HumanEval+, and MBPP+ (Liu et al., 2023) benchmarks using
Ben Allal et al. (2022). We test the improvement of each EM iteration of RA3 by the average scores
on these benchmarks, and compare with the NTP checkpoints that are trained on the same data. The
results are shown in Figure 4. It can be observed that learning to reason as action abstractions not
only gives lower CE loss, but also achieves higher evaluation performance with fewer data.
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Figure 4: Evaluation results during mid-training, with accuracies averaged across four benchmarks.

We also report the pass@k results of the best checkpoint for NTP and RA3 in Table 1. The result
reveals the generalization benefits of learning with temporal action abstractions.

Table 1: Mid-training performance: pass@k on HumanEval, MBPP, HumanEval+, and MBPP+.

Model Method HumanEval MBPP HumanEval+ MBPP+ Avg.

p@1 p@5 p@1 p@5 p@1 p@5 p@1 p@5 p@1 p@5

Llama 3.2 1B
Base 18.9 30.4 25.8 37.0 17.1 25.7 31.5 47.9 23.3 35.3
NTP 21.3 34.1 27.8 45.8 17.7 29.5 34.4 51.8 25.3 40.3
RA3 25.0 38.1 32.8 46.1 22.0 33.5 39.4 54.6 29.8 43.1

Qwen 2.5 1.5B
Base 37.2 53.7 38.6 56.5 32.3 48.1 43.4 61.0 37.9 54.8
NTP 41.5 57.3 43.4 59.2 35.4 53.3 46.6 64.8 41.7 58.7
RA3 48.2 63.6 45.8 61.3 42.7 59.0 49.7 64.9 46.6 62.2

Llama 3.1 8B
Base 36.6 57.5 45.2 59.1 30.5 54.7 51.6 65.7 41.0 59.3
NTP 48.2 62.0 48.6 62.9 42.7 60.1 51.1 67.4 47.7 63.1
RA3 50.0 66.2 48.0 63.0 44.5 61.3 53.2 67.8 48.9 64.6

Post-Training RLVR Results. We then study the impact of mid-training on post-training RL. We
use GRPO as the default RLVR algorithm, and leverage the off-the-shelf DeepCoder codebase (Luo
et al., 2025). We use the AReaL-boba-2-RL-Code dataset (Fu et al., 2025) for training, which
contains 7.7K data, filtered from TACO (Li et al., 2023), Mattern et al. (2025), and LiveCodeBench
(Jain et al., 2024). We run independent RLVR training with different random seeds (3 for small
models and 2 for the 8B model), and the evaluation results are reported in Figure 5.

We observe that mid-training significantly improves the RLVR performance compared to the base
models. Besides, RA3 is able to learn more effectively during RLVR, in terms of both convergence
speed and asymptotic performance, supporting our theoretical results in Section 2.
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Figure 5: RLVR training results (mean and standard error) from different mid-training models.

Ablation Study. We first investigate the effect of the KL penalty c when training the Qwen model.
Recall that c regulates the temporal consistency of the latent action z by setting a threshold for when
additional reasoning is necessary. As shown in Figure 6, a small c causes the q-policy to generate
redundant z values at most timesteps. This behavior is expected: for almost every step, there exists
some zt ̸= <act> that explains at+1 more effectively (i.e., yields higher log-likelihood RL reward)
than the null action zt = <act>. However, such behavior offers no advantage over primitive-action
NTP, since neither the effective planning horizon nor the decision space is reduced. Moreover, the
computational overhead of RA3 can be controlled through c: a large penalty c = 0.2 requires that
<think> improves the expert log-likelihood by at least 0.2 to be rewarded, an unlikely event. In this
regime, the policy learns to output only <act>, and RA3 degenerates into NTP. In our default setup,
RA3 is efficient by generating short-length reasoning at fewer than 40% of coding lines.
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Figure 6: We study the effect of penalty c on (a) the behavior of the RL step, (b) the mean accuracy
of HumanEval and MBPP, (c) the average length of z, and (d) the ratio of full rollout samples.

8 CONCLUSION

An effective mid-training stage should extract from expert demonstrations the action subsets suffi-
cient for all tasks and structure the decision space to enable fast, efficient reinforcement learning
(RL) convergence. In this paper, we present the first formal analysis of how mid-training design
choices influence post-training RL. Our findings highlight two critical roles mid-training should
play: (i) mid-training should perform efficient action space pruning, which determines the learned
policy prior, and (ii) mid-training should accelerate subsequent RL convergence with shorter effec-
tive planning horizons, which reflects the policy’s potential for improvement through online inter-
action. We show that both perspectives favor learning in the space of temporally-extended actions
over the large space of primitive actions used in next-token prediction. Building on these insights,
we propose a novel mid-training algorithm based on the temporal variational bound. This method
iteratively uncovers temporally consistent reasoning trajectories via RL and fine-tunes on the result-
ing bootstrapped data. Experiments on code generation tasks validate the advantages of reasoning
as action abstraction, improving both the generalizability of the initial policy and the effectiveness
of subsequent RLVR, in terms of convergence speed and asymptotic performance.
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tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from
latent thoughts. arXiv preprint arXiv:2503.18866, 2025.

11

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://www.primeintellect.ai/blog/synthetic-1-release
https://www.primeintellect.ai/blog/synthetic-1-release


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan
Li, Jialong Wu, Xuanzhong Chen, et al. Scaling agents via continual pre-training. arXiv preprint
arXiv:2509.13310, 2025.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Haozhe Wang, Haoran Que, Qixin Xu, Minghao Liu, Wangchunshu Zhou, Jiazhan Feng, Wanjun
Zhong, Wei Ye, Tong Yang, Wenhao Huang, et al. Reverse-engineered reasoning for open-ended
generation. arXiv preprint arXiv:2509.06160, 2025a.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents.
arXiv preprint arXiv:2508.09123, 2025b.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025c.

Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, Young Jin
Kim, Yunsheng Li, Liliang Ren, Yelong Shen, et al. Phi-4-mini-reasoning: Exploring the limits
of small reasoning language models in math. arXiv preprint arXiv:2504.21233, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv:2509.02479, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. arXiv preprint arXiv:2502.01718, 2025a.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025b.

Shenao Zhang, Boyi Liu, Zhaoran Wang, and Tuo Zhao. Model-based reparameterization policy
gradient methods: Theory and practical algorithms. Advances in Neural Information Processing
Systems, 36:68391–68419, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

Han Zhong, Yutong Yin, Shenao Zhang, Xiaojun Xu, Yuanxin Liu, Yifei Zuo, Zhihan Liu, Boyi
Liu, Sirui Zheng, Hongyi Guo, et al. Brite: Bootstrapping reinforced thinking process to enhance
language model reasoning. arXiv preprint arXiv:2501.18858, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025a.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478, 2025b.

A PROOFS

A.1 PROOF OF THEOREM 3.4

Proof. For an (ϵ, σ)-bad action subset Z ′, according to Definition 3.3, we know that

Pr
M∼p(M)

[∆(M,Z ′) ≥ ϵ] ≥ σ.

Therefore, for a randomly drawn task M ∼ p(M), the probability that Z ′ is not pruned away is no
more than 1− σ.

With |DE | independent expert demonstrations in mid-training, we reject Z ′ if V ∗
Mi(s0) <

V ∗
Mi

Z′
(s0) + ϵ for any i ∈ [1, |DE |]. The probability that Z ′ is not pruned away during mid-training

is thus no more than (1− σ)|DE |. We denote it as

p
(
survive(Z ′)) ≤ (1− σ)|DE | ≤ e−σ|DE |,

where the second inequality holds since 1 + x ≤ ex for all real x.

Let B = {Ẑ ⊆ Z : |Ẑ| = |Z|} be the set of all |Z|-length subsets. We care about the event that
there exist some bad subsets of actions that are not pruned away, i.e., survive:

p

( ⋃
Z′∈B

survive(Z ′)

)
≤
∑
Z′∈B

p
(
survive(Z ′)

)
≤
(
|Z|
|Z|

)
e−σ|DE | = Θ

(
|Z||Z|

)
e−σ|DE |,

where the inequalities hold by applying a union bound over all candidate subsets.

Plugging in |DE | = Θ(|Z| log(|Z|/δ)/σ) gives us

p

( ⋃
Z′∈B

survive(Z ′)

)
≤ δ,

i.e., all the (ϵ, σ)-bad action subsets Z ′ are pruned away from Z with probability at least 1− δ.

A.2 PROOF OF LEMMA 3.5

Proof. Since the policy π selects actions from Ẑ , it is an admissible policy in both M and MẐ .
Since the dynamics, rewards, and discount factors are identical for M and MẐ , we have V π

M =
V π
MẐ

. The results then follow from basic algebra.

A.3 PROOF OF THEOREM 3.6

Proof. We first define the value iteration operator T in the temporally extended action space Z as

(T V )(s) = max
z∈Z

{
Eτ,s′

[
Rτ + γτV (s′) | s, z

]}
,

where p(s′|s, z) =
∑

j γ
jp(s′, τ = j|s, z), p(s′, τ = j|s, z) is the joint probability of transitioning

to s′ in τ steps after taking action z at s, and Rτ =
∑τ

k=1 γ
kRk.

For any functions V1, V2 and any state s, we have

(T V1)(s)− (T V2)(s) = max
z∈Z

{
Eτ,s′

[
Rτ + γτV1(s

′) | s, z
]}

−max
z∈Z

{
Eτ,s′

[
Rτ + γτV2(s

′) | s, z
]}

≤ max
z∈Z

E
[
γτV1(s

′)− V2(s
′) | s, z

]
,

13
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where the inequality holds since max f −max g ≤ max(f − g) for any f, g.

Let ∥·∥∞ be the sup norm on functions V : S 7→ R. Then

(T V1)(s)− (T V2)(s) ≤ max
z∈Z

{
E
[
γτ
]
· ∥V1 − V2∥∞

}
≤ γ ∥V1 − V2∥∞ .

Since the above inequality holds for all s ∈ S, taking the supremum over s gives us
∥T V1 − T V2∥∞ ≤ γ ∥V1 − V2∥∞. Therefore, T is a γ-contraction on (RS , ∥·∥∞).

By Banach’s fixed-point theorem, T has a unique fixed point V ∗ and value iteration Vn+1 = T Vn

converges geometrically:

∥Vn − V ∗∥∞ ≤ γn ∥V0 − V ∗∥∞ ≤ γnRmax/(1− γ),

where the last inequality holds since V0 = 0 and the maximum value satisfies Vmax =
∑

t γ
tRmax =

Rmax/(1− γ).

In order to get ∥VN − V ∗∥∞ ≤ ε, we obtain

N ≥ 1

1− γ
log

Rmax

ε(1− γ)
.

A.4 PROOF OF THEOREM 4.1

Proof. For the maximum likelihood objective, after introducing the sequence z0:T of latents, we
have

log p(a0:T | s0:T ) = log
∑
z0:T

p(a0:T , z0:T | s0:T )

= log
∑
z0:T

p(a0:T , z0:T | s0:T )
q(z0:T | s0:T )
q(z0:T | s0:T )

= logEz0:T∼q(·|s0:T )

[
p(a0:T , z0:T | s0:T )

q(z0:T | s0:T )

]
≥ Ez0:T∼q(·|s0:T )

[
log

p(a0:T , z0:T | s0:T )
q(z0:T | s0:T )

]
, (A.1)

where the last inequality follows from Jensen’s inequality.

From the probabilistic graphical model, we obtain that

q(z0:T | s0:T ) = q(z0 | s0:T )
T∏

t=1

q(zt | s0:T , z0:t−1)

= q(z0 | s0)
T∏

t=1

q(zt | st, z0:t−1). (A.2)

Besides, we have from the Bayes rule that

p(a0:T , z0:T | s0:T ) = p(a0, z0 | s0:T )
T∏

t=1

p(zt, at | s0:T , z0:t−1, a0:t−1)

= p(a0, z0 | s0:T )
T∏

t=1

p(zt | s0:T , z0:t−1, a0:t−1)p(at | s0:T , z0:t, a0:t−1)

= p(a0, z0 | s0)
T∏

t=1

p(zt | st, z0:t−1)p(at | st, zt)

= p(z0 | s0)
T∏

t=1

p(zt | st, z0:t−1)

T∏
t=0

p(at | st, zt). (A.3)
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Plugging (A.2) and (A.3) into (A.1) gives us

log p(a0:T | s0:T ) ≥ Ez0:T∼q(·|s0:T )

[
log

p(z0 | s0)
∏T

t=1 p(zt | st, z0:t−1)
∏T

t=0 p(at | st, zt)
q(z0 | s0)

∏T
t=1 q(zt | st, z0:t−1)

]

= Ezt∼q(·|st,z0:t−1)

[
T∑

t=0

log p(at | st, zt)− log
q(zt | st, z0:t−1)

p(at | st, zt)

]

= Ezt∼q(·|st,z0:t−1)

[
T∑

t=0

log p(at | st, zt)−DKL

(
q(zt | st, z0:t−1) || p(zt | st, zt−1)

)]
,

where p(zt|st, zt−1) is the prior distribution of the latent zt.

B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We use LLMs only to polish the paper, such as improving clarity and grammar, without altering its
substance or original ideas.
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