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Abstract

Multi-modal large language models (MLLMs)001
have demonstrated remarkable performance002
across various tasks. However, these models003
often prioritize capturing global information004
and overlook the importance of perceiving lo-005
cal information. This limitation hinders their006
ability to effectively understand fine-grained007
details and handle grounding tasks that ne-008
cessitate nuanced comprehension. Although009
some recent works have made strides in this,010
they have primarily focused on single-modality011
inputs. Therefore, we propose Grounding-012
GPT, an end-to-end language enhanced multi-013
modal grounding model. It is designed to per-014
form fine-grained grounding tasks for three015
modalities: image, video and audio. To en-016
hance the model’s performance, we adopt a017
coarse-to-fine training strategy, utilizing a three-018
stage training approach to progressively en-019
hance the model’s semantic awareness and fine-020
grained understanding capabilities. Addition-021
ally, we employ a diversified stage-specific022
dataset construction pipeline, developing a023
multi-modal, multi-granularity dataset tailored024
for training the model in different stages. Exten-025
sive experiments conducted on multiple multi-026
modal benchmarks demonstrate that our model027
achieves impressive fine-grained understand-028
ing of multi-modal inputs on grounding tasks029
while maintaining or improving its global com-030
prehension capabilities. We will make the code,031
dataset, and model publicly available to facili-032
tate further research in this area.033

1 Introduction034

Building upon the capabilities of large language035

models (LLMs), research on multi-modal large036

language models (MLLMs) has also advanced,037

enabling understanding across a broader range038

of modalities. Representative models such as039

LLaVA (Liu et al., 2023a) and MiniGPT-4 (Zhu040

et al., 2023) align visual features obtained from im-041

age encoders with LLM embedding space through042

Models
Grounding Modality

Multi E2E
Image Video Audio

LLaVA % % % " "

Video-LLaMA % % % " "

Shikra " % % % "

Ferret " % % " %

BuboGPT " % " " %

GroundingGPT " " " " "

Table 1: Comparison of multi-modal large language
models. "Grounding Modality" refers to the modalities
in which the model is capable of performing grounding
tasks. "Multi" refers to the model’s ability to engage in
multi-turn conversations with users. "E2E" refers to the
models that are designed to be end-to-end architecture
without the need for external modules.

visual instruction tuning, facilitating tasks such as 043

image captioning and visual question answering. 044

However, existing MLLMs primarily focus 045

on capturing global information while neglect- 046

ing the fine-grained local information in multi- 047

modal inputs. This limitation restricts their ap- 048

plicability in grounding tasks requiring a more de- 049

tailed understanding. Shikra (Chen et al., 2023b), 050

BuboGPT (Zhao et al., 2023) and Ferret (You et al., 051

2023) have explored techniques that enable finer 052

alignment and understanding of inputs. By consid- 053

ering local-level information, these models exhibit 054

enhanced performance in grounding or referring 055

tasks. These methods provide insights into fine- 056

grained understanding, but they are primarily lim- 057

ited to a single modality. There is still significant 058

potential for exploring fine-grained understanding 059

across other modalities. 060

To address the aforementioned issue, this paper 061

proposes GroundingGPT, a language enhanced 062

multi-modal grounding model, which is an end- 063

to-end unified large language model designed to 064

perform multi-modal grounding and understanding 065
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tasks across various modalities, including image,066

video, and audio. The comparison between our067

model and other models can be found in Table 1.068

Specifically, our model employs modality-specific069

adapters to map feature representations from indi-070

vidual encoders to the embedding space of LLMs.071

To incorporate spatial and temporal information,072

we directly represent coordinates and timestamps073

as textual numbers, eliminating the need for vocab-074

ulary expansion. For training GroundingGPT, we075

design a three-stage coarse-to-fine training strategy.076

In the first stage, we align each pre-trained multi-077

modal encoder with the LLM embedding space078

using modality-specific adapters. In the second079

stage, we aim to enable the model to capture fine-080

grained information, including coordinates and081

timestamps. In the third stage, we perform multi-082

granularity instruction tuning to refine the model’s083

responses. For each stage, we employed a stage-084

specific dataset construction pipeline to generate a085

diverse, multi-modal, and multi-granularity train-086

ing dataset.087

To summarize, our contributions are as follows:088

• We propose GroundingGPT, an end-to-end089

multi-modal grounding model that accurately090

comprehends inputs and possesses robust091

grounding capabilities across multi modali-092

ties, including image, video and audio. To093

the best of our knowledge, GroundingGPT is094

the first model to achieve multi-modal fine-095

grained understanding and grounding.096

• For training GroundingGPT, we employ a097

three-stage coarse-to-fine training process that098

enables the model to capture high-level se-099

mantic information and low-level fine-grained100

details simultaneously. To address the issue of101

limited data, we construct a diverse and high-102

quality multi-modal training dataset, which103

comprises a rich collection of multi-modal104

data enriched with fine-grained information.105

• Extensive experiments conducted on a wide106

range of MLLM benchmarks demonstrate the107

generality and effectiveness of Grounding-108

GPT in multi-modal grounding and under-109

standing tasks across various modalities.110

2 Related Work111

Multi-modal Large Language Models (MLLMs)112

Recently, large language models (LLMs) repre-113

sented by GPTs (Brown et al., 2020; OpenAI,114

2023) and LLaMA (Touvron et al., 2023) have 115

received extensive attention from researchers for 116

their remarkable performance in various natural 117

language processing tasks. Substantial progress 118

has been made in the field of MLLMs, which ex- 119

tend the support for multi-modal input and out- 120

put beyond language. These MLLMs typically 121

fine-tune pre-trained LLMs with multi-modal in- 122

structions, to enable understanding across multiple 123

modalities. Models such as LLaVA, MiniGPT-4, 124

and mPLUG-Owl (Ye et al., 2023) map image em- 125

beddings obtained from image encoders into the 126

LLM space. Similarly, video MLLMs like Video- 127

Chat (Li et al., 2023b), Video-LLaMA (Zhang 128

et al., 2023c), Video-Chatgpt (Maaz et al., 2023) 129

and Valley (Luo et al., 2023), as well as speech 130

MLLMs like SpeechGPT(Zhang et al., 2023b) 131

and LLaSM (Shu et al., 2023), acquire multi- 132

modal understanding capabilities through similar 133

approaches. In X-LLM (Chen et al., 2023a), each 134

modality is processed independently through ded- 135

icated branches for multi-modal input processing. 136

Pandagpt (Su et al., 2023) employs a unified em- 137

bedding space trained by ImageBind (Girdhar et al., 138

2023) to facilitate joint understanding of various 139

modal inputs. However, these models often fail to 140

adequately capture details within inputs. 141

MLLMs For Grounding Task Recently, there 142

has been a focus on training visual MLLMs to 143

achieve fine-grained image understanding and vi- 144

sual grounding. Approaches such as KOSMOS- 145

2 (Peng et al., 2023) and Shikra achieve this by 146

incorporating coordinates into the training data, en- 147

abling MLLMs to understand the location within 148

images. On the other hand, approaches like NExT- 149

Chat (Zhang et al., 2023a), GlaMM (Rasheed 150

et al., 2023) and Ferret enhance perception of fine- 151

grained information by introducing additional re- 152

gion encoder modules. VTimeLLM (Huang et al., 153

2023) demonstrates the capability to understand 154

fine-grained video moment and reason with respect 155

to time boundary. BuboGPT (Zhao et al., 2023) 156

enables cross-modal interaction between image, 157

audio, and language, facilitating fine-grained un- 158

derstanding of different modalities. 159

3 Methods 160

We introduce the overall architecture of the Ground- 161

ingGPT model in this section. Additionally, we 162

will present our three-stage coarse-to-fine training 163

strategy and data construction pipeline. 164
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Large Language Model

Text Token

Answer-Video: The baby push up 
the glasses and stretch her body in 
{0.16, 0.36} (1.6s-3.6s).

Answer-Image: The girl is sitting on the 
bed[0.000,0.289,1.000,1.000] and 
reading a book[0.024,0.488, 0.982, 
0,505] .

Prompt-Video: When did the baby 
push up the glasses and stretch her 
body in the video?

Z

0S 2S 4S 6S

Prompt-Image: What is this girl[0.460, 
0.000, 0.915, 0.995] doing in this image?

8S

Prompt-Audio: What is the source of 
the sound in this image?

Video Encoder Image Encoder Audio Encoder

Video Adapter Image Adapter Audio Adapter

Answer-Aud io :  The source of this 
sound in this scene is a chi ldren 
laughing[0.388,0.000, 0.885,1.000] .

Adapter

Text Tokenizer

Video Token Image Token Audio Token

Encoder

10S

Figure 1: The overall structure of GroundingGPT involves separate encoders and adapters for each modality. Blue
boxes represent video inputs, yellow boxes represent image inputs, and pink boxes represent audio inputs.

3.1 Model Architecture165

Figure 1 illustrates the overall architecture of the166

GroundingGPT model. Multi-modal inputs are167

processed through modality-specific encoders to168

extract features. These features are then mapped169

to the LLM embedding space using corresponding170

adapters. We will also introduce the representation171

of coordinates and timestamps.172

3.1.1 Image Branch173

We employ the pre-trained CLIP visual encoder174

ViT-L/14 (Radford et al., 2021) to extract image175

features. The encoded image is represented as a176

fixed-length embedding vector I ∈ RKI×dI . To177

align the image representation with the LLM em-178

bedding space, we use an MLP to map the obtained179

features to the dimensions of LLMs. The mapped180

embeddings are then concatenated with text embed-181

dings and used as input to LLMs, similar mapping182

methods are adopted for other modalities.183

3.1.2 Video Branch184

Considering the inherent information redundancy185

in videos and memory limitations, we uniformly186

sample M frames form the video. Each frame187

is processed by the image encoder, resulting in188

Vf = [v1, v2, . . . , vM ] where vi ∈ RKf×df repre-189

sents the embedding of the i-th frame. To preserve 190

temporal information, we introduce temporal posi- 191

tion encoding to the representation. The enhanced 192

representation is then fed into the Video Q-former 193

with the same structure as the Q-Former in BLIP- 194

2 (Li et al., 2023a) to aggregate video information, 195

which generates kV video embedding vectors of 196

dimensions dV . These vectors form the representa- 197

tion V ∈ RkV ×dV for the entire video. 198

3.1.3 Audio Branch 199

The audio branch follows a structure similar to the 200

video branch. We employ the ImageBind audio en- 201

coder, which processes 2-second audio clips with a 202

16kHz sampling rate and converts them into spec- 203

trograms using 128 mel-spectrogram bins. We sam- 204

ple N 2-second segments from the original audio 205

and transform each segment into a vector, resulting 206

in As = [a1, a2, . . . aN ], where ai ∈ RKs×ds rep- 207

resents the embedding of the i-th aduio segment. 208

We incorporate temporal position encoding into As. 209

Finally, we obtain a fixed-length audio representa- 210

tion sequence denoted as A ∈ RkA×dA using the 211

audio Q-former like video branch. 212

3.1.4 Spatial-temporal Representation 213

We represent the bounding box in an image us- 214

ing four relative coordinate values: [x1, y1, x2, y2]. 215
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Multi-granularity Instruction Tuning DatasetFine-grained Alignment Tuning Dataset 

GPT

Task Random Template

Task-specific
Question Pool

Public Dataset Single-turn
Conversation

Filtering

Public Dataset System Prompt

GPT Single/Multi-turn
Conversation

Human In-context
Examples

Annotation Random

 Select  Template

Q: What part of this image corresponds to a woman in a white tank top eating a salad?

A: [0.000, 0.136, 0.505, 0.858].

Q: What is the time when person begins to play on a phone is observed in the footage?

A: In the time period {0.71, 1.0}.

Q: What is the older man[0.424, 0.126, 0.848, 0.872] doing?

A: He is tending to cooking hotdogs on a backyard grill.

Q: Where is the hotdog[0.180, 0.620, 0.392, 0.814] being grilled?

A: The hotdogs are being grilled on a backyard grill[0.006, 0.344, 0.490, 0.864].

Filtering

Q: What is producing the sound in this given image?

A: In this image, the given audio might originates from playing cello[0.397, 0.237, 0.688, 

0.772].

Q: What happens during the time period{0.01,0.24}?

A: A young woman is seen standing in a room and leads into her dancing.

Q: When does the woman start dancing around the room?

A: The woman starts dancing around the room in {0.21,0.74}}.

Figure 2: The data construction pipeline and examples for the last two training stages. To simplify, the multi-turn
conversation examples only showcase two rounds of question-answer interactions.

These values correspond to the upper left corner216

point and the lower right corner point of the bound-217

ing box. Each value is rounded to three decimal218

places. We concatenate this textual representation219

after the description related to the bounding box.220

Similarly, for representing timestamps, we use two221

two-digit decimals {t1, t2} to indicate the relative222

values of the start and end times of a time segment223

with respect to the total duration. This representa-224

tion allows us to train the model without requiring225

additional vocabulary expansion or training. Exam-226

ples of the training dataset are shown in Figure 2.227

3.2 Coarse-to-Fine Training and Dataset228

We employ a three-stage coarse-to-fine training229

strategy to train the model, while constructing spe-230

cific datasets for each stage.231

3.2.1 Multi-modal Pre-training232

This stage focus on enabling the model to compre-233

hend multi-modal inputs and develop a high-level234

semantic perception of the input. During the train-235

ing process, the LLM and the encoders for each236

modality remain frozen, while only the adapters237

for each modality are trained.238

Training Dataset We utilize public pretraining239

datasets as the primary source of our data. The240

training data for the image and video modalities241

is LLaVA-Pretrain-595k and Valley-Pretrain-703k,242

respectively. To construct the audio data, we adopt243

a similar approach as in LLaVA, leveraging the244

Wavcaps (Mei et al., 2023) dataset. Each sample is245

accompanied by a sampled instruction that requires246

the model to provide a concise description of the247

audio to construct a single-turn conversation.248

3.2.2 Fine-grained Alignment Tuning 249

The second stage aims to enable the model to com- 250

prehend more detailed information, including co- 251

ordinates and timestamps. Through training in this 252

stage, the model achieves impressive results in var- 253

ious grounding tasks, establishing a more compre- 254

hensive and refined understanding ability. During 255

the training process, the encoders for each modality 256

are frozen, while the LLM and adapters are trained. 257

Training Dataset The training data used in this 258

stage includes the spatial-temporal representation 259

mentioned in Section 3.1.4. To address the scarcity 260

of fine-grained multi-modal data, we construct a 261

multi-modal dataset specifically designed for this 262

stage. The dataset is primarily obtained by convert- 263

ing publicly available datasets. As depicted in the 264

left part of Figure 2, task descriptions are provided 265

to GPT-3.5 to generate a task-specific question pool. 266

For each data sample, a question is randomly se- 267

lected from the pool, and templates are used to con- 268

vert the sample’s format, resulting in a single-turn 269

conversation. To ensure the quality of the dataset, 270

we carefully select the data by eliminating samples 271

that do not conform to the desired format or criteria. 272

For the image modality, we utilize visual ground- 273

ing datasets such as RefCOCO (Kazemzadeh et al., 274

2014), RefCOCO+ (Kazemzadeh et al., 2014), Ref- 275

COCOg (Mao et al., 2016) and Visual Genome (Kr- 276

ishna et al., 2017b) to construct the datasets. For the 277

video modality, video temporal grounding datasets 278

such as DiDeMo (Anne Hendricks et al., 2017), 279

HiREST (Zala et al., 2023) are utilized for fine- 280

grained alignment. Regarding the sound local- 281

ization task, we employ the VGGSS (Chen et al., 282
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2021) dataset for training. All these datasets are283

transformed into single-turn conversation format284

following the aforementioned pipeline for training.285

3.2.3 Multi-granularity Instruction Tuning286

After the training in the first two stages, the model287

has acquired a strong understanding and grounding288

capability. This stage aims to enable the model289

to generate responses that better align with hu-290

man preferences and improve multi-modal interac-291

tions. We train the model using instruction-tuning292

datasets at different granularities. Similar to the293

second stage, the encoders for each modality are294

frozen, while the LLM and adapters are trained.295

Training Dataset The data utilized in this stage296

consists of high-quality fine-grained instruction-297

tuning dataset we construct and public instruction-298

tuning dataset. As illustrated in the right part of299

Figure 2, we select a subset of public datasets for300

human annotation to create in-context examples.301

It assists in guiding GPT-3.5 to follow similar pat-302

terns when generating instruction-tuning dataset.303

Subsequently, task-specific system prompts and304

randomly selected examples are input to GPT-3.5305

to generate single/multi-turn conversations. For306

the image modality, we construct fine-grained307

datasets using the Flickr30K Entities (Plummer308

et al., 2015) dataset, including detailed descrip-309

tions and conversations. To enhance the model’s310

fine-grained reasoning capability, we utilize the311

VCR (Zellers et al., 2019) dataset to construct a312

reasoning dataset with coordinates. For the video313

modality, we constructed datasets with temporal314

information by incorporating datasets from vari-315

ous video tasks such as DiDeMo (Anne Hendricks316

et al., 2017) and Activitynet Captions (Krishna317

et al., 2017a), along with other relevant sources.318

The public instruction-tuning datasets we use in-319

clude LLaVA-v1.5-mix665k, Valley-Instruct-73k,320

Videochat-Instruct-11k, and an audio instruction-321

tuning dataset constructed using Clotho (Drossos322

et al., 2020) dataset. For more details about the323

datasets, please refer to appendix B.324

During training, in order to prevent catastrophic325

forgetting in subsequent training stages, we adopt326

a sampling strategy that incorporates training data327

from previous stages. The training process employs328

a consistent training objective as follows:329

L(θ) =− E(x,y)∼Dcurrent [log p(y|x)]
− α · E(x,y)∼Dprevious [log p(y|x)],

330

where Dcurrent denotes the dataset in current train- 331

ing stage, Dprevious denotes the dataset in previous 332

training stage and α denotes the sampling rate. In 333

the first training stage, α is set to 0. 334

4 Experiments 335

4.1 Experimental Setup 336

We employ Vicuna-v1.5 (Chiang et al., 2023) as 337

the language model. Each training stage lasts for 338

one epoch. During the training process, all images 339

were padded to a square shape and resized to a 340

resolution of 336× 336. For each video, 64 frames 341

were sampled, and for each audio, three 2-second 342

segments were sampled and processed. For more 343

details on the hyper-parameter settings, please refer 344

to the appendix A. 345

4.2 Quantitative Evaluation 346

We conducted extensive experiments for the effec- 347

tiveness of GroudingGPT in multi-modal ground- 348

ing and understanding tasks. 349

4.2.1 Multi-modal Grounding 350

In this section, we demonstrate that our model 351

achieves impressive fine-grained understanding of 352

multi-modal inputs on grounding tasks. 353

Image Grounding To assess the image ground- 354

ing capability of the GroundingGPT model, we 355

conduct experiments on the widely used Reference 356

Expression Understanding (REC) task. The REC 357

task requires the model to locate the bounding box 358

corresponding to a given text reference expression. 359

Our experiments involve three datasets: RefCOCO, 360

RefCOCO+ and RefCOCOg. The baselines 361

used for comparing include previous end-to-end 362

multi-modal models UNITER (Chen et al., 2020), 363

MDETR (Kamath et al., 2021), UniTAB (Yang 364

et al., 2022), and the LLM-based multi-modal 365

grounding models KOSMOS-2, Shikra, NExT- 366

Chat and Ferret. For GroundingGPT model, we 367

use a unified prompt like "Output the coordinate 368

of <exp>", where "<exp>" represents the reference 369

expression. The results on the REC task is pre- 370

sented in Table 2. GroundingGPT demonstrates 371

remarkable performance across multiple datasets 372

and performs comparably to specialized fine-tuned 373

models or MLLMs that incorporate additional im- 374

age region perception modules. 375

Video Grounding To evaluate the video ground- 376

ing capability of GroundingGPT, we conduct ex- 377
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Models LLM Size
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

UNITER - 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67
MDETR - 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
UniTAB - 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97

KOSMOS-2 1.6B 52.32 57.42 47.26 45.48 50.73 42.24 60.57 61.65
Shikra 7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19

NExT-Chat* 7B 85.50 90.00 77.90 77.20 84.50 68.00 80.10 79.80
Ferret* 7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76

GroundingGPT 7B 88.02 91.55 82.47 81.61 87.18 73.18 81.67 81.99

Table 2: Performance comparison on the referring expression comprehension(REC) task. "*" indicates that the
model employs additional image region perception modules.

Models
Charades-STA

R@1(IoU=0.5) R@1(IoU=0.7)

Video-LLaMA 3.8 0.9
VideoChat 3.3 1.3

VideoChatGPT 7.7 1.7

GroundingGPT 29.6 11.9

Table 3: Performance comparison on the temporal
grounding task. All the models have the same LLM
size of 7B.

periments on the temporal video grounding task.378

For the task, we employed datasets from Charades-379

STA (Gao et al., 2017). The predicted time seg-380

ments are compared with the corresponding ground381

truth time segments to calculate the IoU. The eval-382

uation metric used is "R@1, IoU = m", which mea-383

sures the percentage of correctly retrieved moments384

with an IoU greater than m. We set the values of385

m as 0.5, 0.7 to assess different levels of accuracy.386

As shown in Table 3, GroundingGPT exhibits ex-387

cellent performance in temporal video grounding388

task compared to previous video MLLMs, which389

primarily focuses on entire video understanding.390

4.2.2 Multi-modal Understanding391

We validate that GroundingGPT can maintain or392

improve the multi-modal understanding ability by393

introducing grounding tasks. Especially, it can394

effectively suppress object hallucination.395

Image Understanding We evaluate the image396

understanding capability of GroundingGPT on five397

question-answering benchmarks and four recent398

proposed benchmarks specifically designed for vi-399

sion instruction tuning. These benchmarks provide 400

a comprehensive assessment of the model’s capa- 401

bilities using diverse evaluation metrics. The exper- 402

imental results presented in Table 4 demonstrate 403

that GroundingGPT achieves state-of-the-art per- 404

formance on six benchmarks and remains highly 405

competitive on other three benchmarks. Addition- 406

ally, GroundingGPT exhibits advanced capabilities 407

compared to larger-scale grounding MLLMs, such 408

as Shikra-13B. 409

Video Understanding In Table 5, we provide a 410

quantitative assessment of the video question an- 411

swering capabilities of MLLMs on three datasets: 412

MSVD-QA (Chen and Dolan, 2011), MSRVTT- 413

QA (Xu et al., 2016) and ActivityNet-QA (Yu et al., 414

2019). GroundingGPT consistently outperforms 415

other baselines, demonstrating its advanced video 416

understanding capabilities. Notably, Grounding- 417

GPT surpasses the powerful baseline of Valley by 418

2.4%, 6.9% and 1.8% on MSVD-QA, MSRVTT- 419

QA and ActivityNet-QA, respectively. 420

Object Hallucination We conduct an evaluation 421

of MLLMs regarding their object hallucination in 422

Table 6. GroundingGPT achieves the highest per- 423

formance across all three sampling subsets. No- 424

tably, GroundingGPT-7B outperforms larger mod- 425

els such as InstructBLIP-13B, on the challeng- 426

ing Adversarial subset, GroundingGPT exhibits 427

14.07% increase in accuracy and 8.18% increase in 428

f1-score, while experiencing a 27.60% decrease in 429

the "Yes" metric. Additionally, on the "unanswer- 430

able" subset of VisWiz benchmark, GroundingGPT 431

significantly improves from 67.8% to 84.0% com- 432

pared to LLaVA-1.5. This improvement reveals 433

that our model not only acquires a high-level se- 434
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Models LLM Size VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB LLaVAW

BLIP-2 13B 41.0 41 19.6 61 42.5 85.3 1293.8 - 38.1
InstructBLIP 7B - 49.2 34.5 60.5 50.1 - - 36 60.9
InstructBLIP 13B - 49.5 33.4 63.1 50.7 78.9 1212.8 - 58.2

Shikra 13B 77.4 - - - - - - 58.8 -
LLaVA-1.5 7B 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 63.4

GroundingGPT 7B 78.7 62.1 55.1 78.7 55.2 87.4 1454.2 63.8 70.9

Table 4: Comparison of MLLMs on image understanding benchmarks. Benchmark names are abbreviated due
to space limits. VQA-v2 (Goyal et al., 2017); GQA (Hudson and Manning, 2019); VisWiz (Gurari et al., 2018);
SQAI:ScienceQA-IMG (Lu et al., 2022); VQAT: TextVQA (Singh et al., 2019); POPE (Li et al., 2023c); MME (Fu
et al., 2023); MMB:MMBench (Liu et al., 2023b); LLaVAW: LLaVA-Bench (In-the-Wild) (Liu et al., 2023a).

Models LLM Size
MSVD-QA MSRVTT-QA ActivityNet-QA

Accuracy Score Accuracy Score Accuracy Score

VideoChat 7B 56.3 2.8 45.0 2.5 26.5 2.2
Video-LLaMA 7B 51.6 2.5 29.6 1.8 12.4 1.1

Video-ChatGPT 7B 64.9 3.3 49.3 2.8 35.2 2.7
Valley 7B 65.4 3.4 45.7 2.5 42.9 3.0

GroundingGPT 7B 67.8 3.7 51.6 3.1 44.7 3.2

Table 5: Comparison of MLLMs on video understanding benchmarks. We adopt the evaluation methodology in
Video-ChatGPT (Maaz et al., 2023) for evaluation.

Models LLM Size
Random Popular Adversarial

Accuracy F1-Score Yes Accuracy F1-Score Yes Accuracy F1-Score Yes

LLaVA 7B 72.16 78.22 76.29 61.37 71.52 85.63 58.67 70.12 88.33
mPLUG-Owl 7B 53.97 68.39 95.63 50.90 66.94 98.57 50.67 66.82 98.67
MiniGPT-4 13B 79.67 80.17 52.53 69.73 73.02 62.20 65.17 70.42 67.77

InstructBLIP 13B 88.57 89.27 56.57 82.77 84.66 62.37 72.10 77.32 73.03
Shikra 7B 86.90 86.19 43.26 83.97 83.16 45.23 83.10 82.49 46.50

GroundingGPT 7B 89.79 89.22 43.13 88.23 87.38 43.23 86.17 85.50 45.43

Table 6: Results on the POPE benchmark for object hallucination evalaution. "Yes" represents the probability of
positive answers to the given question.

mantic understanding of the overall image but also435

develops the ability to comprehend local details.436

This comprehensive understanding of the image437

enables the model to effectively suppress the occur-438

rence of hallucinations.439

4.2.3 Qualitative Results440

We provide qualitative results to demonstrate the441

multi-modal understanding and grounding capabil-442

ities of our model. Figure 3 showcases examples443

illustrating the performance of GroundingGPT in444

multi-modal grounding tasks. More examples are445

available in appendix E. These results indicate that446

GroundingGPT excels in fine-grained multi-modal 447

grounding tasks while maintaining a comprehen- 448

sive understanding of multi-modal inputs. 449

4.3 Ablation Study 450

To validate the effectiveness of our approach, we 451

conducted experiments on the REC task to assess 452

the impact of training strategy, model architecture, 453

and size on the results. 454

Training Strategy As shown in Table 7, it is ev- 455

ident that including fine-grained training data in 456

the first stage results in a decline in performance. 457
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Please describe the image and include the 
object positions in [x0, y0, x1, y1] format.

What breed is the dog, please tell me something 
about it.

The dog in the middle is a Shiba Inu. Shibas 
are a Japanese breed of dog, characterized 
by their distinctive, thick double coat, which 
comes in various colors such as red, white, or 
black. They are known for their independent 
and sometimes aloof nature, but they are also 
loyal and affectionate with their owners. In the 
image, the Shiba Inu is sitting next to the other 
two dogs, which are of different breeds, and it 
is eating food from its plate.

Where is the sound's point of emission in this image? 
Include the object positions in [x0, y0, x1, y1] format.

Where in the image is the sound in the audio coming from? 
Output the coordinates of the sound source.

The sound’s position of emission is from a small bird 
perched on a rcok.

The sound in the audio is coming from the orange cat 
wearing sunglasses. The cat is laying on a float in a pool.

(An audio of a bird singing.)

(An audio of a cat meowing.)

Write a summary of this video.

When does the dog use its paws to push off and ride the 
skateboard?

In this video, a dog is seen attempting to r ide a 
skateboard. The dog is initially hesitant and unsure of 
how to balance on the skateboard. However, with 
determination, the dog manages to find its balance and 
starts riding the skateboard. The dog’s movements are a 
bit wobbly at first, but it gradually gains confidence and 
starts to ride smoothly. The dog’s excitement is evident 
as it enjoys the experience of riding the skateboard. 
Despite the initial hesitation, the dog’s perseverance 
pays off, and it successfully rides the skateboard for a 
short  distance. This video showcases the dog’s 
determination and ability to overcome challenges, as 
well as its enjoyment of the skateboarding experience.

The dog uses its paws to push off and ride the skateboard 
in {0.42,0.58}.

Please give me the timestamp when the dog turn around to 
look at the camera?

The dog turns around to look at the camera in {0.09,0.13}.

Three dogs are sitting on the floor in front of 
three plates of food. They seem to be begging 
for food, possibly from their owners.

Figure 3: Qualitative results of GroundingGPT on multi-modal grounding tasks.

S1 S2 S3
RefCOCO

val testA testB

C+F F C+F 82.43 86.87 75.37
C F C+F 84.68 88.88 78.94

Table 7: Ablation studies of the training strategy on
the REC task. The S1 to S3, denoted as stage 1 to
stage 3, represent the training data used in each stage.
"C" represents coarse-grained data, while "F" represents
fine-grained data. To quickly illustrate the performance,
we adopt a simple training setting (224 × 224 simage
resolution and linear adapter) as the toy model.

This can be attributed to the model’s limited un-458

derstanding of the images at this early stage. The459

introduction of fine-grained data during training460

may introduce interference and hinder the model’s461

learning. This finding further validates the effec-462

tiveness of our coarse-to-fine training strategy.463

Model Architecture and Size As shown in Ta-464

ble 8, the top two rows demonstrates that replacing465

the linear layer with an MLP in the adapter leads466

to performance enhancement. This improvement467

can be attributed to the preservation of more com-468

prehensive image information and the improved469

mapping of image embeddings to the LLM space.470

Besides, increasing the LLM size leads to an im-471

provement. This can be attributed to the fact that472

larger language model possess richer knowledge473

LLM Size Adapter
RefCOCO

val testA testB

7B Linear 86.01 90.45 80.43
7B MLP 88.02 91.55 82.47
13B MLP 88.26 92.05 82.65

Table 8: Ablation studies of the model architecture,
LLM size on the REC task.

and stronger modeling capabilities. 474

5 Conclusion 475

In this paper, we introduce GroundingGPT, a uni- 476

fied end-to-end multi-modal grounding model. To 477

the best of our knowledge, this is the first multi- 478

modal large language model capable of performing 479

multi-modal grounding and understanding tasks. 480

We adopt a three-stage coarse-to-fine training strat- 481

egy, accompanied by the construction of stage- 482

specific training datasets, to effectively train the 483

model. Our model demonstrates remarkable perfor- 484

mance in multi-modal grounding and understand- 485

ing tasks. Extensive experiments conducted on a 486

wide range of MLLM benchmarks confirm the ef- 487

fectiveness and generality of our model. To foster 488

further advancements in this field, we make our 489

model, code, and dataset openly accessible. 490
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6 Limitations491

Sampling Strategy Due to computational mem-492

ory constraints, GroundingGPT adopts a sampling493

approach when processing videos and audios. How-494

ever, this method inevitably results in some loss of495

crucial information, especially when dealing with496

longer videos. One future research direction is497

to explore better modeling approaches for longer498

videos and minimize information loss.499

Cross-modal Inputs At present, the majority of500

the training data primarily consists of single-modal501

inputs. However, further exploration is needed to502

address the challenges posed by multi-modal inputs.503

In the future, we plan to investigate methods for504

accomplishing grounding tasks in the context of505

simultaneous multi-modal inputs. For instance, we506

aim to simultaneously perform spatial and temporal507

grounding on input videos. Additionally, we will508

annotate such data to foster advancements in this509

field.510

Grounding Ability Despite achieving promising511

results in multi-modal grounding tasks, Grounding-512

GPT currently lacks the capability to output more513

fine-grained grounding results such as segmenta-514

tion masks. In future work, we plan to expand515

the grounding tasks to support a broader range of516

grounding requirements.517
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A Implementation details779

We provide more details of our experiment con-780

figuration for reproducing our model. We provide781

hyper-parameters for all stages in Table 9.

Settings Stage1 Stage 2 Stage3

batch size 64 16 8
learning rate 1e-3 2e-5 2e-5

learning schedule Cosine decay
warm up ratio 0.03 0.03 0.03
weight decay 0.0 0.0 0.0

epoch 1 1 1
bf16 ! ! !

tf32 ! ! !
grad accumulate 1 2 2
DeepSpeed stage ZeRO2

GPUs 8×A100

Table 9: The hyper-parameters for model training.
782

B Training Dataset Source783

In Table 10, we provide a comprehensive list of the784

datasets used in constructing our training dataset.785

This includes the data utilized in all three stages.786

It should be noted that a significant portion of the787

data needs to be constructed in the desired format788

using publicly available data. Please refer to the789

section 3.2 for specific guidance on this matter.790

C Dataset Construction Templates791

Table 11 presents the templates utilized for various792

tasks during the first two training stages. For the793

sake of demonstration, we provide three examples794

of instructions for each task.795

D Fine-grained Instruction-tuning796

Dataset Generation Prompts797

As shown in section 3.2.3, we use GPT-3.5 to gen-798

erate the instruction-tuning dataset. For the image799

modality, in Figure 4, we provie the prompt we800

used to generate the detailed description dataset. In801

Figure 5, we provie the prompt we used to generate802

the conversation dataset. For the video modality,803

we provie the prompt we used to generate the video804

grounding instruction-tuning dataset in Figure 6.805

E More Visualization806

To demonstrate the performance of GroundingGPT807

in multi-modal grounding and understanding tasks,808

we present more visualizations in this section. Fig- 809

ure 7 and Figure 8 showcase the capability of the 810

GroundingGPT model in multi-modal grounding 811

tasks. Figure 9, Figure 10 and Figure 11 present the 812

capability of GroundingGPT model in multi-modal 813

understanding tasks. 814
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Training Stage Modality Dataset source

Stage1

Image LLaVA-Pretrain-595k

Video Valley-Pretrain-703k

Audio Wavcaps

Stage2

Image RefCOCO, RefCOCOg, RefCOCO+, Visual Genome

Video DiDeMo, HiREST, Charades-STA, Didemo

Audio VGGSS

Stage3

Image LLava-1.5-mix665k, Flickr30k Entities, VCR

Video Valley-Instruct-73k, Videochat-Instruct-11k, Activitynet Captions

Audio Clotho

Table 10: The publicly available dataset sources used for constructing the training data.
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Task Template examples

Image Captioning

Provide a brief description of the given image.

Write a terse but informative summary of the picture.

Share a concise interpretation of the image provided.

REG

What object is present within the specified region<region>?

Can you identify the item within the region<region>?

Describe the object located within the region<region>.

REC

In this image, where is <exp> located?

Can you identify the position of <exp> within this image?

Please describe the location of <exp> in this image.

Object Attribute

What color is this <exp>?

How many <exp> are visible within this image?

How mang <exp> are there in the image?

Video Captioning

Relay a brief, clear account of the video shown.

Offer a succinct explanation of the footage presented.

Present a compact description of the clip’s key features.

Video Dense Captioning

Describe the content shown in the video clip<time> of this video.

What can you tell me about the video segment<time> in this video?

Can you provide a description of the video snippet<time>?

Temporal Grounding

When did <event> occur in the video?

Tell me the timestamp when <event> happened.

At what time does <event> take place in the video?

Audio Captioning

Analyze the audio and provide a description of its content.

Examine the audio and describe the different sounds present.

Provide a detailed summary of the auditory elements in the audio clip.

Sound Localization

What is the cause of the sound in this given image?

Can you pinpoint the source of the sound in this image?

Describe the location of the sound’s origin in this image.

Table 11: Instruction templates used to construct the training dataset in the first two stages. The templates include
several placeholders: ’<region>’ represents the coordinates of a region in an image, ’<exp>’ represents the expression
correspond to an image region, ’<time>’ represents a time segment in a video, and ’<event>’ represents an event to
be located in a video. During the dataset construction process, these placeholders are replaced with corresponding
information.
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System Message
You are an AI visual assistant that can analyze a single image. You receive several sentences, each 
describing the same image you are observing. In addition, specific object locations within the image 
are given, along with detailed coordinates. These coordinates are in the form of bounding 
boxes,represented as [x1, y1, x2, y2], with floating numbers ranging from 0 to 1. These values 
correspond to the top left x, top left y, bottom right x, and bottom right y.

The task is to create an accurate description related to the image based on the information. The 
description should involve mentioning the position of objects in the image. The position can be 
represented in the format [x1, y1, x2, y2]. Description should be accurate and concise, limited to 100 
words.

Here are some additional requirements about generated descriptions:
1. In description, you need to mention bounding box coordinates to refer to some objects or regions, 
instead of directly say the object name or describing the regions in text.
2. Avoid introducing objects that do not exist in the original descriptions and avoid including 
excessive subjective perceptions to prevent creating illusions.
3. Only describe what you are certain about, and avoid providing descriptions that may be 
ambiguous or inaccurate.
4. The boxes provided in different sentences may have some coordinates that are the same or very 
close, which could be because different expressions refer to the same object. You should analyze 
and avoid describing a single object within a bounding box as multiple distinct entities.
5. The number of words in the output description should not exceed 100 words. Keep it as concise 
as possible. You do not need to include everything in several descriptions. Choose the output you 
think is the most important.

In-context Example
User:
{'sentence': 'Two young guys with shaggy hair look at their hands while hanging out in the yard .', 
'boxes': {'Two young guys': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]], 'shaggy hair': 
[[0.538, 0.248, 0.616, 0.31], [0.592, 0.226, 0.718, 0.29]], 'their hands': [[0.517, 0.366, 0.592, 0.404], 
[0.471, 0.394, 0.571, 0.448]]}}

{'sentence': 'Two young , White males are outside near many bushes .',
'boxes': {'Two young , White males': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]], 'many 
bushes': [[0.0, 0.438, 0.631, 0.944], [0.826, 0.428, 0.994, 0.672]]}}
 
{'sentence': 'Two men in green shirts are standing in a yard .', 
'boxes': {'Two men': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]], 'green shirts': [[0.619, 
0.286, 0.769, 0.486], [0.517, 0.31, 0.649, 0.47]]}}

{'sentence': 'A man in a blue shirt standing in a garden .', 
'boxes': {'A man': [[0.589, 0.218, 0.781, 0.744]], 'a blue shirt': [[0.619, 0.286, 0.769, 0.486]]}}

{'sentence': 'Two friends enjoy time spent together .', 
'boxes': {'Two friends': [[0.474, 0.248, 0.655, 0.668], [0.589, 0.218, 0.781, 0.744]]}}

Assistant:
In the image, two young men[0.474, 0.248, 0.655, 0.668][0.589, 0.218, 0.781, 0.744] with shaggy 
hair[0.538, 0.248, 0.616, 0.310][0.592, 0.226, 0.718, 0.290] are seen in a yard surrounded by 
bushes[0.000, 0.438, 0.631, 0.944][0.826, 0.428, 0.994, 0.672]. They are focused on their hands[0.517, 
0.366, 0.592, 0.404][0.471, 0.394, 0.571, 0.448]. It seems that they enjoy time spent together.

Figure 4: The system message and in-context example used for generating detailed description dataset.
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System Message
You are an AI visual assistant that can analyze a single image. You receive several sentences, each 
describing the same image you are observing. In addition, specific object locations within the image are 
given, along with detailed coordinates. These coordinates are in the form of bounding boxes,represented as 
[x1, y1, x2, y2], with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left 
y, bottom right x, and bottom right y.

The task is to create question-answer pairs related to the image based on the information. The conversation 
should involve mentioning the position of objects in the image. The position can be represented in the 
format [x1, y1, x2, y2]. The questions and answers should be limited to 50 words. 

Here are some additional requirements about generated conversations:
1. In conversation , you need to mention bounding box coordinates to refer to some objects or regions, 
instead of directly say the object name or describing the regions in text.
2. Avoid introducing objects that do not exist in the original descriptions and refrain from including 
excessive subjective perceptions to prevent creating illusions.
3. Only describe what you are certain about, and avoid providing descriptions that may be ambiguous or 
inaccurate.
4. The boxes provided in different sentences may have some coordinates that are the same or very close, 
which could be because different expressions refer to the same object. You should analyze and avoid 
describing a single object within a bounding box as multiple distinct entities.
5. The questions and answers should be limited to 50 words.  Keep it as concise as possible. 

In-context Example
User:
{'sentence': 'A child in a pink dress is climbing up a set of stairs in an entry way .', 
'boxes': {'A child': [[0.019, 0.302, 0.285, 0.678]], 'a pink dress': [[0.019, 0.38, 0.227, 0.596]], 'a set of stairs': 
[[0.0, 0.636, 0.304, 0.958]], 'an entry way': [[0.099, 0.052, 0.288, 0.614]]}}

{'sentence': 'A little girl in a pink dress going into a wooden cabin .', 
'boxes': {'A little girl': [[0.019, 0.302, 0.285, 0.678]], 'a pink dress': [[0.019, 0.38, 0.227, 0.596]]}}

{'sentence': 'A little girl climbing the stairs to her playhouse .', 
'boxes': {'A little girl': [[0.019, 0.302, 0.285, 0.678]], 'the stairs': [[0.0, 0.636, 0.304, 0.958]], 'her playhouse': 
[[0.069, 0.014, 0.997, 0.774]]}}

{'sentence': 'A little girl climbing into a wooden playhouse .', 
'boxes': {'A little girl': [[0.019, 0.302, 0.285, 0.678]], 'a wooden playhouse': [[0.069, 0.014, 0.997, 0.774]]}}

{'sentence': 'A girl going into a wooden building .',
'boxes': {'A girl': [[0.019, 0.302, 0.285, 0.678]]}}

Assistant:
{'question':'What clothes is the girl[0.019, 0.302, 0.285, 0.678] wearing?',
'answer':'The girl is wearing a pink dress[0.019, 0.380, 0.227, 0.596].'}

{'question':'Where is the little girl[0.019, 0.302, 0.285, 0.678] going?',
'answer':'She is climbing into a wooden playhouse[0.069, 0.014, 0.997, 0.774].'}

{'question':'What is the child[0.019, 0.302, 0.285, 0.678] doing?',
'answer':'She is climbing up a set of stairs[0.000, 0.636, 0.304, 0.958].'}

{'question':'Why is this girl climbing the stairs?',
'answer':'She is going to enter hey playhouse[0.069, 0.014, 0.997, 0.774].'}  

Figure 5: The system message and in-context example used for generating conversation dataset.
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System Message
You are an AI visual assistant that can analyze a single video. You will receive descriptions of several 
segments of this video along with corresponding timestamps for each description, indicating the time 
range of the corresponding video segment. These timestamps are in the form of bounding boxes, 
represented as {t1,t2} with floating numbers ranging from 0 to 1. These values correspond to the start 
time of the video segment is represented by t1, and the end time is represented by t2. Design a 
conversation between you and a person asking about this video. Ask three to ten questions and give 
corresponding answers. The answers should be in a tone that a visual AI assistant is seeing the video 
and answering the question. 

Here are some additional requirements about generated questions and answers:
1. Only include questions that have definite answers.
2. Always answer as if you are directly looking at the video.
3. Make the question as diverse as possible. Include questions asking about the visual content of the 
video, including the events within the video segments, the order in which different events occur, and 
other related details.
4. Avoid introducing objects that do not exist in the original descriptions and refrain from including 
excessive subjective perceptions to prevent creating illusions.
5. The number of words in the question and answer should not exceed 50.

In-context Example
User:
{'A young woman is seen standing in a room and leads into her dancing.': '{0.01, 0.24}'}

{'The girl dances around the room while the camera captures her movements.': '{0.21, 0.74}'}

{'She continues dancing around the room and ends by laying on the floor.': '{0.68, 0.96}'}
Assistant:
{'question':'What happens during the time period{0.01,0.24}?',
'answer':'A young woman is seen standing in a room and leads into her dancing.'}

{'question':'When does the women start dancing around the room?',
'answer':'The girl starts dancing around the room in {0.21,0.74}'}

{'question':'How does the girl end her dance routine?',
'answer':'The girl ends her dance routine by laying on the floor, which occurs in {0.68,0.96}.'}

Figure 6: The system message and in-context example used for generating video grounding dataset.
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Please describe the image and include the object positions in [x0, 
y0, x1, y1] format.

A man in a blue shirt is sitting on a bench next to a woman in a blue 
shirt. They are in front of a store. It seems like they are resting and 
enjoying their time together.

What shoes is this woman wearing?

The woman is wearing yellow boots.

Are there any cars in this image?

Yes, there are cars in the background.

Figure 7: Examples of GroundingGPT’s grounding capability in image modality.
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The girl turns over the book in {0.39,0.45}.

In the image, a dog is running through a grassy field. The dog is 
running with its mouth open, creating a sound of running and 
barking. The scene is set in a park or a field, with  in the 
background.

Where is the sound's point of emission in this image? Include the 
object positions in [x0, y0, x1, y1] format.

(An audio of dog barking.)

When does the girl turn over the book?

The baby push up the glasses and stretch her body in {0.16, 0.36}.

When does the baby push up the glasses and stretch her body in 
the video?

Figure 8: Examples of GroundingGPT’s grounding capability in video and audio modality.
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What are the things I should be cautious about when I visit here?

When visiting this picturesque location with a wooden dock 
overlooking a calm lake, there are a few things to be cautious 
about. First, the wooden dock may be slippery, especially if it is 
wet or covered in algae, so it is essential to be careful while 
walking on it. Second, the lake's calmness may give a false 
sense of security, so it is crucial to be aware of the water depth 
and any potential hazards, such as submerged rocks or sudden 
changes in water currents. Lastly, be mindful of the surroundings, 
as there may be other visitors or wildlife in the area, and respect 
their space to ensure a safe and enjoyable experience for 
everyone.

In the image, a man is ironing clothes while standing on the back 
of a moving yellow taxi cab. This is funny because it is an unusual 
and unexpected sight, as people typically iron clothes in a more 
private setting, such as at home or in a laundry room. Additionally, 
the man's actions are not typical for someone riding in a taxi cab, 
as they are more focused on reaching their destination or 
engaging in conversation with the driver. The combination of 
these elements creates a humorous and surprising scene.

What is funny within this image?

Figure 9: Examples of GroundingGPT’s understanding capability in image modality.
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Write a concise summary of the video clip.

In this captivating video, a drone takes us on a mesmerizing 
journey over the city of Florence, Italy. The aerial footage 
showcases the breathtaking beauty of the city, with its iconic 
landmarks and stunning architecture. As the drone soars through 
the sky, we are treated to a bird's-eye view of the city's famous 
bridges, including the Ponte Vecchio and the Ponte Santa Trinita.

In this video, a young woman is seen sitting on a hay bale in a field. 
She is wearing a black shirt and there is a backpack next to her. She is 
reading a book and seems to be enjoying her time in the field, possibly 
taking a break from her daily routine. The hay bale provides a 
comfortable seating area for her, allowing her to relax and appreciate 
the surroundings. The field is filled with tall grass, creating a serene 
and peaceful atmosphere. Overall, the video captures a simple yet 
beaut iful  moment  of  a  young woman f inding solace in  the 
peacefulness of a field.

Describe this video please.

Figure 10: Examples of GroundingGPT’s understanding capability in video modality.
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What can you hear in this audio?

The audio portrays a heavy rainfall, with the sound of raindrops 
striking roofs and the ground with intensity. At one point, the noise 
of the rain becomes louder, possibly due to someone opening a 
door or the varying strength of rainfall on glass. The audio 
illustrates a powerful downpour and its changing levels of intensity 
amidst the scene.

This audio captures the distinct sound of a saw being used to cut 
through a piece of wood. The saw is being operated at a steady 
pace, creating a rhythmic pattern of cutting and sawing. The 
sound of the saw in act ion is prominent,  indicat ing the 
woodworking process in progress.

Describe the main elements and features of the audio.

(An audio of raining.)

(An audio of a saw cutting through wood.)

Figure 11: Examples of GroundingGPT’s understanding capability in audio modality.
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