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Multi-Scale Continuous Normalizing Flows
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Abstract
We introduce a multi-scale variant of Continuous
Normalizing Flows, and explore the computation
of likelihood values. We also introduce a Wavelet-
version of the model. However, we find that this
formulation is flawed in the computation of BPD,
and explore ways to alleviate this problem.

1. Introduction
Reversible generative models derived through the use of the
change of variables technique (Dinh et al., 2017; Kingma &
Dhariwal, 2018; Ho et al., 2019; Yu et al., 2020) are growing
in interest as alternatives to generative models based on Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2016) and Variational Autoencoders (VAEs) (Kingma &
Welling, 2013). A change of variables approach facilitates
the transformation of a simple known probability distribu-
tion such as Gaussian noise into a more complex model
distribution, such as images. Reversible generative mod-
els using this technique are attractive because they enable
efficient density estimation, efficient sampling, and admit
exact likelihoods to be computed. A promising variation
of the change-of-variable approach is based on the use of a
continuous time variant of normalizing flows (Chen et al.,
2018; Grathwohl et al., 2019), which uses an integral over
continuous time dynamics to transform a base distribution
into the model distribution. This approach uses ordinary
differential equations (ODEs) specified by a neural network,
or Neural ODEs.

In this work, we consider a direct multi-resolution approach
to continuous normalizing flows. While state-of-the art
GANs and VAEs exploit the multi-resolution properties of
images, and recently top performing methods also inject
noise at each resolution (Brock et al., 2019; Shaham et al.,
2019; Karras et al., 2020; Vahdat & Kautz, 2020), only re-
cently have normalizing flows exploited the multi-resolution
properties of images, using wavelets (Yu et al., 2020).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by INNF+ 2021. Do not dis-
tribute.

We use Continuous Normalizing Flows (CNF) in a multi-
resolution fashion to generate an image at finer resolutions
conditioned on the immediate coarser resolution image. A
high-level view of our approach is shown in Figure 1.

Figure 1. The architecture of our MSFlow-Image method. Con-
tinuous normalizing flows are used to generate images at each
resolution, with finer resolutions being generated conditioned on
the coarser image one level above.

2. Our method
Since images naturally exhibit structure in resolution, im-
ages can be decomposed into representations at multiple
resolutions. We take advantage of this property by first de-
composing an image in resolution space i.e. into a series
of images at coarser resolutions : (x0,x1, . . .xS) = xs≤S .
We then train an invertible generative model that normalizes
this joint multi-resolution image into multi-resolution noise.

2.1. Normalizing Flows

We wish to train a generative model on a multi-resolution
set of true images, i.e. find a probability distribution
p(xs≤S) = p(x0,x1, . . . ,xS) that matches the true data
distribution. Normalizing flows (Tabak & Turner, 2013;
Jimenez Rezende & Mohamed, 2015; Dinh et al., 2017;
Papamakarios et al., 2019; Kobyzev et al., 2020) are good
candidates for such a model, as they are probabilistic genera-
tive models that perform exact likelihood estimates, and can
be run in reverse to generate novel data from the model’s
distribution. This allows model comparison and measuring
generalization to unseen data. Normalizing flows are trained
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Multi-Scale Continuous Normalizing Flows

by maximizing the log likelihood of the input images. If a
normalizing flow produces output z from an input image x,
the change-of-variables formula provides the likelihood of
the image under this transformation as:

log p(x) = log p(z) + log

∣∣∣∣det
dz

dx

∣∣∣∣ (1)

log p(z) is computed as the log probability of z under the
noise distribution (typically standard Gaussian).

2.2. Joint multi-resolution representation

We depart from the typical usage of the multi-resolution rep-
resentation of images by observing that had we not known
that the images at different resolutions could be derived
from one fine image, we now have a joint distribution over
all possible images at all resolutions. Suppose x and y are
two different images. Under this joint multi-resolution distri-
bution, (xS−2,xS−1,xS) and (yS−2,yS−1,yS) are valid
multi-resolution images, but so are (yS−2,xS−1,yS) and
(xS−2,yS−1,xS). It so happens that our real data distribu-
tion of multi-resolution images are those multi-resolution
data points that are correlated in resolution space. This
is equivalent to the fact that among all possible single-
resolution images, only those that have correlated pixels
in width and height are real/natural images, as opposed to
noise images without any correlation among pixels.

2.3. Multi-Resolution Normalizing Flows

We now wish to map the joint distribution of multi-
resolution images xs≤S to “joint” multi-resolution noise
zs≤S . In this case, the multi-resolution change-of-variables
formula is:

log p(xs≤S) = log p(zs≤S) + log

∣∣∣∣det
∂zs≤S
∂xs≤S

∣∣∣∣ (2)

The multi-resolution structure of the data results in a sim-
plification of the calculation of the Jacobian determinant.
To illustrate this, choose a non-redundant basis of multi-
resolution variables such that zs at any resolution is linearly
independent of xs+j , j > 0 at finer resolutions. This leads
to the following block lower triangular structure in the vari-
ables:

log p(xs≤S)

=

S∑
s=0

log p(zs) + log

∣∣∣∣∣∣∣∣∣det


∂z0

∂x0
0 · · · 0

∂z1

∂x0

∂z1

∂x1
· · · 0

...
...

. . .
...

∂zS

∂x0

∂zS

∂x1
· · · ∂zS

∂xS


∣∣∣∣∣∣∣∣∣

=

S∑
s=0

(
log p(zs) + log

∣∣∣∣det
∂zs
∂xs

∣∣∣∣) (3)

We train a normalizing flow at each resolution to compute
the likelihood of the image up to that resolution using Equa-
tion 3. This allows us to learn normalizing flows at each
resolution independently, and in parallel.

Since the Jacobian determinant is a (block) lower triangular
matrix, the non-zero off-diagonal elements don’t contribute
to the final log probability. Hence, we can freely condition
each normalizing flow on the coarser images, by treating
the coarser images as independent variables. This allows us
to learn only the higher-level information at each resolution.
We use this to our advantage, and train each normalizing
flow gs between xs and zs conditioned on the immediate
coarser xs−1 making a Markov assumption:

z0 = g0(x0); zs = gs(xs | xs−1) ∀ s > 0 (4)

Hence, equation 3 can be rewritten as:

log p(xs≤S) = logN (g0(x0);0, I) + log

∣∣∣∣det
∂g0
∂x0

∣∣∣∣
+

S∑
s=1

(
logN (gs(xs|xs−1);0, I) + log

∣∣∣∣det
∂gs
∂xs

∣∣∣∣) (5)

2.4. Multi-Resolution Continuous Normalizing Flows

We choose to use Continuous Normalizing Flows at each
resolution (CNF) (Chen et al., 2018; Grathwohl et al., 2019),
since they have recently been shown to effectively model
image distributions using a fraction of the number of parame-
ters typically used in normalizing flows (and non flow-based
approaches). At each resolution, each CNF gs transforms
its state (say v(t)) using a Neural ODE (Chen et al., 2018)
with neural network fs:

v(t1) = gs(v(t0) | c) = v(t0) +

∫ t1

t0

fs(v(t), t, c) dt

(6)

Chen et al. (2018); Grathwohl et al. (2019) proposed an
instantaneous variant of the change-of-variables formula
CNFs, which expresses the change in log-probability of
the state of the Neural ODE i.e. ∆ log pv as a differential
equation:

∆ log pv(t0)→v(t1) = −
∫ t1

t0

Tr
(

∂fs
∂v(t)

)
dt (7)

Hence, the ODE solver solves for the augmented state with
the above differential, to obtain both the final state as well
as the change in log probability simultaneously. Thus, the
log probability at each resolution in eqs. (3) and (5) can be
computed as:

log p(xs≤S) =

S∑
s=0

(log p(zs) + ∆ log pxs→zs
) (8)
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Multi-Scale Continuous Normalizing Flows

We call this model MSFlow-Image.

In general, at each resolution (except the coarsest), the im-
age xs could first be converted to another representation ys

using a suitable orthogonal bijective transformation T from
xs to ys so that ∆ log pxs→ys = 0:

log p(xs≤S) = (9)
S∑

s=0

(
log p(zs) + ∆ log pys→zs

+
��

���
��:0

∆ log pxs→ys

)

In the simplest case, ys = xs, which is MSFlow-Image.
A more complex orthogonal transform to use is the Haar
wavelet transform, we call this model Multi-Scale Continu-
ous Normalizing Flow - Wavelet (MSFlow-Wavelet). At
each resolution, xs is transformed into a composition of the
3 wavelet coefficients ws, and the coarser version xs−1, i.e.
ys = (ws,xs−1). In this case, the conditioning becomes
more obvious: each CNF maps the wavelet coefficients ws

to a noise sample zs conditioned on xs−1 (see Figure 2),
similar to WaveletFlow(Yu et al., 2020) which builds on
Glow (Kingma & Dhariwal, 2018).

Figure 2. Architecture of MSFlow-Wavelet.

Training: The overall model is trained to maximize the
log-probability of the joint multi-resolution image, given
by Equation 8 as the sum of the likelihoods of the images
at each resolution. Equivalently, our model is trained to
minimize the Bits-per-dimension (BPD) of the image at
finest resolution S with DS pixels:

bpd(xs≤S) =
− log p(xs≤S)

DS log 2

=
−1

DS log 2

[
S∑

s=0

(log p(zs) + ∆ log pxs→zs)

]
(10)

Since each CNF gs independently models the conditional
distribution of the image at that resolution, we train each gs
to minimize each bpd(xs′≤s) step by step from the coarsest
resolution (s = 0) to the finest resolution (s = S), having
frozen gj : j 6= s.

We use FFJORD (Grathwohl et al., 2019) as the baseline
model for our CNFs. In addition, to speed up the train-
ing of FFJORD models by stabilizing the learnt dynamics,
FFJORD RNODE (Finlay et al., 2020) introduced two reg-
ularization terms: the kinetic energy of the flow and the
Jacobian norm. STEER (Ghosh et al., 2020) introduced tem-
poral regularization by making the final time of integration
stochastic.

Generation: Assuming each gs is invertible (which CNFs
are), we may then generate images using ancestral sampling:
we first sample zs’s from a latent noise distribution, and
transform them backwards into image space progressively
from coarser to finer resolutions through the CNFs:{

x0 = g0
−1

(z0)

xs = T
−1

(ys) = T
−1

(gs
−1

(zs | xs−1)) ∀ s > 0

(11)

3. Related work
Several prior works on normalizing flows (Kingma & Dhari-
wal, 2018; Song et al., 2019; Ma et al., 2019; Yu et al.,
2020) build on RealNVP (Dinh et al., 2017). Although they
achieve great results in terms of BPD and image quality,
they nonetheless report results from significantly higher
parameters and several GPU hours for training.

Our MSFlow-Wavelet model is quite similar to the recently
published WaveletFlow(Yu et al., 2020). However, Wavelet-
Flow builds on the Glow (Kingma & Dhariwal, 2018) archi-
tecture, while ours builds on CNFs (Grathwohl et al., 2019;
Finlay et al., 2020). Moreover, WaveletFlow applies certain
techniques to obtain better samples from its model. We have
so far not used such techniques for generation, but they can
potentially help generate better samples from our models.

4. Experimental results
We train MSFlow-Image and MSFlow-Wavelet models on
the CIFAR10 (Krizhevsky et al., 2009) dataset at finest
resolution of 32x32, and the ImageNet (Deng et al., 2009)
dataset at 32x32, 64x64, 128x128. We build on top of the
code provided in (Finlay et al., 2020)1. In all cases, we train
using only one NVIDIA V100 GPU with 16GB.

Ablation study on regularizers: We perform an abla-
tion study using the two regularizations mentioned above:
with/without RNODE (Finlay et al., 2020), with/without
STEER (Ghosh et al., 2020). We find that consistently in all
cases, FFJORD RNODE achieves superior BPD in lesser
time. In some cases, FFJORD fails to train.

Ablation study on resolutions: We train models with vary-
ing number of total resolutions. Increasing the number of

1https://github.com/cfinlay/ffjord-rnode
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Multi-Scale Continuous Normalizing Flows

Table 1. Unconditional image generation metrics (lower is better in all cases): number of parameters in the model, bits-per-
dimension, time (in hours). Most previous models use multiple GPUs for training, all our models were trained on only one
NVIDIA V100 GPU. ‡As reported in (Ghosh et al., 2020). ∗FFJORD RNODE (Finlay et al., 2020) used 4 GPUs to train on
ImageNet64. ‘x’: Fails to train. Blank spaces indicate unreported values.

CIFAR10 IMAGENET32 IMAGENET64
PARAM BPD TIME PARAM BPD TIME PARAM BPD TIME

1-scale Continuous Normalizing Flow
FFJORD (Grathwohl et al., 2019)

1.36M

3.40 ≥5days

2.00M

3.96‡ >5days‡

2.00M

x x
FFJORD RNODE (Finlay et al., 2020) 3.38 31.84 2.36‡ 30.1‡ 3.83∗ 64.1∗

FFJORD + STEER (Ghosh et al., 2020) 3.40 86.34 3.84 >5days
FFJORD RNODE + STEER (Ghosh et al., 2020) 3.397 22.24 2.35 24.9
(OURS) 2-scale MSFlow-Image
2-scale FFJORD

0.48M

1.85 17.89

0.16M

x x

0.16M

x x
2-scale FFJORD RNODE 1.69 16.37 1.92 26.20 1.54 51.21
2-scale FFJORD + STEER 2.04 18.76 2.36 20.12 x x
2-scale FFJORD RNODE + STEER 1.74 18.43 1.97 65.16 1.58 66.76
(OURS) 3-scale MSFlow-Image
3-scale FFJORD

0.48M

1.54 21.51

0.13M

2.00 30.54

0.13M

x x
3-scale FFJORD RNODE 1.32 21.48 1.66 41.17 1.21 60.89
3-scale FFJORD + STEER 1.72 21.09 2.21 21.36 x x
3-scale FFJORD RNODE + STEER 1.44 23.44 1.68 54.05 1.26 59.14
(OURS) 4-scale MSFlow-Image
4-scale FFJORD

0.64M

1.42 19.95

0.17M

1.84 30.63

0.17M

x x
4-scale FFJORD RNODE 1.28 19.08 1.62 42.60 1.18 65.6
4-scale FFJORD + STEER 1.88 17.73 x x x x
4-scale FFJORD RNODE + STEER 1.44 17.60 1.63 62.82 1.36 66.2
(OURS) 5-scale MSFlow-Image 0.81M 1.28 19.42 0.22M 1.17 71.33
(OURS) 6-scale MSFlow-Image 0.97M 1.24 20.52
(OURS) 2-scale MSFlow-Wavelet 0.50M 3.56 17.17 0.33M 3.92 15.30
(OURS) 3-scale MSFlow-Wavelet 0.76M 3.69 13.99 0.51M 4.00 17.70 0.51M 4.04 37.82
(OURS) 4-scale MSFlow-Wavelet 1.03M 3.77 13.94 0.69M 4.02 16.83
(OURS) 5-scale MSFlow-Wavelet 1.29M 3.87 10.73

total resolutions consistently improves BPD across models
with the same number of parameters per resolution, except
in the case of MSFlow-Wavelet where we see the opposite
case.

Progressive training: Since each resolution can be trained
independently, we can train an MSFlow-Image model on Im-
ageNet128 by training only the finest resolution (128x128)
conditioned on 64x64 images for 1 epoch, and then attach
that to a 4-resolution model trained on ImageNet64 from
scratch. This 5-resolution ImageNet128 model gives a BPD
of 1.13.

5. Fundamental flaw
However, we note that there is a fundamental flow to this
calculation of BPD : we calculated the BPD of xs≤S , while
prior works report the BPD of xS . This implies that our
model maps the joint distribution of images to joint noise,
meaning our model includes images whose coarser versions
do not correspond to the finest image. This does not apply to
our MSFlow-Wavelet models since the wavelet formulation
ensures the consistency of coarser images with respect to
the fine image.

Hence, to find the likelihood of xS under our MSFlow-
Image model, the likelihood of xs≤S needs to be marginal-
ized over the entire subspace of lower resolution images.
This is intractable. To make it tractable, we could approxi-
mate this marginal using Monte Carlo integration, by sam-
pling multiple lower-reolution images and summing over
the respective joint likelihoods. Inevitably, this leads to
much greated BPD values than the ones reported in Table 1.
Hence, Table 1 is not a fair comparison to make, except
for the MSFlow-Wavelet rows.

6. Conclusion
We have presented a Multi-Resolution approach to Contin-
uous Normalizing Flows, and performed exact likelihood
calculations on several benchmark datasets of images by
training on a single GPU in lesser time with a fraction of the
number of parameters of other competitive models. How-
ever, we found that our formulation is fundamentally flawed
in the computation of BPD for a single image. We explored
ideas over how to fix this issue. We found that formulations
similar to the Wavelet formulation which ensure the consis-
tency of coarsened images with respect to the finest image
can help alleviate this problem.
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