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ABSTRACT

The mainstream federated learning algorithms only communicate the first-order
information across the local devices, i.e., FedAvg and FedProx. However, only
using first-order information, these methods are often inefficient and the impact
of heterogeneous data is yet not precisely understood. This paper proposes an
efficient federated Newton method (FedNewton), by sharing both first-order and
second-order knowledge over heterogeneous data. In general kernel ridge regres-
sion setting, we derive the generalization bounds for FedNewton and obtain the
minimax-optimal learning rates. For the first time, our results analytically quan-
tify the impact of the number of local examples, the data heterogeneity and the
model heterogeneity. Moreover, as long as the local sample size is not too small
and data heterogeneity is moderate, the federated error in FedNewton decreases
exponentially in terms of iterations. Extensive experimental results further vali-
date our theoretical findings and illustrate the advantages of FedNewton over the
first-order methods.

1 INTRODUCTION

Owing to the great potential in privacy preservation and in lowering the computational costs, feder-
ated learning (FL) McMabhan et al.|(2017); L1 et al.[(2020a));|Wang et al.|(2025]) becomes a promising
framework in processing large-scale tasks. However, federated learning is facing massive challenges
from the heterogeneous data|Zhou et al.| (2023)); |Chen et al.| (2025)), including both the data hetero-
geneity and the model heterogeneity. The data heterogeneity comes from that inputs across devices
are usually sampled from heterogeneous distributions, while the model heterogeneity measures the
response shift due to inconsistency between local models and the global model.

First-order approaches, including FedAvg [McMahan et al.| (2017) and FedProx [Li et al.| (2020a)),
share the first-order information rather than the data across devices and tolerate the heterogeneity
in federated learning, while Newton-type FL methods (Ghosh et al.[(2020); |Gupta et al.| (2021); [Sa-
faryan et al.|(2022); |Islamov et al.|(2023)); Liu et al.| (2023); |Dal Fabbro et al.| (2024)); |Li et al.| (2024)
utilized second-order information for updating federated model. To the best of our knowledge, most
of existing learning guarantees for FL methods are derived in the context of optimization and focused
on in-sample predictive errors only, i.e., the convergence analysis (optimization) of first-order FL |L1
et al.| (2020b); [Karimireddy et al.|(2020); Pathak & Wainwright (2020); (Glasgow et al.| (2022)) and
Newton-type FL|Ghosh et al.[(2020); Safaryan et al.| (2022));|Qian et al.| (2022); |[Elgabli et al.|(2022));
Elbakary et al.| (2024); |[Hamidi & Ye| (2025). However, beyond the optimization, the generalization
guarantees (out-sample predictive performance) are of great practical and theoretical interests for
FL. Despite recent efforts and progress on the generalization for first-order algorithms |Mohr1 et al.
(2019); [Yagli et al.| (2020); |Su et al| (2021); |Yuan et al.| (2022), the generalization guarantees for
Newton-type FL algorithms remain elusive, especially on heterogeneous data and localized mod-
els. Therefore, a challenging problem in FL is how to quantify the impact of heterogeneity from the
generalization perspective?

In this paper, motivated by sharing second-order information, we propose a second-order federated
optimization method, named FedNewt on. It approximates the global predictor on the entire data
by utilizing the global gradient and local Hessians, improving the predictive accuracy in an efficient
communications framework. We then study the statistical properties of FedNewt on, and derive the
generalization bounds with the minimax optimal rates. We conclude with experiments on simulated
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data and publicly available tasks that complement our theoretical results, exhibiting the computa-
tional and statistical benefits of our approach. Due to the length limit, we leave the experiment part
in the appendix. We summarize our contributions as below:

1) On the algorithmic front. We propose a fast second-order federated learning algorithm, which
improves the approximation of the centralized model while only requiring similar computational and
communication costs as the first-order methods. The convergence of FedNewton is exponentially
fast and a few communications, for example, ¢t < 2, can approximate the global model well.

2) On the statistical front. To our best knowledge, in presence of both data heterogeneity and
model heterogeneity, we present the optimal generalization guarantees for the first time. Our results
further analytically quantify the impacts of the local sample size, the data heterogeneity, and the
model heterogeneity. Especially, the federated error decreases exponentially fast in benign cases,
i.e., a sufficient number of local examples and moderate data heterogeneity.

2 PROBLEM SETUP

In a standard framework of federated learning, there is a global parameter server and m local com-

putational clients. On the j-th local machine Vj € [m], the local data ©; = {(z;j, ylz)}gil is
drawn from a local distribution p; on the joint space X x ). The total sample D = | j":1 D; is
the disjoint union of local data and corresponds to a global distribution p. For any local devices
J.k € [m] and j # k, data distributions are identical p; = p,, = p in the homogeneous setting (iid

data), while data distributions are distinct p; # py, in the heterogeneous case (non-iid data).

We base our analysis on the standard non-parametric regression setup and assume that the target
solution f* belongs to a reproducing kernel Hilbert space (RKHS) induced by a Mercer kernel
K : X x X — R. Mercer’s theorem guarantees the kernel function admits an implicit feature
mapping K(z,z') = (¢(x), #(x'))x and the norm by || - ||x. The predictor can be stated as
foa(x) = (wp,x, ¢(x)) where wp , minimizes the objective on the entire data D

. 2, Ao
argmin { —— x;) —yi) + =||w , (1)
rgmin g > () =)+ e

where (x;,y;) € D, and A > 0 is the regularity parameter. The above regression problem, known
as Kernel Ridge Regression (KRR), admits a closed-form solution
wp = (85 Pp + \) ' ®Lyp, (2)

T . .
where &p = \/% [(x1), -+, d(zp))]” € RIPI x Hy are feature mappings on the training set

D and yp = \/% (y1,-- ,ym‘)T are the corresponding labels.

By averaging the local models, the simplest federated method only communicates once, known as
Distributed Kernel Ridge Regression (DKRR) with the closed-form solution

Wpx =Y pi(®5 o, +A) RS Yo,
j=1
where p; is the weight of the j-th local model, which is usually set p; = |D;|/|D|. Note that,

T v ;
Py, = \/\#ﬁ [d(x1),- - d(zp),)] € RIPil x Hy are local feature mappings and yo, =

\/‘1@7_‘ (yl, e ,y|@j|)T are labels on the j-th local train set ®; = {(:cl-j, yw)}gi" Vi € [m].

The solution of KRR equation 2] can be rewritten in the Newton’s method form
Wp =W — H’B})\QD,X 3)
where the gradient and Hessian matrix are defined as
gp.x = (25®p + A)w — ®Lyp,
Hp ) = (2,Pp + \).
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Algorithm 1 Federated Learning with Newton Method (FedNewton)

Input: Local training data subset ©;, Vj € [m]. Feature mapping ¢ : X — RM.
Output: The global estimator 117)%7 A
I: Local machines: Compute feature mapping ®o,, Ho, » = ('I’gj@@j + M), H5]1/\ and
i’gjy@j for any j € [m].
2: Local machines: Initialize the local estimators by w%jﬁ \=H, 5]1 )\@gjy@j and upload them

to the global server (1).
3: Global server: Initialize the solution by w% A= Z;nzl pjw%ﬁ - and send it to the local nodes
(4)-
4: fort =1toT do
5:  Local machines: Compute local gradients g:tD_JlA = Hp,, ,\w%_)l\ — 'IJgJ_ Yo, and upload
them to global server (1).
6:  Global server: Compute the global gradient gg}\ = >
nodes (J).

7:  Local machines: Compute the local updates H, 511 N g%_)l\ and upload it to the global server
(1).

8:  Global server: Update the global estimator wh, , = wp y — >0 pjHg! ) g5, and
communicate it to local machines (/).

9: end for

m

j=1 pjgt@__lA and send it to local
j= s

From equation [3} the global gradient gp x and Hessian Hp » is the key to achieving the cen-
tralized model wp . Note that, since the fact ‘I>1T><I>D = ZTZI pj'ﬁgj'l’gj for data partition

D = U’anl D, one can easily obtain the following property for the global gradient and global
Hessian.

Proposition 1 (Partitonability). If the loss is squared loss, the global gradient and Hessian matrix
consist of the local ones, i.e. gp » = Z;nzl pjgo, xand Hp = Z;"':l piHo;

Remark 1 (Computation of local inverse Hessian). The compute of the inverse of local Hessians
H 511 , is time consuming O(|D ;| M?+ M?), which is a common problem in second-order optimiza-
tion|Bottou et al.|(2018). There are many classic work to reduce the time complexity of the inverse of
Hessian, i.e. BFGS |Broyden|(1970), L-BFGS Liu & Nocedal|(|1989)), inexact Newton |Dembo et al.
(1982), Gauss-Newton|Schraudolph|(2002)) and Newton sketch |Pilanci & Wainwright (2017). Those
techniques can be used to improve the efficiency of FedNewton, but it is beyond the scope of this
paper. We focus on theoretical novelties and leave further computational improvements in the future.

Remark 2 (Feature mapping instead of kernel methods). Without loss of generality, we assume the
feature mappings are finite dimensional ¢ : X — RM, which covers a wide range of generalized
linear models, for example neural networks Neal (1995)); Jacot et al.|(2018), kernel methods Vapnik
(2000), random features |Rahimi & Recht| (2007); |Le et al.|(2013), |Yang et al.| (2014), and random
sketching \Woodruff et al.|(2014); Yang et al.|(2017).

3 FEDERATED LEARNING WITH NEWTON METHOD

Motivated by recent gradient-based distributed learning [Wang et al.| (2018); [Lin et al.| (2020), we
propose a Newton-type federated learning method to quantity the impact of data heterogeneity and
model heterogeneity. Using Proposition[I] the exact Federated Newton’s method communicate local
Hessians Hyp; » for computing the global Hessian matrix equation E] whose the communication
complexity is O(M?), which is infeasible in federated learning. To reduce communication costs,
we propose FedNewt on that approximates the Newton’s updates with the global gradient and local
Hessian matrices, such that

m
Hplgpa = ijng,)\gD,)\- 4)
j=1



Under review as a conference paper at ICLR 2026

Global Server

Local Machines

aLw'!, D) 1 -1

_ aLw', D))
Hyp29p,3 gﬁ),-,z = 4

t-1 _
99,1 w1

Figure 1: The computations and communications in the ¢-th iteration for FedNewton.

The global learner f}, ,(z) = (w}, ,, ¢()) is updated by

m

| T |

Wp \ = Wp \ — E :pJH’}Dj,)\gD,N (5)
=1

where 'u’)%) » 18 the model after ¢ iterations and the global gradient is gtD_,i = Z;n:l Dj g%‘Jl)\ from
Proposition [} The approximation error between equation [3] and equation [3 is analyzed in Sec-
tion[d] Without loss of generality, we present the details of FedNewton in Algorithm [T]and Fig-
ure @which includes two times communications as the first-order methods in per round. Note that,
the algorithm uploads local Newton updates H, 511 /\gtD_& € RM instead of local inverse Hessians

Hg' , € RM*M reducing communication costs from O(M?) to O(M).

Computational complexity analysis. With finite-dimensional feature mappings ¢ : X — RM, we
compute time complexity, space complexity, and communication complexity of FedNewton. The
space complexity on the j-th local machine is O(|D;|M + M?) to store @5, Hp, » and Hgﬂl A\

while the global server requires O(m M) space to store go, » and H. 5}1 19D, Before the iterations,
the computations of Hyp  \ and H, 511 5, costs O(|D ;| M?+M?) time. In each iteration, the local time
complexity is O(M?) to compute local gradient go,,x and local Newton update H, 5],1 \ 9o, While

the time complexity on the global server is O(mM) to update the global gradient and estimator.
Therefore, the total time complexity is O (max;e(y, [9;|M? + M? + M2t + mMt).

Remark 3 (Communication burdens). The per iteration communication costs of the proposed
FedNewton are 2 times as compared to the first-order FL algorithms, e.g. FedAvg and FedProx,
but the number of iterations for FedNewton is much fewer. The total communication complex-
ity is O(Mt), the same as most first-order Federated algorithms. Notably, from Theorem || the
iteration complexity is a linear convergence t = Q(log(1/€)) where € is the federated error, i.e.,
FedNewton converges exponentially to the global estimator equation [2| while first-order feder-
ated algorithms requires a large number of communication rounds t = Q(1/€) |Su et al.| (2021)).
Therefore, FedNewt on cannot reduce the communication complexity for once communication as
communication-efficient FL algorithms |Sattler et al.| (2019); Reisizadeh et al.| (2020); \Wu et al.
(2022), but it significantly reduces the number of communication rounds, e.g., FedNewton with
t < 2 achieves good predictive performance in experiments.

Remark 4 (Beyond the squared loss). To quantify the impacts from local sample size, data het-
erogeneity and model heterogeneity, we apply the squared loss for FedNewt on because it admits
closed-form solutions and is convenient for the theoretical analysis. Nevertheless, the proposed al-
gorithm FedNewton is not applies to a broad range of loss functions as long as they are twice
differentiable to compute the gradient gg;)\ and the Hessian matrix Hy ; ». If the Hessian is in-

dependent from the weights, the compute of local Hessians can be out of the loop, e.g. ReLU and
the squared loss. However, if the Hessian is relevant to the weights, for example exponential loss
functions and trigonometric loss functions, we should compute the local Hessians for all iterations,
causing huge computational burdens. For other type loss functions, the weights can be initialized as

o0 —
wyp , = 0.
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4 MAIN RESULTS

In this section, to explore the factors that affect performance, we derive the excess risk bounds for
FedNewton in homogeneous settings and heterogeneous settings, respectively.

4.1 NOTATIONS AND ASSUMPTIONS

We consider a broader scenario for federated learning, where the local training sets contain both het-
erogenous inputs (covariate shift) ®; ~ p; and different responses (concept shift) yo, ~ p;(y|x).
The concept shift is represented as

£ () = /y ydp(ylz), € X, f(x) = /y ydp;(ylz), € X, j€[m],  (©®)

where f7 is the underlying mechanism governing the true responses on the j-th worker. Give a
x € X and j, k, € [m], the responses may be different f(x) # f;(x) when j # k.

Definition 1 (Operators with feature mapping ¢). Using the feature mapping ¢ : X — Hg, ¥V 3 €
H i, the covariance operators C,C;,Cp,Co, : Hx — Hic are defined as

|D|
cB= /X<5,¢(sc)>¢(w)dpx(w), CpB = D2 Z Vo(xi), ¥ (25,y;) € D,
|D;
Cjﬂ = /X</67¢($)>¢($)d,07(35), C@j,@ = Z ﬂ ¢ wz 1)7 v (w“yl) c @7

Note that, Cp = <I>1T)<I>D, C@j = @g], <I>@j are the empirical covariance operators on D and D,
while C' = E,[Cp], C; = E,,[Cwp,] are their expected counterparts.

For the sake of readability, we provide some notations
,PQJ‘J\ = ”(CQ, + )‘I)il(cj + )‘I)Hv R@j,)\ = ”(C] =+ )‘)71(0]' - 09_7’)”7
A, = [|C =G, Ag =17 =7l
The quantities Py and Ro, » measure the similarity between the expected covariance operator
and its empirical counterpart. From contraction inequalities for self-adjoint operators, a larger num-
ber of local samples |D;| leads to smaller Po,; » and Rp; ». Note that, Ap, measures the data

heterogeneity on the expected covariance operator, while Ay, measures the model heterogeneity on
the true regressions.

We let || fll2 = /{f, f) Jx |f(2)|2dP(x) denote the L?(P) norm and L*(P) = {f : X —

R | || fl3 < oco}. Throughout this paper, we assume the outputs are bounded |y| < B almost surely
for some B > 0 and x := ||¢(x)||x < oo forany x € X.

Assumption 1 (Federated capacity condition). For A € (0, 1), we define the effective dimensions on
the global distribution p and local distributions p;, ¥j € [m] as

NA) = Tr(C(C + MI)™Y), N;(N) = Tr(C;(Cy + M) ™).
Assume there exists Q) > 0 and v € [0, 1], such that
max (N(A),N1(A), -+, Nim(N)) < Q*N\77.

Assumption 2 (Source condition). Define the integral operators L : L*(P) — L*(P),

(Lg)(-)=/X<¢(-)7¢(w)>g(-’v)dpx(w)a Vg€ L(P).

Assume there exists R > 0, r > 0, such that |L™" f*|| < R. where the operator L" denotes the r-th
power of L as a compact and positive operator.
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Capacity condition and source condition are standard assumptions in the optimal statistical learning
for the KRR related literature Caponnetto & De Vito|(2007); Smale & Zhou/(2007); Rudi & Rosasco
(2017);|Lin & Cevher (2020); Liu et al.| (2021). The effective dimensions N’ () and NV, (\) measure
the capacities of the RKHS H k on the global distribution p and the local distributions p;, Vj € [m].

Here, we modify the conventional capacity condition for federated learning to impose
constraints on local estimators. Note that, for effective dimensions, it holds 1/2 <
max (N (A),N1(\), -+ ,Nim(X)) < &2X~! Rudi et al.| (2015). Assumption 1| reflects the vari-
ance of the estimator. A larger v leads to a larger Hx and v = 1 corresponds to the capacity
independence case. Assumption [2] controls the bias of an estimator, which reflects the regularity of
the estimator. The bigger r leads to the stronger regularity of the regression and the easier learning
problem. The general settings (r = 1/2,7 = 1) lead to O(1/+/|D]) convergence rates for KRR
related approaches.

4.2 ERROR DECOMPOSITION

Theorem 1. Let fp y, ﬁ) s» [ " be defined according to equation 2 equation |5 and equation |§]
Then, the following error decomposition holds

1o = < 1fpa = ol + Ifoa—F1 ©)

federated error centralized excess risk

and the federated error for FedNewt on is bounded by:

1Fbr = follz <T'[|(C + M)l/Q(w%,A —wp,), -

)

In the above theorem, we decompose the excess risk for FedNewt on into two parts: the federated
error || f5 , — fp || and the excess risk for the centralized KRR || fp x — f*||. Since the generaliza-

tion analysis for || fpx — f*|| is standard |Caponnetto & De Vito (2007); Smale & Zhou|(2007), we
focus on the federated error || f1, y — fp.all-

where T = ZT:1 PiPo; A (2R© A + - ) (

From Theorem [I] we find that the value of T determines the effectiveness of multiple iterations.
If Y > 1, FedNewton with multiple communications is worse than oneshot federated learning
(DKRR). However, when T < 1, the federated error decreases exponentially and the rate of con-
vergence is referred to as linear convergence in the optimization literature Bottou et al.| (2018).
The quantities Po; » and Ro, \» measure the similarity between Cp; and C; where those quanti-
ties decrease as the local sample size |D;| increases. Because Y is proportional to Po; x, Po, x
and Ap,, the linear convergence requires both a sufficient number of local examples |D;| and
moderate data heterogeneity Ap,. If £ = 0, the above error bound degrades into that for DKRR

[ fox = foalle < ||(C+ MDY (W), — wp x)
’ K

Theorem 2. Under Assumption|2| with a high probability 1 — 6, Yo € (0, 1), the federated error
can be bounded

175 = foall2

¢ (14+Ro,; \)Ap, 1 NN 2 Ap,
<7 ZP;F(ZR@ At 3\ ) <<|®j|\/X+ |©j| >10g5 3 )

Theorem [2] illustrates the key factors that affect the federated error: the discrepancy between ex-
pected and empirical covariance operators Ry », the covariate shift Ag, and the model hetero-
geneity Ay,. The smaller these factors, the smaller the federated error. The federated error results
NN

19;1°
Specifically, as the increase of local sample size, the distributed error decreases. However, the con-
cept shifts Ay, is a constant and it will dominate the federated error when model heterogeneity A,

is large. In the case T < 1, iterators can reduce the federated error, alleviating the entire federated
error term.

from three parts: distributed error m + covariate shift A, /A and concept shift Ay, .
J :
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4.3 HOMOGENEOUS SETTING

Theorem 3. Let § € (0,1/3], A =|D

%5 and 2r 4+~ > 1. Under Assumptions ifAn, =0

and Afj = 0, with the probability at least 1 — 36, it holds

_ m )
t * 2
Foa 1l S TS piy log? 5 + |

j=1

17 | 2
7 log —.
1)

Here, X; and Y have different values w.r.t local sample size

©,12D|75,  if|9,] S D]
g it N
N, = [ITIPEEE DI S 10| S DI
J 19,71 D|==,  if|D|7m <D, S |D|
_ 195 5
D]z, 1D, > |D|F5

and Y =2 Z;”:l P;Po,; \Ro, x holds

T>1, if|9;| < D=
1

T< ‘D‘lsr_r <1, otherwise.
J

Note that, the second term in the above bound is from the centralized model || fp » — f*||2, where

the learning rate O(|D|¥7) is optimal in a minimax sense (Caponnetto & De Vito| (2007). The
performance of FedNewton in the homogeneous setting is only affected by the local sample size.
We discuss the above result in three parts. First, when the number of local examples is limited |9 ;| <

1, L 2r4q-1
|D|Z+ , in another word the number of local machines is larger than m > |D| >#7 , the federated
error dominates the excess risk and fails to achieve the optimal rate, where the convergence rates

are slower than O(|D
1
to T > 1 and multiple communications hurt the performance. Second, when |D|z+ < |D;| S

T2y ). Meanwhile, when the number of local examples is limited, it leads

|D| ey although the convergence rates of federated error are still not the optimal, the iterator Y
is smaller than one, leading to a linear convergence. As the increase of communications ¢ — oo, the
centralized excess risk will dominate the error bound that achieves the optimal rate. Third, with a

large number of local examples | ;| 2 |D| 4727 , even with insufficient communications ¢t — 0,

the error bound still achieves the optimal rate O(|D|=+7 ).

Theorem [3] can be further simplified in some special cases. For example, we consider the general
case (r = 1/2,y = 1), where r = 1/2 is equivalent to assuming f* € Hx and v = 1 is the ca-
pacity independent case. The learning rate achieves O(1/+/|D|) when |D;| > |D|%5 with multiple
iterations or |D;| 2> |D|% with only one communication.

Remark 5. The existing theoretical guarantees for DKRR | Zhang et al.|(2015), |Guo et al.|(2017); |Lin
& Cevher((12020) focused on how to achieve the optimal rate by a sufficient number of local examples
(or lower the number of partitions), but they ignored the sub-optimal case that the local sample size
is fixed and insufficient. However, in federated learning, the number of partitions is fixed and local
examples are generated locally, such that sub-optimal cases are more general. Theorem 3|illustrate
that a sufficient number of local examples is crucial for both learning rates (in generalization) and
convergence rate (in optimization).

Remark 6 (Finite dimensional case). In the proofs of theoretical findings, we consider the estimator
in RKHS with w € Hg. However, the finite-dimensional cases are more general, i.e. w € RM in
Algorithm[I] where the feature mappings are explicit and can be neural networks or random features
Rahimi & Recht|(2007). With a simple modification of our proofs, one can derive similar results for
finite-dimensional cases. In particular, under same assumptions of Theoremand (r=1/2,7=0),
then with high probability, || f5, \—f*||2 < 19;172|D|"°++/M/|D|, provided that |D| Z, M log M.

1+y(2r—1)
2r+4~

As shown in|Rudi & Rosasco|(2017), a large number of random features M 2 |D| can
guarantee the optimal rates for ||fpx — [*|l2, and thus we can also provide similar results as
Theorem|[3]
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4.4 HETEROGENEOUS SETTING

Theorem 4. Let § € (0,1/3], A = |D >+ and 2r + v > 1. Under Assumptions with the
probability at least 1 — 36, the excess risk bound for FedNewt on holds

m
7 * A@j 2 _—r_ 2
1fDa— f¥ll2 STt;Pj\/ L+ —= 8 + 1I) log® 5+ DI log 5.

Ap. Ap . .
Here, T = 370" piPo; A(2Ro, » + DL (1 + =), N is same to Theoremand

2 1
|D|2r v |D|2r Y

. 1
1I; = D] AQJ‘ + D] Afj7 lf‘®]| < D7+
(14 |D|7+ Ap,)(Ay, + |D|7+7 Ap,), otherwise.

We add some comments on the above theorem. First, when the local sample size is insufficient

1 o . L
|9;| < |D|z+ or the data heterogeneity is considerable, we have Y > 1, and communications

hurt the performance. Meanwhile, since the federated error /14 Ap, /A(R; + II;) depends on
|D,|,Ap,, and Ay, the learning rate is far from the optimal rate. Second, when the number of

local examples is sufficient [D,| 2 |D|ﬁ and data heterogeneity is small, it holds T < 1 where
communications can improve the generalization ability of FedNewton. In this case, the federated
error || f5 , — fp.al| converge exponentially fast. If ¢ is large enough, the error bound in TheoremEI
depends on the centralized excess risk || fp,» — f*||2 and achieves the optimal learning rate.

The learning rate of generalization bound in Theorem [ is determined by four factors: the local
sample size |D;|, the covariate shift Ag,, the response shift Ay, and the number of iterations .
Furthermore, the iterator value Y depends on || and A, such that these two values are important
factors for both fast convergences (in optimization) and the learning rates (in generalization).

Remark 7 (How to achieve the optimal rate in federated learning?). The value of T < 1 is key to
obtaining a linear convergence rate and the optimal learning rate, where it depends on both local
sample sizes T o< Rop; » o< |D;| and data heterogeneity T oc Ap,. Note that, Ao, measures
the intrinsic discrepancy between local distributions and the global one, and thus it is a fixed value
independent from the local sample size. Therefore, since Ap, is a constant, we can obtain T <
1 with a large number of local examples generated by local machines. And then, with a large
number of iterations when Y < 1, the federated error, depending on both data heterogeneity and
model heterogeneity, can become small enough to be negligible. In this case, a large number of
local examples can guarantee both a linear convergence rate (for federated error) and the optimal
learning rate (from the centralized excess risk). A large number of local examples benefit both
optimization and generalization, rather than making tradeoffs between them.

5 COMPARED WITH RELATED WORK

We compare FedNewt on with recent Newton-type methods, DKRR methods, and first-order FL.
algorithms in both algorithmic and theoretical fronts. Table[T|reports the main factors that affect the
performance, the computational and generalization properties of related work.

Compared with DKRR. DKRR methods in kernel space (Zhang et al.| 2015} |Guo et al., 2017) incur
much higher time complexity than stochastic optimization in feature space. Although both our work
and (Guo et al., 2017; Lin & Cevher, 2018} [Lin et al., 2020) rely on integral operator techniques,
DKRR assumes i.i.d. local data and thus avoids the data/model heterogeneity central to our setting,
making their proofs significantly simpler. Key distinctions are: (1) we relax the regularity condition
from r € [%, 1Jtor > 0,2r +~v > 1; (2) we handle non-i.i.d. data with both covariate (Ag,)
and response (A, ) shifts, whereas DKRR covers only the homogeneous i.i.d. case; (3) to cope with
heterogeneity we introduce new error decompositions for the federated excess risk; and (4) we bound
excess risk for varying local sample sizes (Theorem 3)) covering both optimal and sub-optimal rates,
while DKRR analyzes only optimal rates under restrictive partition constraints (Lin et al., [2020).

Compared with first-order methods. First-order analyses such as (Su et al.,[2021]) achieve the op-
timal rate || f — f*||3 = O(1/|D]) via random matrix theory and local Rademacher complexity, but
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Table 1: Summary of computational and generalization properties for related work.

Related Work ‘ \37 \Angfj‘ Global Convergence Communication ‘ Conditions Local Size \97\ Generalization Bound
DKRR |Zhang et al. [2015] v ox x |o@Q) |D| Specific kernels Q(r?2xt log |D|) o (ﬁ)
14~ —=r
DKRR|Guo et al. (2017) v X x |oQ) |D| re(1/2,1] Q(‘D‘ﬁ> o(|p|Zr+7)
2—y 1 o
DKRR-SGD|Lin & Cevher[2018] | v/ x  x O(‘Dlﬁ) |D| re /2,1 QDT ) o |p| Ty
- 7 2r4y+1 —r
DKRR-CM|Lin et al. {2020} v X %X | O(log %) | DIt re1/2,1] Q(|D| 4727 ) o | |p|2r+y
1 ) i A?.
FedAvg|Su et al. [2021) x x| O0(37) Mt Specific kernels / o ot T ™7
A2
FedProx|Su et al. (2021] x x v |Oo®@d) Mt Specific kernels / o % + WJLI
DistributedNewton |Ghosh et _al. 1 1 )
{2070) X X X |O(loglog ¢ +1log¢) Mt / / /
LocalNewton|Gupta et al. {2021 X X X |O(log %) Mt / / /
FedNew|Elgabli et al. §2022] voox o ox |1 Mt / / /
FedNL|Safaryan et al. {2022} v v X | O(log %) Mt / / /
SHED |Dal Fabbro et al. {2024) VvV x |O(loglogl) M2t / / /
FedNS|Li et al. [2024) Vv v x |O(loglogl) kMt / / /
Fed-sofia|Elbakary et al. (2024] v v x|/ Mt / / /
1
Theorem ‘ v X X ‘ O(log %) Mt r>0,2r+vy2>1 QD27 ) Theorem
1
Theorem]] ‘ v v v ‘ O(log 1) Mt ‘ r>0,2r 421 o(p| T Theurcm

Note: The computational complexities are computed in terms of regularized least squared loss. We estimate the upper bounds for || f — f*||2 Vf € L? (P). We
denote Dieg the testing data, 7) the step-size for SGD approaches, € the federated error and A2 = Z;nzl Pj A? .. For Rademacher complexities based bounds
N J

Zhang et al.|(2015);|Su et al.|(2021), specific kernels include kernels with finite-rank or polynomial eigenvalues decay. k is the subsampled size for Nystrom
approximation. Integral operator based bounds|Guo et al.|(2017);|Lin & Cevher|(2018);|Lin et al.|(2020) also assume v € [0, 1].

assume i.i.d. inputs and neglect both local sample size and data heterogeneity. Their results further
rely on (i) the target function lying in the hypothesis space (r € [%, 1]), (i) vanishing complexity
(y—0), and (iii) specific kernels that may be sub-optimal for federated tasks. Our integral-operator
analysis removes these constraints, explicitly capturing the role of local sample size and hetero-
geneity, and shows that with sufficient local data and moderate heterogeneity the federated error
converges linearly at the optimal rate O(\D|_2T/ (2747)), whereas the rate in (Su et al., 2021) re-
Z;'nzl pj A?‘j

mains sublinear and deteriorates with model heterogeneity O( D] ).

Compared with Newton-type FL methods. Compared with existing second-order federated opti-
mization methods, our theoretical results (TheoremsE]andE]) advance the state of the art in three key
aspects. (i) Classical distributed Newton methods such as DistributedNewton (Ghosh et al., 2020)
and LocalNewton (Gupta et al., 2021)) provide fast convergence (O(log %) or better) but purely from
an optimization perspective, without any formal statistical generalization or minimax risk analy-
sis. (ii) Federated Newton variants under non-i.i.d. data including FedNL (Safaryan et al.| [2022)),
SHED (Dal Fabbro et al.| 2024) and FedNS (Li et al.l [2024) address data heterogeneity and retain
logarithmic convergence, yet their theory stops at bounding the optimization gap and lacks explicit
excess-risk guarantees. (iii) Our work not only preserves the fast O(log %) convergence and Mt
communication complexity typical of second-order approaches, but also establishes tight minimax
lower bounds on the excess risk and extends them to heterogeneous settings—offering, to our knowl-
edge, the first unified optimization—generalization theory for federated second-order methods.

6 CONCLUSION AND FUTURE WORK

In this paper, we present an efficient second-order optimization method for FL. We derive gener-
alization bounds with the optimal rates, which quantify the impacts of local sample size, the data
heterogeneity, and the model heterogeneity. In benign cases, the federated error convergence expo-
nentially fast, and thus communications can be small. Our theoretical findings fill the gap between
optimization and generalization for federated learning, rather than focusing on one of them. Overall,
the techniques presented here highlight new ways for designing efficient algorithms and analyzing
both generalization and optimization for FL.

In future, we first aim to explore superlinear convergence for FedNewt on, potentially leveraging
Hessian-free approximations to reduce computational overhead while maintaining fast convergence.
Then, we extend the theoretical framework to nonconvex losses and more general model classes.
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Figure 2: Data partitions for the dna dataset.

A EXPERIMENTS

In this section, we first carry out simulations to corroborate our theoretical statements. Then, we
compare the performance of FedNewt on with related baselines on real-world datasets.

DATASETS

1) Synthetic dataset. Although the existing work |[Li et al| (20204); [Lin et al. (2020); [Su et al.

provide strategies to generate synthetic datasets, these datasets either fail to impose both data
heterogeneity and model heterogeneity among devices, or just fit a simple linear problem. Here, we
focus on a nonlinear problem f*(x) = min(—1"x,1"z) with £ ~ AN(0,I). On the j-th local
machine, we generate ©; = (X, y;) based on y = min(—w "z, w ) + ¢, where ¢ ~ N(0,0.2)
is the label noise, x; ~ N (u;,I),u; ~ N(0,a) and w; ~ N (1,v,),v; ~ N(0, (). Notably,
and [ control the data heterogeneity and model heterogeneity, respectively. Data heterogeneity and
model heterogeneity increase as o and  become larger, and the homogeneous setting corresponds
toa = = 0. We setd = 10 and generate |D| = 10000 samples for training, 2500 samples for
testing.

2) Real-world datasets. We evaluate the compared algorithms on publicly available datasets from
LIBSVM Data EI, which provide both training and testing data. To construct a heterogeneous and
unbalanced setting, we split these datasets across 10 clients using a Dirichlet distribution Dirg (c¢)
Wang et al.| (2020), where c is some constant relevant to the level of heterogeneity and unbalanced
distribution. For example, the data partition for the dna dataset with Dir (1) is reported in Figure
[2] where the local datasets are both heterogeneous and unbalanced, which is common in federated
learning scenarios.

EXPERIMENTAL SETTINGS

We compared the proposed FedNewton with the baseline (KRR on entire data), DKRR

(FedNewton with ¢ = 0), FedAvg [McMahan et al.| (2017) and FedProx [Li et al] with the
squared loss equation[I] The estimator can be expressed as f(x) = (w, ¢(x)), where ¢ () denotes
the feature mapping function. Here, we use random Fourier feature ¢(x) = 1/v/M cos(Q "« + b),
where ¢ : R — RM Q@ € R>*M b € RM and Q@ ~ N(0,1/02),b € U|0,27]. We set M = 200
for synthetic dataset and M = 2000 for real-world datasets. We implement all code based Pytorch
and tune the hyperparameters over o2 € {0.01,0.1,---,1000} and A = {0.1,0.01,--- , 10"} by
grid search. We report the data statistics and parameter setting in Table 2} All experiments are
recorded by averaging results after 10 trials.

!Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Figure 3: Impact of the number of local samples (left) on the synthetic dataset and MNIST dataset
(right). The number of total training samples is fixed, |D;| = |D|/m and Ap, = Ay, = 0. The
blue dotted line denotes the exact KRR on all training data.

We initialize all iterative methods, including FedAvg, FedProx and FedNewton, by 'w%j’ N =

ngl )\q)gjy@j rather than w%j) y» = 0. DKRR directly averages the initialized models. FedAvg

updates local models with s = 2 iterations on all local data in each epoch. In Section [A] we esti-
mate the impact of local sample size, data heterogeneity without comparing FedAvg and FedProx.
Here, we provide the full comparison with FedAvg and FedProx w.r.t. local sample size and data
heterogeneity.

A.1 EMPIRICAL VALIDATIONS

We verify the theoretical findings in theorems by exploring how the factors empirically affect the
performance on a synthetic dataset that can capture both data heterogeneity and model heterogeneity
and the MNIST dataset.

Impact of local sample size. We explore the influence of local sample size |D ;| by fixing the total

sample size |D| = 10000 while varying the number m of local machines, where |9;| = @ As
shown in the first two in Flgure when the number of local samples is small, i.e. |D;| < 200 'for the
synthetic dataset and |D;| < 3300 for MNIST, FedNewt on with multiple communications hurts
the generalization performance and more communications lead to worse accuracy, correspondmg
to the cases Y% > 1 in Theorem I When the local sample size is larger than a threshold, i.e.
|D,| ~ 260 for the synthetic dataset and |©;| ~ 4400 for MNIST, more communications can
significantly improve the predictive performance and get closer to the exact KRR, which coincides
with the cases T < 1 in Theorem 3| Note that, even with a large number of local examples, there
still is a great gap between DKRR and KRR, while FedNewt on achieves a good approximation to
KRR. Meanwhile, both larger |D;| and larger ¢ can improve the approximation ability, validating
the theoretical results. Compared to first-order methods, when the local sample size is large enough,
FedNewton outperforms FedAvg and FedProx. However, FedNewton is more sensitive to the
number of local examples, and we find that the predictive error explodes when local sample size is
small.

Impact of heterogeneous data. Let m = 20 and |D;| = 500 for the synthetic dataset. We ex-
plore the impact of data heterogeneity by generating inputs with covariate shifts and explore the
impact of model heterogeneity by generating outputs with response shifts. The right of Figure [3]
illustrates: 1) Compared to DKRR, FedNewt on remarkably reduce MSE when the heterogeneity
is small. But it enlarges the errors from heterogeneous data when the heterogeneity is bigger than a
threshold, i.e., Ap, ~ 0.466. 2) For the benign data heterogeneous settings, more communications
for FedNewt on lead to better approximation to the exact KRR, while the gap between DKRR and
KRR still exists. 3) When data heterogeneity is large, FedNewt on is more sensitive to data hetero-
geneity than DKRR, and more communications hurt the predictive accuracy. In the line of federated
learning, the data heterogeneity is common due to different data distributions while the model het-
erogeneity is usually small. The left of Figure ] shows that 1) Model heterogeneity decreases the
predictive performance for all methods. 2) More communications lead to better approximation to
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Figure 4: Impact of data heterogeneity (left) and model heterogeneity (right) on the synthetic dataset.
We empirically estimate data heterogeneity by Ap, = [®L®p— <I>gj &5, ], and model heterogene-

ity by Ay, = 1 S (@) — £ ().

95.55

0.0056 - = Baseline (KRR)
DKRR 95.50 1
0.0054 4 —— FedNewton
—— FedAvg 95.45
= FedProx —
0.0052 A £ 0540
w B
(%] ©
= 0.0050 1 5
. 3 95.35
< —— Baseline (KRR)
0.0048 - 95.30 DKRR
——— FedNewton
0.0046 1 95.25 FedAvg
e — = FedProx
T T T T 95.20 T T T T T T
0 2 4 6 8 10 0 10 20 30 40 50
# Rounds # Rounds

Figure 5: Predictive performance of FedNewt on, FedAvg and FedProx on heterogeneous synthetic
dataset (left) and MNIST (right).

KRR when model heterogeneity is small. 3) The performance of all methods is similarly poor when
model heterogeneity is bigger than 0.0135 and all models finally get similar bad results when model
heterogeneity is large enough. These observations coincide with Theorem [}

Iterations of FedNewton and first-order methods. We use heterogeneous dataset for iterations,
i.e. the synthetic dataset with « = 0.01 and v = 0.001 and the MNIST dataset partitioned by a
Dirichlet distribution Dirg (0.5). The last two in Figurereports the generalization performance on
heterogeneous data in terms of the communication rounds. We find that: 1) With a few iterations,
FedNewton converges to KRR on the entire data, outperforming the divide-and-conquer and first-
order methods. 2) Since local models are initialized by the closed-form solutions, FedProx converges
very fast ¢t = 1 and then updates slowly. The performance of FedProx is better than DKRR and
FedAvg but worse than FedNewt on. 3) Compared to FedProx and FedNewt on, the convergence
of FedAvg is slow and achieves the performance between DKRR and FedProx.

A.2 EVALUATION RESULTS ON REAL DATASETS

We compared related federated learning algorithms on both original datasets and non-iid datasets
partitioned by a Dirichlet distribution Dir g (0.5). After partitioning with a Dirichlet distribution, the
labels and the number of local samples on datasets are very unbalanced that decrease the general-
ization ability of federated learning algorithms. We report the classification accuracy in Table [3] for
several public classification datasets, illustrating that:

1) The proposed FedNewton remarkably outperforms the compared methods on the original
datasets, and more iterations improves the generalization performance. This observation coincides
with results in Theorem 3
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Table 2: Data statistics and hyperparameter settings.

Dataset Task |D| d  classes kernel parameter o A Aprox  Dirg(a) learning rate
synthetic regression 10000 10 1 0.1 le-06  7e-07 1 0.001
dna multiclass 2000 180 3 0.001 le-07  1e-08 1 0.001
letter multiclass 15000 16 26 1 0.001  0.001 0.5 0.001
pendigits multiclass 7494 16 10 0.01 0.0001  0.0001 1 0.0001
satimage multiclass 4435 36 6 1 0.001  0.001 1 0.001
Sensorless | multiclass 58509 48 11 10 le-06  1e-07 1 0.001
shuttle multiclass 43500 48 11 10 0.001 0.001 0.5 0.001
usps multiclass 7291 256 10 0.1 0.0001  0.0001 0.5 0.001
mnist multiclass 60000 784 10 0.1 le-05  7e-07 0.5 0.001

Table 3: Classification accuracy (%) for classification datasets. We bold the results with the best
method and underline the ones that are not significantly worse than the best one.

Dataset Compared methods FedNewton

DKRR FedAvg FedProx #1 #2 #4 #8
dna 90.91+£0.50 91.09+0.42 89.42+6.98 | 92.23+0.53 91.96+0.48 92.02+0.40 88.19+11.58
letter 77.18+0.12  77.11£0.17 77.17£0.12 | 77.30£0.12 77.30£0.12 77.30+0.12  77.30£0.12

pendigits | 97.12+0.09 97.12+0.11 97.12+0.10 | 97.29+0.13  97.31+0.10 97.31+0.11  97.23+0.31
satimage 87.70+0.17 87.84+0.08 87.74+0.11 | 88.49+0.19 88.26+0.17 88.31+0.14  88.31+0.15
Sensorless | 96.81+£0.12 96.874+0.14 96.84+0.13 | 97.32+0.11 96.87+0.14 96.44+0.17 84.43+1.20

shuttle 98.46+0.06 98.53+0.08 98.5140.07 | 98.544+0.07 98.514+0.07 98.50+£0.07 98.44+0.16
usps 92.95+0.10  92.95+0.12 92.95+0.12 | 93.49+0.18 93.24+0.13 93.28+0.14  93.30+0.15
mnist 95.38+0.12  95.40+0.13  95.46+0.11 | 95.53+£0.13 95.48+0.13 95.49+0.13  95.48+0.12

2) The predictive accuracies of all federated learning methods in the heterogeneous setting are worse
than ones in the original case, but FedNewton approaches still achieve the optimal results on the
most datasets.

3) Similar to Figure ] FedNewton with more iterations are more sensitive to the heterogeneity
and more iterations hurts the generalization performance. The reason is the number of iterations
augments the federated error when T > 1 due to large data heterogeneity.

PROOFS

A.3 PRELIMINARIES

Since KRR has closed-form solutions, the intermediate estimators ftD o JD A [, [* inerror decom-
position can be represented by the redirection operators and their adjoint operators. In this section,
we first provide useful linear operators associated with kernel K. Then, we measure the similarities
between empirical and expected covariance operators via concentration inequalities.

Definition 2 (Operators with kernel K in terms of the global distribution pxxy). For any © €
X,g€ L?(P),¢: X — Hg and B € Hy, we define the following expected operators

« S:Hx = L2(P), (SB)(z) = (B, ¢(z)).
« S*:L*(P) = Hk, S*g= [y o(x)g(x)dpx ().
« L:L*(P) = L*(P), L =SS5 suchthat (Lg)(-) = [x(4(), d(z))g(x)dpx ().

« C:Hg = Hg, C=S8*S, suchthar CB = [(B,¢(x))¢(x)dpx ().
Definition 3 (Empirical operators on the global dataset D and local datasets © ;). Forany ¢ : X —
Hi and B € Hy, we define the following empirical operators

« Sp:Hk = RPI SpB= (<5,¢($i)>)z|1 eRPl, V (@,y:) €D,
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« Sp i RIPI 5 My, Spa= 5 Y2 6(@i)as € Hi, ¥ (wi,4:) €D, a €RIP.
* Cp:Hxg = Hk, Cp=S5%Sp,suchthat CppB= ﬁ Z‘,£|1</37 Qb(wz»(b(wl)v v (wia yl) €

* S@j cHx — R‘;Dj‘a S@jla = (<ﬂ7¢(mz)>)|lii‘ € Rl@jlv v ("Buyl) € @j.

. C;g . : Hi — HK, C@]. = S%] S@J., such that C@j ﬁ =

J

AT L2 (B, 6(@)(@), Y (@iy) €D,

Here, we denote S the inclusion operator and Sp, Sp; the sampling operator, while S*, ST, S%j
are their adjoint operators. Note that C' : Hx — Hx is the covariance operator given by S*S,
and the integral operator L : L?(P) — L?(P) given by SS*. The kernel matrix Kp, Ko and
the covariance matrix Cp, Cp, are the empirical counterparts of the integral operator L and the
covariance operator C, respectively. Using Singular Value Decomposition shows that L and C
have the same eigenvalues, and the corresponding eigenvectors are closely related [Rosasco et al.
(2010). Those kernels-related operators are widely used in the proof of optimal learning theory
for standard KRR. Assuming the kernel is bounded K (x,z’) < k2, the integral operator L and
the covariance operator C' are positive trace class operators (and hence compact) and bounded by
IIL|| = ||C|| < k2. For any function f € H, the estimator f € L?(P) is obtained by kernel trick.
Thus, for f(x) = (w, #(x)), the RKHS norm can be related to the L?(PP)-norm by C'*/? |Bauer et al.
(2007):

Ifllz = [Sfll2 = IC* 2wk, Yw e Hg, fe L*(P). (8)

Remark 8. With the assumption K (x,x') < k2, the integral operator L is trace class|/Caponnetto &
De Vito|(2007) and C, Cp, Co; are finite dimensional. Moreover we have that L = SS*, C' = S*S,
Cp = SpSpand Co; = S%J So,. Finally L,C,Cp, Cp,; are self-adjoint and positive operators,
with spectrum is [0, k2.

Proposition 2 (Cordes Inequality [Fujii et al.| (1993). Ler A, B two positive semi-definite bounded
linear operators on a separable Hilbert space. Then

|A°B?|| < ||AB|®, when 0<s<1.

Here, we use Propositionto obtain the inequality ||(A+\)~/2(B+\)2|| < |[(A+X)"(B+
A)[|*/2 for linear operators C, C;, Cp, Csp,, and L.
Proposition 3 (Lemma 2 in |Smale & Zhou| (2007)). Let L be a separable Hilbert space and

{&,-+ &} be a sequence of i.i.d random variables in L. Assume the bound be ||&;|| < M < oo
and the variance be 6% = E(||&; — E(&)||?) for any i € [n]. For any § € (0,1), with confidence
1-9,

n

LS 6Bl

i=1

< 2M log(2/0) N 252 10g(2/5). ©)

n n

The above Bernstein’s inequality is the key to analyzing the relationship between the empirical
random vector and its expected counterpart, which is used to prove Lemmal[I] The above Bernstein’s
inequality for random vectors was provided in Smale & Zhou| (2007); Rudi & Rosasco| (2017)) and
later was extended to the random operator case in Theorem 7.3.1 in|Tropp| (2012) and Lemma 24 in
Lin & Cevher| (2020).

Lemma 1. Given K(x,2') = (¢(x), dp(x')) i, let ¢() be i.i.d random vectors on a separable
Hilbert space H such that C, Cp, Cxp ; are trace class. Then for any 6 € (0, 1) with the probability
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at least 1 — 6, the following holds

24 1)
H(C+AI)—1/2(C—CD)(C+)\1)—1/2H < Ropa < 217 log(2/9) +\/2 k2 + 1) log(2/9)

AlD| AlD| ’

Al A9 ’
(10)

2 2
“(Cj+)\l)_l/2(cj_CBDj)(Cj+)\I)_1/2“ SR@].’)\ < 2K 10g(2/5) \/ (:‘i +1)10g(2/5)

where Rp » = ||(C +A)~HC — CD)H and Ro; » = ||(Cj + A\)7HC; - C@j)H.
Proof. We first prove the lower bound for Rp . Using the Cauchy-Schwarz inequality, we have
H(c FAD)TV2(C — Cp)(C + Az)—1/2H
—|lc+An=12(C - ey 3(C - Cp) R+ AD 2| (11)

< H(C FAD V20— CD)1/2H2 .

Recall that the norm on a matrix or operator A can be defined By

P el
For K > 1 and a nonzero vector x, we get
[ARz]l2 = AA ]y < A]AS 2]z < - < A]F]|2]l2.
Therefore, it holds “"“ < ||A||* and thus
1A% _
l4%]] = sup == < LA (12)

Assuming A = (C' 4 AI)~'/2 and substituting equatlonto equation we get
|(C+AD72(C — Co)(C +AD 72| < (€ + ADTHC - Cp)|| = Rpaa.

Then, we prove the upper bound for Rp y. Let £ = (C + )~ 1¢(x) @ ¢(x), thus we have

E(€) = (C + AI)'Elg(x) ® ¢(x)] = (C + A\)"'C.
|D| |D|
D] 2. Zﬁz = 7 Z (C + M) o(m) @ d()] = (C + AI) " Cp.

The left of the desued inequality becomes

(€ +An e - o) = |[B©) - 5 D&

Note that
I(C + AL 2(a)|* < w2271
To use Bernstein’s inequality (Proposition , we need to bound ||£|| and E||£]|? as follows
€l = 1((C + AD " (), @))]| < (C + M) H2p() |2 < w22~
E|¢ =B = [|E [((C+AD) " ¢(x), () (C + M)~ ¢(x) @ ¢(x)] — C;>C?||
< KEAATHE[(C+ A o(z) ® ()] || + ||C2C?|
<EATHIOTIO+1 <A I < (2 + DAL

Substituting the above identities to Bernstein’s inequality equation[9] we obtain the upper bound for
RD A

The lower and upper bounds can be proven with similar proof techniques. [
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Lemma 2 (Proposition 8 Rudi & Rosasco|(2017)). Let A > 0. We define the following quantities
Pox = |[(Co+ AN (C+AD||, Po,x:=|(Co, + X)~(C; + AI)||.

Then, there exists the following properties

1 1
Po;a 5

< -
’PD,Afl_ﬁa i

IN

with

B = Anax [(C + M)~V C - Cp)(C + M)—m} _

)\mu.t(c)
Note that, B S Py < 1.

A.4 ERROR DECOMPOSITION FOR FEDNEWTON
For Newton-based federated learning, there holds the following error decompositions
1o = F < s = Foll + o = £7II (13)

Here, the federated error term | f% , — fp | is also the key to analyzing the generalization of
second-order optimization based federated learning FedNewt on.

Proof of Theorem([l} For any function f(x) = (w,¢$(x))x, the H-norm can be related to the
L?(P)-norm by the inclusion S Bauer et al.| (2007)

1112 = I1Swllx = [1S(C + AD)™V2(C + M) Pwl|x < [[(C+ M) ]|k
Therefore, one can prove

1fbx = foalle < I(C+ADY2(wh \ — wp )|k (14)

From equation 5} we have

3

j=1 j=1
= pi(Co, + \I) ™ (Co, — Cp)wi } + Y _p;(Co, + M)~ (Cp + A)wp ».
j=1 J=1

W,
_ % -1 —t—1 S —1
= pj(Co, + XI)"(Co, — Cp)wis A + > _p;i(Co, + A1) (Cp + A)wp,x — wp

j=1 j=1
= ij(csj + M) (Co, — Cp)wh  + ZP;‘(C@J- + AI)"H(Cp — Co,)wp
j=1 Jj=1
= pi(Co, + )" (Co, — Cp)(wh ) — wp,»).
=1
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We then estimate the federated error by

(C+ A2 (wh,  —wp )

=Y " pi(C+ AN (Co, + M) (Co, — Cp) (W} — wp »)
j=1

:Z i(C+ADY2(Co, + M) (Co, — Cj + Cj — C + C = Cp)(wh ) — wp,»)

Z (C+ AD)Y2(Cy + AD)TYV2(Cj + M)V(Co, + )TN Oy + A)V?

Ci + M)~V (Co. — C)(Cj + AI)TV2(C; + ADV2(C + M) 7YV2(C + M)V (wly ) — wp )
J K J J J D,

+ ) pi(CHAD)VA(C; + ADTVA(Cy + M)A (Co, + M) THC + MDY
j=1
(Cj+ A)™H2(Cy = O)(Cj + M) TH2(Cy + AY2(C + AL TH2(C + ALY () — wp »)

+ ) pi(CH+ADYA(Cy + M) THA(Cy + MDY (Co, + AL THC + M)
j=1
(Cj+ AD)TH2(C + ADY2(C + ML) TV2(C = Cp)(C + M) TH2(C + M)V (wh ) — wp,»).
(15)

Note that, ||(C' + A\)Y2(C; + MX)7Y2| < [T 4 (C; + XI)"HC — C))||'/? < 1+ Bo;
(C;+ADY2(Co, + M) 7HC; + ADYV2| < P, a, (C5 + ADY2(C+ XDV < [T+ (C+

AD)TH(C; — Q)2 < (14 22

from equation [I4] there exists

1f5.x — foall
<I(C + /\I)l/Q(EtD,)\ —wp,\)| Kk

" Ap. Agp.
+ij< ;\D])PQJ-,A fi

m Ag.
+ ij < fj) Po,; \Rp.a H(C + >\I)1/2(1D§3_),1\ - ’wD,A)HK

S

||M3

29 pe, o, 1030V} - o)

(€ + A0 wigh —wo)||

)

(16)

Agp. Ap. o
;\DJ) (RD,)\+R®j7)\+ j\DJ) H<O+>‘I)1/2(w§),>l\_wD«\)HK

m A )
(S22

Note that, Rp » o 1/|D| and thus Ro,; » < Rp . Combing the above inequality and equation (13}
we prove the final result. [

t
Afj >> H(C+ ADY2 (o, “’D’”HK

Proposition 4. The following federated error bounds hold for oneshot federated learning:
1(C+ADV2 (w5 — wp )| x

(14+Ro, ) A,
A

m

<Pp,x ij <2R©j,x +
j=1

) H(C +ADY2(wg, 5 — wA)HK , (17)
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where Ap, = ||C; — C/|.

Proof. Note that, if A, B are invertible operators on a Banach space, then there holds the equality
A1 B '=B Y YB-A)A'=A"Y(B-A)B "

From equation using the facts Spyp = 3771, p;S% yo, and A~ — B~ = A"1(B - A)B™,
we have

—0
Wp \ — Wp,A

= Em:pj(cpgj%j +A) T 85 yo, — (2pPp + M) '®pyp
j=1
:f:pj(c@j +AM)7ISS yn, — (Op + M) "' Spyp
i=1
:ijpj[(cm +AM) 7! = (Cp + A1) 7S5, ye,
j=1
= ipj(CD + A[)_l(CD - CDj)’wD]-,)\
j=1

pi(Cp + AI)"H(Cp = C)wo, x + Y _p;(Cp + M) (C — Co,)wo, 5

Jj=1

<
Il
—

W

p;j(Cp + AI)"(Cp — O)(wo, » — wy) + ij(CD + M) "HCp — O)wy,

Jj=1

-

<
Il
—

+3 pi(Cp+AI)7HC = Co, Jwo,

j=1

:ij(CD + )\I)il(CD - C)(’ng,)\ - 'w,\) + ij(CD + /\I)*l(C — ng)(w©j7,\ — ’UJA).
=1

j=1
(18)

The last step is due to the fact 37" | p;Cp = > p;Co,.

Combining equation [T4]and equation[T8] we have

17B5 = foallz SI(C + AV (@), — wpn) |k
<D opi(CHADYA(Cp + M) TH(Cp — C + C = Co, ) (wo, A — w)| -
j=1

19)

Note that

(C+ AV (Cp + M)} Cp — C)
=(C + XD)Y2(Cp + A)"YV2(Cp + M) TV2(C + XD)Y2(C + M) 7V2(Cp — C)(C + M) "YV2(C + A2,

Using the inequality ||(C' + AI)~/2(Cp — C)(C + A\I)~/?|| < Rp  from Lemma we have

1(C +ADY(Cp + M) ™H(Cp — C)(wo, x — w))|
<Ppll(C+A)TY2(Cp — O)(C + M) TH2(C + M)V (we, \ — wy) || (20)
<PpaRDA(C + )2 (wo, x — wy)]|.
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Similarly, we have

(C+M\)Y2(Cp + M) 7HC — Co,)

=(C +A)Y23(Cp + N\I)"H(C - C; + C; — Cp,)

=(C+ A2 (Cp + M)7HC + AD)V2(C + M) V2O — C))(C + M) 7V2(C + AD)Y?
+(CHXD)Y2(Cp + A)"HC + AXDY2(C 4+ X)) Y20 + A)V?
(C; + A)TYV2(C; — Co,)(Cj + ML) TH2(Cy + ADYA(C + A TV2(C + )Y,

Using [|[(C + A)~Y2(Cj + MDY < [T+ (C+ X)) 7HC; —O)|V2 <1+ Afi , it holds

I(C + AI)Y2(Cp + M) ™H(C = Co, ) (wo, x — w)|

Pp Ao, Agp,
< PE=2(C 4+ AD P (ws, 0 — wa)]| + PoaRS, A <1 + ;’) I(C + A0 (w; x — w))
(14+Ro,; 1) A,

<Pp,x <R®_7~,>\ + 3

) 1(C 4 ADY2(ws, » — wh)]|
21

Therefore, substituting equation 20 and equation [21]to equation [T9} we have

(14+Ro,1)As,

S22 (€4 AL 2w, o~ )|

1550 — fonl €3 piPos (Rm Rt
j=1
(1+Ro;x)A,

<Pp ij (2R®j,A + 3

j=1

) 1(C + A1) 2(way, A — wh)].

A.5 ESTIMATING ERROR TERMS
A.5.1 ESTIMATING FEDERATED ERROR

From Lemma (1} Lemma4| and equation |13} there are two error terms ||wo ; x —wx ||k and || fp, x —
fll2 in federated error to be bounded. Using Bennett’s inequality (Proposition , we first provide
two useful lemmas.

Lemma 3. Assume there exists k > 1 such that |¢(x)||x < K, V& € X and |y| < B. For
d € (0,1], the following holds with the probability at least 1 — ¢

2
1(C+ M)~Y2(Shyp — S*f*)|| < 2BrAp . log 5
2
1(Cs + AT)"2(S5 yo, — S5 f7)|l < 2BrAg, xlog 5
where C, S ]* are operators defined on the local distribution p;, and

1 NN 1 N

Ap Ao, » = + :
v 2,vx V19

= + :
Mo\ D

(22)

Proof. Let & = (C + M) ~'/2¢(x;)y; in the Hilbert space H . We see that

|D| n

1 1
5] 206 = 3 2(C A 6w = (C+ AN 25pyo,
i=1

i=1

Efz/X(C+)\I)_1/2¢(w)f*(gj)dpx(a;):(C+)\I)_1/gs*f*
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Thus, the error term to bound can be stated as

|D|
~ 1
(C+ M)7YV2(Shyp — ™ f7)| = Dl » & —Eg. (23)
=1

The rhs of the above identity can be bounded by Bennett’s inequality (Proposition [3), thus we need
to estimate ||&; — E(&;)|| and E ||&; — E(&;)]|? first.

‘We first recall the definition of effective dimension

N) =E (¢(x), (C+ M) d(z))x = /X I(C+ M) p(@) I dpx ().

By Jensen’s inequality, we thus have

1€ — Bl < I1(C + M) ™20 [yl + EI(C + M) 26(x:) [[lyi| < 2BeA™Y2. (24)
Note that

E|l& —E(&)|* < 2/ 1(C + M)~ 2p(x:) | |vi | dpx ()

X 25)

< 232/ 1(C + AD)~26(m:) | 2dpx (x) < 2BEN(N).
X

Substituting equation [24]and equation [25]to equation[23] by Bennett’s inequality (Proposition 3]), we
have

12 o o 2Br log(2/6) B2N (\)log(2/9)
I(C + AI)~2(Spyp — S* )| SW 2\/ D]

Similarly, we derive the bound for ||(C; + )\I)’l/Q(S%jy@j = 5%, f7)l- Thus, we prove the result.
O

Lemma 4 (From Theoreom 4 of |(Caponnetto & De Vito (2007)). Assume there exists k > 1 such
that ||p(x) ||k < K, Y& € X. For § € (0, 1], the following holds with the probability at least 1 — §

2
[(C+ XI)"V2(C = Cp)|| < 2k(k + 1) Ap » log 5

2
1(C; +A)7H2(C; — Co,)|| < 26(k + 1) Ap,  log 5

The above lemma is a standard method for the difference between expected and empirical covariance
operators C' — Cp and C; — C'p,. Using a concentration inequality in Hilbert spaces, it have been
proven in Caponnetto & De Vito| (2007); Smale & Zhou|(2007);|Guo et al.| (2017).

We define the expected estimators for local machines and centralized model as

wj \ = arg min {/X(<'w, ¢(x)) — f*(x))*dp;(x) + /\Ilwlli}

wEH i

w) = arg min {/X(<w7¢(w)> — f*(®))%dpx (x) + A||w|§<} :

wEHK

Proposition 5. Assume ||¢(x)||x < r and |y| < B. Under Assumption 2] for § € (0,1/2), the
following bound hold with the probability at least 1 — 20

Ap. 2 K2RAp,
1(C + A2 (we, x —wy)|| < Cry/1+ )?]P@j,AADj,MOg5+%+Afj- (26)

where Cy = 2k(B + 2k3R).
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Proof. We introduce the intermediate estimators w; x = (Cj 4+ XI)~'S7 f=, where S7 and C; are
operators defined on the local distribution p;. Then, it holds

1O+ A1) 2 (ws, x — wi)[| < (€ + A1) (wa, 5 —w; )|+ [[(C+ A2, x —w))]|
(27)

where |[wo, x» — wj || is the local variance and Ay, is the model heterogeneity.

(C+ MDY (wj 5 — wy)

(C+AD)Y2[(C;+ A)TIST fr = (C+ M) TES™ f7]

(C+AD)Y2[(Cs+AD)TIS f = (CH XD TIS™ fr + (C+ X)) TES* 7 — (C + M) TLS* f7]
(C+AN)TY2S" (L — L) (L + M) fr + (C+ XD TY2S*(fF — )

(C+ )Y (L — Ly)(Lj + M) T'L'L7" 7 + (C + M) TY28*(f — f7).

Since [|(C'+ AI)"Y28*|| < 1, |L|| < &2, |C = Cj|| = |IL — L;|| and Ay, = || f; — f*]|, from
Assumption 2} we have

< ————2 4+ Ay, (28)

We then decompose the local variance

W, A — Wj\

R

=(Co, + M) 'S5 yo, — (Co, + M) 'S5 f5 + (Co, + M) 'S5 f; = (C; + A) 'S5 f7

(Co, + A1) HC + AV (Cy + M) V2S5 yo, — S5 f7) + [(Co, + M)~ = (Cj + M) 1S5 f7
(

(

Co, + M) "HC) + ADY2(Cs + M) T2 (S5 yn, — S5 f7) + (Co, + A1) ™H(C) — Co, Jw;ix
Co, + A1 (C; + ADY2 [(C; + ADTY2(S5,y0, = S77) + (G + M) TVA(Cy = C, Jwj ]

and it holds
(C+ A2 (wo, x —w).»)
=(C +AD)3(Co, + XD (C; + ADY2 (G5 + AD)"V2(S, yo, — S ;)
+ (G5 +AD) TG = Cp, w;a (29)
=(C+ M)Y2(Cj + AI)TH2(C; + MDY (Co, + M) 7H2(Co, + M) TH2(C) + A2
(G5 +ADTV2(S5,ym, = S5 1) + (G + AD)TV(Cy = O, Jwi ]

Due to Assumptionand | L;|| < K2, we obtain
lwjallx = (L + M) T L 7 = I(Ly + M) T LG LG LT 71T < w77 £5 | < 27 R.(30)

Thus, substituting equation 30| to equation[29] using Lemma [3|and Lemma[4] for any 6 € (0,1/2),
we have with the probability 1 — 26

1(C+ A1) (wa, x — w;0)]

/ Ap. 2 2
Ap. 2
<2x(B + 2/&3R)\/ 1+ %P@MA@].,A log 5

Applying equation 28]and equation [31]to equation 27} we prove the result.
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Theorem 5 (Detailed version of Theorem [2). For any 6 € (0,1), under Assumption [2| with the
probability at least 1 — 0, the federated error holds
z j
) A

_ m Ap. 1+ Ro, \)Ap.
b~ foalls < CaT* Y pyy 1+ 222 (2R, o+ TS0 ) (
j=1
(32)

where Cy = 2k(B+2k3R) /(1= B), B = Auax(C+X)"V2(C — Cp)(C+A)"1?) and Ap, \ =
N(,\)
+

CH

)

f|©|

Proof. Substituting equation [26] and equation [T7] to Theorem [T| with the probability 1 — 24, we
obtain the federated error

1755 = foall2

<TH|(C+ M)V (@, — wm)HK
1+Ro. \)Ap.
<t Zpﬂ?p A\ (2jo,,\ + (@M) H(C + )J)l/Q(w@j,A - ’lU)\)H
= A K
‘ - (1+Ro 7>\)AQ7. A@j 2 KQRA@].
<T ;Pﬂ’p,\ (2739 ,\++ Ciy/1+ \ st,AAz)j,,\logg‘f'f‘FAfj
- Cip; A (1+R©.>\)A@. 2 Ap.
<7t 24/ + I 3 log — z .
< ;175 )\ 2Ro; A+ 3 Ao, og5+ h + Ay,
(33)
The last step is due to Lemma[2] O

A.5.2 ESTIMATING CENTRALIZED EXCESS RISK

The generalization analysis for the centralized model (the exact KRR) is standard |Caponnetto &
De Vito| (2007); Smale & Zhou! (2007), but the existing work imposed a strict assumption r €
[1/2, 1] on the kernel space, which assumes the ideal estimator belongs to the kernel space f* € H.
Here, we relax this strict assumption to » > 0 but still obtain the identical optimal learning rates for
the centralized excess risk bounds.

Proposition 6. UnderAssumption[Z] Sord € (0,1/2), the following bounds hold with the probability
at least 1 — 20

2
Ifpx — f*ll2 < CLPg 5 Ap x log SR (34)

where C1 = 2k (B + 2/-@3R).

Proof. The excess risk term can be divided into two parts: variance and bias.

[foa = < foa = Al + 1= f7l 35)
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Using Cauchy’s inequality, Lemma [3|and Lemma EI, for § € (0,1/2), with the probability at least
1 — 26 we have

Il fox = fall2
=|1S(Cp + M) "' Spyp — S(Cp + A)728* f* + S(Cp + M) 718" f* — S(C 4+ AI)"LS* f*|2
=||S(Cp + AI)"HC + A1) (C + AXI)"Y2(C + M) "2 (Shyp — S* f*)
+ S(Cp + M)"HC + XI)(C + XI)"V2(C 4+ M) "V2(C — Cp)(C + M) 7ES* f*|2
=||S(Cp + M) "Y2(Cp 4+ XI)7YV2(C + AXD)YV2(C + XI)"V2(Shyp — S*f*)
+ S(Cp + M)"Y2(Cp + M) YV2(C + ADY?(C + M) "V2(C = Cp)(C + M) 7LS* ¥

2 2
<2Bklog 5 ,P'Zl)<iAD,A + 2k(k + 1) log g’Pll)<§AD,A||wA||K
2
<2k (B + 2,%3R) log 5 P%{iAD’,\.
(36)
The last step is due ||wy||x = ||(L + M)7LLf*|| = (L + M)"YLL"L™" f*|| < k*"R due to
Assumption 2}

The identity A(A + X\)™' = I — A(A + AI)~! holds for A > 0 and A the bounded self-adjoint
positive operator. Then, under Assumption 2] it holds

1fx = fl2
=LA AD)TILF = f =ML+ AD)TL = D[ = ML+ AT
=|IANTAYT(L A AD)TAT(L 4 AD)TTLTLTT | (37)
SNATT(L A AD)TETI L+ AD LTI 7|
<RA".
Substituting equation 36 and equation [37]to equation 33 we prove the result. O

A.6 EXCESS RISK BOUNDS FOR FEDNEWTON

Proof of Theorem[3] In the homogeneous setting, we have Ap, = 0and Ay, = 0. Thus, under
Assumption 2} from equation [32]and equation[34] it holds
1fpx — ¥z <Ifpa — foallz + 1fox — foll2
C 2 2 (38)
<o | 7' ijRz)j,,\A@j,A log 5 + Ap »log 5 + R\

Jj=1

If |D,;| > 29(k* 4+ 1) log(1/8) /A, we have Y < 1. Otherwise, T > 1.

From equation [T0] and equation 22] under Assumption [T} with the probability at least 1 — 34, we
have

Ro,; »Ao; »

B 1 L\, 2 1 NN
-0 <</\|9j| i >\|@j|>1 55" <|©j|ﬁ+ 19 ))

5 2
o) <(©j|—2)\—1.5 + |®j‘—1.5)\—1—0.5'y + |©j|—1.5>\—1 4 |®j|—1)\—0.5—0.o'y) log 6)

2
=0 ((®]|2)\15 + |©j‘71.5)\7170.5’y + |@j|71>\70‘570‘57) log 6) )

The relationships between A and |D;| affects the value of Rp; x Ao .

O(|D;|2A~19), if A < O(1D;]77).
Roj Ao x =log 5 O(D; 7124100, if O(9,;[77) < A < 0(12, ).
O(|j|~A~05-057), ifA> 00,17,
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By setting A = |D %+ and 2r + ~ > 1, we have

O (12,172DJ7% ). if 19;] S [D]7.
2 ! _
R, aAs, o = log 5 3 O (19;719[D| #57 ) | if [D| = < D] S D]
O (o, p|=% ) , if[9;] 2 [D|7.
(39)
and
Ap = |D| F5 + D[ < 2|D|7. (40)
Substituting equation [39)and equation 40| to equation[38] we have
1o = F7l2
[2;172ID| =%, if [9;] < D]
. 9 9 m ) _15 1+T0-5"r . 17—4 < 1< %
<ID|F log 2 + T'0g? 2 p) 1D, 1 D], Tf\Dli S 1Dil S DITE
J et D;17 DT, if [D|777 5 [9,] S D w2
Dl=, if [9;] 2 D] 75
(41)
where
t=0,7T>1, if |9, < |D|7
_ 1 \ 0.5t 42
t>0,7t < (”3'@2,7W ) ; otherwise. “42)

2r+~+1
Note that, T = 237" | p;Po, \Ro,x S 2 j=1 PjRo;x- When [D;] 2 [D| 727, we thus have

N < 120~
R©j7>\ SRVS- S |D|s+5v . L]

Proof of Theoremd] Under Assumption 2] from equation [32]and equation [34] it holds

1o = F7ll2 < s — foallz + 1fox = foall2

m Ap. (1—|—R©v)\)A©v 2 Ap. 2
<o | Tt /1 2 (2R, R Lt et Alog = LAy log = + R\
< jz::lpj + \ < RQJ,)\-F 3 ) A@]’)\ 0g5 + \ + Ay, +AD7)\ Og5 + R

Let A = [D|#75 and 2r + > 1. When |9,| < O(|D|), we have 55— > | /575 > 1 and

< 1 1 < 1 :
Ro;a S o;1 T/ 3o S 3wy from equation|10} Thus,

1£5. = F 12
. Ap, \ ' 2 Ro. Ao, ) )
< ;pj ( + h ) < 0; 20 AD; A 08 5 + h +Ro,; x fj> + Ap .\ og 5 +
<0 Tti 12220 (R o atog 20 22 B8 Y a0 4
> j:1pj by D, AND ;A Ogg )\2‘@]| /\|®]| D, Ogg

2 1
Zrty |D Zrty

i A, \"° D 2 -
<O [T p; (1-%—'7) Ro, Ao, x+ Ap,; + Ay, | log < + D[+
j; j \ j j D] J D, i 5
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When [9;] > Q(D|7), we have Rp, o S | /37h7 < 1 An, . S 19, 7/2|D|75 and

1fpx = [¥ll2
i Ap. Ag. 2 Ag. —r
<o | 1t E i1/ 1 2 ) J ) Z J ‘ Ty
< j:1pj + \ <R@_7,>\ + h\ > (‘A@m}\ log ; + \ + Af_]) + |D|7+

“ A@, 1 |'Z)|4:jrr22’Y 2
<o| ! A1+ —2L|Ro, zAp, A+ |D|7 7 Ap, + Ay, + ——Ap, + [D|7 A
( > iy 3 2, A9, A + (D ot ALt s T A D o,

Jj=1

2 —
+ |D%£r~Angfj> log 5T |D|2r+v>
t - AQj - 2 2 1 2
<o\ T ij 1+ h\ R@_j,AA@_M + |D|z+ A@j + Af]. + | D]z AGJj + |D|7+F A@jAf_j log 5
j=1
- |D2rlw>

n / Ap. 1 1 2 —r_
<0 (Tt ij 1+ )\J (’R@j,)\Agj,A + (1 + |D|2T+‘Y A@j)(|'D|2T+”Y Agj + Afj)) log 5 + |D|2"+7> .

j=1

Combing with equation [39] we complete the proof

. ) - Ao, 2 2
|Foa = \IQSW;M\/” y (% + 1) log? 5 [DI77 log .

Here, X; and I1; have different values w.r.t local sample size

;172D %,  if D, <D

_ ) DD EFE, i D) S 0] S DT
S Il e e o P e
|74, if D] > ||
and
D7 D755 :
r+y r+y : s
.= o A+ T A if |D;] < |D|z
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