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Abstract

Identifying eyes at high risk of future diabetic retinopathy (DR) is valuable for
recall scheduling and timely intervention. We present a vision—language forecast-
ing framework that supervises a contrastive alignment between fundus images
and horizon-aware hypothesis prompts using a multi-positive, bidirectional con-
trastive objective with same-image hard negatives. At inference, we classify by
text prototypes: per-class prompt sets are encoded and averaged to prototypes,
and image—prototype similarities yield calibrated risk. On a national screening
cohort, adding simple demographic context (age, sex, laterality) inside the prompts
improves forecasting over image-only baselines across 1/2/3-year horizons (e.g.,
I-year AUROC 0.654 — 0.673 with age; 0.683 with age+sex). Our results es-
tablish a compact, label-efficient VLM baseline for multi-horizon DR risk that
keeps language grounding and supports prototype-based classification and post-hoc
calibration.

1 Introduction

Diabetic retinopathy (DR), a microvascular complication of diabetes and a leading cause of pre-
ventable blindness worldwide, demands timely intervention based on accurate risk stratification
American Diabetes Association Professional Practice Committee| [2024]. Screening programmes
routinely collect retinal fundus photographs, enabling automated detection of referable DR (e.g.,
R2+ or M1), and deep learning systems have demonstrated robust performance for contemporaneous
diagnosis |Gulshan et al.|[2016], Ting et al.[[2017]], Abramoff et al.| [2018]]. However, for clinical
workflows—ranging from optimising recall intervals to resource allocation and triage—it is often
more valuable to forecast whether an eye will progress within specific time horizons (e.g., one, two,
or three years). In this work we treat forecasting as a first-class objective and ask whether multimodal
alignment between images and explicit, horizon-aware hypotheses can improve risk estimates without
sacrificing language grounding or extensibility.

Emerging evidence indicates that retinal images encode latent prognostic information. Poplin et
al. showed that fundus photos can predict cardiovascular risk factors via deep learning Poplin et al.
[2018]], and subsequent work extended this idea to multi-year DR forecasting |Bora et al.[[2021]], Rom
et al.|[2022]]. More recently, DeepDR Plus modelled time-to-progression to personalise screening
schedules |Dai et al.| [2024]. Yet these efforts largely remain within image-only frameworks and
seldom leverage structured patient context or hypothesis-level supervision. In particular, they do
not exploit the natural compatibility between future-oriented clinical questions (“remain healthy” vs.
“progress to referable DR” within a given horizon) and language-conditioned decision rules that can
be calibrated and adapted post hoc.

Within ophthalmology, initiatives such as RETFound, FLAIR, and EyeCLIP pretrain on large retinal
corpora or encode expert language supervision, improving contemporaneous classification and
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description tasks Zhou et al.|[2023]], Silva-Rodriguez et al.| [2025]], |Shi et al.|[2025]. Nevertheless,
most existing VLMs are optimised for same-time recognition rather than forecasting future disease,
and few incorporate horizon-aware hypotheses, multi-positive supervision from paraphrases, or
explicit treatment of same-image negatives arising from discrepant labels or horizons.

Gap and opportunity. Horizon-aware vision—language forecasting remains underexplored. We posit
that future-risk prediction can be cast as aligning fundus images with concise, structured prompts that
encode demographics and laterality together with outcome hypotheses at specified horizons. This
framing enables supervision via a multi-positive contrastive objective (to exploit paraphrase diversity)
while emphasising same-image hard negatives (same eye, different label/horizon) to sharpen decision
boundaries—retaining language grounding and zero/low-shot extensibility.

Our Contribution. We introduce a compact VLM for multi-horizon DR forecasting that (i) pairs
retinal images with horizon-aware hypothesis prompts containing simple demographics; (ii) trains
using a supervised, multi-positive bidirectional contrastive objective with same-image hard negatives;,
and (iii) performs classification via text prototypes built from multiple paraphrases per class, enabling
calibrated, prompt-driven inference. On a national screening cohort, injecting demographics into
prompts consistently improves over image-only baselines across 1/2/3-year horizons (e.g., at 1-year,
AUROC 0.654 — 0.673 with age; 0.683 with age+sex), establishing a strong, reproducible baseline
for multimodal DR risk forecasting.

2 Methods

2.1 Data and outcomes

We curate a development cohort of 27,863 patients (55,533 eyes; 403,951 images) from a subset of
the UK national diabetic eye screening programme Nderitu et al.|[2022] and hold out 11,198 eyes for
internal testing. Patients have sufficient longitudinal follow-up to define horizon outcomes. Each
eye—session provides two-field colour fundus photographs (macula and disc) plus metadata: age, sex,
and laterality (L/R). For horizons at 1, 2, and 3 years we create binary labels indicating whether the
eye becomes referable within the horizon (referable DR, e.g., R2+, or maculopathy, e.g., M1) versus
non-referable. We enforce patient-level splits—both eyes and all visits of a patient remain in the same
partition—to prevent leakage. Unless noted, the macular field is used for training/inference; the disc
field is retained for sensitivity checks. Mini-batches are approximately horizon- and label-balanced
to stabilise optimisation and calibration.

2.2 Model and supervised contrastive training

Clinical context is rendered as concise, horizon-aware hypotheses with minimal demographics;
e.g., “62-year-old male; left eye. Will the eye remain healthy within I year?” and its complement
“...develop referable DR within I year.” Multiple paraphrases are prepared per class/horizon and one
is sampled at training time.

Encoders and notation. A vision encoder (e.g., ViT-B/16) maps an image to v € R%; a text
encoder (e.g., clinical BERT with an optional projector) maps a prompt to t € R%. Let 0 = v/||v]|2,
t = t/||t||2- A learnable temperature 7 = exp(f) > 0 scales cosine similarities. For a batch of size
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Bidirectional contrastive loss and hard negatives.

1 exp(S;; 1 exp(S;;
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and £ = L+ L;. To stress same-image hard negatives—same image but mismatched (h, y)—let
H; ={j: image_uid(t;) = image_uid(v;) and (h,y) mismatch },

and upweight their contributions in the softmax denominators by A = 2.0 (equivalently add log A to
such logits). We train with AdamW (Ir 1x10~%), weight decay 1x 107, cosine decay with one-epoch
warm-up, standard augmentations, and jointly learn 7.

2.3 Prototype-based inference and calibration

For each class-horizon ¢ € {H@1y,R@1y, H@2y, R@2y, H@3y, R@3y}, encode K paraphrases
{tc.x }_, and form the normalised prototype
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Given an image embedding v, logits are s, = 7 (0, p.). We report (i) binary H vs. R at a fixed
horizon, or (ii) a multi-class decision over all six prototypes. Let PQFk denote the probability of
referable within k years. We apply temperature calibration on validation data and optionally enforce
monotonicity PQ3 > PQ2 > P@]1 (e.g., isotonic regression), yielding calibrated, horizon-consistent
risks while retaining the interpretability of prototype editing.

Statistical analysis and evaluation protocol. We report AUROC, F1, accuracy, sensitivity, and
specificity on the held-out test set using thresholds selected on validation data.

3 Results

3.1 Forecasting performance across horizons

Table[I] summarises discrimination and operating characteristics across 1-, 2-, and 3-year horizons.
Using the image-only configuration as the reference (“Rem/Dev-*y” rows), injecting demographic
context into the horizon-aware prompts improves AUROC at every horizon while preserving the same
contrastive setup. At 1 year the baseline AUROC of 0.654 rises to a best of 0.691 when eye+sex+age
are included, with simpler variants already effective (e.g., age 0.673, age+eye 0.685). At 2 years
AUROC increases from 0.656 to 0.686 with age+eye, with sex+age close behind at 0.684. At 3
years AUROC improves from 0.649 to 0.671 with eye+sex+age. These gains are mirrored by F1
and accuracy. For 1 year, the age variant attains the highest F1 (0.428) and eye+sex+age yields the
best accuracy (0.631). For 2 years, age yields the highest F1 (0.419) while age+eye provides the
strongest accuracy (0.628). For 3 years, age+eye maximises F1 (0.389) and sex+age slightly edges
accuracy (0.611). Beyond aggregate discrimination, demographic-aware prompts generally increase
sensitivity with modest specificity trade-offs. At 1 year, for example, sensitivity increases from 0.602
to 0.725 under eye+sex+age, with specificity moving from 0.562 to 0.535; analogous patterns hold
at 2 years (age+eye sensitivity 0.651 vs. 0.601 baseline) and at 3 years (age+eye 0.622 vs. 0.612
baseline). In screening regimes that prioritise recall, these operating points may be preferable, and
post-hoc threshold calibration can recover specificity as required.

3.2 Effect of visit history

Table [2|examines adding limited prior visits as structured context within the same framework. The
effect is horizon dependent and most pronounced at 1 year, where AUROC improves from 0.691
(demographics only) to 0.705 with one prior visit and 0.707 with two prior visits; F1 increases
from 0.365 to 0.407 and 0.418, and accuracy moves from 0.631 to 0.639 and 0.638. At 2 years, the
corresponding AUROC gains are smaller but consistent (0.674 — 0.680 — 0.681) with accuracy



Table 1: Forecasting results grouped by horizon. Demographics are injected via prompts. Notation:
“Rem/Dev-ky” denotes image-only prompts (no demographics) that contrast Remain healthy within
k years vs. Develop referable DR (or maculopathy) within k years, for k € {1,2,3}. Suffixes

“eye/sex/age” indicate the demographic fields added to the prompt.

Year AUC Fl Accuracy Sensitivity  Specificity Notes
0.649 0.358 0.598 0.612 0.521 Rem/Dev-3y
0.656 0.367 0.603 0.584 0.560 eye + Rem/Dev-3y
0.650 0.370 0.600 0.610 0.549 sex + Rem/Dev-3y
3-Year 0.656 0.375 0.606 0.592 0.541 age + Rem/Dev-3y
0.656 0.343 0.594 0.577 0.571 eye + sex + Rem/Dev-3y
0.657 0.389 0.609 0.622 0.515 age+eye + Rem/Dev-3y
0.659 0.385 0.611 0.600 0.548 sex + age + Rem/Dev-3y
0.671 0.382 0.610 0.595 0.543 eye + sex + age + Rem/Dev-3y
0.656 0.370 0.603 0.601 0.572 Rem/Dev-2y
0.666 0.383 0.609 0.595 0.561 eye + Rem/Dev-2y
0.669 0.406 0.618 0.632 0.548 sex + Rem/Dev-2y
2-Year 0.674 0.419 0.624 0.640 0.559 age + Rem/Dev-2y
0.669 0.385 0.615 0.590 0.583 eye + sex + Rem/Dev-2y
0.686 0.397 0.628 0.651 0.542 age+eye + Rem/Dev-2y
0.684 0.401 0.621 0.633 0.557 sex + age + Rem/Dev-2y
0.674 0357 0.611 0.609 0.591 eye + sex + age + Rem/Dev-2y
0.654 0.363 0.608 0.602 0.562 Rem/Dev-1y
0.669 0354 0.616 0.585 0.571 eye + Rem/Dev-1y
0.667 0394 0.624 0.648 0.540 sex + Rem/Dev-1y
1-Year 0.673 0.428 0.630 0.655 0.546 age + Rem/Dev-1y
0.668 0374 0.618 0.598 0.569 eye + sex + Rem/Dev-1y
0.685 0.387 0.626 0.644 0.554 age+eye + Rem/Dev-1y
0.683 0.403 0.629 0.637 0.561 sex + age + Rem/Dev-1y
0.691 0365 0.631 0.725 0.535 eye + sex + age + Rem/Dev-1y
Table 2: Performance vs. history length across horizons.
Horizon History length AUC F1 Accuracy Sensitivity  Specificity
Demographics only 0.671 0.382 0.610 0.595 0.543
3-year +1 prior visit 0.674 0.384 0.623 0.608 0.515
+2 prior visits 0.676  0.362 0.616 0.622 0.609
Demographics only 0.674  0.357 0.611 0.609 0.591
2-year +1 prior visit 0.680 0.402 0.624 0.603 0.522
+2 prior visits 0.681 0.398 0.625 0.625 0.573
Demographics only 0.691 0.365 0.631 0.725 0.535
1-year +1 prior visit 0.705 0.407 0.639 0.653 0.642
+2 prior visits 0.707 0.418 0.638 0.647 0.581

improving to 0.624 and 0.625; F1 rises from 0.357 to 0.402 and remains at 0.398. At 3 years, the AU-
ROC changes are modest (0.671 — 0.674 — 0.676) and the F1 pattern suggests diminishing returns
with longer histories (0.382 — 0.384 — 0.362), while accuracy still exceeds the demographics-only
setting for one additional visit (0.623 vs. 0.610). Overall, recent history offers the clearest benefit for
short-horizon forecasts, with smaller incremental value as the horizon lengthens.



4 Discussion

4.1 Key findings and practical implications

Encoding horizon-aware hypotheses with lightweight demographics directly in the prompts improves
multi-horizon DR forecasting while keeping training compact. Limited visit history helps most at
1 year and yields smaller, consistent gains at longer horizons, suggesting recent context is most
informative for short-term risk. A supervised, multi-positive bidirectional contrastive objective aligns
images with language by using paraphrase diversity as multiple positives and treating discrepant
labels or horizons from the same image as hard negatives. After alignment, prototype-based inference
is simple and stable: averaging paraphrases forms robust class prototypes, image—prototype scores
calibrate well with a single validation temperature, and the same machinery delivers probabilities for
1,2, and 3 years without task-specific heads. The gains show a typical trade-off, with sensitivity rising
more than specificity—appropriate for recall-focused screening—while specificity can be recovered
via threshold selection or post-hoc calibration. Practically, balanced batches and paraphrase sampling
surface multi-positive structure; including age (and, when available, laterality) preserves language
grounding; and optional monotonic post-processing enforces clinically sensible ordering across
horizons without altering the training loss.

4.2 From discrete horizons to survival-style inference

Although we report results at three fixed horizons, the same prototype workflow can be extended
to time-to-event prediction. Instead of asking “progress within one, two, or three years,” we can
build a small library of prompts that describe risk month-by-month or visit-by-visit. The model
then produces a sequence of per-interval risks that naturally form a survival curve and its running
incidence, giving clinicians a continuous view of how risk accumulates over time. Training can keep
the same contrastive objective and add a light regulariser that encourages sensible ordering across
time without over-constraining representations. Routine challenges in survival analysis—such as
variable follow-up and censoring—can be handled with simple weighting schemes or discrete-time
likelihoods while preserving label efficiency. Crucially, the text-prototype design makes the system
maintainable: programmes can adjust interval granularity, swap wording, or localise phrases without
retraining encoders, and calibration over time can be updated on a small validation set as follow-up
policies evolve.

4.3 Limitations and future directions

We train with a single contrastive objective and intentionally avoid auxiliary classification heads,
leaving open whether small CE/BCE heads might improve calibration under cost-sensitive operating
points. We do not model predictive uncertainty; conformal or Bayesian add-ons could support
difficult cases and subgroup analyses. We lack external-site validation, so robustness to acquisition
shifts, grading protocols, and demographics remains to be assessed; future work should test cross-
programme generalisation and adapt prompts or prototypes accordingly. Our emphasis on same-image
hard negatives assumes sufficient within-eye variability in labels or horizons appearing in batches;
more systematic batch construction or curriculum strategies could strengthen this signal under
extreme imbalance. Finally, richer longitudinal information—structured grades, treatment history,
and imaging-derived biomarkers—could be injected into prompts or encoded temporally while
retaining the same contrastive training, and calibration could use shared monotonic mappings across
horizons to stabilise longitudinal decisions.

5 Conclusion

We introduce a compact, supervised vision—language framework for multi-horizon DR forecasting. A
label-supervised, multi-positive bidirectional contrastive objective aligns images and horizon-aware
hypotheses; classification then uses text prototypes with simple calibration. Demographic-aware
prompts consistently improve over image-only baselines, offering a strong, reproducible baseline for
multimodal DR risk forecasting.
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