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Abstract

Progress in video anomaly detection research is cur-
rently slowed by small datasets that lack a wide variety of
activities as well as flawed evaluation criteria. This paper
aims to help move this research effort forward by introduc-
ing a large and varied new dataset called Street Scene, as
well as two new evaluation criteria that provide a better es-
timate of how an algorithm will perform in practice. In ad-
dition to the new dataset and evaluation criteria, we present
two variations of a novel baseline video anomaly detection
algorithm and show they are much more accurate on Street
Scene than two well known algorithms from the literature.

1. Introduction
Surveillance cameras are ubiquitous, and having humans

monitor them constantly is not practical. In most cases, al-
most all of the video from a surveillance camera is unimpor-
tant and only unusual video segments are of interest. This
is the main motivation for developing video anomaly detec-
tion algorithms - to automatically find parts of a video that
are unusual and flag those for human inspection.

The problem of video anomaly detection can be formu-
lated as follows. Given one or more training videos from
a single scene containing only normal (non-anomalous)
events, detect anomalous events in testing video from the
same scene. Providing training video of normal activity is
necessary to define what is normal for a particular scene. By
anomalous event, we mean a spatially and temporally lo-
calized segment of video that is significantly different from
anything occurring in the training video. What exactly is
meant by “significantly different” is difficult to specify and
really depends on the target application. This difference
could be caused by several factors, most commonly unusual
appearance or motion of objects in the video.

It is important to point out that while many papers for-
mulate the video anomaly detection problem consistently
with our description above ([2, 15, 5, 7, 34, 22, 40, 11,
28]), there are other papers that use different formulations

([36, 12, 2, 20, 10, 1, 13]). For example, some papers do
not assume that the normal videos all come from the same
scene. Sultani et al. [36] and Liu et al. [20] both use normal
data coming from many different scenes to build a single
model. Allowing multiple scenes to define normal data re-
stricts the types of anomalies that are possible to detect. For
instance, using multiple scenes to define normal data ex-
cludes anomalies such as a person walking in a restricted
area. The only way to learn that a particular spatial region
of a scene is a restricted area is to see normal video of that
particular scene and observe the absence of people walking
in that area. Video from other cameras/scenes gives no in-
formation about what activities may be anomalous in some
areas, but not others, in a different scene. A single model
has no way of representing, for example, that a grassy area
is only a restricted area in a certain location of one scene
but in a different location of another scene (unless sepa-
rate models are created for each scene, in which case this is
equivalent to the single scene formulation). This is true of
many activities that are only anomalous in certain areas of a
particular scene (such as jaywalking, cars or bikes going the
wrong direction for a particular lane, etc). Thus, the single
scene formulation leads to a qualitatively different problem
than a multiple scene formulation. Because the single scene
formulation corresponds to the most common surveillance
use case, we are focused on it.

Another alternative formulation only defines anomalies
temporally but not spatially [36, 2, 1]. Our perspective
is that for scenes with a lot of activity, it is important to
roughly localize anomalies both temporally and spatially,
in order to have confidence that the algorithm is detecting
anomalous frames for the right reasons, and also because lo-
calizing anomalies is helpful to humans inspecting the out-
put of an anomaly detection algorithm.

After working on this problem, we think there are defi-
ciencies in existing datasets for the single scene formulation
of video anomaly detection. These deficiencies include the
simplicity of the scenes for many datasets, the small num-
ber of anomalous events, the lack of variety in anomalous
events, the very low resolution of some datasets, existence



Figure 1: A normal frame from the Street Scene dataset.

of staged anomalies in some cases, inconsistency in anno-
tation, and the lack of spatial ground truth (in addition to
temporal) in some cases. Furthermore, the evaluation cri-
teria that have become standard practice for video anomaly
detection have problems. Namely, the criteria do not prop-
erly evaluate spatial localization and do not properly count
false positives. In short, they do not give a realistic picture
of how an algorithm will perform in practice.

The goal of this paper is to shift the focus of video
anomaly detection research to more realistic datasets and
more useful evaluation criteria. We introduce a new dataset
for video anomaly detection, called Street Scene, that has
more labeled anomalous events and a greater variety of
anomalies than previous datasets for single scene anomaly
detection. Street Scene contains video of a two-way ur-
ban street including bike lanes and pedestrian sidewalks
(see Figure 1). The video is high resolution and captures
a scene with a large variety of activity. We also suggest two
new evaluation criteria which we believe give a more accu-
rate picture of how video anomaly detection algorithms will
perform in practice than the existing criteria. Finally, we
present two variations of a novel algorithm which outper-
form two state-of-the-art algorithms on Street Scene and set
a more realistic baseline for future work to compare against.

2. Existing Datasets and Evaluation Criteria

There are a handful of publicly available datasets used to
evaluate video anomaly detection algorithms. We discuss
each of these below and summarize them in Table 1.

UCSD Pedestrian: The most widely used video
anomaly detection dataset is the UCSD pedestrian anomaly
dataset [18] which consists of two separate datasets contain-
ing video from two different static cameras (labeled Ped1
and Ped2), each looking at a pedestrian walkway. The
test videos contain 5 different types of anomalies: “bike”,
“skater”, “cart”, “walk across”, and “other”.

Despite being widely used, this dataset has various defi-
ciencies. One is that it is modest in size, in terms of number
of frames, total anomalies, and number of different types
of anomalies. Another is that all of the anomalies can be

detected by only analyzing a single frame at a time.
Subway: The Subway dataset [2] contains two long

videos of a subway entrance and exit that mainly capture
people entering and leaving through turnstiles. It is also ac-
tually two separate datasets. Anomalous activities include
people jumping or squeezing around the turnstiles, walking
the wrong direction, and a person cleaning the walls. Be-
cause only two long videos are provided, there are various
ambiguities with this dataset such as what frame rate to ex-
tract frames, which frames to use as train/test and exactly
which frames are labeled as anomalous. Also, there is no
spatial ground truth provided.

CUHK Avenue: Another widely used dataset is called
CUHK Avenue [22]. This dataset consists of short video
clips taken from a single outdoor surveillance camera look-
ing at the side of a building with a pedestrian walkway in
front of it. The main activity consists of people walking
and going into or out of the building. Anomalies are mostly
staged and consist of actions such as a person throwing pa-
pers or a backpack into the air, or a child skipping across the
walkway. Like UCSD, this dataset also has a small number
and variety of anomalies.

UMN: The UMN dataset contains 11 short clips of 3
scenes of people meandering around an outdoor field, an
outdoor courtyard, or an indoor foyer. In each of the clips
the anomaly consists of all of the people suddenly running
away, hinting at a frantic evacuation scenario. The scene is
staged and there is one anomalous event per clip. There is
no clear specification of a split between training and testing
frames and anomalies are only labeled temporally.

Other Datasets: There are two other datasets that
should be mentioned although they do not fall under the
single scene formulation of video anomaly detection. One
is the ShanghaiTech dataset introduced in a paper by Liu et
al. [20]. It consists of 13 different scenes each with multi-
ple training and testing sequences. The dataset is intended
to be used to learn a single model and thus does not follow
the single scene formulation. While it is conceivable to treat
it as 13 separate datasets, this is problematic since many of
the videos for a particular scene have significant changes in
viewpoint and some have very little training video. Further-
more, treating it as separate datasets would yield an average
of 10 anomalous events per scene which is very small.

Another dataset from Sultani et al. [36] (the UCF-Crime
dataset) contains a large set of internet videos taken from
hundreds of different cameras. This dataset is intended for a
very different formulation of video anomaly detection more
akin to activity detection. In their formulation, both anoma-
lous and normal video is given for training. The dataset
consists of videos from many scenes labeled with prede-
fined anomalous activities as well as video with only ”nor-
mal” activities. For testing, only temporal labels are avail-
able, meaning spatial evaluation cannot be done. While this



Dataset Total Training Testing Anomalous Anomaly Ground Resolution
Frames Frames Frames Events Types Truth

UCSD Ped1 14,000 6800 7200 54 5 Spatial, Temporal 238 x 158
UCSD Ped2 4560 2550 2010 23 5 Spatial, Temporal 360 x 240

Subway entrance∗ 86,535 18,000 68,535 66 5 Temporal 512 x 384
Subway exit∗ 38,940 4,500 34,440 19 3 Temporal 512 x 384

CUHK Avenue 30,652 15,328 15,324 47 5 Spatial, Temporal 640 x 360
UMN∗∗ 3,855 N/A N/A 11 1 Temporal 320 x 240

Street Scene 203,257 56,847 146,410 205 17 Spatial, Temporal 1280 x 720

Table 1: Characteristics of video anomaly detection datasets for the single scene formulation. ∗using 15fps ∗∗aggregates
from 3 cameras.

dataset is interesting, it is for a very different version of the
problem and is not applicable to the single scene version
that we are concerned with here.

General video surveillance/recognition datasets such as
[19, 41, 26, 27] have not been used to evaluate video
anomaly detection since they are not specifically curated for
this purpose and do not contain sufficient ground truth an-
notations.

2.1. Evaluation Criteria

Almost every recent paper for video anomaly detection
[24, 25, 38, 16, 33, 30, 6, 23, 39, 37, 40, 10, 7, 34, 22, 31,
20, 3, 4, 11, 12, 21, 29, 28, 35, 32, 14, 13] has used one
or both of the evaluation criteria specified in Li et al. [18]
which also introduced the UCSD pedestrian dataset. The
first criterion, referred to as the frame-level criterion, counts
a frame with any detected anomalous pixels as a positive
frame and all other frames as negative. The frame-level
ground truth annotations are then used to determine which
detected frames are true positives and which are false posi-
tives, thus yielding frame-level true positive and false pos-
itive rates. This criterion uses no spatial localization and
counts a frame as a correct detection (true positive) even
if the detected anomalous pixels do not overlap with any
ground truth anomalous pixels. Even the authors who pro-
posed this criterion stated that they did not think it was the
best one to use [18]. We have observed that some meth-
ods that claim state-of-the-art performance on frame-level
criterion perform poor spatial localization in practice.

The other criterion is the pixel-level criterion and tries to
take into account the spatial locations of anomalies. Unfor-
tunately, it does so in a problematic way. The pixel-level
criterion still counts true and false positive frames as op-
posed to true and false positive anomalous regions. A frame
with ground truth anomalies is counted as a true positive
detection if at least 40% of the ground truth anomalous pix-
els are detected. Other pixels detected as anomalous that
do not overlap with ground truth are ignored. Any frame
with no ground truth anomalies is counted as a false pos-
itive frame if at least one pixel is detected as anomalous.
Given these rules, a simple post-processing of the anomaly
score maps makes the pixel-level criterion equivalent to the

frame-level criterion. The post-processing is: for any frame
with at least one detected anomalous pixel, label every pixel
in that frame as anomalous. This would guarantee a correct
detection if the frame has a ground truth anomaly (since
all of the ground truth anomalous pixels are covered) and
would not further increase the false positive rate if it does
not (since one or more detected pixels on a frame with no
anomalies counts as a single false positive). This makes it
clear that the pixel-level criterion does not reward tightness
of localization or penalize looseness of it nor does it prop-
erly count false positives since false positive regions are not
even counted for frames containing ground truth anomalies,
and a frame with no ground truth anomaly can only have
a single false positive even if an algorithm falsely detects
many different false positive regions in that frame.

Better evaluation criteria are clearly needed.

3. Description of Street Scene
To address the deficiencies of existing datasets, we in-

troduce the Street Scene dataset. Street Scene consists of
46 training video sequences and 35 testing video sequences
taken from a static USB camera looking down on a scene of
a two-lane street with bike lanes and pedestrian sidewalks.
See Figure 1 for a typical frame from the dataset. Videos
were collected from the camera at various times during two
consecutive summers. All of the videos were taken dur-
ing the daytime. The dataset is challenging because of the
variety of activity taking place such as cars driving, turn-
ing, stopping and parking; pedestrians walking, jogging and
pushing strollers; and bikers riding in bike lanes. In ad-
dition the videos contain changing shadows, and moving
background such as a flag and trees blowing in the wind.
There are a total of 203,257 color video frames (56,847 for
training and 146,410 for testing) each of size 1280 x 720
pixels. The frames were extracted from the original videos
at 15 frames per second.

We wanted the dataset to contain only “natural” anoma-
lies, i.e. not staged by “actors”. To this end, the training
sequences were chosen to meet the following conditions:

(1) If people are present, they are walking, jogging or
pushing a stroller in one direction on a sidewalk; or they are
getting into or out of their car including walking alongside



Anomaly Class Instances Anomaly Class Instances Anomaly Class Instances
1. Jaywalking 61 7. Biker on sidewalk 7 13. Skateboarder in bike lane 2
2. Biker outside lane 42 8. Pedestrian reverses direction 6 14. Person sitting on bench 2
3. Loitering 36 9. Car u-turn 5 15. Metermaid ticketing car 1
4. Dog on sidewalk 11 10. Car illegally parked 5 16. Car turning from parking space 1
5. Car outside lane 10 11. Person opening trunk 4 17. Motorcycle drives onto sidewalk 1
6. Worker in bushes 8 12. Person exits car on street 3

Table 2: Meta-data of anomaly classes and number of instances of each in the Street Scene dataset.

their car; or they are stopped in front of a parking meter.
(2) If a car is present, it is legally parked; or it is driving

in the appropriate direction in a car lane; or stopped in a car
lane due to traffic; or making a legal turn across traffic; or
leaving/entering a parking spot on the side of the street.

(3) If bikers are present, they are riding in the correct
direction in a bike lane; or turning from an intersecting road
into a bike lane or from a bike lane onto an intersecting road.

These conditions for normal activity imply that the fol-
lowing activities, for example, are anomalous and thus do
not appear in the training videos: Pedestrians jaywalk-
ing across the road, pedestrians loitering on the sidewalk,
pedestrians walking one direction and then turning around
and walking the opposite direction, bikers on the sidewalk,
bikers outside a bike lane (except when turning into a bike
lane from the intersecting street) cars making u-turns, cars
parked illegally, cars outside a car lane (except when turn-
ing or parked, parking or leaving a parking spot).

The 35 testing sequences have a total of 205 anomalous
events consisting of 17 different anomaly types. A complete
list of anomaly types and the number of each in the test set
is given in Table 2, for descriptive purposes only.

The Street Scene dataset can be downloaded from
http://www.merl.com/demos/video-anomaly-detection.
Ground truth annotations are provided for each testing
video in the form of bounding boxes around each anoma-
lous event in each frame. Each bounding box is also labeled
with a track number, meaning each anomalous event is
labeled as a track of bounding boxes. A single frame can
have more than one anomaly labeled.

4. New Evaluation Criteria

As discussed in Section 2.1, the main criteria used by
previous work to evaluate video anomaly detection accu-
racy have significant problems. Sabokrou et al. [32] also
recognized the problems with the standard criteria and pro-
posed the Dual Pixel Level criteria. While this is an im-
provement, it still cannot correctly count true positives and
false positives in frames with (a) multiple anomalies, (b)
both true positive as well as false positive detections and (c)
multiple false positive detections. A good evaluation crite-
rion should measure the fraction of anomalies an algorithm
can detect and the number of false positive regions an algo-
rithm can be expected to mistakenly find per frame.

Our new evaluation criteria are informed by the follow-
ing considerations. Similar to object detection criteria, us-
ing the intersection over union (IOU) between a ground
truth anomalous region and a detected anomalous region
for determining whether an anomaly is detected is a good
way to insure rough spatial localization. For video anomaly
detection, the IOU threshold should be low to allow some
imprecision in localization because of issues like imprecise
labeling (bounding boxes) and the fact that some algorithms
detect anomalies that are close to each other as one large
anomalous region which should not be penalized. Sim-
ilarly, shadows may cause larger anomalous regions than
what are labeled. We do not think such larger than expected
anomalous-region detections should be penalized. We use
an IOU threshold of 0.1 in our experiments.

Also, because a single frame can have multiple ground-
truth anomalous regions, correct detections should be
counted at the level of anomalous regions, not frames.

False positives should be counted for each falsely de-
tected anomalous region, i.e. by each detected anomalous
region that does not significantly overlap with a ground
truth anomalous region. This allows more than one false
positive per frame and also false positives in frames with
ground truth annotations, unlike the previous criteria.

In practice, for an anomaly that occurs over many
frames, it is important to detect the anomalous region in
at least some of the frames, but it is usually not impor-
tant to detect the region in every frame in the track. This
is especially true considering the ambiguities for when to
begin and end an anomalous track mentioned earlier, and
in cases where anomalous activity is severely occluded for
a few frames. Because the Street Scene dataset provides
track numbers for each anomalous region which uniquely
identify the event to which an anomalous region belongs,
it is easy to compute such a criterion. The new criteria re-
sulting from these considerations are similar to evaluation
criteria used in object detection and object tracking [9, 8]
but similar criteria have not been used for video anomaly
detection in the past.

4.1. Track-Based Detection Criterion

The track-based detection criterion measures the track-
based detection rate (TBDR) versus the number of false
positive regions per frame.

A ground truth track is considered detected if at least a



fraction α of the ground truth regions in the track are de-
tected.

A ground truth region in a frame is considered detected if
the intersection over union (IOU) between the ground truth
region and a detected region is greater than or equal to β.

TBDR =
num. of anomalous tracks detected

total num. of anomalous tracks
. (1)

A detected region in a frame is a false positive if the IOU
between it and every ground truth region in that frame is
less than β.

FPR =
total false positive regions

total frames
(2)

where FPR is the false-positive rate per frame.
Note that a single detected region can cover two or more

different ground truth regions so that each ground truth re-
gion is detected (although this is rare).

In our experiments below, we use α = 0.1 and β = 0.1.

4.2. Region-Based Detection Criterion

The region-based detection criterion measures the
region-based detection rate (RBDR) over all frames in the
test set versus the number of false positive regions per
frame.

As with the track-based detection criterion, a ground
truth region in a frame is considered detected if the inter-
section over union (IOU) between the ground truth region
and a detected region is greater than or equal to β.

RBDR =
num. of anomalous regions detected

total num. of anomalous regions
. (3)

The RBDR is computed over all ground truth anomalous
regions in all frames of the test set.

The number of false positives per frame is calculated in
the same way as with the track-based detection criterion.

As with any detection criterion, there is a trade-off be-
tween detection rate (true positive rate) and false positive
rate which can be captured in a ROC curve computed by
changing the threshold on the anomaly score that deter-
mines which regions are detected as anomalous.

When a single number is desired, we suggest summariz-
ing the performance with the average detection rate for false
positive rates from 0 to 1, i.e. the area under the ROC curve
for false positive rates less than or equal to 1.

5. Baseline Algorithms
We describe two variations of a novel algorithm for video

anomaly detection which we evaluate along with two pre-
viously published algorithms on the Street Scene dataset in
Section 6. The new algorithm is based on dividing the video
into spatio-temporal regions which we call video patches,
storing a set of exemplars to represent the variety of video

Figure 2: Illustration of a grid of regions partitioning a
video frame and a video patch encompassing 4 frames.
This figure show non-overlapping regions, but in our ex-
periments we use overlapping regions.

patches occuring in each region, and then using the distance
from a testing video patch to the nearest neighbor exem-
plar as the anomaly score. As with previous work such as
[14, 22], our baseline algorithm uses video patches (also
called spatio-temporal cubes) as the basic building block,
but differs in the features and type of model we use.

First, each video is divided into a grid of spatio-temporal
regions of sizeH×W×T pixels with spatial step size s and
temporal step size 1 frame. In the experiments in Section 6
we choose H=40 pixels, W=40 pixels, T=4 or 7 frames,
and s = 20 pixels. See Figure 2 for an illustration.

The baseline algorithm has two phases: a training or
model-building phase and a testing or anomaly detection
phase. In the model-building phase, the training (normal)
videos are used to find a set of video patches (represented
by feature vectors described later) for each spatial region
that represent the variety of activity in that spatial region.
We call these representative video patches, exemplars. In
the anomaly detection phase, the testing video is split into
the same regions used in training and for each testing video
patch, the nearest exemplar from its spatial region is found.
The distance to the nearest exemplar is the anomaly score.

The only differences between the two variations are the
feature vector used to represent each video patch and the
distance function used to compare two feature vectors.

The foreground (FG) mask variation uses blurred FG
masks for each frame in a video patch. The FG masks are
computed using a background (BG) model that is updated
as the video is processed. The BG model used in the exper-
iments is a very simple mean color value per pixel although
a more sophisticated model could be easily substituted.

The FG mask is then blurred using a Gaussian kernel to
make the L2 distance between FG masks more robust. The
FG mask feature vector is formed by concatenating all of
the blurred FG masks from all frames in a video patch and
then vectorizing (see Figure 3).



The flow-based variation uses optical flow fields com-
puted between consecutive frames in place of FG masks.
The flow fields within the region of each video patch frame
are concatenated and then vectorized to yield a feature vec-
tor twice the length of the feature vector from the FG mask
baseline (due to the dx and dy components of the flow field).
In our experiments we use the optical flow algorithm of
Kroeger et al. [17] to compute flow fields.

In the model building phase, a distinct set of exemplars is
selected to represent normal activity in each spatial region.
Our exemplar selection method is straightforward. For a
particular spatial region, the exemplar set is initialized to the
empty set. We slide a spatial-temporal window (with step
size equal to one frame) along the temporal dimension of
each training video to give a series of video patches which
we represent by either a FG-mask based feature vector or a
flow-based feature vector depending on the algorithm varia-
tion as described above. For each video patch, we compare
it to the current set of exemplars. If the distance to the near-
est exemplar is less than a threshold then we discard that
video patch. Otherwise we add it to the set of exemplars.

The distance function used to compare two exemplars
depends on the feature vector. For blurred FG mask feature
vectors, we use L2 distance. For flow-field feature vectors
we use normalized L1 distance:

dist(u,v) =
∑
i

|ui − vi|
|ui|+ |vi|+ ε

(4)

where u and v are two flow-based feature vectors and ε is a
small positive constant used to avoid division by zero.

Given a model of normal video which consists of a dif-
ferent set of exemplars for each spatial region of the video,
the anomaly detection is simply a series of nearest neighbor
lookups. For each spatial region in a sequence of T frames
of a testing video, compute the feature vector representing
the video patch and then find the nearest neighbor in that
region’s exemplar set. The distance to the closest exemplar
is the anomaly score for that video patch.

This yields an anomaly score per overlapping video
patch. These are used to create a per-pixel anomaly score
matrix for each frame. The anomaly score for a video patch
is stored in the middle frame for that set of T frames. The
first T/2− 1 frames and the last T/2+1 frames of the test-
ing video are not assigned any anomaly scores from video
patches and thus get all 0’s. A pixel covered by two or more
video patches is assigned the average score from all video
patches that include the pixel.

When computing ROC curves according to either of the
track-based or region-based criteria, for a given threshold,
all pixels with anomaly scores above the threshold are la-
beled anomalous. Then anomalous regions are found by
computing the connected components of anomalous pixels.

Figure 3: Example blurred FG masks, concatenated and
vectorized into a feature vector. a and c show two video
patches consisting of 7 frames cropped around a spatial re-
gion. b and d show the corresponding blurred FG masks.

These anomalous regions are compared to the ground truth
regions according to one of the above criteria.

6. Experiments

In addition to the two variations of our baseline video
anomaly detection method, we also tested two previously
published methods. The first is the dictionary method of
Lu et al. [22] which fits a sparse combination of dictio-
nary basis feature vectors to a feature vector representing
each spatio-temporal window of the test video. A dictionary
of basis feature vectors is learned from the normal training
videos for each spatial region independently. This method
reported good results on UCSD, Subway and CUHK Av-
enue datasets. Code was provided by the authors.

The second method is from Hasan et al. [10] which uses
a deep network auto-encoder to learn a model of normal
frames. The anomaly score for each pixel is the recon-
struction error incurred by passing a clip containing the
pixel through the auto-encoder. This assumes that anoma-
lous regions of a frame will not be well reconstucted. This
method is also competitive with other state-of-the-art results
on standard datasets and evaluation criteria. We used our
own implementation of this method.

We have been unable to find code available for other al-
gorithms, but hope that researchers will report the results of
their algorithms on Street Scene in the near future.

Figures 4 (a) and (b) show ROC curves for our baseline
methods as well as the dictionary and auto-encoder methods
on Street Scene using the newly proposed track-based and
region-based criteria. The numbers in parentheses for each
method in the figure legends are the areas under the curve
for false positive rates from 0 to 1. Clearly, the dictionary
and auto-encoder methods perform poorly on Street Scene.
Our baseline methods do much better although there is still
much room for improvement.

While the dictionary method works well on other,
smaller datasets, the sparse dictionary model does not seem



Figure 4: Track-based (a) and region-based (b) ROC curves for different methods on Street Scene

Figure 5: Frame-level (a) and pixel-level (b) ROC curves for different methods on Street Scene

to be expressive enough to reconstruct many normal testing
video patches on the larger and more varied Street Scene.

The auto-encoder method tries to model whole frames
at once as opposed to creating smaller models for differ-
ent spatial regions. While this seems to work on previous
datasets, it does not seem to work with the huge variety of
normal variations present in Street Scene.

Our baseline algorithms perform reasonably well on
Street Scene. They store a large set of exemplars (typically
between 1000 and 3000 exemplars) in regions where there
is a lot of activity such as the street, sidewalk and bike lane
regions. On other regions such as the building walls or roof
tops, only a single exemplar is stored.

For the two baseline variations using the track-based cri-
teria, the flow-based method does best for low false-positive
rates (arguably the most important part of the ROC curve).
The flow field provides more useful information than FG
masks for most of the anomalies (the main exception being
loitering anomalies which are discussed below). The FG-
based method does better using the region-based criterion.
The number of frames used in a video patch (4 or 7) does
not have a large effect on either variation.

The baseline algorithms do best at detecting anomalous
activities such as jaywalking, illegal u-turn, and bikers or

cars outside their lanes because these anomalies have dis-
tinctive motions compared to the typical motions in the re-
gions where they occur.

The loitering anomalies (and other largely static anoma-
lies such as illegally parked cars) are the most difficult for
the baseline methods because they do not contain any mo-
tion except at the beginning in which a walking person tran-
sitions to loitering. For the flow-based method, the loiter-
ing anomalies are completely invisible. For the FG-based
method, the beginning of the loitering anomaly is visible
since the BG model takes a few frames to absorb the mo-
tionless person. This is the main reason why the flow-based
method is worse than the FG-based method for higher de-
tection rates. The FG-based method can detect some of the
loitering anomalies while the flow-based method cannot.

A similar effect explains the region-based results in
which the FG-based method does better than the flow-based
method. The loitering and other “static” anomalies make
up a disproportionate fraction of the total anomalous re-
gions because many of them occur over many frames. The
FG-based method detects some of these regions while the
flow-based method misses essentially all of them. So even
though the flow-based method detects a greater fraction of
all anomalous tracks (at low false positive rates) it detects a



Figure 6: Detection result for flow baseline showing cor-
rectly detected motorcycle driving onto the sidewalk.

Figure 7: Detection result for flow baseline that is counted
as missed detection but no false positive by pixel-level cri-
terion and is counted as one correct detection and one false
positive by the track-based and region-based criteria.

Figure 8: Detection result for flow baseline showing missed
detection and false positive region that is counted as correct
detection with no false positives by frame-level criterion.

smaller fraction of all anomalous regions.
Some visualizations of the detection results for the flow-

based method (using T=4) are shown in Figures 6 and 7.
In the figures, red tinted pixels are anomaly detections and
blue boxes show the ground truth annotations. Figure 6
shows the correct detection of a motorcycle that rides onto
a sidewalk. Figure 7 shows a detected jaywalker as well as
a false positive region.

We also show results for the two baseline algorithms as
well as the dictionary and auto-encoder methods using the
traditional frame-level and pixel-level criteria in Figures 5
(a) and (b). We show the results for the purpose of illustrat-
ing the deficiencies of these criteria, but not for comparison
with future work. We do not think these criteria should be
used for Street Scene going forward. The frame-level re-
sults (which do not take spatial localization into account)
suggest that the auto-encoder method does about as well as
the foreground baseline and the dictionary method is almost
as good as the flow baseline. However, when we look at
what regions of each frame the auto-encoder and dictionary
methods actually detect as anomalous, the accuracy is quite
poor. This can be seen in the track-based, region-based and
pixel-level ROC curves as well as by visual inspection. Fig-
ure 8 shows the output of the flow baseline for a frame that
contains a “person opening trunk” anomaly in the top, left.
The frame-level criterion counts this frame as a correct de-
tection even though the detected pixels are nowhere near
the ground truth anomaly but are in fact a false positive.
The pixel-level ROC curves in Figure 5 (b) are more rea-
sonable and in better agreement with the track-based and
region-based ROC curves, but as mentioned earlier this cri-
teria has the serious flaw that a very simple post-processing
of anomaly scores would boost these curves so they are ex-
actly the same as the frame-level ROC curves. Figure 7
shows an example of a jaywalk anomaly that has fewer than
40% of its pixels detected and is therefore a missed detec-
tion according to the pixel-level criterion. This criteria also
ignores a false-positive region below the car. The region and
track-based criterion would count this as a correct detection
and one false positive. We argue that this is a better fit to
human intuition about how this frame should be counted.

7. Conclusions

We have presented a new large-scale dataset and new
evaluation criteria for video anomaly detection that we hope
will help to spur new innovations in this field. The Street
Scene dataset is a more complex scene and has almost as
many anomalous events as all currently available datasets
combined. The new evaluation criteria fix the problems with
the criteria typically used in this field, and will give a more
realistic idea of how well an algorithm performs in practice.

In addition, we have presented two variations of a new
video anomaly detection algorithm as a baseline for future
work to compare against; they are straightforward and out-
perform two previously published algorithms which do well
on previous datasets but not on Street Scene. The new
nearest-neighbor based algorithms may form an interesting
foundation to build on.

Acknowledgement: Thanks to Raju Vatsavai and Zexi
Chen of NC State for help with reimplementing [10].
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