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ABSTRACT

We introduce LLaVA-MoD, a novel framework designed to enable the efficient
training of small-scale Multimodal Language Models (s-MLLM) distilling knowl-
edge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental
challenges in MLLM distillation. First, we optimize the network structure of s-
MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the
language model, striking a balance between computational efficiency and model
capability. Second, we propose a progressive knowledge transfer strategy for
comprehensive knowledge transfer. This strategy begins with mimic distilla-
tion, where we minimize the Kullback-Leibler (KL) divergence between output
distributions to enable s-MLLM to emulate l-MLLM’s understanding. Follow-
ing this, we introduce preference distillation via Preference Optimization (PO),
where the key lies in treating l-MLLM as the reference model. During this
phase, the s-MLLM’s ability to discriminate between superior and inferior ex-
amples is significantly enhanced beyond l-MLLM, leading to a better s-MLLM
that surpasses l-MLLM, particularly in hallucination benchmarks. Extensive ex-
periments demonstrate that LLaVA-MoD surpasses existing works across vari-
ous benchmarks while maintaining minimal activated parameters and low com-
putational costs. Remarkably, LLaVA-MoD-2B surpasses Qwen-VL-Chat-7B
with an average gain of 8.8%, using merely 0.3% of the training data and 23%
trainable parameters. The results underscore LLaVA-MoD’s capability to effec-
tively distill comprehensive knowledge from its teacher model, paving the way
for the development of efficient MLLMs. The code is available at https:
//github.com/shufangxun/LLaVA-MoD.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Bai et al., 2023b; Liu et al., 2024; Lin et al., 2024b;
Chen et al., 2023b; Shu et al., 2023; Lu et al., 2024) have demonstrated promising performance
in multimodal tasks by integrating visual encoders with Large Language Models (LLMs) (Achiam
et al., 2023; Bai et al., 2023a; Team et al., 2023; Touvron et al., 2023). However, the consider-
able size of these models and their reliance on vast training data pose significant computational
challenges. For instance, the largest version of LLaVA-NeXT utilizes the Qwen-1.5-110B model,
requiring 128 H800 GPUs for 18 hours of training. Furthermore, the extensive number of parame-
ters necessitates advanced hardware, resulting in slow inference speeds that complicate real-world
deployment, particularly on mobile devices. Consequently, it is essential to explore small-scale
MLLMs (s-MLLMs) that strike a balance between performance and efficiency.

Previous works on s-MLLM (Zhou et al., 2024a; Yuan et al., 2023; Shao et al., 2024; He et al., 2024;
Chu et al., 2023; Yao et al., 2024) have focused on high-quality data collection and filtering proto-
cols. While effective, they are inherently limited by the model capacity. Knowledge Distillation
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Figure 1: Comparisons of training cost and performance. LLaVA-MoD achieves comparable perfor-
mance with advanced MLLMs using significantly lower training costs while outperforming current
small-scale MLLMs by a large margin.

(KD) from large-scale MLLM (l-MLLM) offers a promising yet unexplored strategy for enhancing
s-MLLM performance. By aligning small models’ output distributions with large models, KD allows
s-MLLM to leverage the rich knowledge embedded in l-MLLM. We explore a distillation framework
for MLLM and consider two primary challenges. The first challenge is to design a lightweight archi-
tecture for s-MLLM while still maintaining strong learning and expressive capabilities to effectively
absorb complex knowledge from l-MLLM. The second challenge is to ensure an effective transfer of
complex, multi-task knowledge from l-MLLM to s-MLLM. We present LLaVA-MoD1 to address
the challenges through Mixture-of-Expert (MoE) and Knowledge Distillation.

To address the first challenge, one straightforward approach is to create a small model by simply
scaling down l-MLLM. However, this direct reduction in size can significantly diminish the model’s
expressive capabilities, resulting in a decline in performance for handling complex multi-modal
tasks. Drawing inspiration from the recent success of MoE (Dai et al., 2024; Jiang et al., 2024)
in language modeling, we design an MoE structure into s-MLLM to balance scale reduction while
maintaining the ability to capture complex multimodal knowledge through sparsely activated experts
during distillation. Specifically, we equip s-MLLM with multiple feedforward networks (FFNs) and
a linear gate within the LLM block. Each FFN serves as an expert to capture fine-grained knowl-
edge from l-MLLM, while the gate dynamically selects the top-k experts to identify the optimal
knowledge transfer pathway and maintain the training and inference efficiency.

To address the second challenge, we propose a progressive distillation strategy. The process begins
by aligning the vision encoder with the LLM using a learnable adapter, thereby initializing a dense
s-MLLM. Subsequently, we employ two consecutive distillation stages, where s-MLLM evolves
from mimicking and approximating l-MLLM to ultimately surpassing it: Mimic Distillation. This
stage is divided into two steps, i.e., dense-to-dense (D2D) and dense-to-sparse (D2S). The rationale
for this two-step process is to facilitate the transfer of complex knowledge, where the first step
targets general knowledge to build a solid foundation, while the second step targets specialized
knowledge to handle multi-task tasks. In D2D, we employ standard KD loss to align the output
logits distribution between the initialized dense s-MLLM and l-MLLM, using general captioning
and conversation datasets. Next, in D2S, s-MLLM is first transformed from dense to sparse. We
then employ the standard KD loss and LM loss to distill the MoE block, using the complex multi-
task datasets. Preference Distillation. In this stage, l-MLLM provides knowledge regarding what
constitutes “good” and “bad” samples, establishing a foundational reference for the student model.
The s-MLLM leverages this knowledge to adjust its probability distribution, ensuring that good
samples have a higher probability than those from l-MLLM, while bad samples are assigned a lower
probability. This process enhances the s-MLLM’s ability to mitigate hallucinations by improving its
judgment capabilities beyond those of l-MLLM.

LLaVA-MoD exhibits impressive performance on various multimodal benchmarks while maintain-
ing minimal activated parameters and low computational resources. As illustrated in Figure 1,
LLaVA-MoD-2B exceeds Qwen-VL-Chat-7B by an average of 8.8% on these benchmarks, uti-

1MoD denotes Mixture-of-Expert Knowledge Distillation for MLLMs
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lizing only 0.3% of the training data and 23% trainable parameters. Furthermore, it matches the
performance of RLHF-based methods with 7B and 13B parameters on several hallucination bench-
marks. Specifically, LLaVA-MoD-2B surpasses RLHF-V (Yu et al., 2024a) by 8.2% in response-
level hallucination rate and by 21.3% in mention-level hallucination rate on the Object HalBench.
The impressive results demonstrate the effectiveness of our distillation framework in transferring
knowledge from l-MLLM to s-MLLM.

2 RELATED WORK

Multimodal Large Language Models. LLMs have greatly advanced the field of natural language
processing. Connecting visual information to LLM is crucial for promoting the unified compre-
hension of vision and language. BLIP-2 (Li et al., 2023b) adds additional intermediary structures to
adapt visual features to LLM. Flamingo (Alayrac et al., 2022) incorporates additional cross-attention
modules into LLM to handle arbitrarily interleaved multimodal sequences. Recently, models like
LLaVA (Liu et al., 2024) and MiniGPT-4 (Zhu et al., 2023) have tried to enhance the models’
instruction-following ability through visual instruction tuning. In addition, some works focus on
a stronger vision encoder (Chen et al., 2023b; Li et al., 2024) or more powerful fine-grained vi-
sual understanding capabilities (Bai et al., 2023b; Wang et al., 2024). Unlike these approaches, our
method does not need to significantly enlarge the model. We aim to combine distillation and MoE
to improve computational and storage efficiency while maintaining advanced performance.

Knowledge Distillation. The enormous sizes and high inference costs of LLMs limit their applica-
tion in low-resource environments. Knowledge distillation (Hinton et al., 2015) uses a large model
as the teacher to transfer its advanced knowledge to a smaller student model, which plays a critical
role in compressing model size and enables smaller models to self-improve. MiniLLM (Gu et al.,
2023) minimizes the reverse KL divergence to prevent students from overestimating low-probability
regions in the teacher distribution, while GKD (Tan et al., 2023) introduces generalized knowledge
distillation and promotes the integration of distillation with RLHF. Additionally, some works adopt
context distillation (Huang et al., 2022) and CoT (Chain-of-Thought) distillation (Mukherjee et al.,
2023; Li et al., 2022; Ho et al., 2022) to enhance specific skills of small models. Our approach
innovatively distills the knowledge of MLLM into a smaller sparse MoE architecture, significantly
enhancing the multimodal processing capabilities of small models at a minimal cost.

Mixture-of-Experts The mixture of experts (MoE) architecture, introduced by (Jacobs et al., 1991),
enhances performance by leveraging independent experts to handle diverse samples. In transformer-
based architecture, the feed-forward neural network (FFN) layers serve as the experts, sparsely ac-
tivated through a gating strategy (Lepikhin et al., 2020; Fedus et al., 2022). This design effectively
enhances model capacity while keeping computational overhead low. Additionally, the sparse up-
cycling method (Komatsuzaki et al., 2022) which initializes experts using those from a well-trained
dense model is proposed to further mitigate training costs. MoE has shown great potential not only
in language models (Jiang et al., 2024; Dai et al., 2024) but also in vision models (Riquelme et al.,
2021) and vision-language models (Lin et al., 2024a; Shen et al., 2023). Our approach integrates
MoE with knowledge distillation techniques to provide stronger signals for sparse training, which
remarkably decreases the training cost associated with sparse models.

3 METHOD

We introduce LLaVA-MoD, a novel framework for building efficient s-MLLM using mixture-of-
experts (MoE) and knowledge distillation. Our framework consists of two main components: (a).
Architecture Design of s-MLLM: As shown in Fig. 3, we design a sparse s-MLLM with MoE, en-
hancing the ability to acquire specialized expert knowledge while maintaining training and inference
efficiency. (b). Distillation Mechanism: We design a progressive distillation mechanism as shown
in Fig. 2 to transfer knowledge from l-MLLM to sparse s-MLLM. This process involves two stages:
mimic distillation followed by preference distillation.

3.1 ARCHITECTURE DESIGN OF SPARSE s-MLLM

In this section, we describe the architecture design of our sparse s-MLLM, which serves as the
student model in the distillation process.
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A-: The cat is sitting on the table.

A+: The black and white cat is         
looking at the camera. 

A: There are two elephants, one 
adult elephant and one young calf.

Q: How many elephants are there 
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Q: What is the cat doing?
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Figure 2: Progressive Distillation of LLaVA-MoD. (a). Mimic Distillation: Aligning the student’s
response probabilities pS with those of the teacher pT , via the Kullback–Leibler (KL) loss. (b).
Preference Distillation: Increasing the student’s positive response probabilities p+S to surpass those
of the teacher p+T , while decreasing the student’s negative response probabilities p−S to fall below
those of the teacher p−T , via the Preference-Optimization (PO) loss.

s-MLLM Definition. As illustrated in Fig. 3, the basic architecture of s-MLLM consists of three
primary components: a vision encoder, a large language model (LLM), and a vision-language (VL)
adaptor. Given a multimodal instruction conversation (x, y), we define our s-MLLM to process
response y as follows:

y = LLMϕ(Projω(ViTχ(xv)), xi), (1)
where xv is the input image, and xi is the text instruction. The input image is resized to 336 × 336
and patched into 576 image tokens, each of size 14 × 14. ViTχ is the CLIP vision encoder with
parameters χ which first extracts image features from xv . Projω is the vision-language adaptor with
parameters ω, serving as the vision tokenizer to align the image features with the word embedding
space. LLMϕ is the large language model with parameters ϕ, which produces the response y based
on the multimodal tokens of x = [xv, xi].

Vision  
Encoder 

Text 
Tokenizer

Small-scale LLM

VL
Adaptor

Textual tokensVisual tokens

Multi-Head
Attention

(a). Dense LLM

Layer Norm

Layer Norm

FFN

Multi-Head
Attention

Layer Norm

Layer Norm

Router

(b). Sparse LLM

..

✕ L ✕ LResponse tokens

What is the man 
doing in this photo?  

MoE

N copies

Initialize

Weighted Sum

FFN FFN FFN

Figure 3: Sparsification of s-MLLM. The VL
Adaptor and Vision Encoder remain unchanged,
while the LLM is upcycled from dense to sparse.

Sparsify s-MLLM. The principle of building
our s-MLLM is downsizing the LLM while
leaving the vision encoder and vision-language
adaptor unmodified. To achieve this downsiz-
ing goal, we sparsify the dense s-MLLM by in-
corporating an MoE architecture. Specifically,
Fig. 3 illustrates the process, where we apply
the sparse upcycling technique (Komatsuzaki
et al., 2022) to replicate N feedforward net-
works (FFNs) as the expert modules. Addition-
ally, we introduce a linear layer as the router,
which dynamically activates the appropriate ex-
perts by predicting the probability of expert as-
signment. Given each token x in the sequence,
we first compute the routing value of N experts:

r = Softmax(x ·Wr), (2)

where Wr denotes the weight matrix of the router and each element ri in r represents the probability
of activating the i-th expert. After that, we apply the Top-k strategy to determine the activated
experts with the highest k routing values:

r̃ = Top-k(r) =

{
ri, if i ∈ k

0, otherwise
(3)

where the routing values for the inactivated experts are set to zero, effectively excluding them from
contributing to the final output. The output y is calculated by aggregating the contributions of the
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activated experts, weighted by their corresponding routing values:

y =

N∑
i=1

r̃ · Ei(x). (4)

3.2 PROGRESSIVE DISTILLATION

Our progressive distillation consists of two distinct stages, i.e., mimic distillation (Fig. 2 (a)) and
preference distillation (Fig. 2 (b)). In the mimic distillation stage, the s-MLLM πS imitates the
general and specific knowledge from the l-MLLM πT. In the preference distillation stage, πS gains
the preference knowledge of πT to further refine its output and reduce hallucinations. Both πS and
πT are from the same LLM family. This ensures a consistent vocabulary space, which is essential
for accurate imitation.

Initialization. Before distillation, we first align the vision encoder with the LLM via a learnable
adapter, aiming to obtain a well-initialized dense version of πS. The LLMϕ and ViTχ are maintained
frozen since their pre-trained parameters have already captured rich visual and language knowledge.
Only Projω is optimized to bridge the gap between the vision and language domain. For the ini-
tialization, we utilize common image-caption pairs from a widely used and curated dataset, which
covers a diverse range of subjects and visual entities. The training objective is to minimize the
cross-entropy of the generated tokens. The objective function is:

LInit(πS) = −E(yk|y<k,x)∼πS [log πS(yk | y<k, x)] , (5)

where πS(yk | y<k, x) represents the probability of the predicted token yk conditioned on x and the
previous tokens y<k = (y1, y2, . . . , yk−1).

Mimic Distillation. We decompose the comprehensive knowledge within πT into general and spe-
cialized aspects to address the challenges posed by their structural differences, which can complicate
simultaneous learning. Subsequently, we conduct a general-to-specialized mimic distillation, which
consists of two steps: dense-to-dense (D2D) and dense-to-sparse (D2S) distillation, to transfer the
knowledge to πS. This two-step approach balances the transfer of general and specialized knowl-
edge through the progressive distillation, thereby enhancing overall performance. As illustrated in
Fig. 3, we utilize the dense structure of πS during D2D to acquire general knowledge and transform
it into a sparse structure during D2S to acquire complex specialized knowledge. Throughout both
stages, πT remains unchanged.

a). Dense-to-Dense Distillation. In this stage, we aim to replicate the general knowledge of l-
MLLM. Acquiring general knowledge first is crucial, as it establishes a broad foundation across
various scenarios, enabling s-MLLM to develop a basic framework before advancing to multiple
specialized tasks. To achieve this, we maintain ViTχ frozen, and jointly optimize LLMϕ and Projω ,
with trainable parameters θ = {ω, ϕ}. We leverage common image-caption pairs and conversation
datasets. The training objective is to minimize the Kullback-Leibler divergence (KLD) between the
output logits of s-MLLM and l-MLLM. The objective function is:

LD2D(πS;πT) = −E(x,yk)∼πT

[
log

πT(yk | y<k, x)

πS(yk | y<k, x)

]
, (6)

where V denotes the vocabulary, while πS(yk | y<k, x) and πT(yk | y<k, x) denote the probability
of the predicted tokens for s-MLLM and l-MLLM.

b). Dense-to-Sparse Distillation. In this stage, our focus shifts to transfer the specialized knowl-
edge of l-MLLM into s-MLLM to obtain advanced capabilities and achieve superior performance
in complex tasks. However, directly learning this knowledge in the dense form of s-MLLM could
be insufficient due to the diverse knowledge structure of different tasks. Therefore, we sparsify
the dense s-MLLM by introducing multiple experts. As detailed in Section 3.1, we replicate N
feedforward networks (FFNs) within LLMϕ and add an MLP layer as a router, forming the experts
with parameters ϕe. This sparse architecture enables s-MLLM to activate the most relevant experts
based on different inputs selectively, offering significant advantages in emulating the specialized
knowledge of l-MLLM. For training, we leverage multi-task data, updating only the experts and the
adaptor. We employ a Top-k routing strategy to select the experts. The trainable parameters are
θ = {ω, ϕe}. Similar to the previous stage, we adopt the KLD as the training objective. Addition-
ally, we include the standard next-token prediction objective, i.e., minimizing the cross-entropy loss
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of generated tokens by s-MLLM, to inject supervision from ground truth data which can reduce the
existing bias in l-MLLM. The objective function is:

LD2S(πS;πT) = −E(x,yk)∼πS [log πS(yk | y<k, x)]− E(x,yk)∼πT

[
log

πT(yk | y<k, x)

πS(yk | y<k, x)

]
. (7)

Preference Distillation. In this stage, our goal is to distill the preference knowledge from l-MLLM
to guide s-MLLM towards generating not only accurate but also reasonable responses, which is
crucial in reducing hallucinations. For the training process, we effectively use preference data, which
comprises meticulously paired positive responses y+ and negative responses y− for the identical
prompt x. Our preference distillation strategy is inspired by recent advancements in Preference
Optimization (PO) (Rafailov et al., 2024; Ethayarajh et al., 2024), which bypasses the need for
training a reward model by directly training on an offline preference dataset. Our key insight is
to treat l-MLLM as the reference model to provide insights on what constitutes “good” and “bad”,
thereby establishing a fundamental reference for s-MLLM.

Specifically, the training objective is to optimize s-MLLM to assign higher probabilities to positive
responses and lower probabilities to negative ones compared to l-MLLM. This training process
involves two key optimization aspects: First, s-MLLM aims to align with the teacher model in
distinguishing positive from negative responses. Second, s-MLLM seeks to surpass l-MLLM by
assigning higher probabilities to positive responses and lower probabilities to negative responses.
We only train the experts and adaptor in s-MLLM and employ a Top-k routing strategy to select the
experts. The trainable parameters are θ = {ω, ϕe}. The objective function is:

LPD(πS;πT) = −E(x,y+,y−)∼D

[
log σ

(
β log

πS(y
+ | x)

πT(y+ | x)
− β log

πS(y
− | x)

πT(y− | x)

)]
, (8)

where πS(y
+ | x) and πS(y

− | x) denote the probabilities of positive and negative responses for
s-MLLM, and πT(y

+ | x) and πT(y
− | x) denote the same for l-MLLM.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We employ the “ViT-MLP-LLM” architecture to demonstrate the effec-
tiveness of LLaVA-MoD. A pre-trained CLIP-ViT-L/14 is utilized as the vision encoder and a 2-layer
MLP is utilized as the adaptor. Qwen-1.5/2 with different sizes are utilized as the LLM for l-MLLM
and s-MLLM. Specifically, l-MLLM is configured with 7B parameters, while s-MLLM is config-
ured with 1.8B and 0.5B parameters. The performance of l-MLLM on multimodal benchmarks is
presented in Tab. 1. We use the same series of LLMs for distillation, i.e. employing Qwen-1.5 7B
to distill Qwen-1.5 1.8B and Qwen-1.5 0.5B. Each stage uses distinct training configurations. The
detailed training strategy and hyperparameter are illustrated in Appendix A.1.

Training Datasets. The training data consists of 5M samples from the open-source datasets, with
each training stage utilizing a distinct dataset. During Initialization, 0.6M general captioning sam-
ples are used to bridge the gap between visual and language modalities. In mimic distillation, 2.4M
general captioning and conversation samples are used to distill general knowledge from l-MLLM,
and 1.4M multi-tasks data, including VQA, documents, science, and OCR, are used to distill spe-
cialized knowledge from l-MLLM. For preference distillation, 80K preference data samples are
used to transfer preference knowledge from l-MLLM. The detailed dataset of each training stage is
illustrated in Appendix A.2.

Evaluation Benchmarks. We conduct experiments on MME (Fu et al., 2023), MMB (Liu et al.,
2023c), and MMBCN. Each encompasses various sub-tasks, enabling comprehensive evaluation of
multimodal understanding and reasoning capabilities. Additionally, we carry out experiments across
a broad spectrum of VQA tasks, which include general VQA, text-oriented VQA, and science VQA.
Specifically, for general VQA tasks, we use VizWiz (Gurari et al., 2018) and GQA (Hudson & Man-
ning, 2019) to test general visual understanding and relational reasoning. TextVQA (Singh et al.,
2019) is employed for text-oriented VQA tasks, focusing on fine-grained visual recognition and
understanding of text within images. ScienceQA (Lu et al., 2022b) is utilized to measure scien-
tific knowledge. Moreover, we conduct experiments on several hallucination benchmarks such as
POPE (Li et al., 2023c), Object HalBench (Yu et al., 2024a), MMHal-Bench (Sun et al., 2023).
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Table 1: Comparison with state-of-the-art MLLMs on the commonly-used multimodal benchmarks
for MLLMs. #Sample: Training data sample. #Param: Trainable parameters. SQAI: ScienceQA
test, VQAT: TextVQA val, MME: MME Benchmark, normalized to percentage, MMB: MMBench
dev, MMBCN: MMBench-Chinese dev. The best result for model sizes 1B/2B is shown in bold, and
the second-best result is underlined. Our LLaVA-MoD achieves the best average result for both.

Method LLM #Sample #Param GQA VisWiz SQAI VQAT MME MMB MMBCN AVG
Teacher MLLM Qwen-1.5-7B 5M ∼7B 62.3 40.7 70.9 55.3 72.1 68.5 64.9 62.1
Teacher MLLM Qwen-2-7B 5M 62.5 37.9 73.2 57.2 78.0 71.6 71.1 64.5

BLIP-2 Vicuna-13B 129M

≥7B

41.0 19.6 61.0 42.5 64.7 - - -
VILA-7B LLaMA-7B 50M 62.3 57.8 68.2 64.4 76.7 68.9 61.7 65.7
CogVLM Vicuna-7B 1500M 64.9 - 65.6 78.2 71.8 63.7 53.8 -
InstructBLIP Vicuna-13B 130M 49.5 33.4 63.1 50.7 60.6 - - -
Qwen-VL-Chat Qwen-7B 1450M 57.5 38.9 68.2 61.5 74.4 60.6 56.7 56.7
Deepseek-VL-7B DLLM-7B 2000M 61.3 49.9 74.0 64.7 73.4 74.1 72.8 67.2
LLaVA-1.5-7B Vicuna-1.5-7B 1.2M 62.0 50.0 66.8 58.2 75.5 64.3 58.3 62.1
LLaVA-NeXT Vicuna-1.5-13B 1.3M 65.4 60.5 73.6 67.1 78.7 70.0 64.4 68.5

Imp-3B Phi-2-2.7B 1.6M

∼3B

63.5 54.1 72.8 59.8 72.3 72.9 46.7 63.2
Bunny-3B Phi-2-2.7B 2.7M 62.5 43.8 70.9 56.7 74.4 68.6 37.2 59.2
VILA-3B LLaMA-2.7B 51M 61.5 53.5 69.0 60.4 72.1 63.4 52.7 61.8
MobileVLM MLLaMA-2.7B 1.3M 59.0 - 61.0 47.5 64.4 59.6 - -
MobileVLMv2 MLLaMA-2.7B 3.6M 61.1 - 70.0 57.5 72.0 63.2 - -
MoE-LLaVA-3B Phi-2-2.7B 2.2M 61.4 43.9 68.5 51.4 71.1 65.2 41.8 57.6
MiniCPM-V MiniCPM-2.4B 570M 51.5 50.5 74.4 56.6 68.9 64.0 62.7 61.2
MiniCPM-V-2 MiniCPM-2.4B 570M 52.1 60.2 76.3 73.2 70.5 68.5 67.2 66.9

Imp-2B Qwen-1.5-1.8B 1.6M

∼2B

61.9 39.6 66.1 54.5 65.2 63.8 61.2 58.9
Bunny-2B Qwen-1.5-1.8B 2.7M 59.6 34.2 64.6 53.2 65.0 59.1 58.5 56.3
Mini-Gemini-2B Gemma-2B 2.7M 60.7 41.5 63.1 56.2 67.0 59.8 51.3 57.1
MoE-LLaVA-2B Qwen-1.5-1.8B 2.2M 61.5 32.6 63.1 48.0 64.6 59.7 57.3 55.3
DeepSeek-VL-1.3B DLLM-1.3B 2000M 59.3 36.8 64.2 58.4 65.3 64.6 61.0 58.5
LLaVA-MoD-2B Qwen-1.5-1.8B 5M 58.7 39.2 68.0 58.5 67.6 66.3 61.9 59.9
LLaVA-MoD-2B Qwen-2-1.5B 5M 58.8 40.4 69.2 59.9 69.2 68.9 64.4 61.6
SPHINX-Tiny TLLaMA-1.1B 15M

∼1B

58.0 49.2 21.5 57.8 63.1 56.6 37.8 49.2
LLaVA-MoD-1B Qwen-1.5-0.5B 5M ∼1B 56.2 31.6 62.8 53.9 65.3 58.8 50.4 54.1
LLaVA-MoD-1B Qwen-2-0.5B 5M 56.6 35.1 61.1 57.1 67.0 58.7 54.1 55.7

4.2 MAIN RESULTS

In this section, we conduct experiments of LLaVA-MoD to highlight its advantages in two aspects:
performance and efficiency. For performance, we evaluate comprehension-oriented benchmarks
(Tab. 1) and hallucination-oriented benchmarks (Tab. 2). For efficiency, we present a comparison in
terms of data samples and model size. The performance is obtained under the same series of LLMs,
i.e. employing Qwen-1.5 7B to distill Qwen-1.5 1.8B and Qwen-1.5 0.5B.

Comprehension-Oriented Benchmarks. As indicated in Tab. 1, LLaVA-MoD achieves SOTA
average results among the models of 1B and 2B size on comprehension-oriented benchmarks. The
2B-sized LLaVA-MoD surpasses Mini-Gemini-2B (Li et al., 2024) by 8.1%, while using a lower
image resolution (336 vs. 768). The 1B-sized LLaVA-MoD surpasses SPHINX-Tiny (Gao et al.,
2024) by 13.2%, using fewer data samples (5M vs. 15M). Furthermore, LLaVA-MoD-2B matches
and even surpasses the performance of large-scale MLLMs. The 2B-sized LLaVA-MoD surpasses
Qwen-VL-Chat-7B (Bai et al., 2023b) by 8.8% and matches the performance of VILA-3B (Lin
et al., 2024b) and MiniCPM-V (Yao et al., 2024). These results highlight that our approach trains
small-scale MLLMs effectively by distilling the sparse MoE architecture from large-scale MLLMs.

Hallucination-Oriented Benchmarks. As indicated in Tab. 2, LLaVA-MoD shows remarkable per-
formance in mitigating hallucination, even beating its teacher model. It can be attributed to prefer-
ence distillation from two aspects: Firstly, by assigning a higher probability for the positive response,
preference distillation encourages LLaVA-MoD to focus on providing correct and relevant informa-
tion. Secondly, by assigning a lower probability for the negative response, preference distillation
discourages incorrect or unsubstantiated information. By using the teacher model as a reference to
adjust response probabilities, preference distillation enables LLaVA-MoD to handle hallucination
issues more accurately and reliably, thereby surpassing its teacher model. Moreover, LLaVA-MoD
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Table 2: Comparison with state-of-the-art MLLMs on the hallucination benchmarks. We compare
LLaVA-MoD with SFT-based works and RLHF-based works . Hall: Hallucination Rate Resp:
response-level hallucination rate, Ment: mention-level hallucination rate. The best result is in bold,
and the second-best result is underlined.

Model LLM #Param Object HalBench POPE MMHal-Bench

Resp ↓ Ment ↓ F1 ↑ Score ↑ Hall ↓
Teacher MLLM Qwen-1.5-7B 7B 50.1 24.8 84.9 2.60 20.7
Teacher MLLM Qwen-2-7B 7B 29.7 23.4 85.7 2.88 14.5

Qwen-VL-Chat Qwen-7B 9.6B 40.4 20.7 74.9 2.76 38.5
LLaVA-1.5-7B Vicuna-7B 7B 53.6 25.2 86.1 2.36 51.0
VCD Vicuna-1.5-7B 7B 48.8 24.3 84.5 2.12 54.2
OPERA Vicuna-1.5-7B 7B 45.1 22.3 85.4 2.15 54.2
HA-DPO Vicuna-1.5-7B 7B 39.9 19.9 86.8 1.98 60.4
POVID Vicuna-1.5-7B 7B 48.1 24.4 86.3 2.08 56.2
LLaVA-RLHF Vicuna-1.5-13B 13B 38.1 18.9 82.7 2.02 62.5
LURE Vicuna-1.5-7B 7B 27.7 17.3 - 1.64 60.4
RLHF-V Vicuna-13B 13B 12.2 7.5 86.2 2.45 51.0
RLAIF-V Vicuna-1.5-7B 7B 8.5 4.3 - 3.06 29.2

MiniCPM-V MiniCPM-2.4B 2.8B 21.6 11.5 79.5 3.70 24.9
MiniCPM-V-2 MiniCPM-2.4B 2.8B 14.5 7.8 86.3 4.09 18.2
Mini-Gemini-2B Gemma-2B 2B 29.7 21.1 85.6 2.83 18.8
Bunny-2B Qwen-1.5-1.8 2.2B 50.2 23.4 85.8 2.72 19.3
LLaVA-MoD-2B Qwen-1.5-1.8B 2.2B 11.4 7.2 87.0 2.76 17.2
LLaVA-MoD-2B Qwen-2-1.5B 1.9B 11.2 5.9 87.2 2.91 13.8

even surpasses recent RLHF-based models (Sun et al., 2023; Zhou et al., 2024b; Huang et al., 2024;
Leng et al., 2024; Zhou et al., 2023). On the Object HalBench, it outperforms RLHF-V (Yu et al.,
2024a) by 8.2% in response-level hallucination rate and by 21.3% in mention-level hallucination
rate. This shows that preference distillation is an effective task in minimizing hallucination.

Efficiency Comparison. As indicated in Tab. 18, LLaVA-MoD achieves significant efficiency in
both training and inference. Compared to Qwen-VL-Chat-7B, our 2B model achieves 8.8% higher
accuracy with only 0.3% of its training data (5M samples) and 23% of activated parameters (2.2B
total), while significantly reducing computational costs: on a single A100-80G GPU, it demon-
strates 2.5× faster decoding speed, 26% FLOPs, and 38% memory consumption. This efficiency
advantage extends to other SOTA models like MiniCPM-V (2.8B parameters), where LLaVA-MoD
outperforms using only 1. 6% of training data despite a similar model size. Therefore, LLaVA-
MoD establishes a new efficiency frontier for deploying high-performance multimodal models in
resource-constrained scenarios.

4.3 ABLATION STUDY

In this section, we thoroughly explore the effect of the distillation strategy and model design. Firstly,
we investigate the preference distillation on comprehension and hallucination benchmarks. Since
our focus is on the training strategy and model design, we carry out subsequent ablation experiments
specifically on mimic distillation. We use CLIP-ViT-L/14 as the default vision encoder, and Qwen-
1.5-1.8B and Qwen-1.5-7B as the default student and teacher LLMs respectively.

4.3.1 IMPACT OF PREFERENCE DISTILLATION

Preference Distillation Mitigates Hallucination. We explore the effect of preference distillation
on comprehension capability and hallucination mitigation. As shown in Tab. 3 and Tab. 4, preference
distillation remarkably reduces the hallucination of s-MLLM, while it does not yield consistent im-
provements in comprehension capability. This observation aligns with that in LLMs (Achiam et al.,
2023), where preference optimization tends to prioritize reducing hallucinations, often resulting in
a certain degree of decline in comprehension gains.

KTO Stabilizes Preference Distillation. We investigate the training stability associated with
various preference-optimization losses, specifically employing KTO (Ethayarajh et al., 2024) and
DPO (Rafailov et al., 2024). As demonstrated in Appendix B.2, both methods contribute to im-
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Table 3: The impact of preference distillation on the comprehension-oriented benchmarks.

Distillation GQA VizWiz SQAI VQAT MME MMB MMBCN AVG

Mimic 59.3 40.0 68.4 58.7 68.4 65.1 61.5 60.2
Mimic+Preference 58.7 39.2 68.0 58.5 66.7 66.3 61.9 59.9

Table 4: The impact of preference distillation on the hallucination-oriented benchmarks.

Distillation Object HalBench POPE MMHal-Bench

Resp ↓ Ment ↓ F1 ↑ Score ↑ Hall ↓
Mimic 39.1 22.6 86.7 2.75 17.8

Mimic+Preference 11.4 7.2 87.0 2.76 17.2

proved hallucination mitigation; however, KTO exhibits a significant advantage over DPO. This
finding suggests that KTO, which categorizes samples as either good or bad, offers a more effective
signal for guiding the s-MLLM to outperform the l-MLLM, in contrast to DPO, which relies on
comparing two samples to determine superiority. Additionally, we compare our MoD with existing
Knowledge Distillation methods, including KD (Hinton et al., 2015) and GKD (Tan et al., 2023), as
detailed in Appendix B.3, to highlight the advantages of our proposed approach.

4.3.2 IMPACT OF TRAINING STRATEGY

KD Facilitates MoE Training. We explore the effect of knowledge distillation (KD) in MoE train-
ing by comparing it with supervised fine-tuning (SFT). The ablation experiments are carried out
using the same sparse configuration of E4T2, where four experts are initialized and the top two ex-
perts are activated. As shown in Tab. 5, KD surpasses SFT on all benchmarks, achieving an 8.1%
average gain over SFT. Additionally, it achieves notable gains in complex multi-task scenarios, such
as a +8.2% gain on MMB and a +10.0% gain on MME. These results indicate that KD provides a
better optimization signal for effectively training the MoE architecture.

Table 5: Comparison between KD and SFT. The MoE architecture is E4T2.

Training GQA VizWiz SQAI VQAT MME MMB MMBCN AVG

SFT 58.6 31.2 66.2 55.6 63.2 59.2 56.1 55.7
KD 59.3 40.0 68.4 58.7 68.4 65.1 61.5 60.2

General-to-Specialized KD Boosts Performance. We explore the effect of the general-to-
specialized approach in mimic distillation by comparing the proposed D2D+D2S with D2S. The
D2D+D2S involves a two-phase process. Firstly, it distills a dense s-MLLM using general data.
Subsequently, it transforms the s-MLLM from dense to sparse and further distills it using multi-
task data. The D2S directly distills the sparse s-MLLM using a combined of general and multi-task
dataset. Tab. 6 shows that D2D+D2S surpasses D2S with an average gain of 4.0%. The result indi-
cates that D2D+D2S enables effective knowledge transfer, striking a balance between general and
specialized competencies. Additionally, D2D+D2S is more computationally efficient, consuming
only 62.5% of the GPU hours required by D2S.

Table 6: Comparison between different distillation strategies in mimic distillation.

Strategy #GPU GQA VizWiz SQAI VQAT MME MMB MMBCN AVG

D2S 1536 57.9 36.5 66.3 57.5 65.7 61.4 60.0 57.9
D2D+D2S 960 59.3 40.0 68.4 58.7 68.4 65.1 61.5 60.2

Focus on Response Distillation Improves Generalization. We explores the effect of the distilla-
tion target by comparing response distillation with response+instruction distillation. Tab. 7 shows
that response distillation surpasses response+instruction distillation with an average gain of 3.1%.
The result indicates that focusing on response is more effective for knowledge distillation in auto-
regressive modeling. A possible reason for this is that mimicking additional instructions can lead to
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overfitting the specific instruction patterns in the training data, potentially reducing the generaliza-
tion to unseen instructions.

Table 7: Comparison between different distilled tokens. Response indicates distilling solely on the
response tokens. Response+Instruction incorporates additional distillation of instruction tokens.

Distilled Tokens GQA VizWiz SQAI VQAT MME MMB MMBCN AVG

Response + Instruction 58.5 35.0 66.8 58.3 68.5 61.8 59.0 58.4
Response 59.3 40.0 68.4 58.7 68.4 65.1 61.5 60.2

4.3.3 IMPACT OF MODEL ARCHITECTURE

Sparse Architecture Facilitates Knowledge Transfer. We explore the effect of sparse architec-
ture in distillation by comparing it with dense architecture. The configuration is E4T1 where four
experts are initialized and the top-1 expert is activated to ensure that the activated parameters are the
same as those of the dense architecture. Tab. 8 shows that sparse architecture surpasses dense archi-
tecture with an average gain of 3.7%, The superior performance is prominent in complex multi-task
benchmarks, such as MME and MMB. The result indicates that sparse architecture leverages MoE
to effectively transfer diverse knowledge from l-MLLM while maintaining computational efficiency.
We also conduct a comprehensive investigation into the performance and computational trade-offs
associated with various MoE configurations, including the number of experts, the routing parameter
k, and the routing strategies employed in Appendix B.1.

Table 8: Comparison between sparse and dense architecture within the distillation.

Architecture GQA VizWiz SQAI VQAT MME MMB MMBCN AVG
Dense 57.6 32.7 67.3 56.8 65.2 61.8 58.2 57.1
Sparse 58.7 36.9 67.9 58.2 66.1 64.5 61.7 59.2

Teacher Capacity Matters in Knowledge Distillation. We explore the effect of the teacher capac-
ity in the distillation. We employ Qwen-1.5-7B as the strong teacher and Qwen-1.5-4B as the weaker
one. The MoE configuration is set as E4T2. Tab. 9 shows that a well-suited teacher can boost per-
formance. For Qwen-1.5-1.8B, using a 7B-sized teacher yields an average gain of 2.2% compared
to a 4B-sized teacher. However, when the student and teacher have a large capacity disparity, it can
hinder effective knowledge transfer. For Qwen-1.5-0.5B, using a 7B-sized teacher yields a marginal
average gain compared to a 4B-sized teacher. Utilizing a “middle teacher” with an intermediate
capacity can bridge the gap, facilitating smooth knowledge transfer.

Table 9: Comparison between the strong and weak teachers. We set the strong teacher as the LLM
is Qwen-1.5-7B and the weak teacher as the LLM is Qwen-1.5-4B.

Student Teacher GQA VizWiz SQAI VQAT MME MMB MMBCN AVG

Qwen-1.5-0.5B Qwen-1.5-4B 56.0 25.3 64.7 53.8 63.3 62.2 50.8 53.7
Qwen-1.5-7B 56.1 29.8 63.8 54.5 64.2 58.5 49.7 53.8

Qwen-1.5-1.8B Qwen-1.5-4B 58.7 34.6 67.9 57.7 67.6 64.9 60.7 58.9
Qwen-1.5-7B 59.3 40.0 68.4 58.7 68.4 65.1 61.5 60.2

5 CONCLUSION

In this paper, we introduce LLaVA-MoD, a novel framework for efficient training of small-scale
multimodal language models via knowledge distillation from large-scale ones. It addresses two key
challenges in MLLM distillation: enhancing s-MLLM architecture with MoE design for efficiency
and expressiveness balance and implementing a progressive knowledge transfer strategy. Extensive
experiments show that LLaVA-MoD outperforms existing models with low activation parameters
and computational costs. Notably, it outperforms Qwen-VL-Chat-7B by 8.8% with only 2 billion
activation parameters, 0.3% training data, and 23% trainable parameters, highlighting its effective-
ness in distilling knowledge and driving more efficient MLLM development.
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A IMPLEMENTATION DETAILS

A.1 TRAINING STRATEGY AND HYPERPARAMETERS

We first freeze the vision encoder and LLM while optimizing the VL adaptor to align image tokens
with the word embedding space during initialization. This stage employs a cross-entropy loss with
a batch size of 512 and a learning rate of 1e-4. In mimic distillation, the vision encoder remains
frozen, while the LLM and VL adaptor are co-optimized to distill general knowledge from l-MLLM
in dense-to-dense distillation. Then, the FFN in the LLM is first transformed into a sparse archi-
tecture with a mixture of FFNs co-optimized with the VL adaptor to distill specialized knowledge
from l-MLLM in dense-to-sparse distillation. This stage employs a KL-divergence loss, with cross-
entropy loss added for dense-to-sparse distillation. The batch size is 256, and the learning rate is
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adjusted to 2e-5. In preference distillation, the model inherits from the mimic distillation. The vi-
sion encoder remains frozen, and a mixture of FFN experts is co-optimized with the VL adaptor to
distill preference knowledge from the teacher MLLM. This stage employs a KTO (Ethayarajh et al.,
2024) loss to optimize the probability of s-MLLM for positive responses to be greater than that of
l-MLLM and the probability of s-MLLM for negative responses to be lower than that of l-MLLM.
The batch size is 256, and the learning rate is adjusted to 2e-6. Throughout all stages, we employ the
adam optimizer (Diederik, 2014) and train on 16 NVIDIA A100 GPUs for one epoch each, totaling
approximately 960 GPU hours. The detailed training hyperparameters are shown in Tab. 10.

Table 10: Training hyperparameters of each stage.

Configuration Initialization Mimic Distillation Preference Distillation
LLM ✗ ✓ ✓
VL Adaptor ✓ ✓ ✓
ViT ✗ ✗ ✗

LLM init. Qwen-1.5-1.8B Qwen-1.5-1.8B 2nd-stage
VL Adaptor init. MLP 1st-stage 2nd-stage
ViT init. CLIP-Large@336
Image resolution 336 × 336
ViT sequence length 576
LLM sequence length 2048
Optimizer AdamW
Optimizer hyperparameter β1 = 0.9, β2 = 0.98
Learning rate 1e−4 2e−5 2e−5

Learning rate schedule Cosine decay
Weight decay 0.0
Training epoch 1
Warm-up ratio 0.03
Global batch size 256 128 128
Numerical precision Bfloat16
Model parallelism Zero2 Zero2 offload Zero2 offload

Table 11: Training dataset of each stage. #Sample means the training samples

Stage Task Dataset

Initialization Captioning LLaVA-1.5-Pretrain (Liu et al., 2023b)

Dense-to-Dense Distillation Captioning ALLaVA-Caption-4V (Chen et al., 2024),
ShareGPT4V-PT (Chen et al., 2023a)

Conversation MIMIC-IT (Li et al., 2023a), LVIS (Wang et al., 2023),
LRV (Liu et al., 2023a), SViT (Zhao et al., 2023)

Dense-to-Sparse Distillation

Captioning ShareGPT4V-100K (Chen et al., 2023a),
TextCaps (Sidorov et al., 2020)

Conversation LLaVA-1.5-Instruct (Liu et al., 2023b)

General QA GQA (Hudson & Manning, 2019), VQAv2 (Goyal et al., 2017),
OKVQA (Marino et al., 2019)

Grounding Visual Genome (Krishna et al., 2017),
RefCOCO (Yu et al., 2016; Mao et al., 2016)

Science AI2D (Kembhavi et al., 2016), ScienceQA (Lu et al., 2022a)

Chart & Doc DVQA (Kafle et al., 2018), ChartQA (Masry et al., 2022),
DocQA (Clark & Gardner, 2018)

OCR OCRVQA (Mishra et al., 2019), SynthDoG-EN (Kim et al., 2022)
Knowledge A-OKVQA (Schwenk et al., 2022), GeoQA+ (Cao & Xiao, 2022)

Preference Distillation Preference RLAIF-V (Yu et al., 2024b)

A.2 TRAINING DATASETS

We curate a comprehensive open-source dataset of 5 million samples encompassing both general and
expert tasks. In the Initialization stage, we utilize 0.6M general captioning samples from LLaVA-
1.5-pretrain dataset (Liu et al., 2023b) to bridge the gap between visual and language modalities. In
the mimic distillation stage, we utilize 2.4M general captioning and conversation samples to distill
general knowledge from the teacher MLLM and 1.4M multi-tasks data samples, including VQA,
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documents, science, and OCR to distill specialized knowledge from the teacher MLLM. In the pref-
erence distillation stage, we utilize 80K preference data samples to transfer preference knowledge
from the teacher MLLM. The detailed dataset of each training stage is illustrated in Tab. 11.

B ADDITIONAL EXPERIMENTS

B.1 MOE CONFIGURATIONS

We thoroughly explore the performance and computational trade-offs across different MoE configu-
rations, focusing on the number of experts, the routing parameter k, and routing strategies. As shown
in Tab 12, increasing the number of experts from 4 to 8 does not yield an improvement in perfor-
mance. Conversely, Tab 13 illustrates that enhancing the routing parameter k from 1 to 2 results in
a noticeable performance boost. This observation suggests that adjusting the routing parameter K
seems to facilitate more stable training and consistent performance improvements compared to sim-
ply increasing the number of experts. One explanation for this is that adding more experts without
increasing the complex knowledge of data results in each expert being insufficiently optimized. Fur-
thermore, we investigate various routing strategies in Tab 14, comparing Top-K with RSample and
Jitter. The results indicate that Top-K routing achieves the highest average performance, particularly
demonstrating significant advantages in the MMB, which encompasses 20 sub-tasks. This superi-
ority can be attributed to Top-K’s ability to dynamically activate the most relevant experts based on
the input, thereby showcasing its robustness across diverse tasks.

Table 12: Ablations with the expert number.

Expert GQA SQAI VQAT MME MMB AVG
4 59.3 68.4 58.7 68.4 65.1 64.0
8 58.3 67.4 58.4 69.1 64.6 63.6

Table 13: Ablations with the routing parameter k.

Top-K GQA SQAI VQAT MME MMB AVG
1 58.2 67.2 58.3 66.1 64.7 62.6
2 59.3 68.4 58.7 68.4 65.1 64.0

Table 14: Ablations with the routing strategy.

Routing Strategy GQA SQAI VQAT MME MMB AVG
Top-K(ours) 58.8 69.2 59.9 69.2 68.9 65.2
RSample 57.9 67.5 60.1 68.9 67.3 64.3
Jitter 58.1 68.4 60.0 69.1 67.7 64.6

B.2 PREFERENCE-OPTIMIZATION LOSS

We explore the training stability of various preference-optimization losses. We employ KTO (Etha-
yarajh et al., 2024) and DPO (Rafailov et al., 2024). As shown in Tab. 15, and Tab. 16 while both
methods have an impact on reducing hallucination, KTO is significantly superior to DPO. This is
because KTO, which indicates whether a sample is good or bad, offers a better signal for the s-
MLLM to surpass the l-MLLM compared to DPO, which determines relative quality by comparing
two samples.

Table 15: Comparison between different preference-optimization loss on comprehension-oriented
benchmarks.

PO Loss GQA VizWiz SQAI VQAT MME MMB MMBCN AVG

DPO 58.5 37.3 68.2 58.6 67.8 65.4 61.5 59.6
KTO 58.7 39.2 68.0 58.5 67.6 66.3 61.9 59.9
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Table 16: Comparison between different preference-optimization loss on hallucination-oriented
benchmarks.

PO Loss Object HalBench POPE MMHal-Bench

Resp ↓ Ment ↓ F1 ↑ Score ↑ Hall ↓
DPO 20.0 10.5 86.8 2.68 18.9
KTO 11.4 7.2 87.0 2.76 17.2

B.3 DISTILLATION STRATEGY

We conducted experiments to compare our method with standard Knowledge Distillation (KD) and
Generalized Knowledge Distillation (GKD). To ensure a fair comparison, we utilized the same
teacher and student models: a 7B dense teacher model and a 1.8B MoE student model, config-
ured with 4 activated experts and a routing parameter k=2. The results in Tab. 17 demonstrate that
our approach outperforms both KD and GKD across the comprehensive understanding benchmarks
MMB and MME, as well as the hallucination benchmark Object-Halbench. This enhanced per-
formance can be attributed to the distinctive features of our progressive distillation method, which
employs a two-phase approach: it begins with dense-to-dense general distillation and is followed
by dense-to-sparse multi-task distillation. This strategy facilitates a thorough assimilation of the
teacher’s comprehension capabilities. Moreover, our preference distillation contributes to hallucina-
tion mitigation by providing more reliable preference information derived from the robust teacher
model. These advantages are absent in standard KD and GKD approaches, underscoring the addi-
tional value offered by our proposed method.

Table 17: Comparison with different distillation strategies.

Method MME MMB ObjHal
KD 65.0 61.8 53.4
GKD 66.7 63.2 52.8
MoD 69.2 68.9 11.2

B.4 TRAINING AND INFERENCE EFFICIENCY

We also conduct a detailed analysis of the training and inference costs of LLaVA-MoD-2B, with a
comparison to Qwen-VL-Chat-7B in Tab. 18. Our results show that LLaVA-MoD-2B has a total
of 3B parameters, with 2.2B activated during training and inference. For training costs, we report
training days and the size of the dataset. LLaVA-MoD-2B achieves superior performance while
using only 0.3% of the training data and 23% of the activated parameters compared to Qwen-VL-
Chat-7B. For inference costs, our evaluation on a single A100-80G GPU indicates that LLaVA-
MoD-2B is 2.5 faster in decoding speed, consumes 26% of FLOPs, and uses 38% of the memory
compared to Qwen-VL-Chat-7B. These results demonstrate LLaVA-MoD-2B’s superior efficiency
while maintaining high performance.

Table 18: Comparison with training and inference costs.

Metrics LLaVA-MoD-2B Qwen-VL-Chat-7B
Total Params (B) 3 9.6
Activated Params (B) 2.2 9.6
Dataset Size (Million) 5 1450
Training Time (Day) 2 -
Memory Usage (GB) 7.8G 20.4G
Inference FLOPs (TFLOPs) 2.3 8.8
Decoding Speed (Tokens/s) 38.5 15.6

Average Performance 61.6 56.7
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C LIMITATIONS AND FUTURE WORKS

LLaVA-MoD requires that both s-MLLM and l-MLLM belong to the same series of LLMs to ensure
consistency in the vocabulary space. Future research can explore distillation techniques involving
heterogeneous model families. Moreover, the requirement to load both s-MLLM and l-MLLM leads
to substantial memory consumption. To enable efficient distillation, a possible solution could be to
pre-extract the logits of the l-MLLM. This would allow only the s-MLLM to be loaded during
training, reducing memory requirements and potentially speeding up the training process.
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