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ABSTRACT

Low-Rank Adaptation (LoRA) (Hu et al., 2021) has emerged as a pivotal technique
for fine-tuning large pre-trained models, renowned for its efficacy across a wide
array of tasks. The modular architecture of LoRA has catalyzed further research
into the synergistic composition of multiple trained LoRAs, aiming to amplify per-
formance across various tasks. However, the effective composition of these trained
LoRAs presents a formidable challenge: (1) Linear arithmetic composition can lead
to the diminution of the generative capabilities inherent in the original pre-trained
models or the distinctive attributes of the individually trained LoRAs, potentially
resulting in suboptimal outcomes. (2) Reference tuning-based composition exhibits
limitations in adaptability and incurs significant computational costs due to the
requirements to retrain a large model. In response to these challenges, we propose
Mixture of LoRA Experts (MOLE). MOLE treats each layer of trained LoRAs
as a distinct expert and implements hierarchical weight control by integrating a
learnable gating function within each layer to learn optimal composition weights
tailored specifically to the objectives of a given domain. MOLE not only demon-
strates enhanced performance in LoRA composition but also preserves the essential
flexibility necessary for effective composition of trained LoRAs with minimal com-
putational overhead. Extensive experiments conducted in both Natural Language
Processing (NLP) and Vision & Language (V&L) domains validate the effects of
MOLE. Our code are available at https://github.com/yushuiwx/MoLE.git.

1 INTRODUCTION
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Figure 1: Workflow of MOLE. In the train-
ing phase, MOLE predicts weights for mul-
tiple LoRAs. In the inference phase, MOLE
can allocate weights to multiple LoRAs, or,
without altering the gating weights, achieve a
more flexible LoRA composition by masking
out undesired LoRAs and recalculating and
distributing weights proportionally.

Recent advances in deep learning have been driven by
large-scale pre-trained models such as OPT (Zhang
et al., 2022), LLaMA (Touvron et al., 2023) in the
Natural Language Processing (NLP) domain and
CLIP (Radford et al., 2021a), DALL·E 2 (Ramesh
et al., 2022) in the Vision & Language (V&L) do-
main. These models show outstanding performance
across various tasks when fine-tuned on down-stream
datasets, but their increasing size entails significant
computational costs for full fine-tuning. To mitigate
this, LoRA (Hu et al., 2021) is introduced. By freez-
ing the pretrained model weights and injecting train-
able rank decomposition matrices, LoRA is proven
to be an effective fine-tuning methodology in scenar-
ios with constrained computational resources (Lester
et al., 2021; An et al., 2022).

While LoRA serves as plug-and-play plugins for pre-
trained models, recent initiatives explores the com-
position of separate trained LoRAs to achieve joint
generation of learned characteristics (Huang et al., 2023; Zhang et al., 2023; Ruiz et al., 2023).
However, these efforts may encounter several challenges. As shown in Figure 2 (a), linear arithmetic
composition (Zhang et al., 2023; Huang et al., 2023; Han et al., 2023) composes trained LoRAs
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Figure 2: Overview of LoRA composition methods: (a) Linear arithmetic composition (Eq.2), which
commonly applies the same composition weight Wi to all layers of the ith LoRA. (b) Reference
tuning-based composition involves retraining a large model by integrating outputs from multiple
LoRAs using manually-crafted mask information. (c) Our MOLE, which learns a distribution Υj for
the jth layer of LoRAs to determine the composition weight W j

i .

directly. However, composing multiple LoRAs (typically ≥ 3) can impair the generative performance
of pre-trained models. To mitigate this, weight normalization is applied prior to the composition,
but may erase the unique characteristics of individual trained LoRAs as the composing weight of
each LoRA is reduced (refer to Observation 1 in § 3.1). Another approach, as depicted in Figure 2
(b), known as reference tuning-based composition (Gu et al., 2023), is tailored for the V&L domain
and achieves superior performance. However, it is limited in terms of LoRA flexibility due to the
utilization of manually-designed masks and involves substantial training costs, necessitating a full
model retraining. In light of the above situation, an important question arises:

How can multiple trained LoRAs be composed dynamically and efficiently, while preserving
all their individual characteristics?

To address that issues, we introduce Mixture of LoRA Experts (MOLE). Recognizing that individ-
ual layers of a trained LoRA exhibit distinct characteristics, which collectively define the overall
characteristic of the trained LoRA (refer to Observation 2 in § 3.1), MOLE involves modulating
the weights of different trained LoRAs within each layer, which we refer to as “hierarchical weight
contro”. As shown in Figure 2 (c), MOLE views each layer of trained LoRAs as a individual expert
and incorporates a gating function within each layer to learn the optimal composition weights based
on a specified domain objective. This dynamically enhances desirable characteristics while mitigating
less favorable ones, ultimately achieving a more effective composition of LoRAs and prevents the
loss of desirable LoRA characteristics that may occur in linear arithmetic composition.

Additionally, unlike reference tuning-based composition (Gu et al., 2023), our MOLE maintains
flexibility in composing multiple trained LoRAs with reduced computational costs. As the workflow
of MOLE shown in Figure 1, during training, MOLE learns the gating function for multiple trained
LoRAs and keep all other parameters frozen, resulting in minimal computational costs. During
inference, MOLE has two inference modes: In the first mode, MOLE utilizes all trained LoRAs with
the learned gating function, preserving their individual characteristics with allocated weights. During
the second mode, MOLE allows manual masking of unwanted LoRAs and recalculates and distributes
weights proportionally without the need for retraining. These two modes enable MOLE to adapt to
different scenarios, providing a versatile and flexible approach for effective LoRA composition.

We validate the effects of MOLE in both NLP and V&L domains. Our findings, encompassing both
qualitative and quantitative results, demonstrate that MOLE outperforms existing LoRA composition
approaches. The contributions of our paper are the following:

• We introduce a significant and intricate problem: how to dynamically and efficiently compose
multiple trained LoRAs while preserving all their individual characteristics, to further
investigate the applicability of LoRA in real-world scenarios.
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• We introduce Mixture of LoRA Experts (MOLE), a method that achieves a more efficient
and flexible composition of multiple trained LoRAs by employing hierarchical weight
control through learnable gating functions within each layer of trained LoRAs.

• Extensive experiments on both V&L and NLP domain demonstrate that MOLE can enhance
LoRA composition performance and mitigates issues associated with existing composition
methods.

2 BACKGROUND

2.1 LORAS COMPOSITION

LoRA (Hu et al., 2021) is a parameter-efficient fine-tuning method to adapt large models to novel
tasks and shows superior performance (Hu et al., 2021; Huang et al., 2023; Zhang et al., 2023; Sung
et al., 2022). In practical applications, a individual LoRA often fall short of meeting user expectations.
A common solution is to compose multiple trained LoRAs, each specialized in specific aspects
(e.g., clothing or facial features), with the aim of creating a comprehensive character representation.
Research on LoRA composition is limited and primarily concentrates on two distinct methodologies
as follows:

Linear arithmetic composition. As shown in Figure 2 (a), the most commonly employed composi-
tion method is directly composing multiple LoRAs, i.e.,

Ŵ = W +

N∑
i=1

∆Wi, (1)

where W indicates the original parameter of pre-trained model and ∆Wi denotes the ith trained
LoRA. However, this manner may affect the original weight W when N increasing, thereby dimin-
ishing the model’s generative capabilities. So, it is common practice to normalize the composition
weights, termed as normalized linear arithmetic composition, i.e.,

Ŵ = W +

N∑
i=1

wi ·∆Wi, (2)

where
∑N

i=1 wi = 1. This manner prevents any adverse impact on the embedding of the original
model, but leading to the loss of individual LoRA characteristics, as the composing weight wi for
each trained LoRA is reduced (Gu et al., 2023).

In NLP domain, PEMs (Zhang et al., 2023) first define arithmetic operators for LoRA, and explore
the effectiveness of composing multiple LoRAs in several scenarios. LoRAhub (Huang et al., 2023)
utilizes a gradient-free manner to estimate the composition weights of trained LoRAs and achieves
adaptable performance on unseen tasks. In V&L domain, SVDiff (Han et al., 2023) introduces a
arithmetic-based manner to compose multiple visual concepts into a single image.

Reference tuning-based composition. As shown in Figure 2 (b), reference tuning-based com-
position (Gu et al., 2023) tackles the limitations of linear arithmetic composition by introducing
gradient fusion and controllable sampling. However, it suffers from compositional inflexibility due
to manually designed masks, which necessitates retraining when incorporating different LoRAs or
creating new masks. Moreover, this approach entails retraining large models, resulting in substantial
computational costs.

It is important to note that reference tuning-based composition relies on position masks, which
distinguishes it from our model. Consequently, direct comparisons may not be appropriate due to
the fundamentally different underlying principles. Therefore, our primary focus in this paper is to
compare MOLE with linear arithmetic composition.

2.2 MIXTURE-OF-EXPERTS

Mixture-of-Experts (MoE) (Xie et al., 2023) is a promising approach to scale up the number of
parameters within the same computational bounds. Different from standard transformer models, each
MoE layer consists of N independent feed-forward networks {Ei}Ni=0 as the experts, along with a
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Prompt: a [ 𝐕𝟏] dog plays with a [ 𝐕𝟐 ] duck 

toy, and a [ 𝐕𝟑 ] backpack is put on the side.

(a) Linear arithmetic 

composition

(b) Normalized Linear 

arithmetic composition

[ 𝑉1] dog

[ 𝑉2 ] duck toy

[ 𝑉3 ] backpack 𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝑵𝒆𝒕𝒘𝒐𝒓𝒌

…

[ 𝑽𝟏] dog

𝑳𝒐𝑹𝑨 𝒇𝒐𝒓 [ 𝐕𝟏] dog

I II
Figure 3: I. Results of (a) linear arithmetic composition (Eq. 1) and (b) normalized linear arithmetic
composition (Eq. 2) based on Dreambooth (Ruiz et al., 2023). II. Visualization of the effects for
different layers in LoRA by selectively activating specific parameters from the network, moving from
the beginning to the end.

gating function α (·) to model a probability distribution indicating the weights over these experts’
outputs. For the hidden representation h ∈ Rd of input token, the gate value of routing h to expert
Ei is denoted as:

α (Ei) = exp (h · ei) /
N∑
j=0

exp (h · ej) , (3)

where ei denotes the trainable embedding of Ei. Then, the corresponding k experts, according to the
top-k gated values, are activated and the output O of the MoE layer is

O = h+

N∑
i=0

α (Ei) ·Ei (h) . (4)

3 METHOD

In this section, we first introduce some motivating observations in § 3.1. Then, we introduce the
structure details and training objectives of MOLE in § 3.2 and § 3.3, respectively.

3.1 MOTIVATING OBSERVATION

Observation 1: Directly composing multiple trained LoRAs (Eq. 1) impacts the model’s generative
ability, whereas applying weight normalization (Eq. 2) preserves this capacity but may sacrifice LoRA
characteristics.

Specifically, in V&L domain, as depicted in Figure 3 I, we observe that directly composing multiple
trained LoRAs into the original embedding led to significant parameter variations, resulting in mean-
ingless output. Furthermore, when normalization was applied, some of the original characteristics of
these trained LoRAs are indeed compromised. These observations align with those elaborated upon
in (Gu et al., 2023).

In NLP domain, when composing four or more LoRAs within the FLAN-T5 (Chung et al., 2022)
model, we observed that the model’s output became disordered. Furthermore, implementing weight
normalization for LoRAs trained across five datasets, as presented in Table 4, led to a decreased
performance of the composition model. This suggests that while weight normalization preserves
generative capacity, it adversely affects the intrinsic qualities of these trained LoRAs.

Observation 2: Individual layers of a trained LoRA exhibit unique traits, which cumulatively define the
LoRA’s overall attributes.

Inspired by the findings of (Voynov et al., 2023), which revealed that different layers in text-to-
image models govern various attributes, such as style and color, we investigate the features learned
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by different layers within LoRA. In V&L domain, as illustrated in Figure 3 II, we observed that
different layers of LoRA encode distinct features, such as dog coat color and facial features. In
NLP domain, we trained a single LoRA on a combined dataset comprising ANLI-R1 (Nie et al.,
2019), ANLI-R2 (Nie et al., 2019), and QNLI (Rajpurkar et al., 2018) datasets, as depicted in Table 5.
Notably, when evaluated on these sub-datasets, we observed significant variations in performance
across different layers of this LoRA. Specifically, the layers ranging from 0% to 20% performed
best on QNLI, the layers spanning from 40% to 60% excelled on ANLI-R2, and the layers covering
80% to 100% outperformed others on ANLI-R1. This observation inspires that we can dynamically
optimizes the layer-specific weights according to a defined domain objective, enhancing desirable
characteristics while suppressing less favorable ones, thereby achieving a more effective composition
of trained LoRAs.

3.2 MIXTURE OF LORA EXPERTS

Pretrained 
Weights 𝜽

…

𝑮…
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Figure 4: Illustration of proposed MOLE.
MOLE employs a learnable gating function
that utilizes the outputs of multiple LoRAs at
each layer to determine composition weights.

Drawing inspiration from above observations, we
introduce the Mixture of LoRA Experts.

Referring to Figure 4, consider a transformer block
within the pre-trained model, parameterized by θ (en-
compassing both the multi-head attention layer and
the feed-forward neural network), and a set of cor-
responding trained LoRAs Ω = {∆θi}Ni=0 where N
represents the number of trained LoRA candidates,
when given a input x ∈ RL×d, the output of the pre-
trained model block θ is presented as Fθ ∈ RL×d:

x
′

θ = x+ fAttn

(
LN
(
x
)∣∣θ), (5)

Fθ

(
x
)
= x

′

θ + fFFN

(
LN
(
x

′

θ

)∣∣θ), (6)

where L and d indicate the sequence length and the dimension of x, respectively. fAttn (·) and fFFN (·)
denotes the multi-head attention layer and feed-forward neural network, respectively. LN refers to
layer normalization. The output of each LoRA is presented as E∆θi (x) ∈ RL×d,

x
′

∆θi = x+ fAttn

(
LN
(
x
)∣∣∆θi

)
, (7)

E∆θi

(
x
)
= x

′

∆θi + fFFN

(
LN
(
x

′

∆θi

)∣∣∆θi

)
. (8)

After that, MOLE applies a learnable gating function G (·) to model the optimal distribution of
composition weights for outputs of these trained LoRAs. Specifically, by taking {E∆θi (x)}Ni=0 as
input, G (·) first apply concatenation (denoted as ⊕) and normalization (for training stability), i.e.

EΩ (x) = Normalization
(
E∆θ0 (x) ⊕ . . . ⊕ E∆θN−1

(x)
)
, (9)

where EΩ (x) ∈ Rξ and ξ = N × L× d. ⊕ indicates the concatenation operation. Then we flatten
and reduce the EΩ (x) to N -dimensions by a dot-product operation with the learnable parameter
e ∈ Rξ×N in the gating function G (·),

ε = Flatten
(
EΩ (x)

)⊤
· e, ε ∈ RN , (10)

The gate value for each LoRA is computed as

G
(
εi
)
=

exp
(
εi/τ

)∑N
j=1 exp

(
εj/τ

) , (11)

the temperature scalar τ is learnable. The final output ẼΩ(x) of the gating function G (·) is obtained
by multiplying the output of each LoRA expert with the corresponding gating values, presented as

ẼΩ(x) =

N∑
i=0

Gi (εi) ·E∆θi (x) , (12)
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Table 1: Text-alignment and image-alignment results for multiple LoRAs composition in CLIP
feature space. NLA denotes normalized linear arithmetic composition (Eq. 2). The best performance
is in bold.

# Visual Concepts Text-alignment
Image-alignment,

(Concept 1)
Image-alignment,

(Concept 2)
Image-alignment,

(Concept 3)

NLA SVDiff MOLE NLA SVDiff MOLE NLA SVDiff MOLE NLA SVDiff MOLE

Fancy boot + Monster + Clock 0.754 0.742 0.832 0.781 0.758 0.784 0.791 0.749 0.801 0.763 0.812 0.809
Emoji + Car + Cartoon 0.610 0.607 0.696 0.619 0.734 0.839 0.711 0.702 0.709 0.652 0.686 0.679

Vase + Wolf plushie + Teapot 0.752 0.812 0.863 0.687 0.807 0.835 0.705 0.782 0.746 0.653 0.694 0.721
White Cat + Wolf plushie + Can 0.704 0.772 0.780 0.801 0.804 0.802 0.678 0.763 0.825 0.650 0.729 0.714

Shiny sneaker + Wolf plushie + Teapot 0.778 0.789 0.791 0.812 0.783 0.690 0.723 0.751 0.790 0.688 0.676 0.721
Car + Wolf plushie + Teapot 0.635 0.681 0.684 0.652 0.763 0.713 0.601 0.664 0.745 0.685 0.612 0.707

Can + Wolf plushie + backpack 0.601 0.782 0.754 0.653 0.705 0.767 0.602 0.755 0.782 0.681 0.738 0.723
Golden Retriever + Wolf plushie + Teapot 0.670 0.716 0.784 0.713 0.784 0.790 0.601 0.802 0.809 0.678 0.761 0.748

Golden Retriever + Boot + Monster 0.614 0.762 0.755 0.665 0.662 0.620 0.748 0.832 0.862 0.723 0.719 0.735
Backpack dog + Bowl + Teapot 0.607 0.712 0.703 0.653 0.672 0.756 0.734 0.720 0.755 0.692 0.688 0.701

Backpack dog + White Cat + Emoji 0.648 0.703 0.717 0.674 0.692 0.812 0.719 0.741 0.701 0.742 0.720 0.796
Dog + Wolf + Backpack 0.717 0.738 0.722 0.547 0.565 0.552 0.679 0.681 0.707 0.766 0.795 0.831
Cat + Sunglasses + Boot 0.770 0.791 0.837 0.845 0.793 0.815 0.845 0.793 0.815 0.845 0.793 0.815

Table + Can + Teapot 0.836 0.827 0.810 0.753 0.770 0.741 0.751 0.799 0.806 0.818 0.771 0.829
Robot + Dog + Clock 0.663 0.638 0.693 0.689 0.764 0.797 0.645 0.674 0.710 0.661 0.715 0.717

Average 0.678 0.728 0.759 0.715 0.746 0.783 0.682 0.731 0.756 0.686 0.708 0.732

in which ẼΩ(x) ∈ RL×d and Gi (·) represents the weight of the ith trained LoRA. So, the final
output of this block is computed by adding the output of the gating function to the output of the
pre-trained network:

O (x) = Fθ (x) + ẼΩ (x) . (13)

Besides, we conducted an exploration of MOLE’s performance when employing gating functions at
different hierarchical levels (layer-wise and matrix-wise, etc). Please refer to Section 5.

3.3 TRAINING OBJECTIVE

Gating Balancing Loss. As shown in Figure 5 (a), we observed that the average entropy of the
distribution probabilities from the gating functions gradually decreases as the number of training
steps increases, i.e., the gating function tends to converge to a state where it always produces large
weights for a early-stage well-performing LoRA (e.g., shown in Figure. 5 (b), 68% gating probability
for LoRA β among three LoRAs), leading to only a handful of LoRAs having a significant impact
in the end and a loss of the characteristics of other LoRAs. To alleviate this, we propose a gating
balancing loss Lbalance as

Lbalance = − log

(
N∏
i=0

q(i)

)
, (14)

where

q(i) =
1

M

M∑
k=1

exp
(
εki /τ

)∑N
j=1 exp

(
εkj /τ

) , (15)

and M represents the number of blocks where gating functions are placed and N denotes the
number of LoRAs. This balanced loss encourages balanced gating because it is minimized when the
dispatching is ideally balanced.

(a) (b)

Figure 5: (a) The average gating entropy of
all gating functions varies with the training
steps. (b) The average weight distribution (%)
of three LoRAs w and w/o Lbalance.

Domain-specific Loss. Additionally, for adaptation
to different domains, we employ distinct domain-
specific training objectives denoted as LD. In V&L
domain. we employ unsupervised training with
both local and global guidance from CLIP (Radford
et al., 2021b) to optimize MOLE. In NLP domain,
we follow the loss function in FLAN-T5 (Chung
et al., 2022). The overall training objective L is the
weighted sum of the above-mentioned two losses,
represented as:

L = LD + αLbalance, (16)

where α is a coefficient for weight balancing.
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Table 2: Text-alignment and image-alignment results for multiple LoRA experts composition in
CLIP feature space. The best performance is in bold and the second-best value is indicated with an
underline. NLA denotes normalized linear arithmetic composition (Eq. 2). SOTA full-parameter
training methods are highlighted by .

# Number of Concepts Text-alignment Average Image-alignment

NLA Custom Textual Inversion SVDiff MOLE NLA Custom Textual Inversion SVDiff MOLE

3 0.678 0.751 0.709 0.728 0.759 0.694 0.761 0.720 0.719 0.757
4 0.681 0.735 0.721 0.717 0.725 0.712 0.760 0.736 0.721 0.742
5 0.652 0.731 0.704 0.723 0.762 0.682 0.798 0.710 0.708 0.737
6 0.678 0.722 0.735 0.709 0.727 0.698 0.721 0.747 0.712 0.736

Average 0.672 0.734 0.717 0.719 0.752 0.692 0.760 0.728 0.715 0.743

Optimization Gating Function Only. We freeze all trained LoRAs and pre-trained model parameters,
optimizing only the gating function’s parameters. This helps preserve characteristics of trained LoRAs,
particularly when training data is limited.

4 EXPERIMENTS

4.1 MOLE ON V&L DOMAIN

Experimental Setup. For V&L domain, we apply MOLE to multi-subjects text-to-image generation
task and choose DreamBooth (Ruiz et al., 2023) (built on Stable Diffusion V2.1) as the base generator.
Following the common setting (Han et al., 2023; Gal et al., 2022a), where 2 to 3 concepts are typically
composed into a new multi-concept image, we conduct experiments by composing three separate
trained LoRAs. During training MOLE, we process the image resolution to 512×512 and set learning
rate as 1e-5. We use DDPM sampler (Ho et al., 2020) with 50 steps in each case and train 400
iterations for each required composition with batch size 2 and α as 0.5.

Metrics and Compared Baselines. Following (Ruiz et al., 2023; Han et al., 2023), we evaluate
our method on (1) Image alignment. The visual similarity of generated images with the individual
composed concepts, using similarity in CLIP (Radford et al., 2021a) image feature space, (2) Text-
alignment of the generated images with given text prompts, using text-image similarity in CLIP
feature space (Radford et al., 2021a). For each composition, we calculated the average scores among
200 generated images per prompt using 5 text prompts. We compared our MOLE with normalized
linear arithmetic composition (Eq. 2) and SVDiff (Han et al., 2023). Additionally, to further validate
the effectiveness of MOLE, we also compare MOLE with state-of-the-art multi-subjects generation
methods (full-parameters training based), which can be found in Section 5.

Main Results. As shown in Table 1, this study involves 15 different compositions of three visual
subjects. The overall results show that our method significantly outperforms other comparative
methods in terms of Text-alignment score, with a 0.031 average improvement compared to SVDiff,
as well as the Image-alignment score associated with three visual concepts (e.g., 0.037 average
improvement compared to SVDiff in concept 1), providing evidence of of our MOLE’s superior
capability in accurately capturing and depicting the subject information of user-provided images,
as well as displaying multiple entities concurrently within a single image. Significantly, prior
research (Kumari et al., 2023; Gal et al., 2022b) indicates a trade-off between Text-alignment
and Image-alignment scores in multi-subjects generation. Excelling in both scores is challenging,
highlighting the strength of our MOLE. Additionally, as shown in Figure 9, 10 and 11, our approach
outperforms two other methods in preserving subject fidelity in generated images. The comparative
methods often omit a subject, as seen in the NLA composition’s failure to include elements like “cat”
in Figure 9 (line 2) and “barn” in Figure 10, and SVDiff’s inability to precisely represent “dog” and
“cat” in Figure 10. Furthermore, while these methods can generate images with three subjects, there’s
a noticeable leakage and mixing of appearance features, resulting in lower subject fidelity compared
to user-provided images. In contrast, our method effectively retains the subjects specified by the user,
with each accurately depicted.

4.2 MOLE ON NLP DOMAIN

Experimental Setup. For NLP domain, following (Huang et al., 2023), we employ Flan-T5 (Chung
et al., 2022) as our chosen LLM and created several LoRAs based on FLAN datasets. We conducted

7



Published as a conference paper at ICLR 2024

extensive experiments across various tasks, including Translation, Natural Language Inference (NLI),
Struct to Text, Closed-Book QA, and multiple subtasks within the Big-Bench Hard (BBH) (Ghazal
et al., 2013) dataset. We train 800 iterations for each required composition of LoRAs with an initial
learning rate of 1e-5, batch size 12 and α as 0.5.

# Task Metric LoRAHub PEMs MOLE

Translation
WMT ’14 En→Fr BLEU 27.4 25.6 29.1
WMT ’14 Fr→En BLEU 29.4 27.1 31.3
WMT ’16 En→De BLEU 24.6 24.9 27.7
WMT ’16 De→En BLEU 29.9 28.0 29.1
WMT ’16 En→Ro BLEU 17.7 15.2 18.9
WMT ’16 Ro→En BLEU 23.5 21.7 25.1
Average 25.4 24.2 26.9
Struct to Text
CommonGen Rouge-1 53.7 48.8 55.1

Rouge-2 23.1 22.4 23.1
Rouge-L 49.7 47.2 53.9

DART Rouge-1 45.3 46.2 48.8
Rouge-2 22.6 18.9 23.5
Rouge-L 35.1 37.6 36.0

E2ENLG Rouge-1 41.1 40.7 42.0
Rouge-2 26.3 24.2 29.0
Rouge-L 38.8 42.1 41.8

WebNLG Rouge-1 52.1 52.0 54.5
Rouge-2 23.9 24.6 26.8
Rouge-L 45.2 47.8 49.3

Average 38.1 37.7 40.3
Closed-Book QA
ARC-c EM 51.7 50.4 52.9
ARC-e EM 69.7 65.7 70.3
NQ EM 17.3 16.1 23.5
TQA EM 54.5 53.9 54.0
Average 48.3 46.5 50.2
Big-Bench Hard (BBH)
Boolean Expressions EM 55.1 53.0 57.3
Causal Judgement EM 57.6 51.1 57.9
Date Understanding EM 31.0 29.3 30.7
Disambiguation EM 46.6 47.2 49.3
Penguins in a Table EM 41.4 39.8 45.0
Reasoning Objects EM 35.2 37.5 33.7
Ruin Names EM 19.9 19.3 21.2
Average 38.4 33.2 42.2
Natural Language Inference (NLI)
ANLI-R1 EM 81.0 80.3 82.7
ANLI-R2 EM 80.9 80.2 82.4
ANLI-R3 EM 77.4 76.6 78.9
QNLI EM 77.6 78.0 78.1
Average 79.2 78.8 80.5

Table 3: Evaluation results on Translation, Struct to
Text, Closed-Book QA, NLI and BBH. The best value
is in bold and the second-best value is underlined.

Compared Baselines. We compared
our MOLE with recently released
state-of-the-art LoRA composition meth-
ods: LoRAhub (Han et al., 2023) and
PEMs (Zhang et al., 2023).

Main Results. The corresponding exper-
imental results are encapsulated in the Ta-
ble 3. In summary, our MOLE surpasses
state-of-the-art LoRA composition meth-
ods on five distinct datasets. Notably, on
the BBH dataset, our MOLE achieves an
average performance improvement of 3.8
over LoRAHub and outperforms PEMs by
a notable margin of 9.0. Furthermore, in
the realm of generation tasks, specifically
in Translation and Struct to Text categories,
MOLE consistently outshines its counter-
parts. In the Translation task set, it sur-
passes LoRAHub by an average margin
of 1.5 and PEMs by 2.7. Correspondingly,
within the Struct to Text task set, our model
boasts an average performance superiority
of 2.1 over LoRAHub and 2.6 over PEMs.
These findings underscore the efficacy and
versatility of our MOLE in handling lan-
guage generation tasks.

5 ANALYSIS

The effectiveness of gating balancing loss.
Figure 5 (a) and (b) illustrate how our
Lbalance function mitigates the reduction in
entropy rates within gating functions, lead-
ing to a more uniform composition weight
distribution. The performance comparison
between MOLE and MOLE w/o Lbalance in
Table 7 underscores the performance enhancement achieved with the inclusion of Lbalance. Addition-
ally, we conducted an experiment wherein we solely increased the temperature τ in Eq. 11, as an
alternative to adding Lbalance. Results in Table 7 shows declining performance in MOLE variants
MOLEτ1 , MOLEτ2 , MOLEτ3 (τ1 ≺ τ2 ≺ τ3) with increasing temperature. While temperature rise
addresses gating imbalance, it restricts dynamic LoRA exploration in MOLE, leading to inferior
outcomes.

Further comparison with SOTA multi-concept generation methods. In the absence of comparable
LoRA composition methods in the V&L domain, we incorporated two leading multi-concept genera-
tion algorithms that do not utilize LoRA: Custom (Kumari et al., 2023) and Textual Inversion (Gal
et al., 2022a), both of which emphasize full-parameter training for enhanced results. As presented
in Table 2, MOLE outperforms Textual Inversion in both image and text alignment and excels
over Custom in text alignment. Furthermore, it’s worth noting that our MoLE is more lightweight
compared to these full-parameter training methods. These comparisons underscore the superior
effectiveness of our MoLE relative to methods that involve extensive parameter tuning.

Scale to a larger number of LoRAs. We explore the performance as the number of LoRAs increases.
In the NLP domain, experiments were conducted with varying numbers of LoRA (8, 24, 48, 128),
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as detailed in Table 6. Our MOLE demonstrated optimal performance across these configurations,
notably excelling with larger LoRA counts of 48 and 128, surpassing LoRAHub by 2.5 and 3.0,
respectively. Analysis revealed that LoRAHub’s optimization algorithm often zeroes out many LoRA
weights in larger arrays, thus underutilizing the potential of all LoRA. Conversely, MOLE effectively
overcomes this limitation. However, all methods, including MOLE, showed performance declines
with an extremely large number of LoRA (128), highlighting a need for further research in this area.
In the V&L domain, Table 10 shows experiments with increased composed LoRAs. While typical
composition involve 3-4 visual concepts, our range was 3-6 to avoid ambiguity in outputs. Results
indicate that MOLE consistently outperforms other LoRA composition models in text and image
alignment as the number of LoRAs increases, underscoring its robustness and superior composition
capabilities.

Coarse-to-fine gating analysis. To examine the impact of different granularity levels in gating
functions, we delineated four levels in MOLE: matrix-wise (MOLE, gating at the parameter matrix
level), layer-wise (MOLE), block-wise (MOLE), and network-wise (MOLE), abbreviated as m-
MOLE, l-MOLE, b-MOLE, and n-MOLE respectively. Table 9 reveals that intermediate granularities,
b-MOLE and l-MOLE, achieved the highest performance. In contrast, the coarsest level, n-MOLE,
which involves minimal optimizable parameters (a single gating for the entire network), showed
suboptimal outcomes. Additionally, the finest granularity, m-MOLE, underperformed, potentially
due to its excessive control interfering with inherent relationships in LoRA parameters.

Generalization to new datasets. To further validate the effectiveness of our MOLE, we conducted
generalization experiments. Specifically, all LoRA candidates and LoRA composition variants,
including MOLE, PEMs and LoRAHub, were trained on NLI tasks (ANLI-R1, ANLI-R2, ANLI-R3,
QNLI, and WNLI, among others). Subsequently, we evaluated these methods on the BBH dataset. As
illustrated in Table 8, our MOLE achieves an average performance advantage of 2.4 over LoRAHub
and 3.7 over PEMs, underscoring its superior generalization ability.

Flexibility of MOLE. As discussed in Section 2.1, a well-designed LoRA composition method
should not only achieve effective LoRA composition but also retain the characteristics of individual
LoRA. It should be versatile enough to function as a standalone LoRA generator, ensuring its practical
applications are flexible and widespread. Figure 6 displays a comparison of the qualitative results for
the retaining ability of several composition methods, we find that our MOLE can generate images that
closely resemble the original features of the LoRA experts (e.g., dog ears, the color of the backpack),
while other composition methods tend to produce confusion and loss of LoRA characteristics. Besides,
as shown in Figure 1, we can also degrade MOLE by masking out the LoRA experts we do not wish
to use, transforming it into a MOLE that merges fewer LoRAs without affecting the composition
effect of the remaining LoRAs. As shown in Figure 8, our MOLE can achieve the same flexible
LoRA composition as linear arithmetic composition method without altering the weights of MOLE,
while reference tuning-based composition (Gu et al., 2023) can not accomplish.

Hierarchical control analysis. MOLE aims to achieve improved LoRA composition effects through
finer-grained hierarchical control. As illustrated in the Figure 7, we visualize the weight distributions
assigned by the gating functions learned by MOLE at different levels in both NLP and V&L domains.
We observe that MOLE adaptively assigns weights to different LoRA experts at various layers.
Consequently, finer-grained weight combination methods lead to superior results.

6 CONCLUSION AND LIMITATIONS

In this study, we introduce the Mixture of LoRA Experts (MOLE) as a versatile and dynamic
approach for composing multiple trained LoRAs. The key innovation of MOLE lies in its learnable
gating functions, which utilize the outputs of multiple LoRAs at each layer to determine composition
weights. Our comprehensive evaluation in both the both NLP and V&L domains establishes that
MOLE outperforms existing LoRA composition methods.

Limitations. As described in Section 5, when the number of LoRAs increases to a very large
value (e.g., 128), despite our MOLE exhibiting superior performance, the performance of all LoRA
composition methods, including our MOLE, tends to decrease. This suggests that our MOLE still
faces challenges when performing large-scale LoRA composition. It also highlights the significance
of researching better approaches for handling large-scale LoRA composition effectively.
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Table 4: The first motivation experiment in the NLP domain. NLA denotes normalized linear
arithmetic composition (Eq. 2). The best value is in bold.

Model ANLI-R1 ANLI-R2 ANLI-R3 QNLI WNLI Average

Single LoRA 80.32 79.02 75.92 78.62 74.32 77.64
NLA 79.32 78.88 76.42 78.06 69.98 76.53

Table 5: The second motivation experiment in the NLP domain. Full LoRA denotes the application
of the complete set of LoRA parameters for inference, whereas x%-y% indicates the inference using
LoRA parameters ranging from the top x% to the top y%. The best value is in bold.

ANLI-R1 ANLI-R2 QNLI

Full LoRA 81.65 80.03 76.42
0%-20% 78.72 78.35 78.14

20%-40% 76.10 77.96 77.85
40%-60% 76.95 81.47 74.57
60%-80% 77.25 78.19 75.71

80%-100% 82.59 77.91 75.48

Table 6: NLP domain experimental results on the impact of exploring expand expert numbers on model
performance. The result is the average EM on the Big-Bench Hard (BBH) dataset. NLA denotes
normalized linear arithmetic composition (Eq. 2). The best value is in bold and the second-best value
is indicated with an underline.

# Number of LoRA NLA LoRAHub PEMs MOLE

8 32.7 33.9 33.7 36.6
24 36.8 37.1 36.9 38.7
48 34.4 36.9 34.6 39.4
128 34.1 35.5 34.9 38.5

Average 34.5 35.9 35.0 38.3

Table 7: Experimental results on gating balance of MOLE. NLA denotes normalized linear arithmetic
composition (Eq. 2). The best value is in bold.

# Model ANLI-R1 ANLI-R2 ANLI-R3 QNLI WNLI Average

NLA 79.32 78.88 76.42 78.06 69.98 76.53
MOLE 81.49 79.38 77.63 79.52 72.31 78.07
MOLE w/o Lbalance 80.81 79.11 77.42 79.09 71.44 77.57
MOLEτ1 80.52 79.27 77.30 79.11 71.07 77.45
MOLEτ2 80.01 79.03 76.33 77.81 70.37 76.71
MOLEτ3 78.50 79.20 76.07 78.02 70.00 76.35

Table 8: Evaluation results on generalization to new datasets. All lora candidates and LoRA merging
variants are optimized on NLI tasks. The best value is in bold and the second-best value is indicated
with an underline.

# Task Metric LoRAHub PEMs MOLE

Big-Bench Hard (BBH)
Boolean Expressions EM 45.3 45.5 48.7
Causal Judgement EM 51.3 46.1 52.4
Date Understanding EM 27.5 24.6 26.6
Disambiguation EM 39.7 42.4 43.8
Penguins in a Table EM 35.3 33.6 39.0
Reasoning about Colored Objects EM 32.2 31.4 34.7
Average 38.5 37.2 40.9
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Table 9: Coarse-to-fine gating comparison. The best value is in bold and the second-best value is
indicated with an underline.

# Method Text-alignment Image-alignment

Concept 1 Concept 2 Concept 3

m-MOLE 0.731 0.719 0.714 0.747
l-MOLE 0.760 0.727 0.731 0.757
b-MOLE 0.766 0.726 0.737 0.755
n-MOLE 0.722 0.739 0.682 0.730

Table 10: Experimental results on the impact of exploring expand expert numbers on model perfor-
mance. We evaluate each composition pair on 200 images generated using 5 prompts with 50 steps
of DDPM sampler and scale=7.5. NLA denotes normalized linear arithmetic composition (Eq. 2).
The best performance is in bold.

# Number of LoRA Text-alignment Average Image-alignment

NLA SVDiff MOLE NLA SVDiff MOLE

3 0.678 0.728 0.759 0.694 0.719 0.757
4 0.681 0.717 0.725 0.712 0.721 0.742
5 0.652 0.723 0.762 0.682 0.708 0.737
6 0.698 0.709 0.737 0.703 0.701 0.709

Average 0.677 0.719 0.746 0.698 0.712 0.736

[ 𝑉3 ] backpack[ 𝑉2 ] wolf plushie

a photo of a [𝑉1] dog a photo of a [ 𝑉2 ] wolf plushie a photo of a [ 𝑉3 ] backpack

[ 𝑉1] dog

Composed

LoRAs

NLA

SVDiff

MOLE

(Ours)

Figure 6: Qualitative result for retaining ability experiment. NLA denotes normalized linear arithmetic
composition (Eq. 2). The first row displays the composed trained LoRAs. The second to the last row
showcases the respective abilities of different composition methods to preserve the characteristics of
each LoRA without altering the model.

Gating 2 Gating 5 Gating 8 Gating 11 Gating 14 Gating 17 Gating 20 Gating 23

Gating 1 Gating 2 Gating 3 Gating 4 Gating 5 Gating 6 Gating 7 Gating 8

Figure 7: Visualization of the weights (%) predicted by each gating function (horizontal axis) for
LoRA experts (vertical axis) during inference. The top row corresponds to experiments in the NLP
domain, while the bottom row pertains to experiments in the V&L domain.
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a photo of a [𝑉1] dog wearing a [𝑉3] sunglasses, with a [ 𝑉2 ] cat beside.[ 𝑉1] dog

[ 𝑉2 ] cat

[ 𝑉3 ] sunglasses

𝑮

[ 𝑉1] dog [ 𝑉2 ] cat [ 𝑉3 ] 
sunglasses

❄️

𝑮
❄️

[ 𝑉1] dog [ 𝑉2 ] cat [ 𝑉3 ] 
sunglasses

a photo of a [ 𝑉2 ] cat wearing a [𝑉3] sunglasses.

a photo of a [𝑉1] dog wearing a [𝑉3] sunglasses.

𝑮
❄️

[ 𝑉1] dog [ 𝑉2 ] cat [ 𝑉3 ] 
sunglasses

Figure 8: Visualization for different inference modes of MOLE. MOLE has two inference modes:
In the first mode (the first line), MOLE can use all the LoRA experts and allocate weights for each
LoRA, preserving their individual characteristics. In the second mode (the second and third lines), we
can manually mask some unwanted LoRAs without changing the gating weights. It can recalculate
and distribute weights proportionally. These two modes enable MOLE to adapt to different scenarios,
providing a versatile and flexible approach for effective LoRA composition.
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a photo of a [𝑽𝟏] dog wearing a [𝑽𝟑] sunglasses, 

with a [ 𝑽𝟐 ] cat beside.

NLA SVDiff MOLE (Ours)

[ 𝑉1] dog

[ 𝑉2 ] cat

[ 𝑉3 ] sunglasses

Figure 9: Visualization of multiple LoRA composition results on V&L domain. NLA denotes
normalized linear arithmetic composition (Eq. 2). Our MOLE has higher visual similarity with the
personal cat and dog images while following the text condition better, e.g., SVDiff is unable to fully
recover all the characteristics of LoRA (in the second line, the appearance of the dog is completely
altered, and in the first line, two cats are present but the dog is missing). Moreover, SVDiff and NLA
struggles to generate images that match the text condition effectively (e.g., it might add sunglasses to
both dogs and cats in response to conditions mentioning “dog” and “cat”).
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a photo of a [𝑽𝟏] dog and a [ 𝑽𝟐 ] cat, with a [ 𝑽𝟑 ] 
barn standing nearby.

NLA SVDiff MoLE (Ours)

[ 𝑉1] dog

[ 𝑉2 ] cat

[ 𝑉3 ] barn

Figure 10: Visualization of multiple LoRA composition results on V&L domain. NLA denotes
normalized linear arithmetic composition (Eq. 2). Our model consistently produces results that better
align with the prompt descriptions. The outputs from our model consistently contain all three visual
concepts that need to be combined. In contrast, SVDiff and NLA often exhibit issues such as concept
confusion (e.g., in the third row of NLA, where features of both the cat and dog are confused) and
concept omission (e.g., in the second row of SVDiff, where the concept of the dog is missing, and in
the first row, where the concept of the cat is missing).
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a photo of a [ 𝑽𝟐 ] cat in style of  [ 𝑽𝟏] 𝐭ortoise plushy, 

wearing a [ 𝑽𝟑 ] 𝐬𝐮𝐧𝐠𝐥𝐚𝐬𝐬

NLA SVDiff MoLE (Ours)

[ 𝑉1] tortoise 
plushy

[ 𝑉2 ] cat

[ 𝑉3 ] sunglasses

Figure 11: Visualization of multiple LoRA composition results on V&L domain. NLA denotes
normalized linear arithmetic composition (Eq. 2). Our model consistently produces results that better
align with the prompt descriptions. The outputs from our model consistently contain all three visual
concept features that need to be combined. In contrast, SVDiff and NLA often exhibit issues such
as concept omission (e.g., in the first row of NLA, where the concepts of the cat and sunglasses are
missing, and in the first row of SVDiff, where the concept of sunglasses is missing). Additionally,
our output results better match the original visual concept features. For example, the shell of the
turtle is green, whereas SVDiff and NLA generate shells in pink and brown colors.
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