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ABSTRACT

Adversarial samples exploit irregularities in the manifold “learned” by deep learn-
ing models to cause misclassifications. The study of these adversarial samples
provides insight into the features a model uses to classify inputs, which can be
leveraged to improve robustness against future attacks. However, much of the
existing literature focuses on constrained adversarial samples, which do not accu-
rately reflect test-time errors encountered in real-world settings. To address this,
we propose ‘NatADiff’, an adversarial sampling scheme that leverages denoising
diffusion to generate natural adversarial samples. Our approach is based on the
observation that natural adversarial samples frequently contain structural elements
from the adversarial class. Deep learning models can exploit these structural el-
ements to shortcut the classification process, rather than learning to genuinely
distinguish between classes. To leverage this behavior, we guide the diffusion
trajectory towards the intersection of the true and adversarial classes, combining
time-travel sampling with augmented classifier guidance to enhance attack transfer-
ability while preserving image quality. Our method achieves comparable white-box
attack success rates to current state-of-the-art techniques, while exhibiting signifi-
cantly higher transferability across model architectures and improved alignment
with natural test-time errors as measured by FID. These results demonstrate that
NatADiff produces adversarial samples that not only transfer more effectively
across models, but more faithfully resemble naturally occurring test-time errors
when compared with other generative adversarial sampling schemes.

1 INTRODUCTION

Deep learning models can react unpredictably when there is domain difference between training and
test data (Szegedy et al., 2014; Goodfellow et al., 2015). Constrained adversarial attacks exploit
this vulnerability, adding visually imperceptible pixel-level perturbations to deliberately fool models
into misclassification (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Croce &
Hein, 2020). More recently, unconstrained adversarial attacks have been proposed which allow for
unrestricted perturbation magnitudes, provided the resulting adversarial image lies sufficiently close
to the natural image manifold (Song et al., 2018; Chen et al., 2023a;b).

Defences to these attacks have been proposed (Szegedy et al., 2014; Madry et al., 2018; Gu & Rigazio,
2015; Xu et al., 2018; Samangouei et al., 2018; Nie et al., 2022); however, they largely target attacks
formed by adding perturbations to natural images–overlooking the existence of natural adversarial
samples. Natural adversarial samples are more commonly known as test-time errors, and they
represent the strongest class of unconstrained adversarial attack, as they are valid (perturbation-free
and naturally occurring) model inputs that are erroneously classified (Hendrycks et al., 2021). The
absence of an adversarial perturbation renders many defensive measures ineffective (Agarwal et al.,
2022). Furthermore, natural adversarial samples have been widely studied in the literature, and they
have been found to exhibit high transferability–where multiple classifiers incorrectly classify the same
sample (Hendrycks et al., 2021). It is hypothesized that this is caused by classifiers independently
learning to rely on the same erroneous contextual cues to shortcut classification and reduce training
losses without generalising to the underlying task (Hendrycks et al., 2021; Geirhos et al., 2020;
Arjovsky et al., 2020).
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Generating natural adversarial samples offers an opportunity to better understand the mechanisms
underpinning test-time errors. Prior work has sought to achieve this by using classifier gradients to
perturb the sampling process of generative adversarial networks (GANs) and denoising diffusion
models (Song et al., 2018; Chen et al., 2023b; Dai et al., 2024; Chen et al., 2025). However,
GAN-based approaches lack theoretical justification for perturbing the sample path, and doing
so often degrades image quality (Karras et al., 2019; Abdal et al., 2019). Alternatively, directly
injecting classifier gradients into the diffusion sampling trajectory can result in generating constrained
adversarial samples (Vaeth et al., 2024; Shen et al., 2024) (see Figure 1 (c)). Moreover, existing
methods do not account for the link between learned erroneous contextual cues and test-time errors.

We propose NatADiff, a highly transferable, diffusion-based (Ho et al., 2020; Song et al., 2021a)
adversarial sample generation method. NatADiff leverages the link between contextual cues and test-
time errors by guiding the diffusion sampling trajectory towards the intersection of the adversarial and
true classes, a technique we define as “adversarial boundary guidance”. Additionally, we incorporate
classifier augmentations to reduce the strength of the constrained adversarial perturbation and to
further guide the sampling trajectory towards regions of the image manifold that incorporate features
from the adversarial class. We find that NatADiff-generated samples achieve comparable white-box
(same target and victim classifier) attack success rates to current state-of-the-art adversarial attacks,
while exhibiting significantly higher transferability (different target and victim classifier) across
models. Furthermore, samples generated using NatADiff align more closely with known test-time
errors (with respect to their Fréchet inception distance (FID) (Fréchet, 1957)) than those generated
through adversarial classifier guidance alone (Dai et al., 2024). These results demonstrate that
NatADiff produces adversarial samples that not only transfer more effectively across models, but
more faithfully resemble naturally occurring test-time errors. To summarize our contributions: (i) We
propose NatADiff, incorporating classifier transformations, gradient normalization, and time-travel
sampling (Shen et al., 2024; Lugmayr et al., 2022; Yu et al., 2023) to improve adversarial classifier
guidance and image quality; (ii) We design an adversarial boundary guidance algorithm to reliably
navigate the complex, learned manifold, allowing us to generate natural adversarial samples with
significantly higher transferability than existing approaches. (iii) We explore how convolution and
transformer based classifiers perceive natural adversarial samples, exposing interesting properties of
the feature representations learned by deep learning models.

2 DEFINITIONS AND PRELIMINARIES

Constrained, unconstrained, and natural adversarial samples. Broadly speaking there are three
categories of adversarial sample: unconstrained, constrained, and natural. Let f : IU → Y be a
trained image classifier, IU be the set of allowable image inputs, IN ⊆ IU be the set of natural
images, Y be the set of image classification labels, and O : IU → Y be an oracle (“perfect”
human) classifier. Unconstrained adversarial samples require only that the image is misclassified:

AU ≜ {x ∈ IU : f(x) ̸= O(x)} (Song et al., 2018). Constrained adversarial samples are restricted

to an ϵ-neighbourhood about some natural image: AC ≜ {x + δ ∈ IU : x ∈ IN , ∥δ∥p ≤
ϵ, f(x+ δ) ̸= O(x+ δ)} (Szegedy et al., 2014). Natural adversarial samples are natural images that

are misclassified: AN ≜ {x ∈ IN : f(x) ̸= O(x)} (Hendrycks et al., 2021). Finally, it follows from
the above definitions that AN ⊆ AC ⊆ AU .

Natural adversarial samples are a well-documented phenomenon in deep learning (Hendrycks et al.,
2021). Literature suggests that they typically occur when deep learning models learn to rely on
erroneous contextual cues to shortcut classification, as opposed to truly learning to distinguish
between classes (Hendrycks et al., 2021; Geirhos et al., 2020; Arjovsky et al., 2020) (see Appendix E
for examples). These cues are typically features within an image that are highly correlated with a
target class but not indicative of the class. For instance, a model that uses oceanic environments
as a cue for predicting “shark” may misclassify an image of a shark lying on sand. By exploiting
these easy-to-learn cues, models can reduce training loss without correctly learning to generalize
to the underlying classification task. Additionally, it has been observed that natural adversarial
samples are able to bypass common adversarial defences (Agarwal et al., 2022), and they exhibit
high transferability i.e., the same image is misclassified by multiple classifiers (Hendrycks et al.,
2021). The significant transferability of natural adversarial samples can be attributed to classifiers
independently learning to rely on the same contextual cues, which is likely a consequence of shared
correlations between cues and class labels across independent datasets (Hendrycks et al., 2021).
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✕= =

(a) PGD (b) Nat. Adv. Samples (c) Adv. Class. Guid. (d) NatADiff

Figure 1: A comparison of different types of adversarial samples. Green and red borders indicate
non-adversarial and adversarial samples, respectively. A dotted border denotes artificially generated
images, while a solid border indicates real-world photographs. (a) Constrained adversarial attacks
(PGD (Madry et al., 2018) used here) add perturbations to clean images. (b) Natural adversarial
samples are test-time errors that do not contain perturbations. (c) Adversarial classifier guidance (Dai
et al., 2024) produces constrained adversarial samples, as the difference between images generated
with and without the guidance is minimal–their difference amounts to a constrained perturbation. (d)
Adversarial samples generated with NatADiff diverge from those generated without NatADiff.

Denoising diffusion generative models (Ho et al., 2020) leverage a stochastic differential equation
(SDE) to “learn” the space of natural images, allowing for the generation of natural, within-distribution
images. The SDE is characterized by the forward process:

dxt = f(t)xtdt+ g(t) · dBt ∀ t ∈ [0, T ]. (1)

where xt ∈ R
m, f(t) : R → R and g(t) : R → R are continuous functions of t, and · dBt denotes

an Itô integral with respect to the standard multi-dimensional Brownian motion process Bt ∈ R
m

(Pavliotis, 2014b). Functions f and g are chosen such that the forward process progressively
“destroys” structure in the image, x0, adding noise until it is approximately marginally Gaussian at
termination time, T, i.e., p(xT ) ≈ N (0, σ2

T I). To generate a natural image, the forward process
can be reversed, and structure recovered from Gaussian noise using either Anderson’s reverse-
time diffusion (Anderson, 1982) or the flow ODE (Song et al., 2021b) derived from (1). Both
formulations require an estimate of the score function, ∇xt

log(p(xt)), which is approximated by a
neural network, ϵθ(xt, t). This network is trained to predict the original image from a noisy version
using the objective:

min
θ

Ex0,xt,t∼p(x0,xt,t)

[

∥x0 − (xt − β(t)ϵθ(xt, t))/α(t)∥
2
2

]

, (2)

where α(t) = e
∫

t

0
f(u)du and β(t)2 = α(t)2

∫ t

0
g(u)2

α(u)2 du. Given an optimal solution to the above, the

score function is given by (see Theorem M.3 in Appendix M):

∇xt
log(p(xt)) = −ϵθ⋆(xt, t)/β(t) ∀ t ∈ (0, T ], xt ∈ R

m. (3)

Additionally, while ϵθ⋆(xt, t) can be used to directly estimate x0, it is typically of a lower quality
than samples generated iteratively from the reverse-time diffusion or flow ODE (Ho et al., 2020; Song
et al., 2021b; Nichol & Dhariwal, 2021).

Denoising diffusion class guidance provides finer control over the diffusion process by sam-
pling from x0 ∼ p(x0|y) instead of x0 ∼ p(x0), where y represents some conditioning infor-
mation. To control the strength of class-guided diffusion, the marginal distribution is treated as
p̄(xt|y) ∝ p(y|xt)

ωp(xt)/p(y), where ω ∈ R>0 governs how strictly the diffusion adheres to the
class constraint. For ω > 1, the probability mass of p(y|xt)

ω is “tightened” around the regions of
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most probable y, while for ω < 1, the probability mass is more diffuse. This results in stronger and
weaker class adherence, respectively.

Class conditioning is incorporated directly into the diffusion score function in (3) by replacing p(xt|y)
with p̄(xt|y) as follows:

∇xt
log(p̄(xt|y)) = ω∇xt

log(p(y|xt))−
1

β(t)
ϵθ⋆(xt, t) (4)

= −
1

β(t)

[
ωϵθ⋆(xt, t, y) + (1− ω)ϵθ⋆(xt, t)

]
, (5)

where ϵθ⋆(xt, t) and ϵθ⋆(xt, t, y) are neural networks trained to estimate the noise added in the
forward diffusion process when x0 ∼ p(x0) and x0 ∼ p(x0|y), respectively. The distinction between
(4) and (5) illustrates the difference between the two forms of class-guided diffusion: classifier and
classifier-free guidance. In classifier guidance, a separate model, pθ(y|xt), is trained to predict the
probability of y given xt (Dhariwal & Nichol, 2021). In contrast, classifier-free guidance requires
training a diffusion model to directly estimate ∇xt

log(p(xt|y)) (Ho & Salimans, 2022).

It is important to note that p̄(xt|y) does not represent the marginal distribution that arises from
applying the diffusion in (1) to x0 ∼ p(x0|y) (Karras et al., 2024). Instead, it is a mechanism that
forces the sampling trajectory of xt into regions with a higher probability of p(y|xt), and in doing so,
deviates from reverse-time diffusion and flow ODE dynamics. However, despite foregoing theoretical
guarantees of sampling convergence, class-guided diffusion often exhibits superior sampling quality
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022).

3 RELATED WORK

Generating unconstrained adversarial samples. Previous work has shown that modern generative
models are capable of creating artificial unconstrained adversarial samples (Song et al., 2018; Zhao
et al., 2018; Chen et al., 2023b; Dai et al., 2024). Initial approaches used GANs as the generative
backbone for these attack; however, GANs are sensitive to perturbations to their sampling path, and
they lack theoretical justification for such perturbations (Karras et al., 2019; Abdal et al., 2019).
Recent methods have leveraged denoising diffusion models (Ho et al., 2020). Diffusion models
possess superior generation quality to GANs, and provide theoretical justification for perturbing the
sampling path (Dhariwal & Nichol, 2021). Dai et al. (2024) leveraged these properties to develop
AdvDiff, which treats the true image class, y, and adversarial target, ỹ, as random variables. The joint
distribution can be decomposed as p(xt, y, ỹ) = p(y|xt)p(ỹ|xt)p(xt), where it is assumed that y
and ỹ are conditionally independent given the noisy image, xt. Thus, given the forward diffusion in
(1), the corresponding diffusion score function (see (4) and (5)) becomes

∇xt
log(p̄(xt|y, ỹ)) = −

1

β(t)

[
ωϵθ⋆(xt, t, y) + (1− ω)ϵθ⋆(xt, t)

]
+ s∇xt

log(p(ỹ|xt)), (6)

where ω and s control the strength of the guidance, ϵθ⋆ is a network trained to remove noise from xt,
and the adversarial gradient, ∇xt

log(p(ỹ|xt)), is derived from a victim classifier that provides class
probabilities. Since AdvDiff directly uses the victim classifier gradient, it can be considered a form
of classifier guidance, and is therefore susceptible to the same issues as classifier-guided diffusion.

Classifier-guided diffusion requires training a model, pθ(y|xt), to predict the class of an image that
has been corrupted with Gaussian noise (Dhariwal & Nichol, 2021), which is a form of adversarial
training (He et al., 2019; Li et al., 2019). When a non-adversarially robust classifier is used instead,
the diffusion process typically generates visually coherent samples that do not adhere to the desired
class conditioning, but are erroneously classified as the desired class (Vaeth et al., 2024; Shen et al.,
2024). We hypothesize that this phenomenon arises due to constrained adversarial samples frequently
lying within an ϵ-neighborhood of natural samples (Goodfellow et al., 2015; Madry et al., 2018).
Under this hypothesis, the diffusion model acts as a constraint that pushes the sample towards the
natural image manifold, while the non-adversarially robust classifier introduces a perturbation that
directs the sample towards the nearest region containing samples of the desired class. The resulting
trade-off between the diffusion model and classifier guidance incentivizes the diffusion trajectory to
converge towards the adversarial regions that frequently lie imperceptibly close to the natural image
manifold–that is, pockets of constrained adversarial samples (Shen et al., 2024).
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4 METHODOLOGY

Natural adversarial samples frequently occur when classifiers over-rely on contextual cues to shortcut
classification (Hendrycks et al., 2021). We incorporate this key observation into our proposed,
diffusion-based natural adversarial sampling scheme–NatADiff (see Algorithm 1). NatADiff lever-
ages adversarial boundary guidance to incorporate features from the adversarial class. In addition, we
use augmented classifier guidance and time-travel sampling to enhance attack transferability while
preserving image quality.

Accounting for sample noise. Classifier-guided diffusion specifically trains a classifier to predict the
class label of a noisy sample xt. However, in adversarial diffusion guidance, the victim model is
typically an “off-the-shelf” classifier that was never trained on noisy samples. Directly passing xt to
this classifier will likely degrade classification accuracy, leading to inferior diffusion guidance. To
address this, we take the same approach as (Yu et al., 2023; Bansal et al., 2024; Shen et al., 2024) and
use Tweedie’s formula (Efron, 2011) to pass the classifier the current estimate of x0 at time t:

x̂0(xt) = (xt − β(t)ϵθ(xt, t, y))/α(t). (7)

Reducing adversarial gradient. Constrained adversarial attacks are sensitive to image transforma-
tions, with rotations, crops, and translations reducing the success rates of common attack algorithms
(Guo et al., 2018). We leverage this by applying differentiable image transforms to reduce the effect
of the adversarial gradient that points in the direction of constrained adversarial perturbations. We find
that this increases the prevalence of visible adversarial features (see Appendix G.1 for ablation study).
These transformations are similar to the ones used by Shen et al. (2024) to perform training-free
classifier-guided diffusion. The local adversarial signal is “averaged out”, reducing the likelihood of
generating constrained adversarial samples, and forcing the manifestation of features from the–in our
case–adversarial class conditioning (Shen et al., 2024).

Given a collection of differentiable image transforms: T = {T1, T2, . . . }, we compute the adversarial
classifier gradient as

∇xt
log(p(ỹ|xt)) = g(xt)/∥g(xt)∥2, (8)

where g(xt) = ∇xt
log
(

σỹ

(
1
|T |

∑|T |
i=1 h(Ti(x̂0(xt)))

))

, h : Rm → R
|Y| is a function that returns

the victim classifier’s logit predictions, and σỹ : R|Y| → R is a sigmoid function that returns the
probability of the target adversarial class.

Adversarial boundary guidance. Initial experiments showed that substituting the improved ad-
versarial gradient from (8) into (6) did not steer the diffusion trajectory towards natural adversarial
samples (see Appendix G.2 for ablation study). This may occur because classifier augmentations
eliminate many of the constrained adversarial samples that lie close to the image manifold, but not
those further away. Consequently, if the initial sampling point of the diffusion trajectory is too distant
from a region of natural adversarial samples, adversarial guidance will push the sample off the image
manifold.

To address this, we leverage the connection between natural adversarial samples and the use of
contextual cues as a classification shortcut (Hendrycks et al., 2021; Geirhos et al., 2020; Arjovsky et al.,
2020). We propose adversarial boundary guidance as a method of directing the diffusion trajectory
towards samples that incorporate erroneous contextual cues, i.e., features from the adversarial class.
We define adversarial boundary guidance as

∇xt
log(p̄(xt|y, ỹ)) = −

1

β(t)

[
ϵθ⋆(xt, t) + (ω − µω)vy + µρvy∩ỹ

]
+ s∇xt

log(p(ỹ|xt)), (9)

where ω, ρ, s ∈ R≥0, µ ∈ [0, 1], vy = ϵθ⋆(xt, t, y) − ϵθ⋆(xt, t), and vy∩ỹ = ϵθ⋆(xt, t, y ∩ ỹ) −
ϵθ⋆(xt, t). ω and ρ govern the strength of classifier-free guidance, s controls adversarial classifier
guidance strength, and µ regulates how strongly the sample tends towards the intersection of the true
and adversarial classes. For sufficiently large µ, the sampling trajectory should approach the class
intersection, incorporating enough elements from the adversarial class to cause a misclassification,
while remaining within the bounds of the true class from a human’s perspective. Note when µ = 0,
adversarial boundary guidance is equivalent to adversarial classifier guidance (Dai et al., 2024).

To justify (9), we note that the classifier-free score function can be rewritten as ∇xt
log(p̄(xt|y)) =

− 1
β(t) [ϵθ⋆(xt, t) + ωvy] where vy = ϵθ⋆(xt, t, y)−ϵθ⋆(xt, t) is a vector that points towards regions
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of the manifold containing images of class y. Additionally, recall that p̄(xt|y) is not the marginal
density arising from a valid diffusion, rather it is a magnification of the guidance provided by a
network that has “learned” the image manifold. To further exploit the information contained in this
network, we introduce vy∩ỹ , which directs the sampling trajectory towards the class intersection.

Time-travel sampling. Significant disruption to the diffusion sampling path risks degradation in
sample quality, or falling off the image manifold (Lugmayr et al., 2022; Yu et al., 2023). To mitigate
these issues, we incorporate time-travel sampling into our diffusion scheme, which has been shown
to increase image quality in cases where standard diffusion sampling would otherwise fail (Lugmayr
et al., 2022; Yu et al., 2023; Shen et al., 2024).

By injecting additional sampling steps, time-travel sampling allows the diffusion model to explore
a wider region of the sample space and recover from suboptimal trajectories. This helps maintain
sample quality and prevents the generation process from diverging away from the image manifold.
More concretely, given a sequence of sampling times {ti}

N
i=1 with ti+1 > ti for all i, time-travel

sampling resets the diffusion state at time ti by running the forward process, xti+k
∼ p(xti+k

|xti),
and then resampling xti using the reverse process (Anderson, 1982; Song et al., 2021b). This
procedure is repeated R times before xti is accepted, after which sampling proceeds to xti−1

. To
improve efficiency, time-travel sampling can be applied to a subset of diffusion steps (Yu et al., 2023).

Algorithm 1 NatADiff
Require: adversarial guidance parameters: ω, ρ, µ, s; true and adver-

sarial classes: y, ỹ; victim classifier: h; forward diffusion functions:

α(t), β(t); stable diffusion model: ϵθ⋆ ; VAE decoder: Vdec; collec-

tion of differentiable image transforms: {T1, T2, . . . }; sequence of

sampling steps with t1 = 0, tN = T , and ti+1 > ti: {ti}
N
i=1;

time-travel parameters: R, rl, ru; adversarial classifier bounds: cl,

cu; number sampling attempts: S; guidance scalers: δµ, δs

zT ∼ N (0, I)
for s = 1, . . . , S do

for i = N, . . . , 1 do

if rl ≤ ti ≤ ru then

R̃ = R
else

R̃ = 1
end if

for r = R̃, . . . , 1 do ▷ Time-travel loop

vy = ϵθ⋆ (zti
, ti, y)− ϵθ⋆ (zti

, ti)
vy∩ỹ = ϵθ⋆ (zti

, ti, y ∩ ỹ)− ϵθ⋆ (zti
, ti)

ϵ̂ = ϵθ⋆ (xti
, ti) + (ω − µω)vy + µρvy∩ỹ

if cl ≤ t ≤ cu then

x̂0 = Vdec

(

zti
−β(ti)ϵ̂

α(ti)

)

g = ∇zti
log

(

σỹ

(

1
|T |

∑|T |
j=1 h(Tj(x̂0))

))

g = g

∥g∥2
ϵ̂ = ϵ̂− sβ(t)g

end if

zti−1
← reverse diffusion step using ϵ̂

if r > 1 then ▷ Sampling zti
∼ p(zti

|zti−1
)

a =
α(ti)

α(ti−1)

b2 = β(ti)
2 − (aβ(ti−1))

2

zti
∼ N

(

azti−1
, b2 · I

)

end if

end for

end for

if argmax(h(Vdec(z0))) ̸= ỹ then

µ = µ + δµ
s = s + δs

else

break ▷ End the search early if sample is found

end if

end for

return Vdec(z0)

Similarity targeting. Many popular adversarial
attacks operate in an untargeted setting (Szegedy
et al., 2014; Goodfellow et al., 2015; Madry
et al., 2018; Croce & Hein, 2020), where the
only requirement is that the predicted class dif-
fers from the true class, i.e., ỹ ̸= y. These at-
tacks often update the adversarial target dynam-
ically during optimization, selecting the most
probable incorrect class at each step, and they
frequently outperform targeted variants (Croce
et al., 2020). To extend NatADiff to untargeted
settings, we propose similarity targeting (see
Algorithm 2 in Appendix F).

Similarity targeting is based on the assumption
that it is easier to incorporate adversarial fea-
tures from classes that are semantically similar
to the true class. To heuristically measure this
similarity, we leverage the CLIP (Radford et al.,
2021) text encoder, which maps class labels into
a shared image-text embedding space. We then
select the adversarial target as the class most
similar to the true class in this embedding space,
as measured by cosine similarity. Concretely,
given the CLIP text encoder Cenc : Y → R

m,
the true class label, yi, and the set of candidate
adversarial labels Ycand = {y1, . . . , yn} \ yi, we
define the adversarial target as

ỹ = argmin
y∈Ycand

Cenc(yi) · Cenc(y)

∥Cenc(yi)∥2∥Cenc(y)∥2
. (10)

5 EXPERIMENTS

5.1 EXPERIMENT DETAILS

We evaluate the effectiveness of NatADiff on that ImageNet (Deng et al., 2009) classification task,
which requires a model to classify an image into one of 1,000 distinct object categories. We target
a range of off-the-shelf ImageNet classifiers and assess the attack success rates and visual quality
of the generated samples. All experiments are conducted on an NVIDIA RTX 4090 GPU, and each
sample takes approximately 103 seconds to generate (see Appendix L for runtime comparisons).
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Surrogate and victim models. NatADiff and other comparable attack methods require access to
classifier gradients when generating adversarial samples. The model whose gradients are used in
this way is referred to as the surrogate model, and we test ResNet-50 (RN-50) (He et al., 2016a),
Inception-v3 (Inc-v3) (Szegedy et al., 2016), and Vision Transformer (ViT-H) (Dosovitskiy et al.,
2021) surrogates. We examine the performance of these adversarial samples across RN-50, Inc-v3,
ViT-H, adversarially trained ResNet (AdvRes) and Inception (AdvInc) (Kurakin et al., 2018), ResNet-
152 (RN-152) (He et al., 2016b), Max-ViT (Tu et al., 2022), Swin-B (Liu et al., 2021), and DeIT
(Touvron et al., 2021) victim models.

Diffusion model. We use Stable Diffusion 1.5 (Rombach et al., 2022) (SD1.5) as our base diffusion
model for NatADiff and adversarial classifier guidance (Dai et al., 2024). SD1.5 is a pretrained
latent text-to-image diffusion model. The diffusion process is performed in a latent space, and a
variational autoencoder (VAE), (Kingma & Welling, 2014), Vdec, is used to decode latent samples into
the image space. To facilitate the use of adversarial classifier guidance the VAE must be incorporated
into the gradient calculation. Specifically, given a sample, zt, from the latent diffusion process,
we introduce the VAE, Vdec, into (7) as x̂0(zt) = Vdec ((zt − β(t)ϵθ(zt, t, y))/α(t)), and take the
gradient with respect to zt instead of xt in (6) and (8). Finally, we use 200 sampling steps under the
DDIM (Song et al., 2021a) parameterization, which defines the drift and diffusion coefficients in (1)
as f(t) = 1

2
d
dt

log(α̂t) and g(t)2 = − d
dt

log(α̂t), respectively (Han, 2024).

NatADiff settings. We run NatADiff under both targeted and untargeted attack settings. For targeted
attacks, we assign a random adversarial target to each sample. For untargeted attacks, we use
similarity targeting from Section 4. During adversarial boundary guidance we use the text prompt

“<class name of y>” as the conditioning for the true class guidance, y. For intersection guidance,
y ∩ ỹ, we use the prompt “<class name of ỹ> and <class name of y>”. We delay adversarial
classifier guidance until timestep t ≤ 700, i.e., we set s = 0 for all t > 700. Finally, we choose a
conservative value of µ = 0.2 for all experiments, and select s based on the target classifier (see
Appendix G.2 for ablation study and additional experiment details).

Comparison methods. We compare NatADiff to state-of-the-art constrained and unconstrained
adversarial attacks: PGD Madry et al. (2018), AutoAttack (AA) Croce & Hein (2020), NCF (Yuan
et al., 2022), DiffAttack (Chen et al., 2025), ACA (Chen et al., 2023b), and adversarial classifier
guidance (AdvClass) (Dai et al., 2024). All methods use their default parameter settings and for
comparison methods that alter a pre-existing “clean” image, we use their suggested ImageNet-
compatible dataset as our clean baseline (Kurakin et al., 2017). Finally, we apply AdvClass under
both targeted and untargeted attack settings (using the same similarity targeting as NatADiff).

Metrics. To assess attack performance, we follow Chen et al. (2023b), and report attack success rate
(ASR) as the percentage of misclassified samples. To evaluate image quality, we use the Inception
Score (IS) Salimans et al. (2016) and Fréchet Inception Distance (FID) Fréchet (1957). IS provides
a direct measure of image quality, while FID estimates the similarity between the distributions of
generated and real images. We compute FID with respect to both the ImageNet-Val Deng et al. (2009)
and ImageNet-A Hendrycks et al. (2021) datasets to assess how closely NatADiff samples resemble
natural images and known natural adversarial examples, respectively.

5.2 RESULTS

Attack success. NatADiff had comparable white-box ASR to current state-of-the-art attacks, but
vastly superior transferability across all experiments (see Table 1). This suggests that NatADiff is able
to more effectively leverage the mechanisms underpinning natural adversarial samples. Additionally,
adversarial training did not offer any meaningful robustness to NatADiff, with both targeted and
untargeted attacks transferring to adversarially trained ResNet and Inception models.

PGD (Madry et al., 2018) and AA (Croce & Hein, 2020) had the lowest transferability, likely
because both are perturbation-based attacks, i.e., they rely on the small pockets of adversarial
samples that neighbor natural images. These adversarial regions are not guaranteed to align across
classifier architectures, especially architectures that are dissimilar, e.g., convolutional vs. transformer.
Similarly, the lower transferability of NCF (Yuan et al., 2022) and DiffAttack (Chen et al., 2025) can
be explained by their limited attack surface. NCF is restricted to attacking the color distribution of
a “clean” source image (see Figure 3). In contrast, DiffAttack crafts adversarial perturbations for a
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ResNet-50 Inception-v3 ViT-H

True: Goldfish True: Mushroom True: Dining Table True: Thimble True: Cicada True: Polaroid Camera

AdvT: Titi Monkey AdvT: Packet AdvT: Platypus AdvT: Traffic Light AdvT: Bobsled AdvT: Sleeping Bag

True: Bonnet True: Garbage Truck True: Hay True: Cheeseburger True: Paintbrush True: Wool

AdvU: Sombrero AdvU: Snowplow AdvU: Ox AdvU: Banana AdvU: Matchstick AdvU: Dishrag

Figure 2: Adversarial samples generated by NatADiff with ResNet-50 (He et al., 2016a), Inception-v3
(Szegedy et al., 2016), and ViT-H (Dosovitskiy et al., 2021) surrogate models (see column labels).
We report the true class and adversarial target for each image. Superscripts T and U denote random
and similarity targeted attacks, respectively.

Source PGD AA NCF DiffAttack ACA AdvClass NatADiff

Figure 3: Source and adversarial samples generated by PGD Madry et al. (2018), AutoAttack (AA)
Croce & Hein (2020), NCF (Yuan et al., 2022), DiffAttack (Chen et al., 2025), ACA (Chen et al.,
2023b), AdvClass (Dai et al., 2024), and NatADiff with a ResNet-50 (He et al., 2016a) surrogate
model. Note true class is “burger” and adversarial target for AdvClass and NatADiff is “banana”.

Table 1: Attack success rate (%) and image quality of adversarial samples. Superscripts T and U
denote random and similarity targeted attacks, respectively. Bold and underlined values highlight the
best and second best scores for each surrogate model. White-box ASR (same surrogate and victim
model) is denoted with an ∗. Note we do not report image quality for constrained perturbation-based
attacks (these attacks make imperceptible image alterations).

Surrogate

Model
Attack

Victim Models ASR (%)
Average

ASR
IS
(↑)

FID-
Val (↓)

FID-
A (↓)CNNs Transformers

RN-50 Inc-v3 RN-152 AdvRes AdvInc ViT-H Max-ViT Swin-B DeIT

Clean 5.3 7.6 2.9 3.0 5.8 10.9 3.8 4.5 7.4 5.7 55.0 58.0 94.7

RN-50

PGD 99.4∗ 11.8 5.2 4.9 8.1 10.5 4.4 5.5 8.2 17.6 - - -
AA 100

∗ 13.3 10.0 3.9 8.8 10.5 5.4 5.6 8.0 18.4 - - -
NCF 74.8∗ 33.4 37.3 28.2 31.2 17.2 24.0 31.7 37.2 35.0 30.4 69.7 85.5

DiffAttack 92.5∗ 47.1 52.5 35.3 43.3 28.4 44.6 42.4 38.9 47.2 26.8 64.1 76.8
ACA 78.8∗ 53.3 52.7 49.8 53.1 41.8 46.4 49.3 50.6 52.9 23.9 65.0 77.9

AdvClassT 99.6∗ 35.0 32.1 31.4 33.5 25.8 30.0 30.8 32.8 39.0 38.3 48.9 92.4
AdvClassU 99.9∗ 42.5 44.3 38.7 41.1 29.7 37.6 38.4 39.1 45.7 38.5 50.2 92.7

NatADiffT 96.9∗ 60.1 56.5 55.3 58.9 36.8 45.3 49.0 52.3 56.8 26.0 66.5 77.3
NatADiffU 99.3∗ 68.3 72.1 65.3 66.8 45.3 64.1 65.2 67.0 68.2 43.2 51.4 95.9

Inc-v3

PGD 6.0 99.7∗ 4.0 5.1 10.4 10.2 4.1 5.6 7.4 16.9 - - -
AA 7.3 100

∗ 4.9 4.8 12.8 10.6 5.7 6.1 8.0 17.8 - - -
NCF 31.0 66.7∗ 23.1 29.0 36.3 15.8 18.3 20.4 30.5 30.1 31.7 69.1 83.0

DiffAttack 29.0 74.6∗ 23.7 30.0 39.9 18.9 22.9 26.5 25.8 32.4 33.2 63.7 78.2
ACA 50.9 67.8∗ 48.2 54.2 60.1 43.6 45.1 48.8 51.3 52.2 23.1 68.0 78.8

AdvClassT 35.1 99.6∗ 34.5 35.6 39.5 28.8 32.4 34.0 35.7 41.7 33.7 51.0 89.2
AdvClassU 38.0 99.9∗ 38.7 40.4 44.2 30.0 36.0 36.6 38.9 44.8 39.7 49.4 93.3

NatADiffT 53.4 97.9∗ 49.4 57.3 62.6 35.4 44.4 45.1 50.8 55.2 27.7 66.6 78.2
NatADiffU

67.4 99.4∗ 65.7 70.1 75.7 44.4 60.3 60.2 63.1 67.4 47.0 50.5 98.9

ViT-H

PGD 5.8 11.0 3.6 4.0 7.8 96.2∗ 4.5 5.4 9.2 16.4 - - -
AA 6.5 9.8 3.9 4.3 8.6 100

∗ 4.5 5.9 9.9 17.0 - - -
NCF 20.0 19.4 14.8 15.4 18.5 50.6∗ 11.9 15.6 21.2 20.8 39.8 63.1 86.4

DiffAttack 20.5 25.0 17.2 18.9 22.4 73.2∗ 18.1 22.3 20.6 26.5 35.2 63.4 80.0
ACA 50.5 54.5 48.1 49.1 52.8 75.8∗ 47.5 49.7 50.5 53.2 25.5 64.2 80.9

AdvClassT 33.9 35.9 33.4 34.4 34.4 92.6∗ 31.9 33.4 36.0 40.7 38.9 48.5 95.2
AdvClassU 35.2 37.5 35.8 35.2 36.0 98.7∗ 33.9 34.9 37.7 42.8 39.2 48.5 98.8

NatADiffT
70.7 73.5 68.4 71.3 72.1 98.5∗ 65.7 66.9 71.7 73.2 15.3 88.0 93.5

NatADiffU 66.8 67.0 65.3 64.9 65.8 99.6∗ 63.9 65.4 68.6 69.7 31.9 53.9 96.2
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source image by perturbing the diffusion latent space subject to the constraint that the reconstructed
adversarial image must remain sufficiently close to the original (see Figure 3).

Adversarial classifier guidance (Dai et al., 2024) is outperformed by ACA (Chen et al., 2023b) and
NatADiff in all experiments. This can be attributed to the limited guidance provided by injecting
non-robust classifier gradients into the diffusion sampling trajectory (Shen et al., 2024). ACA is the
most comparable to NatADiff performance-wise; however, ACA alters the semantic structure of a
source image and is thus constrained by the semantics of the initial image. In contrast, NatADiff has
a wider attack surface as it is free to generate any image that fools a surrogate classifier. Furthermore,
NatADiff uses a diffusion model to incorporate adversarial features that are classifier-agnostic (as
seen in Figure 2), and as such, is the only method that does not solely rely on the gradient of a
surrogate classifier.

ViT-H (Dosovitskiy et al., 2021) is the current state-of-the-art in image classification and is the most
resistant to transfer attacks. This is unsurprising, as it uses the modern transformer architecture and is
the largest model examined. ViT-H learns a more robust feature representation than convolutional
and smaller transformer models, which makes it less susceptible to both constrained and natural
adversarial samples. However, despite the strengths of the ViT-H architecture, NatADiff is able
to reliably generate samples that transfer to ViT-H—albeit at a lower ASR than equivalent attacks
against all other models.

When comparing NatADiff’s targeted attacks with their untargeted counterparts, we see that un-
targeted attacks outperform targeted attacks both in terms of victim classifier performance and
transferability. This indicates that some adversarial targets are easier to achieve than others, which
further motivates the use of similarity targeting as a method for identifying classifier “weak spots.”

Image quality. We observe a clear disparity in the image quality of targeted and untargeted NatADiff
variants (see Table 1). Targeted NatADiff samples exhibit lower FID-A but worse IS and FID-VAL,
indicating that they are closer in distribution to known natural adversarial examples, albeit with
lower image quality and less alignment to the ImageNet validation dataset. In contrast, untargeted
NatADiff achieves IS and FID-VAL comparable to other generative methods, but with a higher FID-A,
suggesting that overall image quality improves at the expense of alignment with natural adversarial
samples. This follows from the known characteristics of natural adversarial samples, which often
blend features from disparate classes (Hendrycks et al., 2021; Geirhos et al., 2020; Arjovsky et al.,
2020). Replicating such blending places greater demands on the underlying diffusion model to locate
plausible points on the image manifold, which can introduce artifacts and degrade image quality.
In contrast, similarity targeting blends more related classes, yielding samples with higher visual
fidelity but less alignment with natural adversarial distributions. Additionally, NCF (Yuan et al.,
2022), DiffAttack (Chen et al., 2025), and ACA (Chen et al., 2023b) all achieve superior FID-A than
AdvClass (Dai et al., 2024) and untargeted NatADiff. This can be attributed to the low FID-A of
the clean baseline dataset that NCF, DiffAttack, and ACA use as their source, which causes them
to inherit the same distributional properties. Conversely, AdvClass and NatADiff generate artificial
samples and are thus constrained both by the distributional tendencies of the underlying diffusion
model and the effect of similarity targeting.

6 CONCLUSION

We introduce NatADiff, an adversarial sampling scheme that leverages diffusion models to generate
highly transferable adversarial samples. Our method is motivated by the observation that natural
adversarial samples frequently contain features from the adversarial class, which deep learning
models exploit to shortcut the classification processes. To leverage this behavior, we guide the
diffusion trajectory towards the intersection of the true and adversarial classes. Our method achieves
comparable white-box attack success rates to current state-of-the-art techniques, while exhibiting
significantly higher transferability across models. Furthermore, samples generated using NatADiff
align more closely with known natural adversarial samples than those generated via adversarial
classifier guidance alone. These results demonstrate that NatADiff produces adversarial samples
that transfer more effectively than existing attacks, and more faithfully resemble naturally occurring
test-time errors than those generated from vanilla adversarial diffusion guidance.
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A LIMITATIONS

While NatADiff is effective at generating highly transferable adversarial samples, it remains computa-
tionally expensive due to the iterative nature of diffusion and the overhead introduced by adversarial
guidance. This is an inherent limitation of diffusion-based generative methods, and one unlikely to
change without significant advances in generative modeling or architectural design. Additionally,
the use of similarity targeting on datasets like ImageNet can lead to subtle misclassifications–e.g.,
between similar dog breeds–which may diminish the perceived severity of the attack. A potential
refinement would be to surface a ranked list of similar classes, allowing users to select more divergent
adversarial targets while retaining the semantic grounding of similarity-based selection. We also note
that we used a conservative setting for the adversarial boundary guidance term, µ, as larger values
caused generated samples to occasionally include the adversarial class, as discussed in Appendix G.2.
Finally, we restrict our evaluation to ImageNet classifiers, as ImageNet offers a diverse label space,
which supports varied attack scenarios. Extending NatADiff to more specialized domains remains an
avenue for future work.

B ETHICS AND BROADER IMPACTS

We adhere to the ICLR code of ethics. We acknowledge that this work explores the use of generative
models as a means of creating highly transferable adversarial samples. While adversarial attacks
raise legitimate concerns regarding misuse, our objective is to expose fundamental vulnerabilities of
current classifiers and to better understand the structure of natural adversarial samples. By making
our models and code publicly available, we aim to support transparency and reproducibility, and we
believe that insight into generative adversarial mechanisms is a necessary step toward building more
secure and interpretable classifiers. We do not use private or sensitive data, and all data and models
used are publicly released and broadly studied. In future work, we plan to explore how NatADiff can
be extended to detect or defend against naturally occurring adversarial samples.

C REPRODUCIBILITY

We ensure reproducibility by providing detailed descriptions of our algorithms (see Algorithms 1 and
2) and experiment parameter settings (see Table 4). Our full codebase is included in the supplementary
material, along with all configuration files required to replicate our experiments. Comparison methods
are implemented using publicly available repositories, and we follow the authors’ recommended
hyperparameters unless otherwise stated.

D PERTURBATION-BASED ATTACKS AND DEFENCES

In this section, we provide a brief overview of existing constrained perturbation-based attack and
defense strategies for image classification models. We focus on the optimization-based formulation
of adversarial attacks and highlight the theoretical underpinnings of common training-time defenses.

D.1 ADVERSARIAL ATTACKS

Szegedy et al. (2014) were the first to demonstrate that imperceptible perturbations to an image’s
pixel values could cause deep learning models to misclassify the image with a high probability (see
Figure 1). Mathematically, these constrained adversarial attacks can be considered a solution to the
following constrained optimization problem:

min
δ∈S

Lh(x+ δ;θ, ỹ), (11)

where δ ∈ R
m is the computed perturbation, x ∈ R

m is the vectorized “clean” image, h : Rm −→ Y
is a “trained” classifier model with parameters θ, ỹ ∈ Y is the class targeted by the adversarial attack,

Lh(·;θ, ỹ) is the loss of the classifier with respect to the target adversarial class, and S ≜ {δ ∈ R
m :

∥δ∥p < L} is a convex set of allowable perturbation sizes. Algorithms such as fast gradient sign
method (FGSM) (Goodfellow et al., 2015), projected gradient descent (PGD) (Madry et al., 2018),
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and AutoAttack (Croce & Hein, 2020), have been proposed to efficiently solve the optimization
problem in (11).

Other attack methods have relaxed the constraint on the magnitude of the adversarial perturbation.
These unconstrained adversarial attacks seek to alter the semantic information within an image,
resulting in misclassification without visually altering the perceptible class. Additionally, techniques
like selective cropping and rotation, texture remapping, color pallette transformations, and generative
sampling have all been used to successfully “fool” modern deep learning models (Brown et al., 2018;
Bhattad et al., 2020; Song et al., 2018; Wang et al., 2020; Dai et al., 2024; Xie et al., 2025).

D.2 DEFENCES AGAINST ADVERSARIAL ATTACKS

Several defensive measures have been proposed that aim to purify adversarial inputs (Samangouei
et al., 2018; Nie et al., 2022), harden model architectures against attacks (Gu & Rigazio, 2015;
Xu et al., 2018), or improve training procedures (Szegedy et al., 2014; Madry et al., 2018). A
key challenge in designing adversarial defences is preventing attackers from crafting new attacks
that exploit the adapted model. For this reason adversarial training has become one of the most
popular defences, as it both addresses the source of the adversarial attack, while providing theoretical
guarantees of robustness against all possible perturbation-based adversaries.

Adversarial training can be formulated as the following saddle-point optimization problem:

min
θ

E(x,y)∼D

[

max
δ∈S

Lh(x+ δ;θ, y)

]

, (12)

where D is the joint distribution of naturally occurring images and classes, and y ∈ Y is the true
class label of x (Szegedy et al., 2014; Madry et al., 2018). The optimization problem in (12) can be
thought of as minimizing the loss caused by the strongest possible adversarial attack. Thus, any model
that minimizes (12) is theoretically guaranteed to be resistant to its strongest possible adversarial
perturbations.

E EXAMPLE NATURAL ADVERSARIAL SAMPLES

Figure 4 shows natural adversarial samples from the ImageNet-A dataset (Hendrycks et al., 2021),
each paired with a heatmap of the classifier-guidance gradient with respect to the adversarial class,
∇x log(p(ỹ | x)). These gradients highlight the image features that contribute to misclassification
and that would be emphasized during adversarial classifier-guided diffusion (Dai et al., 2024). In the
first image, the classifier gradient is concentrated around the school bus and the snowbanks running
alongside the road; in the second, it is concentrated on the snail and its shadow; and in the third, it is
concentrated on the power switch. This suggests the classifier has “learned” to associate vehicles
beside snowbanks with snowplows, dark elliptical objects with cockroaches, and vertical rectangular
boxes with pay phones.
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School Bus Snowplow (34%) Snail Cockroach (43%) Robin Pay-Phone (22%)

∇x log(p(ỹ|x)) ∇x log(p(ỹ|x)) ∇x log(p(ỹ|x))

Figure 4: Top: Natural adversarial samples compiled by Hendrycks et al. (2021) for ImageNet (Deng
et al., 2009) classifiers. The green labels denote the ground-truth classes; the red labels are the classes
assigned by a ResNet-50 classifier (He et al., 2016a). Bottom: Heatmap of the ResNet-50 adversarial
classifier-guidance (Dai et al., 2024) gradient with respect to the adversarial classes. Arrows point to
features from the adversarial class that affect the ResNet-50 classification.
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F NATADIFF SIMILARITY ATTACK ALGORITHM

Algorithm 2 provides the algorithm for the similarity targeted variant of NatADiff.

Algorithm 2 NatADiff–Similarity

Require: adversarial guidance parameters: ω, ρ, µ, s; true class: y; candidate adversarial classes: Ycand = {ỹ1, ỹ2, . . . }; victim classifier:

h; forward diffusion functions: α(t), β(t); stable diffusion model: ϵθ⋆ ; VAE decoder: Vdec; CLIP text encoder: Cenc; collection of

differentiable image transforms: {T1, T2, . . . }; sequence of sampling steps with t1 = 0, tN = T , and ti+1 > ti: {ti}
N
i=1; time-travel

parameters: R, rl, ru; adversarial classifier bounds: cl, cu; number sampling attempts: S; guidance scalers: δµ, δs

ỹ = arg min
γ∈Ycand

Cenc(y)·Cenc(γ)
∥Cenc(y)∥2∥Cenc(γ)∥2

zT ∼ N (0, I)
for s = 1, . . . , S do

for i = N, . . . , 1 do

if rl ≤ ti ≤ ru then

R̃ = R
else

R̃ = 1
end if

for r = R̃, . . . , 1 do ▷ Time-travel loop

vy = ϵθ⋆ (zti
, ti, y)− ϵθ⋆ (zti

, ti)
vy∩ỹ = ϵθ⋆ (zti

, ti, y ∩ ỹ)− ϵθ⋆ (zti
, ti)

ϵ̂ = ϵθ⋆ (xti
, ti) + (ω − µω)vy + µρvy∩ỹ

if cl ≤ t ≤ cu then

x̂0 = Vdec

(

zti
−β(ti)ϵ̂

α(ti)

)

g = ∇zti
log

(

σỹ

(

1
|T |

∑|T |
j=1 h(Tj(x̂0))

))

g = g

∥g∥2
ϵ̂ = ϵ̂− sβ(t)g

end if

zti−1
← reverse diffusion step using ϵ̂

if r > 1 then ▷ Sampling zti
∼ p(zti

|zti−1
)

a =
α(ti)

α(ti−1)

b2 = β(ti)
2 − (aβ(ti−1))

2

zti
∼ N

(

azti−1
, b2 · I

)

end if

end for

end for

if argmax(h(Vdec(z0))) ̸= ỹ then

µ = µ + δµ
s = s + δs

else

break ▷ End the search early if sample is found

end if

end for

return Vdec(z0)

G NATADIFF ABLATION STUDIES

Here we provide ablation studies to examine the effect of classifier augmentations and the strength of
adversarial boundary guidance, µ. Additionally, we provide a visualisation of how these components
effect the generated image (see Figure 5). Recall that augmented adversarial classifier guidance
introduces visual features from the adversarial class (see Appendix G.1), adversarial boundary
guidance further increases the amount of adversarial features introduced and improves image quality
(see Appendix G.2), and time-travel sampling further improves image quality (Lugmayr et al., 2022)
(see Figure 5).

G.1 EFFECT OF CLASSIFIER AUGMENTATIONS

We compare samples generated by NatADiff with and without classifier augmentations. We use a
ResNet-50 (He et al., 2016a) surrogate model and report attack success rate, Inception Score (IS)
(Salimans et al., 2016) and Fréchet Inception Distance (FID) (Fréchet, 1957). Note we report FID with
respect to both ImageNet-Val (Deng et al., 2009) and ImageNet-A (Hendrycks et al., 2021) datasets
to assess how closely samples resemble natural images and known natural adversarial examples,
respectively.
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Adv. Class. Guid. ✗ ✓ ✓ ✓ ✓

Class. Aug. ✗ ✗ ✓ ✓ ✓

Adv. Bound. Guid. ✗ ✗ ✗ ✓ ✓

Time-Travel Samp. ✗ ✗ ✗ ✗ ✓

Image

Classification

Res: T 35%
Inc: T 77%
ViT: T 88%
ARes: T 72%
AInc: T 78%

Res: TP 83%
Inc: T 64%
ViT: T 83%
ARes: T 74%
AInc: T 75%

Res: TP 98%
Inc: T 72%
ViT: T 84%
ARes: T 65%
AInc: T 75%

Res: TP 32%
Inc: TC 20%
ViT: T 62%
ARes: TP 32%
AInc: T 52%

Res: TP 100%
Inc: TP 96%
ViT: TP 83%
ARes: TP 98%
AInc: TP 89%

Figure 5: Effect of adversarial classifier guidance, classifier augmentations, adversarial boundary
guidance, and time-travel sampling on samples generated by NatADiff. Prompt = “tiger”, adversarial
target = “toilet paper”, surrogate model = ResNet-50 (He et al., 2016a). Classification scores are
given for ResNet-50, Inception-v3 (Szegedy et al., 2016), ViT-H (Dosovitskiy et al., 2021), and
adversarially trained ResNet-50 and Inception victim models (Kurakin et al., 2018). Note: “T”:
“Tiger”, “TP”: “Toilet Paper”, “TC”: “Tiger Cat”.

NatADiff without Classifier Augmentations

NatADiff with Classifier Augmentations

True: Snake True: Cowboy Hat True: Koala True: Ambulance True: Container ShipTrue: Snowmobile
Adv: Bow Tie Adv: Mushroom Adv: Birdhouse Adv: Headland Adv: Kite Adv: Shower Curtain

Figure 6: Comparison of samples generated by NatADiff under targeted attack settings with and
without classifier augmentations. We use a ResNet-50 (He et al., 2016a) surrogate model. We report
the true class and adversarial target for each image.

Table 2: Attack success rate (%) and image quality of adversarial samples generated by NatADiff
under targeted attack settings with and without classifier augmentations. We use a ResNet-50 (He
et al., 2016a) surrogate model. Bold values highlight the best score. White-box ASR (same surrogate
and victim model) is denoted with an ∗.

Attack
Victim Models ASR (%)

Average

ASR
IS
(↑)

FID-
Val (↓)

FID-
A (↓)CNNs Transformers

RN-50 Inc-v3 RN-152 AdvRes AdvInc ViT-H Max-ViT Swin-B DeIT

NatADiff 96.9∗ 60.1 56.5 55.3 58.9 36.8 45.3 49.0 52.3 56.8 26.0 66.5 77.3
NatADiff (No-Aug) 98.7∗ 48.5 45.6 44.1 46.8 31.7 38.6 40.6 43.3 48.7 30.5 56.7 81.7
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We find tht classifier augmentations significantly increase the transferability of adversarial samples,
while retaining comparable white-box ASR (see Table 2). Images generated with classifier augmen-
tations have slightly reduced overall image quality (IS and FID-VAL), but improved FID-A. This
suggests that classifier augmentations introduce slightly more generative artifacts in an image, but
also incorporate more meaningful adversarial features, which produces images that align more closely
with known natural adversarial samples (see Figures 5 and 6)

G.2 EFFECT OF BOUNDARY GUIDANCE STRENGTH

The adversarial boundary guidance term, µ, governs how strongly features from the adversarial class
are incorporated into the generated sample. To evaluate the effect of this parameter, we conduct an
ablation study across µ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} using a ResNet-50 (He et al., 2016a) surrogate
model and applying NatADiff in targeted mode, i.e., with adversarial classes selected at random. We
report attack success rate, Inception Score (IS) (Salimans et al., 2016) and Fréchet Inception Distance
(FID) (Fréchet, 1957). Note we report FID with respect to both ImageNet-Val (Deng et al., 2009) and
ImageNet-A (Hendrycks et al., 2021) datasets to assess how closely samples resemble natural images
and known natural adversarial examples, respectively.

Table 3: Attack success rate (ASR) and image quality of adversarial samples generated by NatADiff
under targeted attack settings with varying adversarial boundary guidance strength, µ. We use a
ResNet-50 (He et al., 2016a) surrogate model. Bold values highlight the best score. White-box ASR
(same surrogate and victim model) is denoted with an ∗.

Attack
Victim Models ASR (%)

Average

ASR
IS
(↑)

FID-
Val (↓)

FID-
A (↓)CNNs Transformers

RN-50 Inc-v3 RN-152 AdvRes AdvInc ViT-H Max-ViT Swin-B DeIT

NatADiff (µ = 0.0) 95.2∗ 54.2 49.6 48.7 53.7 32.6 42.4 43.7 48.4 52.1 26.1 67.7 78.9
NatADiff (µ = 0.1) 95.4∗ 55.2 52.5 51.5 53.9 33.8 44.2 45.0 49.3 53.4 26.6 63.6 78.1
NatADiff (µ = 0.2) 96.9∗ 60.1 56.5 55.3 58.9 36.8 45.3 49.0 52.3 56.8 26.0 66.5 77.3
NatADiff (µ = 0.3) 97.4∗ 62.4 60.0 57.8 61.2 42.6 50.7 53.4 55.0 60.1 27.6 63.8 77.8
NatADiff (µ = 0.4) 98.5∗ 67.8 65.2 62.5 65.5 49.3 57.1 59.0 60.7 65.1 28.9 63.4 80.2
NatADiff (µ = 0.5) 98.5∗ 71.6 70.1 68.0 70.6 53.7 62.7 63.8 66.4 69.5 32.0 61.7 80.1

We observe that attack success rate, IS, and FID-Val increase alongside µ (see Table 3). Interestingly,
the lowest FID-A was observed at µ = 0.2. These quantitative results suggest that larger values
of µ tend to improve NatADiff performance; however, they do not capture the qualitative shift
in sample structure. Large values of µ introduce two distinct phenomena: dual class samples, in
which both the true and adversarial classes are present in the image (see Figure 7 (a) and (b)), and
flipped class samples, in which the original class is entirely overwritten by the adversarial target (see
Figure 7 (c) and (d)). Furthermore, as seen in Figure 7, the optimal value of µ appears to vary across
true-adversarial class pairs. Thus, we select a conservative value of µ = 0.2, as manual qualitative
investigation found this did not lead to dual and flipped class samples, and experimental results
indicate it best aligns with natural adversarial samples as measured by FID-A.

G.3 SELECTION OF CLASSIFIER GUIDANCE STRENGTH

The adversarial classifier guidance term, s, controls the strength of the guidance provided by the
victim classifier. We found that the optimal value of s varied across classifiers and exhibited a
near-binary behaviour—attacks would consistently fail until a “large enough” value was selected.
For each classifier, we manually tuned s by incrementally increasing it until NatADiff successfully
generated adversarial samples; the selected values for each experiment are provided in Table 4.
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Strawberry Crossword

(a)
Stove Ape

(b)
Lipstick Flower

(c)
Bagel Triumphal Arch

µ = 0.0 µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5
(d)

Figure 7: Samples generated by NatADiff using the same random seed while varying µ from 0.0 to
0.5, shown left to right. Green and red labels denote the true and adversarial classes, respectively.
Images in (a) and (b) exhibit the dual class phenomenon, where large µ values cause objects from
both the true and adversarial classes to appear. Images in (c) and (d) demonstrate the flipped class
phenomenon, where large µ values causes the sample to fully adopt the adversarial class, suppressing
the original class features.
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H NATADIFF EXPERIMENT PARAMETER SETTINGS

Here we provide the NatADiff parameter values used in our experiments (see Table 4).

Table 4: Experiment parameters used in diffusion-based adversarial sampling experiments. Param-
eters refer to those defined in Algorithms 1 and 2. Experiments were conducted with ResNet-50 (He
et al., 2016a), Inception-v3 (Szegedy et al., 2016), and ViT-H (Dosovitskiy et al., 2021) surrogate
models.
Surrogate

Model
Attack

NatADiff Parameters

ω ρ µ s R rl ru cl cu S δµ δs

RN-50

NatADiffT (No-Aug) 7.5 7.5 0.2 50 5 500 800 0 700 5 0 15
NatADiffT (µ = 0.0) 7.5 7.5 0.0 50 5 500 800 0 700 5 0 15
NatADiffT (µ = 0.1) 7.5 7.5 0.1 50 5 500 800 0 700 5 0 15
NatADiffT (µ = 0.2) 7.5 7.5 0.2 50 5 500 800 0 700 5 0 15
NatADiffT (µ = 0.3) 7.5 7.5 0.3 50 5 500 800 0 700 5 0 15
NatADiffT (µ = 0.4) 7.5 7.5 0.4 50 5 500 800 0 700 5 0 15
NatADiffT (µ = 0.5) 7.5 7.5 0.5 50 5 500 800 0 700 5 0 15

AdvClassT 7.5 0.0 0.0 500 0 0 0 0 200 5 0 250
AdvClassU 7.5 0.0 0.0 500 0 0 0 0 200 5 0 250
NatADiffT 7.5 7.5 0.2 50 5 500 800 0 700 5 0 15
NatADiffU 7.5 7.5 0.2 50 5 500 800 0 700 5 0 25

Inc-v3

AdvClassT 7.5 0.0 0.0 500 0 0 0 0 200 5 0 250
AdvClassU 7.5 0.0 0.0 500 0 0 0 0 200 5 0 250
NatADiffT 7.5 7.5 0.2 50 5 500 800 0 700 5 0 20
NatADiffU 7.5 7.5 0.2 50 5 500 800 0 700 5 0 20

ViT-H

AdvClassT 7.5 0.0 0.0 500 0 0 0 0 200 5 0 250
AdvClassU 7.5 0.0 0.0 500 0 0 0 0 200 5 0 250
NatADiffT 7.5 7.5 0.2 100 5 500 800 0 700 5 0 50
NatADiffU 7.5 7.5 0.2 100 5 500 800 0 700 5 0 50
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I ADDITIONAL NATADIFF SAMPLES

We provide NatADiff samples alongside the classification scores of ResNet-50 (He et al., 2016a),
Inception-v3 (Szegedy et al., 2016), ViT-H (Dosovitskiy et al., 2021), and adversarially trained
ResNet-50 and Inception victim models (Kurakin et al., 2018). Samples were generated using
ResNet-50 (He et al., 2016a), Inception-v3 (Szegedy et al., 2016), and ViT-H (Dosovitskiy et al.,
2021) surrogate models.

I.1 MIXED SAMPLES

ResNet-50 Inception-v3 ViT-H

True: Goldfish True: Mushroom True: Dining Table True: Thimble True: Cicada True: Polaroid Camera

AdvT: Titi Monkey AdvT: Packet AdvT: Platypus AdvT: Traffic Light AdvT: Bobsled AdvT: Sleeping Bag

Res: Titi Monkey 92% Res: Packet 80% Res: Platypus 40% Res: Traffic Light 39% Res: Bobsled 16% Res: Polaroid Camera 22%

Inc: Titi Monkey 72% Inc: T-Shirt 36% Inc: Platypus 100% Inc: Traffic Light 100% Inc: Leaf Beetle 18% Inc: Polaroid Camera 76%

ViT: Goldfish 48% ViT: T-Shirt 87% ViT: Dining Table 100% ViT: Saltshaker 69% ViT: Bobsled 100% ViT: Sleeping Bag 100%

AdvRes: Goldfish 85% AdvRes: Bolete 20% AdvRes: Platypus 82% AdvRes: Traffic Light 83% AdvRes: Cicada 75% AdvRes: Sleeping Bag 97%

AdvInc: Titi Monkey 50% AdvInc: Packet 24% AdvInc: Platypus 86% AdvInc: Tennis Ball 46% AdvInc: Fly 26% AdvInc: Polaroid Camera 70%

True: Bonnet True: Garbage Truck True: Hay True: Cheeseburger True: Paintbrush True: Wool

AdvU: Sombrero AdvU: Snowplow AdvU: Ox AdvU: Banana AdvU: Matchstick AdvU: Dishrag

Res: Sombrero 97% Res: Snowplow 91% Res: Hay 64% Res: Cheeseburger 14% Res: Paintbrush 26% Res: Wool 15%

Inc: Sombrero 97% Inc: Snowplow 57% Inc: Ox 100% Inc: Banana 100% Inc: Matchstick 71% Inc: Chain Armor 26%

ViT: Bonnet 92% ViT: Snowplow 98% ViT: Hay 100% ViT: Cheeseburger 93% ViT: Matchstick 100% ViT: Dishrag 100%

AdvRes: Sombrero 86% AdvRes: Snowplow 70% AdvRes: Ox 84% AdvRes: Cheeseburger 64% AdvRes: Paintbrush 88% AdvRes: Dishrag 65%

AdvInc: Sombrero 97% AdvInc: Garbage Truck 52% AdvInc: Ox 36% AdvInc: Banana 100% AdvInc: Paintbrush 94% AdvInc: Wool 13%

Figure 8: Adversarial samples generated using NatADiff with ResNet-50 (He et al., 2016a), Inception-
v3 (Szegedy et al., 2016), and ViT-H (Dosovitskiy et al., 2021) surrogate models (see column labels).
We report the true class, adversarial target, and classification scores of the surrogate and adversarially
trained ResNet-50 and Inception victim models (Kurakin et al., 2018). Superscripts T and U denote
random and similarity targeted attacks, respectively.
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I.2 RESNET-50 SAMPLES

True: Jaguar True: Shield True: Steam Train True: Pomegranate True: Ox True: Barn

AdvT: Mashed Potato AdvT: Isopod AdvT: Submarine AdvT: Three-Toed Sloth AdvT: Brittany Spaniel AdvT: Ring-Binder

Res: Mashed Potato 96% Res: Isopod 54% Res: Submarine 59% Res: Three-Toed Sloth 51% Res: Brittany Spaniel 57% Res: Ring-Binder 79%

Inc: Jaguar 61% Inc: Isopod 85% Inc: Submarine 98% Inc: Pomegranate 86% Inc: Brittany Spaniel 77% Inc: Ring-Binder 38%

ViT: Jaguar 97% ViT: Cockroach 74% ViT: Steam Train 98% ViT: Three-Toed Sloth 88% ViT: Ox 93% ViT: Barn 100%

AdvRes: Mashed Potato 81% AdvRes: Shield 57% AdvRes: Steam Train 88% AdvRes: Pomegranate 60% AdvRes: Brittany Spaniel 90% AdvRes: Barn 24%

AdvInc: Jaguar 76% AdvInc: Cricket 38% AdvInc: Submarine 62% AdvInc: Pomegranate 68% AdvInc: Ox 36% AdvInc: Barn 57%

True: Bobsled True: Candle True: Canoe True: China Cabinet True: Fountain True: Stove

AdvT: Russian Wolfhound AdvT: Perfume AdvT: White Heron AdvT: Rifle AdvT: Typewriter AdvT: Ape

Res: Russian Wolfhound 99% Res: Perfume 96% Res: White Heron 44% Res: Rifle 98% Res: Typewriter 55% Res: Ape 73%

Inc: Russian Wolfhound 14% Inc: Perfume 88% Inc: White Heron 15% Inc: Rifle 82% Inc: Dutch Oven 30% Inc: Hourglass 9%

ViT: Bobsled 100% ViT: Candle 95% ViT: Canoe 84% ViT: China Cabinet 26% ViT: Fountain 99% ViT: Stove 95%

AdvRes: Bobsled 59% AdvRes: Candle 76% AdvRes: Canoe 44% AdvRes: China Cabinet 73% AdvRes: Dutch Oven 83% AdvRes: Stove 68%

AdvInc: Sleeping Bag 44% AdvInc: Perfume 99% AdvInc: White Heron 37% AdvInc: Rifle 90% AdvInc: Dutch Oven 29% AdvInc: Guillotine 39%

True: Barn True: Bassinet True: Bobsled True: Broom True: Bulletproof Vest True: Cardigan

AdvU: Boathouse AdvU: Hamper AdvU: Dogsled AdvU: Crutch AdvU: Cuirass AdvU: Kimono

Res: Boathouse 70% Res: Hamper 99% Res: Dogsled 59% Res: Crutch 34% Res: Cuirass 86% Res: Kimono 89%

Inc: Barn 90% Inc: Bassinet 38% Inc: Dogsled 75% Inc: Broom 39% Inc: Cuirass 67% Inc: Stole 44%

ViT: Barn 96% ViT: Hamper 48% ViT: Dogsled 78% ViT: Broom 99% ViT: Bulletproof Vest 96% ViT: Cardigan 83%

AdvRes: Boathouse 80% AdvRes: Hamper 84% AdvRes: Dogsled 92% AdvRes: Crutch 77% AdvRes: Cuirass 57% AdvRes: Cardigan 74%

AdvInc: Barn 65% AdvInc: Hamper 84% AdvInc: Bobsled 38% AdvInc: Crutch 70% AdvInc: Cuirass 44% AdvInc: Kimono 44%

True: Car Wheel True: Cowboy Boot True: Loafer True: Mosquito Net True: Hen-Of-The-Woods True: Airliner

AdvU: Potter’S Wheel AdvU: Beer Bottle AdvU: French Loaf AdvU: Window Screen AdvU: Gyromitra AdvU: Space Shuttle

Res: Potter’s Wheel 76% Res: Beer Bottle 62% Res: French Loaf 91% Res: Window Screen 66% Res: Gyromitra 98% Res: Space Shuttle 85%

Inc: Potter’s Wheel 64% Inc: Beer Bottle 44% Inc: French Loaf 22% Inc: Window Screen 33% Inc: Ice Cream 64% Inc: Airliner 70%

ViT: Car Wheel 99% ViT: Cowboy Boot 99% ViT: Loafer 81% ViT: Mosquito Net 98% ViT: Acorn Squash 49% ViT: Airliner 82%

AdvRes: Car Wheel 81% AdvRes: Cowboy Boot 42% AdvRes: Clog 92% AdvRes: Mosquito Net 81% AdvRes: Gyromitra 85% AdvRes: Space Shuttle 66%

AdvInc: Disk Brake 25% AdvInc: Beer Bottle 73% AdvInc: Cowboy Boot 22% AdvInc: Window Screen 64% AdvInc: Ice Cream 46% AdvInc: Space Shuttle 39%

Figure 9: Adversarial samples generated by NatADiff with a ResNet-50 (He et al., 2016a) surrogate
model. We report the true class, adversarial target, and classification scores of ResNet-50 (He et al.,
2016a), Inception-v3 (Szegedy et al., 2016), ViT-H (Dosovitskiy et al., 2021), and adversarially
trained ResNet-50 and Inception victim models (Kurakin et al., 2018). Superscripts T and U indicate
targeted and untargeted (similarity-based) attacks, respectively.
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I.3 INCEPTION-V3 SAMPLES

True: Goldfish True: Desktop Computer True: Disk Brake True: Feather Boa True: Football Helmet True: Four-Poster Bed

AdvT: Corn AdvT: Persian Cat AdvT: Pretzel AdvT: Hen-Of-The-Woods AdvT: Barn AdvT: Dogsled

Res: Corn 20% Res: Desktop Computer 22% Res: Pretzel 48% Res: Mushroom 12% Res: Barn 3% Res: Dogsled 42%

Inc: Corn 100% Inc: Persian Cat 100% Inc: Pretzel 100% Inc: Hen-Of-The-Woods 80% Inc: Barn 100% Inc: Dogsled 100%

ViT: Goldfish 97% ViT: Desktop Computer 18% ViT: Padlock 36% ViT: Feather Boa 95% ViT: Football Helmet 67% ViT: Four-Poster Bed 93%

AdvRes: Corn 90% AdvRes: Persian Cat 66% AdvRes: Pretzel 93% AdvRes: Jellyfish 13% AdvRes: Barn 91% AdvRes: Dogsled 97%

AdvInc: Corn 70% AdvInc: Persian Cat 21% AdvInc: Pretzel 94% AdvInc: Mushroom 45% AdvInc: Football Helmet 25% AdvInc: Dogsled 88%

True: Fur Coat True: Grand Piano True: Greenhouse True: Jersey, T-Shirt, Tee Shirt True: Lampshade True: Plate

AdvT: Barracouta AdvT: Notebook AdvT: Canoe AdvT: Planetarium AdvT: Skunk AdvT: Water Jug

Res: Fur Coat 45% Res: Grand Piano 22% Res: Canoe 31% Res: Vestment 9% Res: Lampshade 16% Res: Soup Bowl 20%

Inc: Barracouta 100% Inc: Notebook 99% Inc: Canoe 100% Inc: Planetarium 100% Inc: Skunk 99% Inc: Water Jug 82%

ViT: Fur Coat 100% ViT: Grand Piano 86% ViT: Greenhouse 99% ViT: Football Helmet 81% ViT: Lampshade 88% ViT: Fig 62%

AdvRes: Barracouta 89% AdvRes: Notebook 83% AdvRes: Greenhouse 79% AdvRes: Cinema 54% AdvRes: Skunk 86% AdvRes: Plate 37%

AdvInc: Barracouta 74% AdvInc: Notebook 80% AdvInc: Canoe 95% AdvInc: Mailbox 23% AdvInc: Skunk 33% AdvInc: Potter’S Wheel 16%

True: Daisy True: Potpie True: Broccoli True: Windsor Tie True: Water Tower True: Washbasin

AdvU: Lemon AdvU: Pizza AdvU: Guacamole AdvU: Bow Tie AdvU: Water Jug AdvU: Soap Dispenser

Res: Lemon 32% Res: Pizza 57% Res: Broccoli 58% Res: Bow Tie 42% Res: Water Jug 8% Res: Soap Dispenser 75%

Inc: Lemon 100% Inc: Pizza 100% Inc: Guacamole 100% Inc: Bow Tie 100% Inc: Water Jug 93% Inc: Soap Dispenser 100%

ViT: Daisy 59% ViT: Potpie 100% ViT: Broccoli 80% ViT: Windsor Tie 99% ViT: Water Tower 100% ViT: Washbasin 97%

AdvRes: Lemon 91% AdvRes: Pizza 86% AdvRes: Guacamole 88% AdvRes: Bow Tie 96% AdvRes: Water Jug 40% AdvRes: Soap Dispenser 100%

AdvInc: Lemon 80% AdvInc: Potpie 73% AdvInc: Guacamole 98% AdvInc: Bow Tie 92% AdvInc: Water Jug 19% AdvInc: Soap Dispenser 100%

True: Wardrobe True: Television True: Stage True: Shield True: Mountain Bike True: Manhole Cover

AdvU: Medicine Chest AdvU: Radio, Wireless AdvU: Swing AdvU: Breastplate AdvU: Tandem AdvU: Doormat

Res: Medicine Chest 40% Res: Radio, Wireless 21% Res: Swing 59% Res: Shield 29% Res: Mountain Bike 19% Res: Labyrinth 28%

Inc: Medicine Chest 100% Inc: Radio, Wireless 100% Inc: Swing 100% Inc: Breastplate 100% Inc: Tandem 98% Inc: Doormat 100%

ViT: Wardrobe 86% ViT: Television 84% ViT: Stage 54% ViT: Breastplate 56% ViT: Tandem 49% ViT: Sundial 33%

AdvRes: Medicine Chest 89% AdvRes: Radio, Wireless 95% AdvRes: Swing 99% AdvRes: Shield 32% AdvRes: Tandem 67% AdvRes: Doormat 84%

AdvInc: Medicine Chest 87% AdvInc: Radio, Wireless 98% AdvInc: Stage 18% AdvInc: Breastplate 80% AdvInc: Tandem 50% AdvInc: Manhole Cover 31%

Figure 10: Adversarial samples generated by NatADiff with an Inception-v3 (Szegedy et al., 2016)
surrogate model. We report the true class, adversarial target, and classification scores of ResNet-
50 (He et al., 2016a), Inception-v3 (Szegedy et al., 2016), ViT-H (Dosovitskiy et al., 2021), and
adversarially trained ResNet-50 and Inception victim models (Kurakin et al., 2018). Superscripts T
and U indicate targeted and untargeted (similarity-based) attacks, respectively.
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I.4 VIT SAMPLES

True: Chiffonier True: Stone Wall True: Dam True: House Finch True: Sleeping Bag True: Snowmobile

AdvT: Tobacco Shop AdvT: Jaguar AdvT: Piggy Bank AdvT: Totem Pole AdvT: Oxcart AdvT: Shower Curtain

Res: Tobacco Shop 15% Res: Stone Wall 18% Res: Piggy Bank 18% Res: Totem Pole 4% Res: Stretcher 29% Res: Four-Poster 8%

Inc: Window Shade 6% Inc: Leopard 46% Inc: Fountain 68% Inc: Maraca 14% Inc: Park Bench 21% Inc: Ski 54%

ViT: Tobacco Shop 99% ViT: Jaguar 99% ViT: Piggy Bank 97% ViT: Totem Pole 99% ViT: Oxcart 98% ViT: Shower Curtain 89%

AdvRes: Library 47% AdvRes: Leopard 69% AdvRes: Piggy Bank 77% AdvRes: Toyshop 24% AdvRes: Stretcher 37% AdvRes: Dam 23%

AdvInc: Bookshop 20% AdvInc: Stone Wall 54% AdvInc: Piggy Bank 84% AdvInc: Jay 6% AdvInc: Sleeping Bag 26% AdvInc: Snowmobile 26%

True: Throne True: Sweatshirt True: Megalith True: Tile Roof True: Otter True: Tray

AdvT: Flatworm AdvT: Neck Brace AdvT: Quail AdvT: Agaric AdvT: Pineapple AdvT: Volleyball

Res: Boat Paddle 10% Res: Ski Mask 32% Res: Megalith 9% Res: Apron 29% Res: Pineapple 2% Res: Tray 17%

Inc: Clog 35% Inc: Spatula 25% Inc: Worm Fence 13% Inc: Apron 37% Inc: Pinwheel 12% Inc: Volleyball 85%

ViT: Flatworm 78% ViT: Neck Brace 100% ViT: Quail 75% ViT: Agaric 60% ViT: Pineapple 100% ViT: Volleyball 85%

AdvRes: Wooden Spoon 27% AdvRes: Ski Mask 38% AdvRes: Chickadee 31% AdvRes: Tile Roof 93% AdvRes: Otter 57% AdvRes: Volleyball 96%

AdvInc: Wooden Spoon 71% AdvInc: Wool 16% AdvInc: Worm Fence 31% AdvInc: Tile Roof 43% AdvInc: Otter 6% AdvInc: Tray 36%

True: Altar True: Barn True: Crate True: Drilling Platform True: Lipstick True: Pillow

AdvU: Desk AdvU: Boathouse AdvU: Hamper AdvU: Container Ship AdvU: Red Wine AdvU: Sleeping Bag

Res: Desk 8% Res: Boathouse 40% Res: Crate 48% Res: Crane 20% Res: Lipstick 69% Res: Sleeping Bag 23%

Inc: Throne 77% Inc: Barn 82% Inc: Crate 71% Inc: Drilling Platform 30% Inc: Mask 33% Inc: Sleeping Bag 30%

ViT: Desk 98% ViT: Boathouse 100% ViT: Hamper 91% ViT: Container Ship 99% ViT: Red Wine 93% ViT: Sleeping Bag 100%

AdvRes: Throne 84% AdvRes: Barn 71% AdvRes: Cradle 35% AdvRes: Crane 65% AdvRes: Conch 25% AdvRes: Pillow 46%

AdvInc: Altar 36% AdvInc: Barn 83% AdvInc: Cradle 7% AdvInc: Drilling Platform 54%AdvInc: Red Wine 20% AdvInc: Sleeping Bag 32%

True: Crib True: Lemon True: Rapeseed True: Crock Pot True: Greenhouse True: Knee Pad

AdvU: Cradle AdvU: Corn AdvU: Lemon AdvU: Coffeepot AdvU: Apiary AdvU: Pillow

Res: Plate Rack 24% Res: Lemon 43% Res: Rapeseed 43% Res: Coffeepot 21% Res: Mailbox 10% Res: Knee Pad 19%

Inc: Plate Rack 31% Inc: Lemon 27% Inc: Lemon 25% Inc: Crock Pot 55% Inc: Guillotine 13% Inc: Bath Towel 39%

ViT: Cradle 99% ViT: Corn 100% ViT: Lemon 97% ViT: Coffeepot 62% ViT: Apiary 100% ViT: Pillow 98%

AdvRes: Crib 37% AdvRes: Lemon 84% AdvRes: Rapeseed 99% AdvRes: Crock Pot 93% AdvRes: Greenhouse 38% AdvRes: Wool 57%

AdvInc: Plate Rack 46% AdvInc: Corn 46% AdvInc: Bath Towel 4% AdvInc: Crock Pot 84% AdvInc: Greenhouse 27% AdvInc: Bath Towel 78%

Figure 11: Adversarial samples generated by NatADiff with a ViT-H (Dosovitskiy et al., 2021)
surrogate model. We report the true class, adversarial target, and classification scores of ResNet-
50 (He et al., 2016a), Inception-v3 (Szegedy et al., 2016), ViT-H (Dosovitskiy et al., 2021), and
adversarially trained ResNet-50 and Inception victim models (Kurakin et al., 2018). Superscripts T
and U indicate targeted and untargeted (similarity-based) attacks, respectively.
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J ADDITIONAL IMAGE QUALITY METRICS

We use NIQE (Mittal et al., 2013), BRISQUE (Mittal et al., 2012), and TReS (Golestaneh et al., 2022)
to provide additional no-reference image quality evaluations of adversarial sampling methods. We
assess the image quality of NCF (Yuan et al., 2022), DiffAttack (Chen et al., 2025), ACA (Chen et al.,
2023b), adversarial classifier guidance (AdvClass) (Dai et al., 2024), and NatADiff across ResNet-50
(He et al., 2016a), Inception-v3 (Szegedy et al., 2016), and ViT-H (Dosovitskiy et al., 2021) surrogate
models. These metrics more closely align with human perception of image quality, but they do not
address adherence to a target data distribution, i.e., how well samples “fit into” the ImageNet dataset.

Adversarial classifier guidance and DiffAttack frequently outperformed other methods on NIQE,
BRISQUE, and TReS (see Table 5); however, as discussed in Section 5.2, this is likely because
these methods apply constrained perturbations to source images and clean stable diffusion outputs,
respectively. When considering only methods that make structural image alterations, we see that
NatADiff outperforms NCF across all image metrics, and outperforms ACA on NIQE and BRISQUE,
with similar TReS scores that slightly favour ACA. This supports the findings from the main paper
that NatADiff is able to construct visually high-quality adversarial samples.

Table 5: Image quality of adversarial samples generated using ACA (Chen et al., 2023b), DiffAttack
(Chen et al., 2025), adversarial classifier guidance (Dai et al., 2024), and NatADiff. Bold and
underlined values highlight the best and second best scores for each surrogate model. Superscripts T
and U denote targeted and untargeted attacks, respectively. Note that we report FID with respect to
ImageNet-Val (FID-Val) and ImageNet-A (FID-A).

Surrogate

Model
Attack

Image Quality Metrics

IS (↑) FID-Val (↓) FID-A (↓) NIQE (↓) BRISQUE (↓) TReS (↑)

Clean 55.0 58.0 94.7 4.6 18.1 88.6

RN-50

NCF 30.4 69.7 85.5 5.5 19.8 68.9
DiffAttack 26.8 64.1 76.8 5.7 17.7 81.8

ACA 23.9 65.0 77.9 6.8 24.4 80.8
AdvClassT 38.3 48.9 92.4 4.3 11.9 81.8
AdvClassU 38.5 50.2 92.7 4.6 12.2 81.3

NatADiffT 26.0 66.5 77.3 4.8 12.3 76.0
NatADiffU

43.2 51.4 95.9 4.8 12.0 77.9

Inc-v3

NCF 31.7 69.1 83.0 4.7 19.0 76.3
DiffAttack 33.2 63.7 78.2 5.8 18.0 81.2

ACA 23.1 68.0 78.8 7.8 28.4 78.7
AdvClassT 33.7 51.0 89.2 4.5 12.3 81.4
AdvClassU 39.7 49.4 93.3 4.5 12.3 81.2

NatADiffT 27.7 66.6 78.2 4.8 12.4 76.6
NatADiffU

47.0 50.5 98.9 4.7 11.7 78.9

ViT-H

NCF 39.8 63.1 86.4 5.6 20.0 70.1
DiffAttack 35.2 63.4 80.0 6.0 18.4 81.3

ACA 25.5 64.2 80.9 7.4 25.5 79.2
AdvClassT 38.9 48.5 95.2 4.2 14.8 77.7
AdvClassU 39.2 48.5 98.8 4.3 13.5 79.8

NatADiffT 15.3 88.0 93.5 4.9 20.9 74.7
NatADiffU 31.9 53.9 96.2 4.6 14.8 78.8

K RESISTANCE TO ADVERSARIAL DEFENCES

It has previously been shown that perturbation-based adversarial attacks are sensitive to image
transformations–such as rotations, crops, and translations–which can substantially reduce attack
success rates (Guo et al., 2018). In addition to such transformation-based defences, purification
approaches aim to remove adversarial noise prior to classification. One such method is DiffPure
(Nie et al., 2022), which leverages a denoising diffusion model to project adversarial samples back
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onto the natural image manifold. Given an adversarial image, x̃0, the forward diffusion process,
p(xt|x0 = x̃0), is applied for t ≪ T (recall that T is the termination time of the forward process),
introducing Gaussian noise without fully destroying the original signal. The sample is then passed
through the reverse-time diffusion process (Anderson, 1982) or flow ODE (Song et al., 2021b) to
recover a purified image. Nie et al. (2022) empirically demonstrated and theoretically proved that
this procedure effectively removes perturbation-based adversarial noise, enabling the reverse process
to reconstruct a “clean” version of the image. Intuitively, the noise injected during forward diffusion
overwhelms the adversarial signal, allowing the diffusion model to project the corrupted sample back
onto the natural image manifold.

We evaluate the robustness of standard image transformations and DiffPure against adversarial
samples generated by PGD (Madry et al., 2018), AutoAttack (Croce & Hein, 2020), NCF (Yuan
et al., 2022), DiffAttack (Chen et al., 2025), ACA (Chen et al., 2023b), adversarial classifier guidance
(AdvClass) (Dai et al., 2024), and NatADiff. We use a ResNet-50 (He et al., 2016a) surrogate model
and test NatADiff and adversarial classifier under both targeted and untargeted modes. Defences are
applied as a pre-processing step to classification; for image transformations, we average classification
probabilities over augmented views obtained via cropping, rotation, and grayscale conversion. To
quantify defence effectiveness, we report attack success rate (ASR).

Our results show that transform-purification did not meaningfully reduce the efficacy of NatADiff,
though it successfully defended against PGD attacks (see Table 6). In contrast, DiffPure provided
a much stronger defence to most attacks, reducing NatADiff’s average ASR by 7.9%. However,
DiffPure occasionally degraded overall classifier accuracy, leading to increased ASR for non-surrogate
classifiers. This likely occurred when the reverse diffusion process failed to recover the original image,
rendering classification unreliable. Compared to other attacks, NatADiff still exhibited superior
white-box performance and achieved either best or second-best transferability across all victim
classifiers. Interestingly, NCF showed a significant increase in transferability under the DiffPure
defence. We hypothesize that this stems from NCF’s color-based attacks pushing samples into
low-probability regions of the manifold during the forward diffusion process. This increases the
likelihood that DiffPure fails to recover the original image in the reverse process, thereby degrading
classifier accuracy.

Consistent with findings in the main paper, NatADiff achieved best or near-best performance under
both transformation and DiffPure defences. Given that natural adversarial samples are known to
bypass perturbation-based defences and image transformations (Agarwal et al., 2022), these results
further support our claim that NatADiff generates adversarial examples that are more semantically
aligned with naturally occurring test-time errors.
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Table 6: Attack success rate of transform and DiffPure-purified adversarial samples generated by
PGD (Madry et al., 2018), AutoAttack (Croce & Hein, 2020), NCF (Yuan et al., 2022), DiffAttack
(Chen et al., 2025), ACA (Chen et al., 2023b), adversarial classifier guidance (AdvClass) (Dai et al.,
2024), and NatADiff. Samples are generated using a ResNet-50 (He et al., 2016a) surrogate model.
Bold and underlined values highlight the best and second best scores for each purification method.
Superscripts T and U denote targeted and untargeted attacks, respectively. White-box ASR (same
surrogate and victim model) is denoted with an ∗.

Purification
Method Attack

Victim Models ASR (%)
Average

ASR
CNNs Transformers

RN-50 Inc-v3 RN-152 AdvRes AdvInc ViT-H Max-ViT Swin-B DeIT

Clean 5.3 7.6 2.9 3.0 5.8 10.9 3.8 4.5 7.4 5.7

None

PGD 99.4∗ 11.8 5.2 4.9 8.1 10.5 4.4 5.5 8.2 17.6
AA 100

∗ 13.3 10.0 3.9 8.8 10.5 5.4 5.6 8.0 18.4
NCF 74.8∗ 33.4 37.3 28.2 31.2 17.2 24.0 31.7 37.2 35.0

DiffAttack 92.5∗ 47.1 52.5 35.3 43.3 28.4 44.6 42.4 38.9 47.2
ACA 78.8∗ 53.3 52.7 49.8 53.1 41.8 46.4 49.3 50.6 52.9

AdvClassT 99.6∗ 35.0 32.1 31.4 33.5 25.8 30.0 30.8 32.8 39.0
AdvClassU 99.9∗ 42.5 44.3 38.7 41.1 29.7 37.6 38.4 39.1 45.7

NatADiffT 96.9∗ 60.1 56.5 55.3 58.9 36.8 45.3 49.0 52.3 56.8
NatADiffU 99.3∗ 68.3 72.1 65.3 66.8 45.3 64.1 65.2 67.0 68.2

Transform

PGD 14.5∗ 12.1 4.8 4.7 7.4 9.2 3.5 5.2 7.3 7.6
AA 79.4∗ 12.4 7.9 3.3 9.1 10.2 3.4 5.8 7.3 15.4

NCF 60.2∗ 35.1 39.6 28.4 31.2 16.7 27.1 33.7 37.7 34.4
DiffAttack 73.9∗ 48.6 50.1 39.9 45.8 28.6 43.4 46.7 39.0 46.2

ACA 64.2∗ 54.8 52.2 50.4 56.4 40.8 47.1 51.9 51.0 52.1
AdvClassT 35.2∗ 33.4 30.4 29.7 31.5 25.5 28.9 31.4 32.1 30.9
AdvClassU 65.8∗ 39.8 40.8 38.3 40.0 29.1 36.3 37.0 38.4 40.6

NatADiffT 85.7∗ 59.8 55.6 55.0 56.8 36.1 46.7 48.6 52.4 55.2
NatADiffU

96.6∗ 68.7 73.3 67.3 68.3 45.0 65.4 66.8 70.3 69.1

DiffPure

PGD 21.9∗ 30.8 20.3 23.3 26.5 21.3 16.7 19.4 20.6 22.3
AA 23.5∗ 32.5 19.8 22.7 28.4 21.7 18.9 21.2 23.6 23.6

NCF 68.8∗ 59.9 60.4 53.9 55.3 46.1 57.5 62.3 59.7 58.2
DiffAttack 45.9∗ 44.0 39.3 37.3 43.5 38.4 37.4 41.8 38.7 40.7

ACA 60.8∗ 63.1 55.3 57.3 60.1 50.4 55.1 56.7 56.5 57.3
AdvClassT 35.0∗ 37.8 34.2 35.2 37.2 30.3 34.3 34.9 36.7 35.1
AdvClassU 42.4∗ 42.6 39.8 39.8 41.9 34.3 38.8 40.3 41.3 40.1

NatADiffT 56.3∗ 56.6 52.2 53.1 54.8 42.3 49.1 51.0 53.4 52.1
NatADiffU

71.3∗ 62.2 61.2 61.0 61.3 47.8 58.5 60.2 61.2 60.5

L RUNTIME COMPARISON

We provide a runtime comparison of PGD (Madry et al., 2018), AutoAttack (AA) (Croce & Hein,
2020), NCF (Yuan et al., 2022), DiffAttack (Chen et al., 2025), ACA (Chen et al., 2023b), adversarial
classifier guidance (AdvClass) (Dai et al., 2024) and NatADiff. It is clear that the generative approach
of NatADiff requires substantially greater runtime; however, this cost yields stronger adversarial
samples that transfer more effectively across classifiers (see Table 1), and that are more resistant
to adversarial purification (see Appendix K). We argue that the trade-off between runtime and
state-of-the-art adversarial strength makes NatADiff a compelling attack strategy despite its slower
speed.

Table 7: Time comparison of adversarial attack methods.

Attack
Average Runtime per

Sample (seconds)

PGD 0.3
AutoAttack 0.7

NCF 6.9
DiffAttack 14.2

ACA 96.8
AdvClass 13.5
NatADiff 103.1
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M USEFUL DENOISING DIFFUSION RESULTS

This section outlines results necessary for working with denoising diffusion models. Citations of
original authors are provided where applicable.

M.1 CONDITIONAL FORWARD DISTRIBUTION

The following theorem describes the conditional forward distribution of the denoising diffusion model
when conditioned on an arbitrary time τ .

Theorem M.1 (Conditional Forward Distribution for Denosing Diffusion). Let xt ∈ R
m, f(t) :

R → R and g(t) : R → R be continuous functions of t, and · dBt denote an Itô integral with respect
to the standard multi-dimensional Brownian motion process. Then the denoising diffusion model with
forward process,

dxt = f(t)xtdt+ g(t) · dBt, (13)

admits a conditional forward distribution of

Xt|Xτ ∼ N
(

α(τ, t)xτ , β(τ, t)
2I(m×m)

)

∀ t > τ,

where α(τ, t) = exp
(∫ t

τ
f(u)du

)

, β(τ, t)2 = α(τ, t)2
∫ t

τ

g(u)2

α(τ,u)2 du, and I(m×m) is the m-

dimensional identity matrix. Additionally, it is understood that with slight abuse of notation
α(t) = α(0, t) and β(t) = α(0, t)

Proof. The diffusion in (13) has Stratonovich representation (see (Pavliotis, 2014a) for a treatment of
Itô and Stratonovich SDE formulations),

dxt = f(t)xtdt+ g(t) ◦ dBt,

where ◦ dBt denotes a Stratonovich integral with respect to the standard multi-dimensional Brownian
motion process. Thus, the SDE can be solved in the usual manner:

dxt = f(t)xtdt+ g(t) ◦ dBt

dxt

dt
= f(t)xt + g(t) ◦

dBt

dt

=⇒
(

e−
∫

t

τ
f(u)du

) dxt

dt
=
(

e−
∫

t

τ
f(u)du

)

f(t)xt

+
(

e−
∫

t

τ
f(u)du

)

g(t) ◦
dBt

dt
∀ t > τ

=⇒
(

e−
∫

t

τ
f(u)du

)

g(t) ◦
dBt

dt
=
(

e−
∫

t

τ
f(u)du

) dxt

dt
−
(

e−
∫

t

τ
f(u)du

)

f(t)xt

=⇒

∫ t

τ

(

e−
∫

v

τ
f(u)du

)

g(v) ◦
dBv

dv
dv =

∫ t

τ

(

e−
∫

v

τ
f(u)du

) dxv

dv
−
(

e−
∫

v

τ
f(u)du

)

f(v)xvdv

∫ t

τ

(

e−
∫

v

τ
f(u)du

)

g(v) ◦ dBv =
[

xv

(

e−
∫

v

τ
f(u)du

)]∣
∣
∣

t

τ
∫ t

τ

(

e−
∫

v

τ
f(u)du

)

g(v) ◦ dBv = xt

(

e−
∫

t

τ
f(u)du

)

− xτ

∫ t

τ

g(v)

α(τ, v)
◦ dBv =

xt

α(τ, t)
− xτ

=⇒ xt = α(τ, t)xτ + α(τ, t)

∫ t

τ

g(v)

α(τ, v)
◦ dBv. (14)

By rewriting (14) in its Itô representation we have

xt = α(τ, t)xτ + α(τ, t)

∫ t

τ

g(v)

α(τ, v)
· dBv,
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and as
∫ t

τ

g(u)
α(τ,u) · dBu ∼ N

(

0,
∫ t

τ

g(u)2

α(τ,u)2 du · I(m×m)
)

, it follows that

xt|xτ ∼ N

(

α(τ, t)xτ , α(τ, t)
2

∫ t

τ

g(u)2

α(τ, u)2
du · I(m×m)

)

.

M.2 CONDITIONAL FORWARD ALTERNATE PARAMETERISATION

When implementing time-travel sampling (Lugmayr et al., 2022) we require access to the condi-
tional forward distribution, p(xt|xτ ). However, it is frequently the case that diffusion schemes are
formulated with respect to the full forward distribution, p(xt|x0), and some proposed method of
sampling the reverse-time diffusion (Anderson, 1982), or solving the flow ODE (Song et al., 2021b).
Thus, we provide a simple result to derive the conditional forward distribution, p(xt|xτ ), from the
parameterisation of the full forward, p(xt|x0).

Lemma M.2 (Conditional Forward Alternate Parameterisation). Given the diffusion formulation in
Theorem M.1, then the conditional forward distribution can alternately be expressed as

Xt|Xτ ∼ N
(

axτ , b
2I(m×m)

)

∀ t > τ,

where

Xt|X0 ∼ N
(

α(0, t)x0, β(0, t)
2I(m×m)

)

∀ t > 0,

a = α(0,t)
α(0,τ) , b2 = β(0, t)2 − (aβ(0, τ))

2
, , and I(m×m) is the m-dimensional identity matrix.

Additionally, it is understood that with slight abuse of notation α(t) = α(0, t) and β(t) = α(0, t)

Proof. We need to show that a = α(τ, t) = exp
(∫ t

τ
f(u)du

)

and b2 = β(τ, t)2 =

α(τ, t)2
∫ t

τ

g(u)2

α(τ,u)2 du as per Theorem M.1. It follows that

a =
α(0, t)

α(0, τ)

=
exp

(∫ t

0
f(u)du

)

exp
(∫ τ

0
f(u)du

)

= exp

(∫ t

0

f(u)du−

∫ τ

0

f(u)du

)

= exp

(∫ t

τ

f(u)du

)

= α(τ, t), (15)
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and

b2 = β(0, t)2 − (aβ(0, τ))
2

= β(0, t)2 − a2β(0, τ)2

= α(0, t)2
∫ t

0

g(u)2

α(0, u)2
du−

α(0, t)2

α(0, τ)2
α(0, τ)2

∫ τ

0

g(u)2

α(0, u)2
du

= α(0, t)2
[∫ t

0

g(u)2

α(0, u)2
du−

∫ τ

0

g(u)2

α(0, u)2
du

]

= α(0, t)2
∫ t

τ

g(u)2

α(0, u)2
du

= α(0, t)2
∫ t

τ

g(u)2

α(0, τ)2α(τ, u)2
du as α(0, u) = α(0, τ)α(τ, u) by (15)

=
α(0, t)2

α(0, τ)2

∫ t

τ

g(u)2

α(τ, u)2
du

= α(τ, t)2
∫ t

τ

g(u)2

α(τ, u)2
du

= β(τ, t)2.

M.3 SCORE-MODEL LINK

The following Score-Model Link theorem is based on Karras et al.’s (Karras et al., 2022) argument.
However, we provide a minor extension by conditioning on measurable sets taken from the sigma-
algebra of an auxiliary random variable, Y . For additional treatments see (Karras et al., 2022;
Hyvärinen, 2005; Vincent, 2011).

Theorem M.3 (Score-Model Link). Let xt ∈ R
m, f(t) : R → R and g(t) : R → R be continuous

functions of t, and · dBt denote an Itô integral with respect to the standard multi-dimensional
Brownian motion process. Suppose that xt evolves according to the diffusion,

dxt = f(t)xtdt+ g(t) · dBt, (16)

with observed initial data distribution, pdata(x0|y ∈ ξ), where ξ is taken to be an arbitrary element
of the sigma-algebra, Y , associated with the random variable1 Y , i.e., ξ ∈ Y .

Define

x̂0(xt, t, ξ) =
xt − β(t)ϵθ(xt, t, ξ)

α(t)
, (17)

where α(t) = exp
(∫ t

0
f(u)du

)

, β(t)2 = α(t)2
∫ t

0
g(u)2

α(u)2 du, and ϵθ : Rm×R×Y → R
m is a model

parameterised by θ ∈ Θ with sufficient capacity such that the Universal Approximation Theorem
(Cybenko, 1989; Hornik, 1991) holds for all ξ ∈ Y . Then if β(t)2 > 0 ∀ t ∈ (0, T ], the following
statements are true:

1.

∇xt
log(p(xt|y ∈ ξ)) = −

1

β(t)
ϵθ⋆(xt, t, ξ) ∀ t ∈ (0, T ], xt ∈ R

m, ξ ∈ Y; (18)

2.

ϵθ⋆(xt, t, ξ) =
Ex0∼pdata(x0|y∈ξ)

[
1

β(t)

(
xt − α(t)x0

)
p(xt|x0)

]

p(xt|y ∈ ξ)
∀ t ∈ (0, T ], (19)

1Note that this is a slight abuse of notation. We are assuming that (ΩY ,Y, P ) is a probability space and
Y : ΩY → ΩY a random variable such that Y (ω) = ω ∀ ω ∈ ΩY . That is to say, we do not need to take the
pre-image when crafting probability statements.
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xt ∈ R
m, ξ ∈ Y; where

θ⋆ ≜ argmin
θ

Ex0,xt,t∼p(x0,xt,t|y∈ξ)

[

∥x0 − x̂0(xt, t, ξ)∥
2
2

]

, (20)

p(x0,xt, t|y ∈ ξ) = p(xt|x0)pdata(x0|y ∈ ξ)p(t), and p(t) ≜ 1
T

.

Proof. Let {x
(1)
0 ,x

(2)
0 , . . . ,x

(N)
0 } and {y(1), y(2), . . . , y(N)} denote observed values of x0 and Y .

Then the data density function is given by:

pdata(x0|y ∈ ξ) =

∑N
i=1 δ(x0 − x

(i)
0 )1{y(i)∈ξ}

∑N
i=1 1{y(i)∈ξ}

, (21)

where δ(·) denotes the Dirac delta function and 1{·} is the indicator function. The forward diffusion
process in (16) is independent of Y , and thus,

p(xt|y ∈ ξ) =

∫

Ω

p(xt|x0)pdata(x0|y ∈ ξ)dx0

=

∑N
i=1 p(xt|x

(i)
0 )1{y(i)∈ξ}

∑N
i=1 1{y(i)∈ξ}

. (22)

Substituting (22) into the LHS of (18),

∇xt
log(p(xt|y ∈ ξ)) = ∇xt

log

(∑N
i=1 p(xt|x

(i)
0 )1{y(i)∈ξ}

∑N
i=1 1{y(i)∈ξ}

)

= ∇xt
log

(
N∑

i=1

p(xt|x
(i)
0 )1{y(i)∈ξ}

)

=

∑N
i=1 ∇xt

p(xt|x
(i)
0 )1{y(i)∈ξ}

∑N
i=1 p(xt|x

(i)
0 )1{y(i)∈ξ}

.

By Theorem M.1, p(xt|x0) = N
(
α(t)x0, β(t)

2I(m×m)
)

=⇒ ∇xt
p(xt|x0) = − 1

β(t)2 (xt −

α(t)x0)p(xt|x0), thus,

∇xt
log(p(xt|y ∈ ξ)) = −

1

β(t)2

∑N
i=1(xt − α(t)x

(i)
0 )p(xt|x

(i)
0 )1{y(i)∈ξ}

∑N
i=1 p(xt|x

(i)
0 )1{y(i)∈ξ}

. (23)

34



1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Under review as a conference paper at ICLR 2026

Now we consider the optimisation problem in (20).

L(ξ; θ) = Ex0,xt,t∼p(x0,xt,t|y∈ξ)

[

∥x0 − x̂0(xt, t, ξ)∥
2
2

]

= Et∼p(t)

[

Ex0∼p(x0|y∈ξ)

[

Ext∼p(xt|x0)

[

∥x0 − x̂0(xt, t, ξ)∥
2
2

]]]

= Et∼p(t)

[

Ex0∼p(x0|y∈ξ)

[
∫

Ωxt

∥x0 − x̂0(xt, t, ξ)∥
2
2 p(xt|x0)dxt

]]

= Et∼p(t)

[
∫

Ωx0

∫

Ωxt

∥x0 − x̂0(xt, t, ξ)∥
2
2 p(xt|x0)dxt p(x0|y ∈ ξ)dx0

]

= Et∼p(t)

[
∫

Ωx0

∫

Ωxt

∥x0 − x̂0(xt, t, ξ)∥
2
2 p(xt|x0)dxt

(∑N
i=1 δ(x0 − x

(i)
0 )1{y(i)∈ξ}

∑N
i=1 1{y(i)∈ξ}

)

dx0

]

= Et∼p(t)

[

1
∑N

i=1 1{y(i)∈ξ}

N∑

i=1

∫

Ωxt

∥
∥
∥x

(i)
0 − x̂0(xt, t, ξ)

∥
∥
∥

2

2
p(xt|x

(i)
0 )dxt 1{y(i)∈ξ}

]

= Et∼p(t)

[

1
∑N

i=1 1{y(i)∈ξ}

∫

Ωxt

N∑

i=1

p(xt|x
(i)
0 )1{y(i)∈ξ}

∥
∥
∥x

(i)
0 − x̂0(xt, t, ξ)

∥
∥
∥

2

2
dxt

]

=
1

T

1
∑N

i=1 1{y(i)∈ξ}

∫ T

0

∫

Ωxt

N∑

i=1

p(xt|x
(i)
0 )1{y(i)∈ξ}

∥
∥
∥x

(i)
0 − x̂0(xt, t, ξ)

∥
∥
∥

2

2
dxtdt

=
1

T

1
∑N

i=1 1{y(i)∈ξ}

∫ T

0

∫

Ωxt

N∑

i=1

p(xt|x
(i)
0 )1{y(i)∈ξ}

∥
∥
∥
∥
x
(i)
0 −

xt − β(t)ϵθ(xt, t, ξ)

α(t)

∥
∥
∥
∥

2

2
︸ ︷︷ ︸

ℓ(xt,t,ξ;θ)

dxtdt

(24)

To minimise (24) with respect to θ, it suffices to find θ such that ℓ(xt, t, ξ; θ) is minimised for each
combination of xt and t. That is to say, we find the optimal value of ϵθ(xt, t, ξ) for each combination
of xt and t. Furthermore, ℓ(xt, t, ξ; θ) constitutes a convex optimisation problem with respect to
ϵθ(xt, t, ξ). Thus,

∂ℓ

∂ϵθ
=

N∑

i=1

2β(t)

α(t)
p(xt|x

(i)
0 )1{y(i)∈ξ}

(

x
(i)
0 −

xt − β(t)ϵθ(xt, t, ξ)

α(t)

)

=

N∑

i=1

p(xt|x
(i)
0 )1{y(i)∈ξ}

(

α(t)x
(i)
0 − xt + β(t)ϵθ(xt, t, ξ)

)

= 0

=⇒
N∑

i=1

(xt − α(t)x
(i)
0 )p(xt|x

(i)
0 )1{y(i)∈ξ} =

N∑

i=1

β(t)ϵθ(xt, t, ξ)p(xt|x
(i)
0 )1{y(i)∈ξ}

=⇒ ϵ⋆θ(xt, t, ξ) =
1

β(t)

∑N
i=1(xt − α(t)x

(i)
0 )p(xt|x

(i)
0 )1{y(i)∈ξ}

∑N
i=1 p(xt|x

(i)
0 )1{y(i)∈ξ}

(25)

=
1

β(t)

∑N
i=1(xt−α(t)x

(i)
0 )p(xt|x

(i)
0 )1

{y(i)∈ξ}
∑

N
i=1 1

{y(i)∈ξ}
∑

N
i=1 p(xt|x

(i)
0 )1

{y(i)∈ξ}
∑

N
i=1 1

{y(i)∈ξ}

=
Ex0∼pdata(x0|y∈ξ)

[
1

β(t)

(
xt − α(t)x0

)
p(xt|x0)

]

p(xt|y ∈ ξ)
, (26)

∀ xt ∈ R
m, t ∈ (0, T ], ξ ∈ Y . As f(t) and g(t) are both continuous functions then α(t) and

β(t) are also continuous. It follows that (25) is continuous with respect to xt and t, as it is the
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sum of continuous functions and β(t)2 > 0 ∀ t ∈ (0, T ]. Thus, the Universal Approximation
Theorem (Cybenko, 1989; Hornik, 1991) holds and there exists a θ⋆ ∈ Θ such that ϵθ⋆(xt, t, ξ) =
ϵ⋆θ(xt, t, ξ) ∀ xt ∈ R

m, t ∈ (0, T ], ξ ∈ Y . Finally, by comparing (23) and (25) we observe that,

∇xt
log(p(xt|y ∈ ξ)) = −

1

β(t)
ϵθ⋆(xt, t, ξ),

which proves (18), and (19) follows from (26).

It is worth noting that Theorem M.3 unifies the score-model link between conditional and uncondi-
tional models. That is to say,

∇xt
log(p(xt)) = ∇xt

log(p(xt|y ∈ Ωy))

= −
1

β(t)
ϵθ⋆(xt, t,Ωy).
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