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Abstract

A growing line of work has investigated the
development of neural NLP models that can
produce rationales—subsets of input that can
explain their model predictions. In this paper,
we ask whether such rationale models can also
provide robustness to adversarial attacks in ad-
dition to their interpretable nature. Since these
models need to first generate rationales (“ratio-
nalizer”) before making predictions (“predic-
tor”), they have the potential to ignore noise
or adversarially added text by simply masking
it out of the generated rationale. To this end,
we systematically generate various types of
‘AddText’ attacks for both token and sentence-
level rationalization tasks and perform an ex-
tensive empirical evaluation of state-of-the-art
rationale models across five different tasks.
Our experiments reveal that the rationale mod-
els promise to improve robustness while they
struggle in certain scenarios—when the ratio-
nalizer is sensitive to position bias or lexical
choices of attack text. Further, leveraging hu-
man rationale as supervision does not always
translate to better performance. Our study
is a first step towards exploring the interplay
between interpretability and robustness in the
rationalize-then-predict framework.!

1 Introduction

Rationale models aim to introduce a degree of inter-
pretability into neural networks by implicitly bak-
ing in explanations for their decisions (Lei et al.,
2016; Bastings et al., 2019; Jain et al., 2020). These
models are carried out in a two-stage ‘rationalize-
then-predict’ framework, where the model first se-
lects a subset of the input as a rationale and then
makes its final prediction for the task solely us-
ing the rationale. A human can then inspect the
selected rationale to verify the model’s reasoning
over the most relevant parts of the input for the
prediction at hand.

!Code and data will be made available publicly.
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Figure 1: Top: an input text is processed by the full-
context model and the rationale model separately in a
beer review sentiment classification dataset. Both mod-
els make correct predictions. Bottom: when an attack
sentence “The tea looks horrible.” is inserted to the text,
the full-context model fails. The rationalizer success-
fully excludes the negative sentiment word “horrible”
from the selected rationales (yellow highlights) and the
predictor is hence not distracted by the attack.

While previous work has mostly focused on the
plausibility of extracted rationales and whether they
represent faithful explanations (DeYoung et al.,
2020), we ask the question of how rationale models
behave under adversarial attacks (i.e., do they still
provide plausible rationales?) and whether they can
help improve robustness (i.e., do they provide bet-
ter task performance?). Our motivation is that the
two-stage decision-making could help models ig-
nore noisy or adversarially added text within the in-
put. For example, Figure 1 shows a state-of-the-art
rationale model (Paranjape et al., 2020) smoothly
handles input with adversarially added text by se-
lectively masking it out during the rationalization
step. Factorizing the rationale prediction from the
task itself effectively ‘shields’ the predictor from
having to deal with adversarial inputs.

To answer these questions, we first generate ad-
versarial tests for a variety of popular NLP tasks.
We focus specifically on model-independent, ‘Ad-
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dText’ attacks (Jia and Liang, 2017), which aug-
ments input instances with noisy or adversarial text
at test time, and study how the attacks affect ratio-
nale models both in their prediction of rationales
and final answers. For diversity, we consider in-
serting the attack sentence at different positions
of context, as well as three types of attacks: ran-
dom sequences of words, arbitrary sentences from
Wikipedia, and adversarially-crafted sentences.

We then perform an extensive empirical eval-
uation of multiple state-of-the-art rationale mod-
els (Paranjape et al., 2020; Guerreiro and Martins,
2021), across five different tasks that span review
classification, fact verification, and question an-
swering. In addition to the attack’s impact on task
performance, we also assess rationale prediction
by defining metrics on gold rationale coverage and
attack capture rate. We then investigate the effect
of incorporating human rationales as supervision,
the importance of attack positions, and the lexical
choices of attack text. Finally, we also investigate
an idea of improving rationale prediction by adding
augmented pseudo-rationales during training.

Our key findings are the following:

1. Rationale models show promise in providing
robustness. Under our strongest type of attack,
rationale models in many cases achieving less
than 10% drop in task performance while full-
context models suffer more, ranging from 11%
t0 27%.

2. However, robustness of rationale models can
vary considerably with the choice of lexical
inputs for the attack and is quite sensitive to
the attack position.

3. Training models with explicit rationale super-
vision does not guarantee better robustness
to attacks. In fact, they accuracy drops are
higher by 4-10 points compared to rationale
models without supervision.

4. Performance under attacks is significantly im-
proved if the rationalizer can effectively mask
out the attack text. Based on this finding, we
propose a simple augmented-rationale train-
ing strategy and observe robustness improve-
ments of up to 4.9%.

Overall, our results indicate that while there is
promise in leveraging rationale models to improve
robustness, current models may not be sufficiently
equipped to do so. Furthermore, adversarial tests
may provide an alternative form of evaluating ra-
tionale models in addition to prevalent metrics that

measure F-1 scores using human rationales. We
hope our findings can inform the development of
better models and algorithms for rationale predic-
tions and instigate more research into the interplay
between interpretability and robustness.

2 Related Work

Rationalization There has been a surge of work
on explaining predictions of neural NLP systems,
from post-hoc explanation methods (Ribeiro et al.,
2016; Alvarez-Melis and Jaakkola, 2017), to an-
alyzing attention mechanisms (Jain and Wallace,
2019; Serrano and Smith, 2019). We focus on se-
lective rationalization (Lei et al., 2016), which gen-
erates a subset of inputs or highlights as “rationales”
such that the model can condition predictions on
them. Extractive rationales provide faithful expla-
nations by construction and are easier to assess
compared to human rationales. Recent develop-
ment has been focusing on improving joint training
of rationalizer and predictor components (Bastings
et al., 2019; Yu et al., 2019; Jain et al., 2020; Paran-
jape et al., 2020; Guerreiro and Martins, 2021), or
extensions to text matching (Swanson et al., 2020)
and sequence generation (Vafa et al., 2021). These
rationale models are mainly compared based on
predictive performance, as well as agreement with
human annotations (DeYoung et al., 2020). In this
work, we question how rationale models behave
under adversarial attacks and whether they can pro-
vide robustness benefits through rationalization.

Adversarial examples in NLP Adversarial ex-
amples have been designed to reveal the brittle-
ness of state-of-the-art NLP models. A flood of
research has been proposed to generate different ad-
versarial attacks (Jia and Liang, 2017; Iyyer et al.,
2018; Belinkov and Bisk, 2018; Ebrahimi et al.,
2018, inter alia), which can be broadly catego-
rized by types of input perturbations (e.g., sentence,
word or character-level attacks), and the access of
model information (e.g., black-box, white-box). In
this work, we focus on model-independent, 1abel-
preserving attacks, in which we insert a random
or an adversarially-crafted sentence into input ex-
amples (Jia and Liang, 2017). We hypothesize that
a good extractive rationale model is expected to
learn to ignore these distractor sentences and hence
achieve better performance under attacks.

Interpretability and robustness A key motiva-
tion of our work is to bridge the connection be-



tween interpretability and robustness, which we
believe is an important and under-explored theme.
Alvarez-Melis and Jaakkola (2018) argued that
robustness of explanations is a key desideratum
for interpretability. Noack et al. (2021) showed
promising results of image recognition models that
achieve better adversarial robustness when they are
trained to have more interpretable gradients. To the
best of our knowledge, we are the first to quantify
the performance of rationale models under textual
adversarial attacks and understand whether ratio-
nalization can inherently provide robustness.

3 Background

Neural rationale models output predictions through
a two-stage process: the first stage (“rationalizer’)
selects a subset of the input as a rationale, while the
second stage (“predictor”) produces the prediction
using only the rationale as input. Rationales can
broadly be any subset of the input, although we can
characterize them roughly into either token-level or
sentence-level rationales, which we will both inves-
tigate in this work. The task of predicting rationales
is usually framed as a binary classification problem
over each atomic unit depending on the type of ra-
tionales. The rationaler and the predictor are often
trained jointly using task supervision, with gradi-
ents back-propagated through both stages. Option-
ally, we can provide explicit rationale supervision,
if human annotations are available.

3.1 Formulation

Formally, let us assume a supervised classifica-
tion dataset D = {(z,y)}?, where each input
r = x1,%9,...,xT 1S a concatenation of 7T sen-
tences and y refers to the task label for each in-
stance. Each sentence x; = (xy1,%t2,..-Ttpn,)
contains n; tokens, and y is the task label. A ratio-
nale model consists of two main components: 1) a
rationalizer module z = R(x; @), which generates
a discrete mask z € {0, 1} such that z ® x selects
a subset from the input (L. = T for sentence-level
rationalization or L = the total number of tokens
for token-level rationales), and 2) a predictor mod-
ule § = C(z, z; ¢) that makes a prediction ¢ us-
ing the generated rationale z. The entire model
M (z) = C(R(x)) is trained end-to-end using the
standard cross-entropy loss. We describe detailed
training objectives in §5.

2We will use classification as a representative task, but

the rationale formulation can be easily extended to tasks with
other output spaces like span prediction.

3.2 Evaluation

Rationale models are traditionally evaluated along
two dimensions: a) their downstream task perfor-
mance, and b) the quality of generated rationales.
To evaluate rationale quality, prior work has used
metrics like token-level F1 or Intersection Over
Union (IOU) scores between the predicted ratio-
nale and a human annotated rationale (DeYoung
et al., 2020):
ou = P&
|z U 2*|

where z* is the human annotated gold rationales.

A good rationale model should not sacrifice task
performance, while generating rationales that rea-
sonably concur with human rationales, even though
metrics like F1 score may not be the most appro-
priate way to capture this as it is limited to only
capture plausibility (Jacovi and Goldberg, 2020).

4 Robustness Tests for Rationale Models
4.1 AddText Attacks

Our goal is to construct attacks that can test the ca-
pability of rationale models to ignore spurious parts
of the input. In this work, we focus on AddText,
label-preserving attacks Jia and Liang (2017), in
order to test whether rationale models are invari-
ant to the addition of extraneous information and
remain consistent with their predictions. We also
do not assume prior knowledge of the model when
creating the attacks—these are model-independent
attacks that can be used to test any rationale models.
Attacks are only added during test time and are not
available during model training.

Attack construction Formally, an AddText at-
tack A(x) modifies the input z by adding an attack
sentence T,4y, without changing the ground truth
label y. In other words, we create new perturbed
test instances (A(x),y) for the model to be eval-
uated on. While some prior work has considered
the addition of a few tokens to the input (Wallace
et al., 2019), we add complete sentences to each
input, similar to the attacks in Jia and Liang (2017).
This prevents unnatural modifications to the exist-
ing sentences in the original input  and also allows
us to test both token-level and sentence-level ratio-
nale models (§5.1). We experiment with adding
the attack sentence x,4y across various positions in
the input z, including the beginning, the end and a
random position in between.



Types of attacks We explore three different
types of attacks: (1) AddText-Rand: We simply
add a random sequence of tokens uniformly sam-
pled from the task vocabulary. This is a weak attack
that is easy for humans to spot and ignore since
it does not guarantee grammaticality or fluency.
(2) AddText-Wiki: We add an arbitrarily sampled
sentence from Wikipedia into the task input (e.g.
"Sonic the Hedgehog, designed for..."). This attack
is more grammatical than AddText-Rand, but still
adds text that is likely not relevant in the context
of the input z. (3) AddText-Adv: We add an ad-
versarially constructed sentence that has significant
lexical overlap with tokens in the input = while
ensuring the output label is unchanged. This type
of attack is inspired by prior attacks such as Ad-
dOneSent (Jia and Liang, 2017) and is the strongest
attack we consider since it is more grammatical,
fluent, and contextually relevant to the task. The
construction of this attack is also specific to each
task we consider, hence we provide examples listed
in Table 1 and the exact details in §5.3.

4.2 Robustness Evaluation

We measure the robustness of rationale models un-
der our attacks along two dimensions: task perfor-
mance, and generated rationales. The change in
task performance is simply computed as the differ-
ence between the average scores of the model on
the original vs perturbed test sets:

A:’; > f(M(z),y) - F(M(A(z)),y),

(z,y)€D

where f denotes a scoring function (F1 scores in
question answering and [(y = g) in text classifi-
cation). To measure and analyze the effect of the
attacks on rationale generation, we use two metrics:

Gold rationale F1 (GR) This is defined as the F1
score between the predicted rationale and a human-
annotated rationale, either computed at the token-
level or sentence-level. The token-level GR score
is equivalent to F1 scores reported in previous work
(Lei et al., 2016; DeYoung et al., 2020). A good ra-
tionale model should generate plausible rationales
and be not affected by the addition of attack text.

Attack capture rate (AR) We define AR as the
recall of the inserted attack text in the rationale
generated by the model:

1
AR = —
"o

z,y)~D

[Zaav N (2 © A(2))]

‘-xadv‘

)

where z,4y 18 the attack sentence added to each
instance (i.e., A(x) is the result of inserting x4y
into ), z ® A(x) is the predicted rationale. The
metric above applies on both token or sentence
level (|z,qv| = 1 for sentence-level rationalization
and number of tokens in the attack sentence for
token-level rationalization). This metric allows us
to measure how often a rationale model can ignore
the added attack text—a maximally robust rationale
model should have an AR of 0.

5 Models and Tasks

We investigate two different state-of-the-art selec-
tive rationalization approaches: 1) sampling-based
stochastic binary masks (Bastings et al., 2019;
Paranjape et al., 2020), and 2) constrained mask
inference using a factor graph (Guerreiro and Mar-
tins, 2021). We adapt these models, using two
separate BERT encoders for the rationalizer and
the predictor, and consider training scenarios with
and without explicit rationale supervision. We also
consider a full-context model as baseline. We pro-
vide model and training details in AppendixA.

5.1 Models without Rationale Supervision

Variational information bottleneck (VIB) The
variational information bottleneck model (VIB)
(Alemi et al., 2017; Paranjape et al., 2020) imposes
a discrete bottleneck objective to select a subset
Z from the input variable X, such that Z carries
minimal sufficient information about the label Y.
Specifically, VIB optimizes the following objective:

max (I(Y;2) — 1(Z; X)).
This objective naturally suits the rationalization
paradigm since the latent variable Z can be treated
as the inferred rationale. Since optimizing the
mutual information directly is computationally in-
tractable, it is common to optimize the lower bound
of the objective instead:

tvig(z,y) = z~p(@|x~0)

+ BKL[p(z | 2;0) || p()],

where ¢ denotes the parameters of the predictor
C, 0 denotes the parameters of the rationalizer
R, p(z) is a predefined prior distribution param-
eterized by a predetermined sparsity ratio 7, and
5 € R controls the strength of the regularization.
During inference, we simply take the rationale as
z = 1[s; € top-k(s)], where s € R” is the vector
of token or sentence-level logits.

[—logp(y | 2 © x; ¢)]



Dataset Query — Attack

Full Attacked Input

Label

Query: Jennifer Lopez was married.

Jennifer Lopez was married.

FEVER — Jason Bourne was unmarried.

Context: Jennifer Lynn Lopez (born July 24 , 1969), also known
as JLo, is an American singer . . .

Supports

... Jason Bourne was unmarried.

Query: Where did Super Bowl 50 take place?

Where did Super Bowl 50 take place?

SQuAD — The Champ Bowl 40 took place in Chicago.

at

Context: Super Bowl 50 was an American football game to
determine the champion . .. was played on February 7, 2016,

Levi’s Stadium

... The Champ Bowl1 40 took place in Chicago.

Positive appearance (no query)

Beer — The tea looks horrible. was

This beer poured a

copper reddish color—it

with an average head . .. The tea looks horrible. Positive

Table 1: AddText-Adv attack applied to the three datasets. The query (blue) are transformed into an attack (red).
The query together with the context forms the input. The attack is inserted to the context. We only show insertion
at the end, but the attack can be inserted at any position between sentences. A model needs to associate the query
and the evidence in the context (orange) and not distracted by the inserted attack to make the correct prediction.

Sparse structured text rationalization (SPEC-
TRA) This model (Guerreiro and Martins, 2021)
extracts a deterministic structured mask m by solv-
ing a constrained inference problem while optimiz-
ing the following objective:

lspecTRA (7, Y) = —logp(y | 2 © w3 ),

z = argmax (score(z’; s) — . HZ/HQ)’
2'e{0,1}L 2

where s € R” is the logit vector of tokens or sen-
tences, and a global score(-) function that incorpo-
rates all constraints in the predefined factor graph.
The factors can specify different logical constraints
on the discrete mask z, e.g a BUDGET factor that
enforces the size of the rationale as ), z; < B.
The entire computation is deterministic and allows
for back-propagation through the LP-SparseMAP
solver (Niculae and Martins, 2020). We use the
BUDGET factor in the global scoring function. To
control the sparsity at 7 (e.g., 7 = 0.4 for 40%
sparsity), we can choose B = L X .

Full-context model (FC) As a baseline, we also
consider a full-context model, which is a BERT-
based encoder (Devlin et al., 2019) with task spe-
cific final layers such as an MLP layer for classifi-
cation task or two MLPs for span prediction. The
model is trained with standard cross entropy loss
using the task supervision.

5.2 Models with Rationale Supervision

VIB with human rationales (VIB-sup) When
human annotated rationales z* are available, they
can be used to guide predicting the sampled masks

z by adding a loss term:

EVIB—SUp(«Tv y) = zwp(ﬂljkp-ﬁ) [ - logp(y ‘ zOw; (b)]

+ BKL[p(z | z;0) || p(2)]

+7 Y =2 logp(zt | x:0),
t

where 3,7 € R are hyperparameters. During in-
ference, the rationale module generates the mask
z the same why as the VIB model by picking the
top-k scored positions as the final hard mask. The
third loss term will encourage the model to predict
human annotated rationales, which is the ability we
expect a robust model should exhibit.

Full-context model with human rationales (FC-
sup) We also extend the FC model to leverage hu-
man annotated rationales supervision during train-
ing (FC-sup). We add a linear layer on top of the
sentence/token representation and obtain the logits
s € RL. The logits are passed through the sigmoid
function into mask probabilities. Essentially, it is
multi-task learning of rationale prediction and the
original task, shared with the same BERT encoder.

5.3 Tasks

We evaluate the models on several datasets that
cover a diverse set of aspects including 1) sentence-
level (FEVER, MultiRC, SQuAD) or token-level
(Beer, Hotel) rationalization task, 2) text classi-
fication, fact verification and extractive question
answering tasks (see examples in Table 1).

FEVER FEVER is a sentence-level binary classi-
fication fact verification dataset from the ERASER
benchmark (DeYoung et al., 2020). The input
contains a claim specifying a fact to verify and



a passage of multiple sentences supporting or re-
futing the claim. For the AddText-Adv attacks,
we add modified query text to the claims by re-
placing nouns and adjectives in the sentence with
antonyms from WordNet (Fellbaum, 1998) and ran-
domly swapping named entities with neighboring
ones in vector space with the same part-of-speech
tag, as determined by 100-dimensional GloVe vec-
tors (Pennington et al., 2014).

MultiRC MultiRC is a sentence-level multi-
choice question answering task that is reformatted
as binary classification where each answer choice
is concatenated with the question and the model
has to predict ‘yes/no’. For the AddText-Adv at-
tacks, we transform the question and the answer
separately using the same procedure we used for
FEVER. We then reword the modified question and
answer into a declarative sentence following con-
stituency rules defined by (Jia and Liang, 2017)
and insert it into the passage.

SQuAD SQuAD (Rajpurkar et al., 2016) is a pop-
ular extractive question answering dataset and we
use the AddOneSent attacks proposed in Adversar-
ial SQuAD (Jia and Liang, 2017). SQuAD does
not contain human rationales itself and we use the
sentence where the correct answer span appears in
as the ground truth rationale sentence. SQuAD is
the only span extraction task that we evaluate on.

Beer BeerAdvocate is a multi-aspect sentiment
analysis dataset (McAuley et al., 2012), modeled
as a token-level rationalization task. We use the
appearance aspect in out experiments. We convert
the scores into the binary labels following Chang
et al. (2020). Note that this task does not have a
query as in the previous tasks, we insert a sentence
with the template "{ SUBJECT} is {ADJ}" into
the review where the adjective expresses positivity
to a negative review and vice versa.

Hotel TripAdvisor Hotel Review is also a multi-
aspect sentiment analysis dataset (Wang et al.,
2010). We use the cleanliness aspect in our ex-
periments. We generate AddText-Adv attacks in
the same way as we did for the Beer dataset.

We report accuracy for all the datasets, except
for SQuAD that we report the F1 score between
the predicted span and the ground-truth span.

6 Results

(R1) Rationalization is a promising approach to
improving robustness. Figure 2 summarizes the
average scores on all the datasets for each model
under the three attacks we consider. We first ob-
serve that all models (including the non-rationale
FC and FC-sup) are less affected by AddText-Rand
and AddText-Wiki, with score drops of around 1-
2% only. However, the AddText-Adv attack leads
to significant drops in performance for all models,
as high as 46% for SPECTRA on Hotel review.
We break out the AddText-Adv results in a more
fine-grained manner in Table 2. Our main observa-
tion is that the rationale models (VIB, SPECTRA,
VIB-sup) are generally more robust than their non-
rationale counterparts (FC, FC-sup) on four out of
the five tasks, and in some cases dramatically better
—for instance, on Beer reviews, SPECTRA only suf-
fers a 5.7% drop (95.4 — 89.7) compared to FC’s
huge 34.3% drop (93.8 — 59.5) under attack. The
one exception seems to be on the Hotel reviews
dataset, where both the VIB and SPECTRA mod-
els actually perform worse under attack compared
to FC. We analyze this phenomena and provide a
potential reason below.

(R2) Robustness is correlated with high GR and
low AR. We report the Gold Rationale F1 (GR)
and Attack Capture Rate (AR) for all models in
Table 3. When attacks are added, GR consistently
decreases for all tasks. However, AR ranges widely
across datasets. The unsupervised rationale models,
VIB and SPECTRA, have lower AR compared to
FC-sup across all tasks, which at least partially
explains their superior robustness to AddText-Adv
attacks. VIB and SPECTRA also have lower drops
in GR under attack compared to FC-sup.

Next, we investigate the poor performance of
VIB and SPECTRA on Hotel reviews by analyz-
ing the choice of words in the attack. Using the
template “My car is {ADJ}.”, we measure the per-
centage of times the rationalizer module selects
the adjective as part of its rationale. When the ad-
jectives are “dirty” and “clean”, the VIB model
selects them a massive 98.5% of the time. For “old”
and “new”, VIB still selects them 50% of the time.
On the other hand, the VIB model trained on Beer
reviews with attack template “The tea is {ADJ}.”
only selects the adjectives 20.5% of the time (when
the adjectives are “horrible” and “fabulous”). This
shows that the bad performance of the rationale
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Figure 2: Original performance and the three type of attacks AddText-Rand, AddText-Wiki, and AddText-Adv
evaluated on five datasets and all of the models. Left-most shows the original performance.

FEVER MultiRC SQuAD Beer Hotel
Orig. Attack A ] Orig. Attack A | Orig. Attack A ] Orig. Attack A ] Orig. Attack A
FC 90.7 779 128 707 630 7.7 872 59.1 281 938 595 343 995 793 20.2
VIB 878 826 52 654 636 18 771 565 206 938 880 58 940 593 348
SPECTRA 840 765 76 638 633 05 655 455 200 954 897 57 945 513 432
FC-sup 919 771 148 715 640 75 870 573 297 - - - - - -
VIB-sup 902 814 88 687 637 50 865 565 300 - - - - - -

Table 2: Original versus attacked task performance on the five selected datasets for the AddText-Adv attack. We
report accuracy for all datasets except for SQuAD, which we report F1 score. The attacked performance is the
average of inserting the attack at the start and at the end of the text input.

models on Hotel reviews is down to their inability
to ignore task-related adjectives in the attack text,
hinting that the lexical choices made in construct-
ing the attack can significantly impact robustness.

FEVER SQUAD
95
90 80
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70 =2 ; ; ]
First Random Last Orig. First Random Last Orig.
H VIB VIB-sup W FC

Figure 3: Accuracy when attack is inserted at differ-
ent sentence positions, highlighting the positional bias
picked up by the models.

(R3) Explicit rationale supervision does not
help robustness. Perhaps surprisingly, adding
explicit rationale supervision does not help improve
robustness (Table 2). Across FEVER, MultiRC
and SQuAD, VIB-sup consistently has a higher A
between its scores on the original and perturbed
instances. We observe that while models trained
with human rationales generally do predict gold
rationale more often (higher GR), they also capture

a much higher AR across the board. On MultiRC,
for instance, the VIB-sup model outperforms VIB
in task performance because of its higher GR (36.1
versus 15.8). However, when under attack, VIB-
sup’s high 58.7 AR, hindering the performance
compared to VIB, which has a smaller 35.8 AR.
This highlights an overlooked aspect of prior work
only considering metrics like IOU (which is similar
in spirit to GR) to assess rationale models.

(R4) Rationale models are sensitive to attack
positions. We further analyze the effect of attack
text on rationale models by varying the attack po-
sition. Figure 3 displays the performance of VIB,
VIB-sup and FC on FEVER and SQuAD when
the attack sentence is inserted into the first, last or
a random position of the original text input. We
observe performance drops on both datasets when
inserting the attack sentence at the beginning of
the context text as opposed to the end. For ex-
ample, when the attack sentence is inserted at the
beginning, the VIB model drops from 77.1 F1 to
40.9 F1, but it only drops from 77.1 F1 to 72.1 F1
for a last position attack. This hints that rationale
models may implicitly be picking up positional bi-
ases from the dataset, similar to their non-rationale
counterparts (Ko et al., 2020).

(RS) Extracting good rationales and avoiding
attack text is crucial to robustness. We exam-



FEVER MultiRC SQUAD Beer Hotel
GR? AR | GR* AR | GR* AR | GR 1 AR | GR 1 AR |
VIB 3695303 594 158139 358 862849 637 205181 119 235226 184
SPECTRA 269 —215 406 119118 226 6715608 526 28.6—278 152 195183 316
FC-sup 5155455 659 500427 557 99.6—988 97.8 - - - -
VIB-sup  50.6 —»443 670 36.1 227 587 995978 972 - - - -

Table 3: Gold Rationale F1 (GR) (original — perturbed input) and Attack Capture Rate (AR) for the AddText-Adv
attack on the five tasks. The reported number is the average of inserting the attack at the start and at the end of the

text input.
VIB VIB-sup

Accuracy (%) Accuracy (%)
Original 87.8 (100.0) 90.2 (100.0)
Overall Attack 83.0 (100.0) 84.9 (100.0)
Gold v Attack 83.3 (34.2) 85.5 (76.7)
Gold v Attack X 91.1 (31.8) 924 (11.3)
Gold X Attack 73.6 (22.0) 74.1 (11.5)
Gold X Attack X 77.7 (12.0) 68.0 (0.4)

Table 4: Accuracy breakdown of the VIB model on the
FEVER dataset. The attack is inserted at the beginning
of the passage. v indicates the Gold or Attack sentence
is selected as rationale and X otherwise. We show the
percentage of examples in parenthesis.

FEVER MultiRC

Original Attacked A | Original Attacked A |

FC-sup 91.9 77.1 148 71.5 640 7.5
+ ART 91.8 78.7 13.1 69.3 648 4.5
VIB 87.8 82.6 4.2 65.4 63.6 0.7
+ ART 87.6 87.0 0.6 65.8 655 03
VIB-sup 90.2 81.4 8.8 68.7 63.7 5.0
+ ART 90.0 86.1 3.9 70.3 657 4.6

Table 5: Task performance of the original models ver-
sus models with Augmented Rationale Training (ART).

ine where the rationale model gains robustness by
inspecting the generated rationales. Table 4 shows
the accuracy breakdown under attack for VIB and
VIB-sup models. Intuitively, both models perform
best when the gold rationale is selected and the
attack is avoided, peaking at 91.1 for VIB and
92.4 for VIB-sup. Models perform much worse
when the gold rationale is omitted and the attack
is included (73.6 for VIB and 74.1 for VIB-sup),
highlighting the importance of choosing good and
skipping the bad as rationales.

(R6) Augmented rationale training can im-
prove robustness. Based on our findings from
Table 4, we set out to improve the robustness
of rationale models through augmented rationale
training (ART). We insert two random sentences

sampled from Wikipedia (the wikitext-103
dataset) into the input passage at random positions
and set their pseudo rationale labels zP*Ud° — 1
and all other sentences to z = 0. We then add an
auxiliary negative binary cross entropy loss to train
the model to not predict the pseudo rationale. This
encourages the model to ignore spurious text that is
unrelated to the task. Table 5 shows that the models
trained with ART improve robustness for FC-sup,
VIB and VIB-sup in both FEVER and MultiRC.

7 Conclusion

In this work, we investigate whether neural ratio-
nale models are robust to adversarial attacks. We
construct a variety of AddText attacks across five
different tasks and evaluate state-of-the-art ratio-
nale models. We find that while these models show
some promise at being more robust, they are also
quite sensitive to factors like the attack position
or word choices in the attack text. Surprisingly,
explicit rationale supervision does not improve ro-
bustness nor prevent the model from selecting the
attack text as part of the extracted rationale.

Our findings raise two key points. First, state-
of-the-art rationale models, despite their promise
for enabling interpretability and robustness, may
not always be generating optimal rationales and
may yet be prone to spurious text in the dataset.
Second, metrics like IOU, frequently used in prior
work (DeYoung et al., 2020; Paranjape et al., 2020),
may not be ideal ways of evaluating the generated
rationales since they do not test how crucial the
rationale is to the model’s decision making. In con-
trast, adversarial tests may provide a more explicit
form of evaluating rationale models since they re-
quire models to ignore the spurious and irrelevant
text. We hope our findings can inform the develop-
ment of better models and algorithms for rationale
predictions and initiate more research into the in-
terplay between interpretability and robustness.
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A Appendix

A.1 Implementation Details

We use two BERT-base-uncased (Wolf et al.,
2020) as the rationalizer and the predictor compo-
nents for all the models and one BERT-base for
the Full Context (FC) baseline. The rationales for
FEVER, MultiRC, SQuAD are extracted at sen-
tence level, and Beer and Hotel are at token-level.

1 1,2
BERT(.’L‘) = (h[CLS] 7h07 h07 teey hgo7 h[SEP] )
1 1,2 1 2
hi,hi, ..., b . hp h o hZ}T, h[SEP]),

where the input text is formatted as query with
sentence index 0 and context with sentence index
1 to T'. For sentiment tasks, the 0-th sentence and
the first [SEP] token are omitted. For sentence-
level representations, we concatenate the start and
end vectors of each sentence. For instance, the
t-th sentence representation is h, = [hY; h?(t)].
For token-level representations, we use the hidden
vectors directly. The representations are passed to a
linear layer {w, b} to obtain logit for each sentence
S = WTht + b.

Training Both the rationalizer and the predic-
tor in the rationale models are initialized with pre-
trained BERT (Devlin et al., 2019). We predeter-
mine rationale sparsity before fine-tuning based on
the average rationale length in the development set
following previous work (Paranjape et al., 2020;
Guerreiro and Martins, 2021). We set m = 0.4
for FEVER, m = 0.25 for MultiRC, m = 0.7 for
SQuAD, m = 0.1 for Beer, and m = 0.15 for Hotel.
We select the model parameters based on the high-
est fine-tuned task performance on the development
set.

Discrete VIB The sentence or token level logits
s € RE parameterize a relaxed Bernoulli distri-
bution p(z; | ) = RelaxedBernoulli(s) (also
known as the Gumbel distribution (Jang et al.,
2017)), where z; € {0, 1} is the binary mask for
sentence ¢. The relaxed Bernoulli distribution also
allows for sampling a soft mask z; = a(log%ﬂ’) €
(0, 1), where g is the sampled Gumbel noise. The
soft masks z* = (27, 23, ..., 27) are sampled inde-
pendently to mask the input sentences such that the
latent z = m* ® x for training. During inference,
we take z; = L[z} € top-k(z*)] and z®x is passed
to the predictor during inference. Here we specify
the hyperparameter 7 to control the sparsity of the
rationales.



