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Abstract
A growing line of work has investigated the001
development of neural NLP models that can002
produce rationales—subsets of input that can003
explain their model predictions. In this paper,004
we ask whether such rationale models can also005
provide robustness to adversarial attacks in ad-006
dition to their interpretable nature. Since these007
models need to first generate rationales (“ratio-008
nalizer”) before making predictions (“predic-009
tor”), they have the potential to ignore noise010
or adversarially added text by simply masking011
it out of the generated rationale. To this end,012
we systematically generate various types of013
‘AddText’ attacks for both token and sentence-014
level rationalization tasks and perform an ex-015
tensive empirical evaluation of state-of-the-art016
rationale models across five different tasks.017
Our experiments reveal that the rationale mod-018
els promise to improve robustness while they019
struggle in certain scenarios—when the ratio-020
nalizer is sensitive to position bias or lexical021
choices of attack text. Further, leveraging hu-022
man rationale as supervision does not always023
translate to better performance. Our study024
is a first step towards exploring the interplay025
between interpretability and robustness in the026
rationalize-then-predict framework.1027

1 Introduction028

Rationale models aim to introduce a degree of inter-029

pretability into neural networks by implicitly bak-030

ing in explanations for their decisions (Lei et al.,031

2016; Bastings et al., 2019; Jain et al., 2020). These032

models are carried out in a two-stage ‘rationalize-033

then-predict’ framework, where the model first se-034

lects a subset of the input as a rationale and then035

makes its final prediction for the task solely us-036

ing the rationale. A human can then inspect the037

selected rationale to verify the model’s reasoning038

over the most relevant parts of the input for the039

prediction at hand.040

1Code and data will be made available publicly.
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Figure 1: Top: an input text is processed by the full-
context model and the rationale model separately in a
beer review sentiment classification dataset. Both mod-
els make correct predictions. Bottom: when an attack
sentence “The tea looks horrible.” is inserted to the text,
the full-context model fails. The rationalizer success-
fully excludes the negative sentiment word “horrible”
from the selected rationales (yellow highlights) and the
predictor is hence not distracted by the attack.

While previous work has mostly focused on the 041

plausibility of extracted rationales and whether they 042

represent faithful explanations (DeYoung et al., 043

2020), we ask the question of how rationale models 044

behave under adversarial attacks (i.e., do they still 045

provide plausible rationales?) and whether they can 046

help improve robustness (i.e., do they provide bet- 047

ter task performance?). Our motivation is that the 048

two-stage decision-making could help models ig- 049

nore noisy or adversarially added text within the in- 050

put. For example, Figure 1 shows a state-of-the-art 051

rationale model (Paranjape et al., 2020) smoothly 052

handles input with adversarially added text by se- 053

lectively masking it out during the rationalization 054

step. Factorizing the rationale prediction from the 055

task itself effectively ‘shields’ the predictor from 056

having to deal with adversarial inputs. 057

To answer these questions, we first generate ad- 058

versarial tests for a variety of popular NLP tasks. 059

We focus specifically on model-independent, ‘Ad- 060
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dText’ attacks (Jia and Liang, 2017), which aug-061

ments input instances with noisy or adversarial text062

at test time, and study how the attacks affect ratio-063

nale models both in their prediction of rationales064

and final answers. For diversity, we consider in-065

serting the attack sentence at different positions066

of context, as well as three types of attacks: ran-067

dom sequences of words, arbitrary sentences from068

Wikipedia, and adversarially-crafted sentences.069

We then perform an extensive empirical eval-070

uation of multiple state-of-the-art rationale mod-071

els (Paranjape et al., 2020; Guerreiro and Martins,072

2021), across five different tasks that span review073

classification, fact verification, and question an-074

swering. In addition to the attack’s impact on task075

performance, we also assess rationale prediction076

by defining metrics on gold rationale coverage and077

attack capture rate. We then investigate the effect078

of incorporating human rationales as supervision,079

the importance of attack positions, and the lexical080

choices of attack text. Finally, we also investigate081

an idea of improving rationale prediction by adding082

augmented pseudo-rationales during training.083

Our key findings are the following:084

1. Rationale models show promise in providing085

robustness. Under our strongest type of attack,086

rationale models in many cases achieving less087

than 10% drop in task performance while full-088

context models suffer more, ranging from 11%089

to 27%.090

2. However, robustness of rationale models can091

vary considerably with the choice of lexical092

inputs for the attack and is quite sensitive to093

the attack position.094

3. Training models with explicit rationale super-095

vision does not guarantee better robustness096

to attacks. In fact, they accuracy drops are097

higher by 4-10 points compared to rationale098

models without supervision.099

4. Performance under attacks is significantly im-100

proved if the rationalizer can effectively mask101

out the attack text. Based on this finding, we102

propose a simple augmented-rationale train-103

ing strategy and observe robustness improve-104

ments of up to 4.9%.105

Overall, our results indicate that while there is106

promise in leveraging rationale models to improve107

robustness, current models may not be sufficiently108

equipped to do so. Furthermore, adversarial tests109

may provide an alternative form of evaluating ra-110

tionale models in addition to prevalent metrics that111

measure F-1 scores using human rationales. We 112

hope our findings can inform the development of 113

better models and algorithms for rationale predic- 114

tions and instigate more research into the interplay 115

between interpretability and robustness. 116

2 Related Work 117

Rationalization There has been a surge of work 118

on explaining predictions of neural NLP systems, 119

from post-hoc explanation methods (Ribeiro et al., 120

2016; Alvarez-Melis and Jaakkola, 2017), to an- 121

alyzing attention mechanisms (Jain and Wallace, 122

2019; Serrano and Smith, 2019). We focus on se- 123

lective rationalization (Lei et al., 2016), which gen- 124

erates a subset of inputs or highlights as “rationales” 125

such that the model can condition predictions on 126

them. Extractive rationales provide faithful expla- 127

nations by construction and are easier to assess 128

compared to human rationales. Recent develop- 129

ment has been focusing on improving joint training 130

of rationalizer and predictor components (Bastings 131

et al., 2019; Yu et al., 2019; Jain et al., 2020; Paran- 132

jape et al., 2020; Guerreiro and Martins, 2021), or 133

extensions to text matching (Swanson et al., 2020) 134

and sequence generation (Vafa et al., 2021). These 135

rationale models are mainly compared based on 136

predictive performance, as well as agreement with 137

human annotations (DeYoung et al., 2020). In this 138

work, we question how rationale models behave 139

under adversarial attacks and whether they can pro- 140

vide robustness benefits through rationalization. 141

Adversarial examples in NLP Adversarial ex- 142

amples have been designed to reveal the brittle- 143

ness of state-of-the-art NLP models. A flood of 144

research has been proposed to generate different ad- 145

versarial attacks (Jia and Liang, 2017; Iyyer et al., 146

2018; Belinkov and Bisk, 2018; Ebrahimi et al., 147

2018, inter alia), which can be broadly catego- 148

rized by types of input perturbations (e.g., sentence, 149

word or character-level attacks), and the access of 150

model information (e.g., black-box, white-box). In 151

this work, we focus on model-independent, label- 152

preserving attacks, in which we insert a random 153

or an adversarially-crafted sentence into input ex- 154

amples (Jia and Liang, 2017). We hypothesize that 155

a good extractive rationale model is expected to 156

learn to ignore these distractor sentences and hence 157

achieve better performance under attacks. 158

Interpretability and robustness A key motiva- 159

tion of our work is to bridge the connection be- 160
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tween interpretability and robustness, which we161

believe is an important and under-explored theme.162

Alvarez-Melis and Jaakkola (2018) argued that163

robustness of explanations is a key desideratum164

for interpretability. Noack et al. (2021) showed165

promising results of image recognition models that166

achieve better adversarial robustness when they are167

trained to have more interpretable gradients. To the168

best of our knowledge, we are the first to quantify169

the performance of rationale models under textual170

adversarial attacks and understand whether ratio-171

nalization can inherently provide robustness.172

3 Background173

Neural rationale models output predictions through174

a two-stage process: the first stage (“rationalizer”)175

selects a subset of the input as a rationale, while the176

second stage (“predictor”) produces the prediction177

using only the rationale as input. Rationales can178

broadly be any subset of the input, although we can179

characterize them roughly into either token-level or180

sentence-level rationales, which we will both inves-181

tigate in this work. The task of predicting rationales182

is usually framed as a binary classification problem183

over each atomic unit depending on the type of ra-184

tionales. The rationaler and the predictor are often185

trained jointly using task supervision, with gradi-186

ents back-propagated through both stages. Option-187

ally, we can provide explicit rationale supervision,188

if human annotations are available.189

3.1 Formulation190

Formally, let us assume a supervised classifica-191

tion dataset D = {(x, y)}2, where each input192

x = x1, x2, ..., xT is a concatenation of T sen-193

tences and y refers to the task label for each in-194

stance. Each sentence xt = (xt,1, xt,2, ...xt,nt)195

contains nt tokens, and y is the task label. A ratio-196

nale model consists of two main components: 1) a197

rationalizer module z = R(x; θ), which generates198

a discrete mask z ∈ {0, 1}L such that z�x selects199

a subset from the input (L = T for sentence-level200

rationalization or L = the total number of tokens201

for token-level rationales), and 2) a predictor mod-202

ule ŷ = C(x, z;φ) that makes a prediction ŷ us-203

ing the generated rationale z. The entire model204

M(x) = C(R(x)) is trained end-to-end using the205

standard cross-entropy loss. We describe detailed206

training objectives in §5.207

2We will use classification as a representative task, but
the rationale formulation can be easily extended to tasks with
other output spaces like span prediction.

3.2 Evaluation 208

Rationale models are traditionally evaluated along 209

two dimensions: a) their downstream task perfor- 210

mance, and b) the quality of generated rationales. 211

To evaluate rationale quality, prior work has used 212

metrics like token-level F1 or Intersection Over 213

Union (IOU) scores between the predicted ratio- 214

nale and a human annotated rationale (DeYoung 215

et al., 2020): 216

IOU =
|z ∩ z∗|
|z ∪ z∗|

, 217

where z∗ is the human annotated gold rationales. 218

A good rationale model should not sacrifice task 219

performance, while generating rationales that rea- 220

sonably concur with human rationales, even though 221

metrics like F1 score may not be the most appro- 222

priate way to capture this as it is limited to only 223

capture plausibility (Jacovi and Goldberg, 2020). 224

4 Robustness Tests for Rationale Models 225

4.1 AddText Attacks 226

Our goal is to construct attacks that can test the ca- 227

pability of rationale models to ignore spurious parts 228

of the input. In this work, we focus on AddText, 229

label-preserving attacks Jia and Liang (2017), in 230

order to test whether rationale models are invari- 231

ant to the addition of extraneous information and 232

remain consistent with their predictions. We also 233

do not assume prior knowledge of the model when 234

creating the attacks—these are model-independent 235

attacks that can be used to test any rationale models. 236

Attacks are only added during test time and are not 237

available during model training. 238

Attack construction Formally, an AddText at- 239

tack A(x) modifies the input x by adding an attack 240

sentence xadv, without changing the ground truth 241

label y. In other words, we create new perturbed 242

test instances (A(x), y) for the model to be eval- 243

uated on. While some prior work has considered 244

the addition of a few tokens to the input (Wallace 245

et al., 2019), we add complete sentences to each 246

input, similar to the attacks in Jia and Liang (2017). 247

This prevents unnatural modifications to the exist- 248

ing sentences in the original input x and also allows 249

us to test both token-level and sentence-level ratio- 250

nale models (§5.1). We experiment with adding 251

the attack sentence xadv across various positions in 252

the input x, including the beginning, the end and a 253

random position in between. 254
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Types of attacks We explore three different255

types of attacks: (1) AddText-Rand: We simply256

add a random sequence of tokens uniformly sam-257

pled from the task vocabulary. This is a weak attack258

that is easy for humans to spot and ignore since259

it does not guarantee grammaticality or fluency.260

(2) AddText-Wiki: We add an arbitrarily sampled261

sentence from Wikipedia into the task input (e.g.262

"Sonic the Hedgehog, designed for..."). This attack263

is more grammatical than AddText-Rand, but still264

adds text that is likely not relevant in the context265

of the input x. (3) AddText-Adv: We add an ad-266

versarially constructed sentence that has significant267

lexical overlap with tokens in the input x while268

ensuring the output label is unchanged. This type269

of attack is inspired by prior attacks such as Ad-270

dOneSent (Jia and Liang, 2017) and is the strongest271

attack we consider since it is more grammatical,272

fluent, and contextually relevant to the task. The273

construction of this attack is also specific to each274

task we consider, hence we provide examples listed275

in Table 1 and the exact details in §5.3.276

4.2 Robustness Evaluation277

We measure the robustness of rationale models un-278

der our attacks along two dimensions: task perfor-279

mance, and generated rationales. The change in280

task performance is simply computed as the differ-281

ence between the average scores of the model on282

the original vs perturbed test sets:283

∆ =
1

|D|
∑

(x,y)∈D

f(M(x), y)− f(M(A(x)), y),284

where f denotes a scoring function (F1 scores in285

question answering and I(y = ŷ) in text classifi-286

cation). To measure and analyze the effect of the287

attacks on rationale generation, we use two metrics:288

Gold rationale F1 (GR) This is defined as the F1289

score between the predicted rationale and a human-290

annotated rationale, either computed at the token-291

level or sentence-level. The token-level GR score292

is equivalent to F1 scores reported in previous work293

(Lei et al., 2016; DeYoung et al., 2020). A good ra-294

tionale model should generate plausible rationales295

and be not affected by the addition of attack text.296

Attack capture rate (AR) We define AR as the297

recall of the inserted attack text in the rationale298

generated by the model:299

AR =
1

|D|
∑

(x,y)∼D

|xadv ∩ (z �A(x))|
|xadv|

,300

where xadv is the attack sentence added to each 301

instance (i.e., A(x) is the result of inserting xadv 302

into x), z � A(x) is the predicted rationale. The 303

metric above applies on both token or sentence 304

level (|xadv| = 1 for sentence-level rationalization 305

and number of tokens in the attack sentence for 306

token-level rationalization). This metric allows us 307

to measure how often a rationale model can ignore 308

the added attack text—a maximally robust rationale 309

model should have an AR of 0. 310

5 Models and Tasks 311

We investigate two different state-of-the-art selec- 312

tive rationalization approaches: 1) sampling-based 313

stochastic binary masks (Bastings et al., 2019; 314

Paranjape et al., 2020), and 2) constrained mask 315

inference using a factor graph (Guerreiro and Mar- 316

tins, 2021). We adapt these models, using two 317

separate BERT encoders for the rationalizer and 318

the predictor, and consider training scenarios with 319

and without explicit rationale supervision. We also 320

consider a full-context model as baseline. We pro- 321

vide model and training details in AppendixA. 322

5.1 Models without Rationale Supervision 323

Variational information bottleneck (VIB) The 324

variational information bottleneck model (VIB) 325

(Alemi et al., 2017; Paranjape et al., 2020) imposes 326

a discrete bottleneck objective to select a subset 327

Z from the input variable X , such that Z carries 328

minimal sufficient information about the label Y . 329

Specifically, VIB optimizes the following objective: 330

331

max
(
I(Y ;Z)− I(Z;X)

)
. 332

This objective naturally suits the rationalization 333

paradigm since the latent variable Z can be treated 334

as the inferred rationale. Since optimizing the 335

mutual information directly is computationally in- 336

tractable, it is common to optimize the lower bound 337

of the objective instead: 338

`VIB(x, y) = E
z∼p(z|x;θ)

[
− log p(y | z � x;φ)

]
+ βKL

[
p(z | x; θ) || p(z)

]
,

339

where φ denotes the parameters of the predictor 340

C, θ denotes the parameters of the rationalizer 341

R, p(z) is a predefined prior distribution param- 342

eterized by a predetermined sparsity ratio π, and 343

β ∈ R controls the strength of the regularization. 344

During inference, we simply take the rationale as 345

zt = 1[st ∈ top-k(s)], where s ∈ RL is the vector 346

of token or sentence-level logits. 347
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Dataset Query→ Attack Full Attacked Input Label

FEVER

Query: Jennifer Lopez was married.

Supports
Jennifer Lopez was married. Context: Jennifer Lynn Lopez (born July 24 , 1969), also known
→ Jason Bourne was unmarried. as JLo, is an American singer . . . She subsequently married

longtime friend Marc Anthony . . . Jason Bourne was unmarried.

SQuAD

Query: Where did Super Bowl 50 take place?

Levi’s Stadium
Where did Super Bowl 50 take place? Context: Super Bowl 50 was an American football game to
→ The Champ Bowl 40 took place in Chicago. determine the champion . . . was played on February 7, 2016,

at Levi’s Stadium . . . The Champ Bowl 40 took place in Chicago.

Beer
Positive appearance (no query) This beer poured a very appealing copper reddish color—it

Positive→ The tea looks horrible. was very clear with an average head . . . The tea looks horrible.

Table 1: AddText-Adv attack applied to the three datasets. The query (blue) are transformed into an attack (red).
The query together with the context forms the input. The attack is inserted to the context. We only show insertion
at the end, but the attack can be inserted at any position between sentences. A model needs to associate the query
and the evidence in the context (orange) and not distracted by the inserted attack to make the correct prediction.

Sparse structured text rationalization (SPEC-348

TRA) This model (Guerreiro and Martins, 2021)349

extracts a deterministic structured mask m by solv-350

ing a constrained inference problem while optimiz-351

ing the following objective:352

`SPECTRA(x, y) = − log p(y | z � x;φ),

z = argmax
z′∈{0,1}L

(score(z′; s)− 1

2

∥∥z′∥∥2),353

where s ∈ RL is the logit vector of tokens or sen-354

tences, and a global score(·) function that incorpo-355

rates all constraints in the predefined factor graph.356

The factors can specify different logical constraints357

on the discrete mask z, e.g a BUDGET factor that358

enforces the size of the rationale as
∑

t zt ≤ B.359

The entire computation is deterministic and allows360

for back-propagation through the LP-SparseMAP361

solver (Niculae and Martins, 2020). We use the362

BUDGET factor in the global scoring function. To363

control the sparsity at π (e.g., π = 0.4 for 40%364

sparsity), we can choose B = L× π.365

Full-context model (FC) As a baseline, we also366

consider a full-context model, which is a BERT-367

based encoder (Devlin et al., 2019) with task spe-368

cific final layers such as an MLP layer for classifi-369

cation task or two MLPs for span prediction. The370

model is trained with standard cross entropy loss371

using the task supervision.372

5.2 Models with Rationale Supervision373

VIB with human rationales (VIB-sup) When374

human annotated rationales z∗ are available, they375

can be used to guide predicting the sampled masks376

z by adding a loss term: 377

`VIB-sup(x, y) = E
z∼p(z|x;θ)

[
− log p(y | z � x;φ)

]
+ βKL

[
p(z | x; θ) || p(z)

]
+ γ

∑
t

−z∗t log p(zt | x; θ),

378

where β, γ ∈ R are hyperparameters. During in- 379

ference, the rationale module generates the mask 380

z the same why as the VIB model by picking the 381

top-k scored positions as the final hard mask. The 382

third loss term will encourage the model to predict 383

human annotated rationales, which is the ability we 384

expect a robust model should exhibit. 385

Full-context model with human rationales (FC- 386

sup) We also extend the FC model to leverage hu- 387

man annotated rationales supervision during train- 388

ing (FC-sup). We add a linear layer on top of the 389

sentence/token representation and obtain the logits 390

s ∈ RL. The logits are passed through the sigmoid 391

function into mask probabilities. Essentially, it is 392

multi-task learning of rationale prediction and the 393

original task, shared with the same BERT encoder. 394

5.3 Tasks 395

We evaluate the models on several datasets that 396

cover a diverse set of aspects including 1) sentence- 397

level (FEVER, MultiRC, SQuAD) or token-level 398

(Beer, Hotel) rationalization task, 2) text classi- 399

fication, fact verification and extractive question 400

answering tasks (see examples in Table 1). 401

FEVER FEVER is a sentence-level binary classi- 402

fication fact verification dataset from the ERASER 403

benchmark (DeYoung et al., 2020). The input 404

contains a claim specifying a fact to verify and 405
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a passage of multiple sentences supporting or re-406

futing the claim. For the AddText-Adv attacks,407

we add modified query text to the claims by re-408

placing nouns and adjectives in the sentence with409

antonyms from WordNet (Fellbaum, 1998) and ran-410

domly swapping named entities with neighboring411

ones in vector space with the same part-of-speech412

tag, as determined by 100-dimensional GloVe vec-413

tors (Pennington et al., 2014).414

MultiRC MultiRC is a sentence-level multi-415

choice question answering task that is reformatted416

as binary classification where each answer choice417

is concatenated with the question and the model418

has to predict ‘yes/no’. For the AddText-Adv at-419

tacks, we transform the question and the answer420

separately using the same procedure we used for421

FEVER. We then reword the modified question and422

answer into a declarative sentence following con-423

stituency rules defined by (Jia and Liang, 2017)424

and insert it into the passage.425

SQuAD SQuAD (Rajpurkar et al., 2016) is a pop-426

ular extractive question answering dataset and we427

use the AddOneSent attacks proposed in Adversar-428

ial SQuAD (Jia and Liang, 2017). SQuAD does429

not contain human rationales itself and we use the430

sentence where the correct answer span appears in431

as the ground truth rationale sentence. SQuAD is432

the only span extraction task that we evaluate on.433

Beer BeerAdvocate is a multi-aspect sentiment434

analysis dataset (McAuley et al., 2012), modeled435

as a token-level rationalization task. We use the436

appearance aspect in out experiments. We convert437

the scores into the binary labels following Chang438

et al. (2020). Note that this task does not have a439

query as in the previous tasks, we insert a sentence440

with the template "{SUBJECT} is {ADJ}" into441

the review where the adjective expresses positivity442

to a negative review and vice versa.443

Hotel TripAdvisor Hotel Review is also a multi-444

aspect sentiment analysis dataset (Wang et al.,445

2010). We use the cleanliness aspect in our ex-446

periments. We generate AddText-Adv attacks in447

the same way as we did for the Beer dataset.448

We report accuracy for all the datasets, except449

for SQuAD that we report the F1 score between450

the predicted span and the ground-truth span.451

6 Results 452

(R1) Rationalization is a promising approach to 453

improving robustness. Figure 2 summarizes the 454

average scores on all the datasets for each model 455

under the three attacks we consider. We first ob- 456

serve that all models (including the non-rationale 457

FC and FC-sup) are less affected by AddText-Rand 458

and AddText-Wiki, with score drops of around 1- 459

2% only. However, the AddText-Adv attack leads 460

to significant drops in performance for all models, 461

as high as 46% for SPECTRA on Hotel review. 462

We break out the AddText-Adv results in a more 463

fine-grained manner in Table 2. Our main observa- 464

tion is that the rationale models (VIB, SPECTRA, 465

VIB-sup) are generally more robust than their non- 466

rationale counterparts (FC, FC-sup) on four out of 467

the five tasks, and in some cases dramatically better 468

– for instance, on Beer reviews, SPECTRA only suf- 469

fers a 5.7% drop (95.4→ 89.7) compared to FC’s 470

huge 34.3% drop (93.8→ 59.5) under attack. The 471

one exception seems to be on the Hotel reviews 472

dataset, where both the VIB and SPECTRA mod- 473

els actually perform worse under attack compared 474

to FC. We analyze this phenomena and provide a 475

potential reason below. 476

(R2) Robustness is correlated with high GR and 477

low AR. We report the Gold Rationale F1 (GR) 478

and Attack Capture Rate (AR) for all models in 479

Table 3. When attacks are added, GR consistently 480

decreases for all tasks. However, AR ranges widely 481

across datasets. The unsupervised rationale models, 482

VIB and SPECTRA, have lower AR compared to 483

FC-sup across all tasks, which at least partially 484

explains their superior robustness to AddText-Adv 485

attacks. VIB and SPECTRA also have lower drops 486

in GR under attack compared to FC-sup. 487

Next, we investigate the poor performance of 488

VIB and SPECTRA on Hotel reviews by analyz- 489

ing the choice of words in the attack. Using the 490

template “My car is {ADJ}.”, we measure the per- 491

centage of times the rationalizer module selects 492

the adjective as part of its rationale. When the ad- 493

jectives are “dirty” and “clean”, the VIB model 494

selects them a massive 98.5% of the time. For “old” 495

and “new”, VIB still selects them 50% of the time. 496

On the other hand, the VIB model trained on Beer 497

reviews with attack template “The tea is {ADJ}.” 498

only selects the adjectives 20.5% of the time (when 499

the adjectives are “horrible” and “fabulous”). This 500

shows that the bad performance of the rationale 501
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Figure 2: Original performance and the three type of attacks AddText-Rand, AddText-Wiki, and AddText-Adv
evaluated on five datasets and all of the models. Left-most shows the original performance.

FEVER MultiRC SQuAD Beer Hotel
Orig. Attack ∆ ↓ Orig. Attack ∆ ↓ Orig. Attack ∆ ↓ Orig. Attack ∆ ↓ Orig. Attack ∆ ↓

FC 90.7 77.9 12.8 70.7 63.0 7.7 87.2 59.1 28.1 93.8 59.5 34.3 99.5 79.3 20.2
VIB 87.8 82.6 5.2 65.4 63.6 1.8 77.1 56.5 20.6 93.8 88.0 5.8 94.0 59.3 34.8
SPECTRA 84.0 76.5 7.6 63.8 63.3 0.5 65.5 45.5 20.0 95.4 89.7 5.7 94.5 51.3 43.2

FC-sup 91.9 77.1 14.8 71.5 64.0 7.5 87.0 57.3 29.7 - - - - - -
VIB-sup 90.2 81.4 8.8 68.7 63.7 5.0 86.5 56.5 30.0 - - - - - -

Table 2: Original versus attacked task performance on the five selected datasets for the AddText-Adv attack. We
report accuracy for all datasets except for SQuAD, which we report F1 score. The attacked performance is the
average of inserting the attack at the start and at the end of the text input.

models on Hotel reviews is down to their inability502

to ignore task-related adjectives in the attack text,503

hinting that the lexical choices made in construct-504

ing the attack can significantly impact robustness.505

First Random Last Orig.
70

75

80

85

90

95

First Random Last Orig.

40

60

80

VIB VIB-sup FC

FEVER SQuAD

Figure 3: Accuracy when attack is inserted at differ-
ent sentence positions, highlighting the positional bias
picked up by the models.

(R3) Explicit rationale supervision does not506

help robustness. Perhaps surprisingly, adding507

explicit rationale supervision does not help improve508

robustness (Table 2). Across FEVER, MultiRC509

and SQuAD, VIB-sup consistently has a higher ∆510

between its scores on the original and perturbed511

instances. We observe that while models trained512

with human rationales generally do predict gold513

rationale more often (higher GR), they also capture514

a much higher AR across the board. On MultiRC, 515

for instance, the VIB-sup model outperforms VIB 516

in task performance because of its higher GR (36.1 517

versus 15.8). However, when under attack, VIB- 518

sup’s high 58.7 AR, hindering the performance 519

compared to VIB, which has a smaller 35.8 AR. 520

This highlights an overlooked aspect of prior work 521

only considering metrics like IOU (which is similar 522

in spirit to GR) to assess rationale models. 523

(R4) Rationale models are sensitive to attack 524

positions. We further analyze the effect of attack 525

text on rationale models by varying the attack po- 526

sition. Figure 3 displays the performance of VIB, 527

VIB-sup and FC on FEVER and SQuAD when 528

the attack sentence is inserted into the first, last or 529

a random position of the original text input. We 530

observe performance drops on both datasets when 531

inserting the attack sentence at the beginning of 532

the context text as opposed to the end. For ex- 533

ample, when the attack sentence is inserted at the 534

beginning, the VIB model drops from 77.1 F1 to 535

40.9 F1, but it only drops from 77.1 F1 to 72.1 F1 536

for a last position attack. This hints that rationale 537

models may implicitly be picking up positional bi- 538

ases from the dataset, similar to their non-rationale 539

counterparts (Ko et al., 2020). 540

(R5) Extracting good rationales and avoiding 541

attack text is crucial to robustness. We exam- 542
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FEVER MultiRC SQuAD Beer Hotel
GR ↑ AR ↓ GR ↑ AR ↓ GR ↑ AR ↓ GR ↑ AR ↓ GR ↑ AR ↓

VIB 36.9→ 30.3 59.4 15.8→ 13.9 35.8 86.2→ 84.9 63.7 20.5→ 18.1 11.9 23.5→ 22.6 18.4
SPECTRA 26.9→ 21.5 40.6 11.9→ 11.8 22.6 67.1→ 60.8 52.6 28.6→ 27.8 15.2 19.5→ 18.3 31.6

FC-sup 51.5→ 45.5 65.9 50.0→ 42.7 55.7 99.6→ 98.8 97.8 - - - -
VIB-sup 50.6→ 44.3 67.0 36.1→ 22.7 58.7 99.5→ 97.8 97.2 - - - -

Table 3: Gold Rationale F1 (GR) (original→ perturbed input) and Attack Capture Rate (AR) for the AddText-Adv
attack on the five tasks. The reported number is the average of inserting the attack at the start and at the end of the
text input.

VIB VIB-sup
Accuracy (%) Accuracy (%)

Original 87.8 (100.0) 90.2 (100.0)

Overall Attack 83.0 (100.0) 84.9 (100.0)
Gold 3 Attack 3 83.3 (34.2) 85.5 (76.7)
Gold 3 Attack 7 91.1 (31.8) 92.4 (11.3)
Gold 7 Attack 3 73.6 (22.0) 74.1 (11.5)
Gold 7 Attack 7 77.7 (12.0) 68.0 (0.4)

Table 4: Accuracy breakdown of the VIB model on the
FEVER dataset. The attack is inserted at the beginning
of the passage. 3 indicates the Gold or Attack sentence
is selected as rationale and 7 otherwise. We show the
percentage of examples in parenthesis.

FEVER MultiRC
Original Attacked ∆ ↓ Original Attacked ∆ ↓

FC-sup 91.9 77.1 14.8 71.5 64.0 7.5
+ ART 91.8 78.7 13.1 69.3 64.8 4.5

VIB 87.8 82.6 4.2 65.4 63.6 0.7
+ ART 87.6 87.0 0.6 65.8 65.5 0.3

VIB-sup 90.2 81.4 8.8 68.7 63.7 5.0
+ ART 90.0 86.1 3.9 70.3 65.7 4.6

Table 5: Task performance of the original models ver-
sus models with Augmented Rationale Training (ART).

ine where the rationale model gains robustness by543

inspecting the generated rationales. Table 4 shows544

the accuracy breakdown under attack for VIB and545

VIB-sup models. Intuitively, both models perform546

best when the gold rationale is selected and the547

attack is avoided, peaking at 91.1 for VIB and548

92.4 for VIB-sup. Models perform much worse549

when the gold rationale is omitted and the attack550

is included (73.6 for VIB and 74.1 for VIB-sup),551

highlighting the importance of choosing good and552

skipping the bad as rationales.553

(R6) Augmented rationale training can im-554

prove robustness. Based on our findings from555

Table 4, we set out to improve the robustness556

of rationale models through augmented rationale557

training (ART). We insert two random sentences558

sampled from Wikipedia (the wikitext-103 559

dataset) into the input passage at random positions 560

and set their pseudo rationale labels zpseudo = 1 561

and all other sentences to z = 0. We then add an 562

auxiliary negative binary cross entropy loss to train 563

the model to not predict the pseudo rationale. This 564

encourages the model to ignore spurious text that is 565

unrelated to the task. Table 5 shows that the models 566

trained with ART improve robustness for FC-sup, 567

VIB and VIB-sup in both FEVER and MultiRC. 568

7 Conclusion 569

In this work, we investigate whether neural ratio- 570

nale models are robust to adversarial attacks. We 571

construct a variety of AddText attacks across five 572

different tasks and evaluate state-of-the-art ratio- 573

nale models. We find that while these models show 574

some promise at being more robust, they are also 575

quite sensitive to factors like the attack position 576

or word choices in the attack text. Surprisingly, 577

explicit rationale supervision does not improve ro- 578

bustness nor prevent the model from selecting the 579

attack text as part of the extracted rationale. 580

Our findings raise two key points. First, state- 581

of-the-art rationale models, despite their promise 582

for enabling interpretability and robustness, may 583

not always be generating optimal rationales and 584

may yet be prone to spurious text in the dataset. 585

Second, metrics like IOU, frequently used in prior 586

work (DeYoung et al., 2020; Paranjape et al., 2020), 587

may not be ideal ways of evaluating the generated 588

rationales since they do not test how crucial the 589

rationale is to the model’s decision making. In con- 590

trast, adversarial tests may provide a more explicit 591

form of evaluating rationale models since they re- 592

quire models to ignore the spurious and irrelevant 593

text. We hope our findings can inform the develop- 594

ment of better models and algorithms for rationale 595

predictions and initiate more research into the in- 596

terplay between interpretability and robustness. 597
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A Appendix 741

A.1 Implementation Details 742

We use two BERT-base-uncased (Wolf et al., 743

2020) as the rationalizer and the predictor compo- 744

nents for all the models and one BERT-base for 745

the Full Context (FC) baseline. The rationales for 746

FEVER, MultiRC, SQuAD are extracted at sen- 747

tence level, and Beer and Hotel are at token-level. 748

BERT(x) =
(
h[CLS],h

1
0,h

2
0, ...,h

n0
0 ,h[SEP],

h1
1,h

2
1, ...,h

n1
1 , ...,h

1
T ,h

2
T , ...,h

nT
T ,h[SEP]

)
,

749

where the input text is formatted as query with 750

sentence index 0 and context with sentence index 751

1 to T . For sentiment tasks, the 0-th sentence and 752

the first [SEP] token are omitted. For sentence- 753

level representations, we concatenate the start and 754

end vectors of each sentence. For instance, the 755

t-th sentence representation is ht = [h0
t ;h

n(t)
t ]. 756

For token-level representations, we use the hidden 757

vectors directly. The representations are passed to a 758

linear layer {w, b} to obtain logit for each sentence 759

s = wᵀht + b. 760

Training Both the rationalizer and the predic- 761

tor in the rationale models are initialized with pre- 762

trained BERT (Devlin et al., 2019). We predeter- 763

mine rationale sparsity before fine-tuning based on 764

the average rationale length in the development set 765

following previous work (Paranjape et al., 2020; 766

Guerreiro and Martins, 2021). We set π = 0.4 767

for FEVER, π = 0.25 for MultiRC, π = 0.7 for 768

SQuAD, π = 0.1 for Beer, and π = 0.15 for Hotel. 769

We select the model parameters based on the high- 770

est fine-tuned task performance on the development 771

set. 772

Discrete VIB The sentence or token level logits 773

s ∈ RL parameterize a relaxed Bernoulli distri- 774

bution p(zt | x) = RelaxedBernoulli(s) (also 775

known as the Gumbel distribution (Jang et al., 776

2017)), where zt ∈ {0, 1} is the binary mask for 777

sentence t. The relaxed Bernoulli distribution also 778

allows for sampling a soft mask z∗t = σ( log s+gτ ) ∈ 779

(0, 1), where g is the sampled Gumbel noise. The 780

soft masks z∗ = (z∗1 , z
∗
2 , ..., z

∗
T ) are sampled inde- 781

pendently to mask the input sentences such that the 782

latent z = m∗ � x for training. During inference, 783

we take zt = 1[z∗t ∈ top-k(z∗)] and z�x is passed 784

to the predictor during inference. Here we specify 785

the hyperparameter π to control the sparsity of the 786

rationales. 787
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