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Abstract

The efficiency and quality of language model pretraining are largely determined by
the way pretraining data are selected. In this paper, we introduce Group-MATES, an
efficient group-level data selection approach to optimize the speed-quality frontier
of language model pretraining. Specifically, Group-MATES parameterizes costly
group-level selection with a relational data influence model. To train this model,
we sample training trajectories of the language model and collect oracle data in-
fluences alongside. The relational data influence model approximates the oracle
data influence by weighting individual influence with relationships among training
data. To enable efficient selection with our relational data influence model, we
partition the dataset into small clusters using relationship weights and select data
within each cluster independently. Experiments on DCLM 400M-4x, 1B-1x, and
3B-1x show that Group-MATES achieves 3.5%-9.4% relative performance gains
over random selection across 22 downstream tasks, nearly doubling the improve-
ments achieved by state-of-the-art individual data selection baselines. Furthermore,
Group-MATES reduces the number of tokens required to reach a certain down-
stream performance by up to 1.8 x, substantially elevating the speed-quality frontier.
Further analyses highlight the critical role of relationship weights in the relational
data influence model and the effectiveness of our cluster-based inference. Our code
is open-sourced at https://github.com/facebookresearch/Group-MATES.

1 Introduction

Improving the speed-quality frontier is es-
sential for making large language models
(LLMs) more efficient, scalable, and ac-
cessible across real-world applications [[10}
15, 20]. Pretraining data selection [3| 25]]
provides a practical path to achieve that
by identifying high-quality data [31} 44],
optimizing domain mixtures [43]], and con-
structing adaptive training curriculum [50].
Effective data selection approaches can
nearly double the FLOPs-performance
scaling efficiency of language models [[11}
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(a) Selected data overlap. (b) Evaluation results.

Figure 1: Misalignment (a) and performance gap (b)
between brute-force group and individual selection.

50], or enables smaller models to outperform larger counterparts [6].

Prevailing selection methods often evaluate the utility of each training data point individually [11]],
implicitly assuming that the overall utility of a data group is the sum of its elements. However,
theoretical analyses [4}|34] reveal that the influence of a data group is shaped by complex interactions
among data points rather than their isolated contributions. This discrepancy is particularly pronounced
when selecting pretraining data. As shown in Figure [Ta] in a typical pretraining data selection
setting [25, 150], individual data selection quickly diverges from brute-force group selection after
merely a hundred selected data points—Iess than a single batch in modern pretraining workflows.
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In Figure[Ib] training with group selection exhibits significantly higher downstream performance
than individual selection, doubling the efficacy of pretraining data selection. Although group-level
selection demonstrates tremendous potential, directly optimizing it is computationally prohibitive,
which requires enumerating an exponential search space of all possible data subsets [38]].

In this paper, we introduce Group-MATES, an efficient group-level data selection approach to
optimize the speed-quality frontier of pretraining. Specifically, we parameterize costly group-level
selection with a relational data influence model. To collect its training data, we sample group training
trajectories of the language model and compute oracle data influences [50] alongside. The relational
data influence model approximates the oracle data influence by weighting individual influence with
relationships among training data. To enable efficient selection with our relational data influence
model, we partition the dataset into small clusters using relationship weights and select data within
each cluster, preserving essential relationships while reducing the computational cost.

We empirically verify the effectiveness of Group-MATES on DCLM [25], a standard pretraining
data selection benchmark. DCLM is designed to assess the utility of data selection methods in
enhancing pretraining, beyond the effects of basic cleaning and denoising that it already includes in
data preprocessing. On DCLM 400M-4x, 1B-1x, and 3B-1x, Group-MATES achieves 3.5%-9.4%
relative performance gains over random selection across 22 downstream tasks, nearly doubling the
improvements achieved by state-of-the-art individual data selection baselines, including FineWeb-
Edu Classifier [31], WebOrganizer [45], MATES [50], and Quad [51]. Furthermore, Group-MATES
reduces the number of tokens required to reach a certain downstream performance by up to 1.8x
compared to random selection, substantially elevating the speed-quality frontier. Additional results
confirm the effectiveness of Group-MATES in approaching group-level data selection and the
necessity of having relationship weights in our relational data influence model. Further analyses
validate that our cluster-based inference facilitates a more efficient data selection procedure while
preserving crucial relational information.

We summarize the highlights of our work as follows:

1. We propose Group-MATES, a group-level data selection framework designed for efficient
pretraining by parameterizing costly group selection with a relational data influence model.

2. We train our relational data influence model with sampled trajectories and enable its fast
inference for data selection with influence-aware clustering.

3. Group-MATES sets a new state-of-the-art on DCLM and significantly elevates the speed-
quality frontier. Further analyses highlight the essential role of relationship weights.

2 Related Work

Improving the speed-quality frontier is essential for making large language models (LLMs) more
efficient, scalable, and accessible [10, 15 [20]. Pretraining data curation provides a practical path
to achieve that by identifying and leveraging the most valuable data [3]. Standard approaches for
data curation include: (1) Domain reweighting adjusts the mix of data from various sources (e.g.,
Wikipedia, GitHub) by determining optimal weights that work best for small proxy models [26} 45]].
(2) Synthetic data generation employs generative models to rephrase [2, 28] or transform [49, [52]]
existing data, thereby augmenting or refining datasets. (3) Data selection encompasses various
metrics to identify high-value data, ranging from rule-based filtering [30l 32, deduplication of
semantically similar data [} [35]], proximity to high-quality corpora [25| 47]], LLM-based quality
scoring [31} 144]], and data influence attribution [[11} [13} 40, 50, 51]]. The benefits of data selection
are significant—recent techniques can double the speed-quality scaling of LLMs [31}50], or enable
smaller models to outperform larger counterparts trained on uncurated data [6]].

The ideal goal of data selection is to identify the optimal subset of training data that maximizes
model performance under resource constraints [3]. However, directly finding optimal subsets has
been shown computationally prohibitive [[12|[24]], as it requires retraining the model on all possible
subsets. To circumvent this challenge, a common assumption is that the most influential data points
will also constitute the most influential subsets [[11}23]]. Based on this, prior data selection methods
primarily focus on evaluating the influence of individual data points [40L 50]. A typical approach for
approximating individual data influence is influence function [22}43]], which utilizes first-order Taylor
expansion to estimate how model parameters would change if a training point were infinitesimally



up-weighted. Beyond influence functions, DsDm [[19] employs a linear regression model to estimate
individual influences from subset training runs, while MATES [50] proposes a data influence model to
parameterize individual influences. Both approaches have demonstrated notable success in improving
the efficiency and effectiveness of pretraining.

While approximating group-level influences by individual influences can be computationally efficient,
it often introduces substantial inaccuracies, as data points rarely contribute to model performance
in isolation [[17]]. In particular, theoretical analyses [4} 34] show that group-level data influences
contain relationship terms that cannot be captured by individual influences, while empirical stud-
ies [17, 18] reveal that interactions among data points can either cancel out or amplify individual
influences. To mitigate this gap, ZAMinfluence [J] iteratively selects the most influential point to
approximate the maximization of group-level influences, i.e., the greedy algorithm [29]. Building
upon this work, researchers effectively applied group-level influences in data pruning [48], enhancing
trustworthiness [7,[33} [39]], LLM fine-tuning [[14], and data selection [37, 38]].

3 Preliminary

In this section, we first introduce the formulation of pretraining data selection and then standard
approaches to evaluate oracle data influences. Finally, we empirically illustrate the gap between
group-level and individual data influence oracles.

Pretraining Data Selection. Given a size-N pretraining dataset D and a training budget of n data
points, data selection approach aims to to identify the optimal size-n subset DZ‘n) C D that yields the
best pretrained model. In general, large-scale pretraining operates in a data-rich, compute-constrained
regime, where the available data pool D is much larger than what can be used for training given
practical computational budgets. Thus, data selection is typically performed without replacement.

Formally, the optimal size-n training subset Dfn) is the set that minimizes the loss over a reference
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where M}}(ﬂ) denotes the model trained to converge on the data subset D,y using an optimizer like

Adam [21]] and ¢ denotes the function to compute the model loss on an input-output pair (z, y). Prior
works optimize Dz‘n) with retraining-based data influence oracles and their approximations.

Retraining-Based Data Influence Oracles and Approximations. The oracle group-level data
influence of a subset Dy, is normally quantified by leave-n-out retraining [4]. In particular, leave-
n-out retraining evaluates the influence 7 of a subset D,y by measuring the difference in model
performance when the subset is included in the training data versus excluded:

I(Mp,Diny) = L(Dy | Mp) = L(Dr | Mrp, ), ©)

While this approach accurately captures complex interactions among data points, it is computationally
infeasible in practice, as it requires retraining the model from scratch for every possible subset.

To make group-level influence computation more tractable, prior works [11} 23} 50]] approximate it
by decomposing the group influence into the sum of leave-one-out oracle individual influences:

I(Mp. Dy) & D I(Mp, i), @)
;€D (n)
where Z(Mp,z;) = L(D, | Mp) — L(Dr | Mpy(4,3)- 3)

Instead of working with converged models M7,, MATES [50] introduces local probing to capture
the dynamic nature of data influence as the model evolves during training. This technique calculates
model-aware oracle data influence by applying a single gradient update to the current model M using
data x; and measuring the change in reference loss before and after this one-step update:

I(M, z;) = L(Dy | AM, :)) — L(Dy | M), (6)



where A(M, z;) denotes the output of one-step optimization of model M on a data point x;. The
theoretical connection between Eq. [6|and influence functions can be found in Appendix

To efficiently calculate oracle individual data influences, MATES trains a parametric data influence
model © ™V that learns to map data points to their oracle individual data influences:

I(M,z;) = 0"V (z,) =w, -h,,, ™
where w, denotes the regression weight that transforms the last hidden representation h,, of a
language model to the individual influence prediction.

Empirical Gap between Group and Individual Data Influence Oracles. Although the approxima-
tion in Eq. | makes group-level influence computation tractable, it can introduce substantial errors
when estimating oracle group-level influences [23}134]. Prior studies indicate that these errors stem
from the approximation’s neglect of interaction effects among data points within the group [[17, [18]].

To illustrate the gap between group-level and individual data influence oracles, we conduct an
empirical study with the following setup: we utilize an intermediate checkpoint M (specifically,
DCLM [25] 400M-4x baseline model at step 12,288) during pretraining and continue training it on
the selected data for 100 steps, using the decay stage of the WSD scheduler [16]]. We then evaluate the
model’s performance on 22 downstream tasks from DCLM. Further details can be found in Section [5]

We first select data that minimizes oracle individual influences, denoted as D(ifsiv:
i )

D(‘;‘L)‘V <+ arg min E:Z)ED (M, z;), )
where arg min fg,)ep denotes the set of the data points with the lowest-n oracle individual influences.
For group-level influences, direct optimization is infeasible as the search space grows exponentially
with the dataset size. Instead, we formulate group-level selection as a sequential process [38]], greedily
selecting the data point with the minimum oracle individual influence at each step:

Fort=1,...,n:a; = argmin Z(M,z;), 9)
wiED\Df{‘f"l)

D™« DEY U{an}, Mipa = A(My, z), (10)

starting from D" = 0, My = M. (11)
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Figure shows that the overlap between D" and DY (e ) decreases rapidly as

n increases. The overlap becomes close to random even for a small n = 100, indicating substantial

divergence between the two selected sets. Furthermore, training M on D(g; ‘)mp doubles the perfor-

mance gain over random compared to D({", as illustrated in Figure|1b, This discrepancy aligns with
previous theoretical findings [4} 34] and highlights the potential to approach group-level selection.

4 Methods

In this section, we introduce Group-MATES, a novel group-level data selection framework to advance
the speed-quality frontier of pretraining. First, we propose a relational data influence model to
parameterize costly group-level selection (§4.1). Next, we describe how to train (§4.2) and efficiently
infer with the relational data influence model (§4.3)). Our overall pipeline is illustrated in Figure 2]

4.1 Parametric Approximation of Group Selection with Relational Data Influence Model

As greedy group selection outlined in Eq. [I0] requires brute-force computation of all oracle data
influences, it is prohibitively costly to apply throughout the entire pretraining process. To address
this challenge, we propose a relational data influence model ©™! to predict the oracle data influence
of each candidate data point x; given the previously selected set D(ffll) and thus parameterize the

group selection procedure as:
Fort=1,...,n:2; = argmin @rel(zi | D(rfl_l)),
neD\DEL,)

Dif) < DLy U {a}. (12)
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Figure 2: Overview of Group-MATES. We collect oracle data influences by sampling training data
trajectories and train a relational data influence model to approximate them. This model then selects
data that minimizes group-level influences within each influence-aware cluster.

Specifically, the prediction of the relational data influence model is formulated as the relationship-
weighted individual data influence:

Ie. o
I(My,z) = O l(xt | D(15—1)) = |a— m Z Ry, 2, | * (Wo-hyg,), (13)

1<i<t
where R, ,, = sim(h,,, h,,) is the relationship weight, (14)
and w,, - h,, is the predicted individual data influence. (15)

« and 3 are two trainable scaling factors initialized both from 1 and sim is the similarity function
(e.g., cosine similarity) of two embeddings, ranging within [—1, 1]. The relationship weight R is
designed to capture the interactive effects among training data points [4} [17]. We also provide a
theoretical analysis in Appendix [A.2]to demonstrate the inherent connection between our relationship
weight and trajectory-specific influence functions [37].

4.2 Training Relational Data Influence Model with Rollouts

To gather supervision signals for training our relational data influence model, we use a rollout policy
7 to sample training data trajectories 7™ and collect oracle data influences Z(M,, ;) alongside:

77('|D(t—1))

T ~x1...0p1 ————— T¢...2T, (16)
where Dy <= D1y U {ze}, Mip1 = A(My, x¢), (17
I(My,x) = L(Dy | Mys1) — L(Dy | My). (18)

where T is the rollout length, a hyperparameter. We start with a random rollout policy 7;ang to train
the initial data influence model O} by minimizing the mean squared error between its prediction

©™! (x4 | D(;—1)) and oracle data influence Z(My, z4):
T

Opsl; = arg min By » [(@rel (z¢ | Di_1y) — Z(M,, mt))Q] . (19)
o t=1

The distribution of oracle data influences is typically Gaussian [50]], so random sampling primarily
focuses on the mean of the distribution. To better approximate the full oracle distribution, we
introduce bootstrapping data influence model, a targeted rollout policy oo based on O that
emphasizes the tail fractions of the oracle data influences. This policy explicitly samples data points
corresponding to the lowest and highest predicted data influences:

7Tb00t(' | D(t—l)) = arg min ;i(ép\p(t_l)gir::l(ajt | D(t—l)) U argmax Sft{éb\v(‘_meiﬂl(zt ‘ D(t—l))v (20)

K lowest K highest

where K is the rollout width at every step. We then combine the supervision signals sampled from
both 7and and e to train our final relational data influence model @rﬁﬂa]:

T
O = arg min E v 71 > [(@“‘ (20 | D)) — T(My, 1)) 2} . Q1)
h t=1



4.3 Cluster-Based Efficient Inference of Relational Data Influence Model

Directly plugging O  into Eq. can perform the group-level data selection. However, this iterative
process can still be computationally intensive. To select a subset of size n, the selection involves
n steps. At each step ¢, we compute OfFL, (z; | D)) for all N — ¢ remaining candidates from the
original dataset of size N. This leads to a time complexity of O(N - n) calculation of relationship

weights, which can be extremely slow for large datasets.

To speed up the selection, we propose a cluster-based inference approach that significantly reduces
the number of relationship weight calculations. We first partition the selection pool D into d
clusters {C',C2,...,C4}. Consequently, Eq. can be executed independently within each cluster,
allocating the selection budget n to each cluster proportionally to its size relative to the entire pool:

Fori=1,...,d:

CT . 4 i , i
Fort=1,..., [n :Cly + C_1yU{ argmin Ot (j | C(t_l))}.

|D| IjECi\C(1;71)

Dy ¢+ CE(""C”D (22)

i€{l,...,d}

This approach only computes relationship weights within each cluster rather than across the entire
dataset. As a result, our cluster-based inference achieves a time complexity of O (%), enabling
efficient group-level data selection for large-scale pretraining. In practice, running inference for each
cluster independently with multiple threads can further reduce runtime.

Cluster-based inference can be viewed as an efficient approximation of brute-force inference in Eq. [I2}
which implicitly assumes independence between clusters and thus ignores relationships across them.
To ensure that the most meaningful relationships are preserved during this process, we introduce
influence-aware clustering. Specifically, our approach directly employs the relationship weight R as
the similarity metric for clustering, grouping data points with strong relationship weights into the
same cluster. As a result, the relationship weights computed within each cluster closely approximate
those computed over the full dataset.

Group-MATES is integrated into the pretraining pipeline in a model-aware manner [50]— pretraining
is conducted in S stages; after each stage s, we collect data influences with the current model M,
train the relational data influence model ©™!, and utilize it to select training data for the next stage
s + 1. This iterative process enables efficient, model-aware data selection throughout pretraining.

5 Experimental Setup

Model and Data. We conduct our main experiments following standard setups in DataComp-LM
(DCLM) [25]], a formalized competition to benchmark the effectiveness of pretraining data selection.
The data curation pipeline in DCLM integrates heuristic cleaning, deduplication, and model-based
filtering, yielding stronger baseline performance compared to other open-source datasets such as
C4 [32]], FineWeb [31]], and RedPajama [41]]. Beyond high data quality, DCLM also standardizes
data loading, training hyperparameters, and evaluation tasks, making the competition strictly fair.

Specifically, we choose three experiment scales from DCLM, 400M-4xﬂ 1B-1x, and 3B-1x. “400M”
denotes the model size, and “4x” denotes the relative quantity of pretraining tokens for this model
size, identified by the Chinchilla [15] optimum. We pretrain all models from scratch and evaluate
pretrained models with 22 downstream tasks in either zero-shot or few-shot manners. These tasks
provide a holistic assessment of the essential abilities of pretrained models, including commonsense
reasoning, language understanding, reading comprehension, symbolic problem solving, and world
knowledge. We use centered accuracy as the primary evaluation metric, where the accuracy per task
is transformed to O when it equals random guessing and 1 corresponds to perfect accuracy. The
average centered accuracy across all tasks is denoted as “Core score”. A comprehensive list of the
evaluation tasks is provided in Table

2400M-4x is not a predefined setup in the original DCLM, but we extend its 400M-1x setup to train for 4x
longer (4x more tokens) for better evaluation stability.



Table 1: Benchmarking different data selection methods on DCLM 400M-4x, 1B-1x, and 3B-1x
settings. Dependencies on stronger LLMs (e.g., LLama3-70B-Instruct) are denoted by *. Best
performances are marked bold.

COMMONSENSE LANGUAGE READING SYMBOLIC WORLD
REASONING UNDERSTANDING COMPREHENSION PROBLEM SOLVING KNOWLEDGE CORE

METHOD (3 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (22 tasks)
400M-4X SETTING: 412M MODEL, 32.8B TOKENS

EDU CLASSIFIER* | 0.29401 0.28287 0.03688 0.17480 0.24732 0.21821
RANDOM 0.25335 0.28315 0.10477 0.15643 0.22858 0.21356
MATES 0.28176 0.28358 0.14225 0.16296 0.22179 0.22260
QuAD 0.33437 0.27731 0.12080 0.15664 0.22124 0.22358
GROUP-MATES 0.29190 0.28735 0.14997 0.18890 0.22908 0.23362
1B-1X SETTING: 1.4B MODEL, 28.0B TOKENS

EDU CLASSIFIER* 0.33713 0.37612 0.14689 0.20967 0.33590 0.29257
WEBORGANIZER* 0.36042 0.39132 0.20225 0.18162 0.30865 0.29488
RANDOM 0.34994 0.38584 0.22059 0.18291 0.30784 0.29456
MATES 0.36331 0.39640 0.22548 0.19958 0.30415 0.30288
QuAD 0.34989 0.39913 0.16843 0.19864 0.30239 0.29340
GROUP-MATES 0.36997 0.39744 0.23922 0.20250 0.30793 0.30747
3B-1X SETTING: 2.8B MODEL, 55.9B TOKENS

RANDOM 0.44969 0.47816 0.27832 0.18070 0.37523 0.35603
MATES 0.44178 0.48263 0.30487 0.18497 0.37799 0.36139
GROUP-MATES 0.45874 0.48504 0.31094 0.19591 0.38146 0.36846

Baselines. We compare our method with (1) random selection (DCLM-Baseline); (2) edu clas-
sifier [31]]: educational valuation of data distilled from LLama3-70B-Instruct [10]; (3) WebOrga-
nizer [45]: domain construction with LLMs and mixture weight optimization via RegMix [26]. As
WebOrganizer does not fully open-source their selection code, we copy their results in the same
DCLM 1B-1x setup; (4) MATES [50]]: data influence estimation with individual data influence
models; and (5) Quad [51]]: cluster-level influence estimation and diversification with multi-armed
bandit [36]. These baselines cover state-of-the-art data selection techniques like LLM rating, domain
mixtures, and individual data influence attribution. Some recent works, such as GREATS [38]]
and TSLOO [37]], have not open-sourced their selection code for pretraining or evaluation results,
hindering direct comparison. We also compare our method with earlier baselines (DSIR [47],
SemDeDup [1]], DsDm [11]], and QuRating [44]) in Appendix [C.4]

Implementation Details. We sample a size-128 subset from FLAN [42] as our reference data D,. for
its exceptional generalization abilities [8]. FLAN does not overlap with our evaluation tasks. We
initialize all parameters of our relational data influence model ©™ with bge-base-en-v1.5 [46]
except w,, which is randomly initialized. The similarity function for calculating relationship weight
R is cosine similarity, consistent with the original BGE design. We set the rollout length 7'=10 and
rollout width K'=5, and collect 20,000 rollout trajectories to train our relational data influence model.
In inference, we partition all data points into d=10,000 clusters (the optimal choice in Quad) using
k-means [27]]. The number of pretraining stages ' is set to 2 and the selection ratio % is set to 50%.
More implementation details can be found in Appendix Bl Ablations on key hyperparameters are

presented in Appendix [C.5][C.6] [C.7] and[C.§]

6 Evaluation Results

In this section, we present our main results on DCLM (§6.1). Then, we analyze the training of
relational data influence models (§6.2), demonstrate the effectiveness of influence-aware clustering
(§6.3), and finally present a case study (§6.4). Additional results can be found in Appendix

6.1 Main Results

Overall Performance. Table [[| summarizes the overall results on the DCLM benchmark. Group-
MATES consistently outperforms random selection, achieving 3.5%-9.4% relative improvements
in Core scores across all three setups. Compared to our primary baseline, MATES, Group-MATES
delivers superior performance on every subtask group, doubling its gain over random selection in
the 400M-4x and 3B-1x settings. Notably, for the 3B-1x setup, Group-MATES maintains consistent
improvements over random selection, whereas MATES exhibits diminishing returns, highlighting
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Figure 3: Core score comparison between Group-MATES and baselines w.r.t. pretraining tokens (a,
b) and total H100 hours (c, d). Total H100 hours count both pretraining and data selection.

Table 2: Ablation on the key components in Group-MATES on DCLM 400M-4x setting.

COMMONSENSE LANGUAGE READING SYMBOLIC WORLD
REASONING UNDERSTANDING COMPREHENSION PROBLEM SOLVING KNOWLEDGE  CORE
ABLATION (3 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (22 tasks)
GROUP-MATES 0.29190 0.28735 0.14997 0.18890 0.22908 0.23362
W/0 RELATIONSHIP WEIGHT 0.28074 0.28451 0.14301 0.17526 0.22951 0.22737
W/0 BOOTSTRAPPING 0.28563 0.28139 0.14788 0.18304 0.22784 0.22924
W/ SEMANTIC CLUSTERING 0.28908 0.28172 0.14315 0.18524 0.23122 0.23042
RANDOM 0.25335 0.28315 0.10477 0.15643 0.22858 0.21356

the better scalability of group-level selection. These performance gains are substantial, as even the
strong edu classifier—distilled from LLama3-70B-Instruct and recognized for its effectiveness on
less curated datasets [31]]—fails to outperform random selection in the 1B-1x setup. Edu classifier
performs well on world knowledge tasks, since its selection strategy is optimized for educational
value and thus favors knowledge-related data. To demonstrate the generalization ability of our
method, we also conduct experiments on the C4 dataset in Appendix [C.4} where Group-MATES
consistently matches or surpasses MATES on 8 out of 9 evaluation tasks. In summary, Group-
MATES demonstrates a significant advantage over individual data selection methods for pretraining,
confirming the effectiveness of group-level data selection.

Speed-Quality Frontier. Figure [3| shows the evaluation results of Group-MATES and baselines
with respect to pretraining tokens and total H100 hours. Token-based measurement reflects the
compute cost of pretraining alone, as data selection can be easily parallelized with sufficient resources.
Hour-based measurement accounts for both pretraining and data selection costs, representing the total
compute used. In 400M-4x and 1B-1x settings, Group-MATES reduces the number of tokens by 1.8
and 1.4x needed to reach a given Core score compared to random selection. Furthermore, Group-
MATES achieves 31.5% and 20.5% net efficiency gains (measured by H100 hours) in 400M-4x
and 1B-1x setups, respectively. By contrast, MATES only achieves 16.4% and 10.1% net efficiency
gains in 400M-4x and 1B-1x setups. Therefore, Group-MATES nearly doubles the net efficiency gain
of MATES, further validating the advantage of our group-level selection over individual selection.
These results demonstrate that Group-MATES substantially improves pretraining efficiency on the
rigorous DCLM benchmark, achieving a state-of-the-art speed-quality frontier. A detailed breakdown
of the compute overhead is provided in Appendix and the pretraining results under equalized
compute are presented in Appendix [C.2]

Ablation Studies. Table|2|shows the ablation studies of three key components in Group-MATES,
namely relationship weight, bootstrapping data influence model, and influence-aware clustering.
When we remove relationship weights during the selection process and consider only individual
data influences, the performance gain over random selection drops by more than 30%, indicating
that relational information plays a major role in the effectiveness of Group-MATES. In contrast,
discarding the bootstrapping technique or replacing the influence-aware clustering with vanilla BGE
semantic clustering also leads to noticeable performance degradation, though the magnitude of these
drops is smaller compared to the effect of removing relationship weights. Overall, our ablation
studies highlight the importance of incorporating relationship measurements between data points in
our framework, extending the scope of data selection beyond the individual-level paradigm to account
for inter-sample dependencies that better reflect the collective nature of the training data.
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Figure 4: Reference loss (a) and evaluation results Figure 5: Marginal influence distributions (a) and
(b) of greedy group-level selection, data selected the performance of data influence models with
by our relational data influence model, individual random and bootstrap rollout policy, or random
data influence model [50], and random. policy without relationship weight modeling (b).

Comparison with Greedy Group-Level Selection. This experiment compares the performance
of our relational data influence model and the individual data influence model in MATES (Eq. [7)
with greedy group-level selection, following the same experimental setup as Section[3] As shown in
Figure[da] the subset selected by our relational data influence model consistently achieves a lower
reference loss than the individual one after the initial steps. The evaluation results in Figure [b]further
validate the superiority of our relational data influence model, with a 5.8% relative performance
gain compared to individual selection after the training. We also emphasize the significant potential
of group-level selection, which nearly doubles the performance gain even in the short decay stage.
Nevertheless, our method represents a critical step toward efficiently tackling group-level selection
and has demonstrated its effectiveness.

6.2 Analyses on Relational Data Influence Model Training

This experiment analyzes the training of our relational data influence models. As shown in Figure[5a]
using our bootstrapping rollout policy, the sampled oracle data influence distribution is more spread
out. This demonstrates that bootstrapping effectively identifies more informative data points from the
tails to train our relational data influence model. As a result, our relational data influence model with
bootstrapping better approximates the oracle, improving the upper bound of validation Spearman
correlation by 0.18 compared to the random rollout policy alone, as illustrated in Figure [5b]

We also demonstrate the necessity of having relationship weight in our relational data influence model.
As shown in Figure[5b| when the relationship weight is removed from the model formulation (Eq.[T3))
and only individual influence is considered, the Spearman correlation drops significantly to near zero,
indicating that the model fails to approximate the oracle data influence. This result suggests that the
relationship weight is crucial for our relational data influence model to capture group-level influence,
which aligns with previous theoretical findings [4}34].

6.3 Effectiveness of Cluster-Based Inference

This experiment demonstrates the advan- = * ‘E 10
tages of using influence-aware clustering 1ol Cluster g 8
for more efficient inference with relational E No Cluster | > 6
data influence models. First, we com- g5 / IE 4
pare the inference speed with clustering 5 Z‘ _‘§ 2 |
R . D Al , J |
(Eq.[22) versus without clustering (Eq.[T2). g 0 e £ 055309703 06 09

As shown in Figure[6a] cluster-based infer-
ence reduces inference time by several or-
ders of magnitude, achieving over a 105 x

speedup compared to brute-force selection. Figure 6: Inference speedup with clustering (a). Rela-

This efficiency gain arises from comput-  tionship weights in intra- and inter-cluster scenarios (b).
ing relationship weights within clusters in-

stead of across the entire dataset. Consequently, our data selection procedure effectively scales to
large pretraining datasets containing millions of samples.

Dataset Size Relationship Weight

(a) Inference speedup. (b) Relationship weight.



Table 3: Cancellation and amplification effects identified by our relational data influence model.

Relation Data 1 Data 2

Cancellation Let the schools teach history, science, arts... hope- ~ With technology, teachers are no longer going to be
fully allowing a greater degree of creativity and  relevant, but on the contrary teachers are becoming
diversity to manifest. And parents should teach  more important, have very different role, of an expert,
their children their philosophy, spiritual practices, —a manager and a facilitator...
and their wisdom as they see fit...

Amplification  the object is to find integers x and z satisfying the =~ Definition 2.2. Let a and b be given integers, with at

Diophantine equation x-4z=44 A) Inasmuch as gcd
A, 4) = 1is a divisor of 44, there is a solution to this
equation. Upon multiplying the relation 1 =1 (-3) +
4+ 1 by 44 to get 44=1(-132) + 4-44...

least one of them different from zero. The greatest
common divisor of a and b, denoted by gcd(a,b), is
the positive integer d satisfying the following: (a) d |
aandd!b. (b) Ifclaandcl| &, thenc<d...

To further validate that our influence-aware clustering can effectively approximate inference over the
full dataset, we compare the distributions of the relationship weight R (Eq. [I4) between data points
within the same cluster (intra-cluster) or across different clusters (inter-cluster). As shown in Fig-
ure[6b] the relationship weights are generally higher in the intra-cluster scenario, while inter-cluster
relationship weights are distributed around 0. Therefore, our influence-aware clustering preserves
essential relational information by keeping intra-cluster relationship weights in the inference proce-
dure. This analysis validates that influence-aware clustering effectively approximates relationship
computation over the full dataset by focusing on the stronger intra-cluster relationship weights.

6.4 Case Study

Finally, we present a case study in Table [3|to illustrate how to interpret the relationship weights
given by our relational data influence model. Specifically, we analyze two representative examples of
cancellation and amplification effects, which are identified when the relationship weight is signifi-
cantly greater than 0 and less than 0, respectively. The cancellation effect in the first example arises
from misaligned perspectives on education, where data 1 emphasizes parental influence and data 2
highlights teachers’ critical roles. In contrast, the amplification effect in the second example emerges
from complementary concepts: data 1 requires gcd for its problem solution, while data 2 provides
a formal definition of gcd. Our study highlights the unique ability of our relational data influence
model to capture complex interactions between training points, unlike semantic embedding models
that focus solely on semantic similarity. We hope that our relational data influence model can serve
as an analytic tool to discover and interpret more interesting interactions within pretraining data.

7 Conclusion

In this paper, we introduce Group-MATES, an efficient group-level data selection framework designed
to optimize the speed-quality frontier of language model pretraining. On the DCLM benchmark,
Group-MATES achieves 3.5%-9.4% relative performance gains over random selection, nearly doubles
improvements from individual selection methods, and substantially reduces token and compute
requirements for reaching target downstream performance levels. Further analyses show that modeling
relationship weights is critical for accurately approximating oracle data influences.

Our work offers two key insights for data-centric pretraining. First, advanced data selection shall
extend beyond the individual level, as model training is ultimately a collective effect. Second,
modeling relationships among data provides a practical path toward scalable group-level data selection
without extensive oracle data influence calculations. Future work can explore integrating Group-
MATES into various training stages, extending relational modeling to further close the gap with
greedy group selection, and investigating the theoretical limits of group-level selection efficiency. We
hope that our work motivates a shift toward group-level perspectives in data selection, paving the
way for more scalable and efficient foundation model pretraining.
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A Theoretical Analysis

A.1 Connection between Oracle Data Influences and Influence Functions
We start from the oracle individual data influence, defined as the change in reference loss after locally
probing the model M with z; [50]:

I(M,z;) = L(D, | AM,z;)) — L(D, | M), (23)

where A(M, z;) denotes the model after training on ;. To approximate this, we consider the optimal
model M = after upweighting z; by a small e:

. _ ) l n . .
Mg, = argmin 3 | L{w; | M) + €L | M), (24)

J=1

and let M* = Mg .. be the original optimum. The influence function estimates the change in
reference loss as € — 0:

d
I(M,x;))~ —L(D, | M) (25)
de =0
Applying the chain rule,
d dM:; .
T LD [ ME,)| = VLD [ M) (26)
de o de |._,
dM? . . . . . ...
To compute — == , we differentiate the optimality condition:
1 n
— L(x; : L(x; ) =0 27
Vm n; () | M)+ eLlai | M) @7
Differentiating both sides with respect to € and evaluating at € = 0 yields
dM? . .
Hpq- de’ : + VM£($Z | M ) =0, (28)
e=0
dM? .
— = —H N Lz | M), (29)
e=0

where H - = 5 >0 V3, L(x; | M*) is the Hessian. Substituting back to Eq. 26| we obtain the
influence function approximation:

I(M,2;) ~ =V M L(Dy | M) TH LNV mL(zi | M7) (30)

A.2  Connection between Relationship Weight and Trajectory-Specific Influence Function

Trajectory-specific influence function [37] approximates a data point’s conditional influence within
the training trajectory, providing an intermediate approach to capture group-level influences. Formally,
given a training batch sequence {B1, Ba, . .., Br}, we estimate the influence of downweighting a
training data point x; from batch ; by a small amount € on the reference loss £(D,. | M7 ,.)—L(D; |
M), where M* and M .. are the final converged model state before and after the downweighting.

The model updates with Stochastic Gradient Descent (SGD) as:

Mt+1 = Mt — Nt Z VME(LL' | Mt) (31)

rEB,

Downweighting x; by € modifies the update at step ¢:

Me(@=Me—m [ Y VLl | M) + (1 - e)Vaullai | M) (32)
zeB\{z:}
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The change in reference loss is approximated around e = 0 with first-order Taylor expansion:

OL(D, | M .
LD, | M) — £Dy | M) e 2B Men) @3
i Oe —o
oM .
~e- VM‘C(DT | M*)T €,T; (34)
e e=0
LM, . . .
Now we derive —5 . At t, differentiating the modified update:
oM
%(6) = mVmL(zi | My) (35)
€ e=0
For subsequent steps j =¢t+1,..., T — 1,
OM;11(6) OM;(e) ) OM;(e)
—_— = —— —nj ; 36
el M = L 2; VL@ | My(9) =55 69
_ OM;(e)
= (I nJHJ) De o (37)
Unrolling from ¢ + 1 to T — 1:
OM;,, OM (e s
Pen| 2 OMO8 T 0yt | Vsl | M) G39)
€ e=0 € e=0 j=t+1
Substituting into Eq. [34}
T—1
LD, | M:,,) = LDy | M) m enVaL(Dr | MI)T | ] (T =mHy) | VLl | My)
j=t+1
(39
When z; is totally removed from batch By, i.e., € = 1:
T—1
L(Dr | M7, )= LDy | MT) = eV £(D, | MIT | TT (=i Hy) | VaaLlas | Me) (40)
j=t+1

Our relationship weight R in Eq. serves a similar purpose to HJT;iH (I —n;H;) by reweighting
the influence of a data point based on its relationships with other points in the training trajectory.

B Experimental Details

Table 4: Training hyperparameters.

HYPERPARAMETER \400M-4x 1B-1x 3B-1x RELATIONAL DATA INFLUENCE MODEL

STEPS 31403 54923 107610 3086
BATCH SIZE 512 256 256 128
SEQUENCE LENGTH 2048 2048 2048 2048 (512 * 4)
MAX LEARNING RATE 3E-3 3E-3 3E-3 5E-5
OPTIMIZER ADAMW  ADAMW ADAMW ADAMW
SCHEDULER COSINE COSINE COSINE COSINE

Language Model. We pretrain all decoder-only language models from scratch following DCLM
setups. The training employs cosine learning rate scheduler and AdamW optimizer [21]. All
experiments are conducted on 8 GPUs, with detailed training hyperparameters provided in Table

Relational Data Influence Model. Our relational data influence model is fine-tuned from
bge-base-en-v1.5 [46], which takes the last hidden state of the first token (i.e., [CLS]) as the
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sentence embedding h € R7%®. As our base model only supports a maximum input sequence length
of 512, but our pretraining sequence length extends to 2048, we split each sequence into four chunks
and process them separately. The hidden states of four chunks are averaged to compute the final
embedding h. This vector is then multiplied by a regression weight w, € R7%8 to predict individual
influence w,, - h. For relationship weights, the sim function is the cosine similarity between two
embeddings, consistent with the original BGE design. The model is trained using the mean squared
error loss between the predicted and Z-score normalized oracle data influences. The validation set
consists of 1,000 sampled oracle influences. All training hyperparameters are listed in Table [4}

C Additional Results

In this section, we provide a detailed compute breakdown (§C.IJ), results on different setups (§C.2}

§C.3] §C.4), and extensive ablation studies (§C.5] §C.6l §C.7| §C.8) to support our findings.

C.1 Compute Breakdown
Table 5: #FLOPs and H100 hours breakdown of Group-MATES.

PROCESS \ #FLOPS x1E19 #FLOPs RATIO H100 HOURS HOURS RATIO
400M-4X SETTING: 412M MODEL, 32.8B TOKENS

MODEL PRETRAINING 8.00 87.8% 104.0 82.9%
ORACLE DATA INFLUENCE COLLECTION 0.29 3.2% 4.5 3.6%
DATA INFLUENCE MODEL TRAINING 0.05 0.5% 2.7 2.2%
DATA INFLUENCE MODEL INFERENCE 0.77 8.5% 14.2 11.3%
TOTAL 9.11 100% 125.4 100%
1B-1X SETTING: 1.4B MODEL, 28.0B TOKENS

MODEL PRETRAINING 24.00 93.3% 240.0 90.0%
ORACLE DATA INFLUENCE COLLECTION 1.01 3.9% 12.1 4.5%
DATA INFLUENCE MODEL TRAINING 0.05 0.3% 2.7 1.0%
DATA INFLUENCE MODEL INFERENCE 0.65 2.5% 12.0 4.5%
TOTAL 25.71 100% 266.8 100%
3B-1X SETTING: 2.8B MODEL, 55.9B TOKENS

MODEL PRETRAINING 94.00 96.6% 740.0 94.2%
ORACLE DATA INFLUENCE COLLECTION 1.98 2.0% 18.7 2.4%
DATA INFLUENCE MODEL TRAINING 0.05 0.1% 2.7 0.4%
DATA INFLUENCE MODEL INFERENCE 1.30 1.3% 23.9 3.0%
TOTAL 97.33 100% 785.3 100%

We provide a detailed breakdown of compute used by Group-MATES in Table[5] measured either by
#FLOPs or H100 hours. Notably, the data selection procedure of Group-MATES only accounts for
12.2%, 6.7%, and 3.4% of the total FLOPs in 400M-4x, 1B-1x, and 3B-1x setups, respectively. The
relative selection cost in larger setups is generally smaller because their pretraining FLOPs dominate
the total computation, while the training and inference costs of data influence model remain nearly
stable. Considering the net gains achieved by Group-MATES, its compute overhead can be negligible.

C.2 Equalized Compute Setup

To evaluate the effectiveness of Group-MATES under an equalized compute setup, we compare its
performance against random selection using the same total FLOPs, as presented in Table[6] Although
random selection utilizes more tokens for pretraining, Group-MATES consistently outperforms it
across different scales. Specifically, Group-MATES achieves relative gains of 7.4%, 4.1%, and
3.0% in the 400M-4x, 1B-1x, and 3B-1x setups, respectively. These results highlight that merely
increasing the number of training tokens does not yield comparable improvements to our selection
method. Notably, the computational overhead of Group-MATES diminishes relative to the total
pretraining cost as model and data scales increase. Furthermore, the selection process can be
efficiently parallelized and decoupled from the pretraining. Our results underscore the scalability and
efficiency of Group-MATES, making it an attractive preliminary step for large-scale pretraining.

We observe that in some sub-categories, the performance of random selection slightly decreases
despite increased #FLOPs. We hypothesize that this is due to the stochastic nature of long-term
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Table 6: Comparison with equalized compute on DCLM 400M-4x, 1B-1x, and 3B-1x settings.

COMMONSENSE LANGUAGE READING SYMBOLIC ‘WORLD
REASONING UNDERSTANDING COMPREHENSION PROBLEM SOLVING KNOWLEDGE CORE
METHOD #FLOPs / #TOKENS (3 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (22 tasks)
400M-4X SETTING: 412M MODEL
RANDOM 8.00 x1E19/32.8B 0.25335 0.28315 0.10477 0.15643 0.22858 0.21356
RANDOM 9.11 x1E19/37.4B 0.26988 0.28965 0.08906 0.16319 0.23082 0.21749
MATES 9.11 x1E19/32.8B 0.28176 0.28358 0.14225 0.16296 0.22179 0.22260
GROUP-MATES  9.11 %1E19/32.8B 0.29190 0.28735 0.14997 0.18890 0.22908 0.23362
1B-1X SETTING: 1.4B MODEL
RANDOM 24.00 x1E19/28.0B 0.34994 0.38584 0.22059 0.18291 0.30784 0.29456
RANDOM 25.71 *1E19/30.0B 0.36642 0.37954 0.22403 0.18335 0.30665 0.29539
MATES 25.71 *1E19/28.0B 0.36331 0.39640 0.22548 0.19958 0.30415 0.30288
GROUP-MATES  25.71 x1E19/28.0B 0.36997 0.39744 0.23922 0.20250 0.30793 0.30747
3B-1X SETTING: 2.8B MODEL
RANDOM 9.4 x1E20/55.9B 0.44969 0.47816 0.27832 0.18070 0.37523 0.35603
RANDOM 9.7 x1E20/57.7B 0.45261 0.48056 0.28435 0.18126 0.37431 0.35782
MATES 9.7 ¥x1E20/55.9B 0.44178 0.48263 0.30487 0.18497 0.37799 0.36139
GROUP-MATES 9.7 120/ 55.9B 0.45874 0.48504 0.31094 0.19591 0.38146 0.36846
Table 7: Results on DCLM 1B-3x setting.
COMMONSENSE LANGUAGE READING SYMBOLIC WORLD
REASONING UNDERSTANDING COMPREHENSION PROBLEM SOLVING KNOWLEDGE CORE
METHOD (3 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (22 tasks)
1B-3X SETTING: 1.4B MODEL, 84.0B TOKENS
RANDOM 0.42433 0.44592 0.27744 0.17986 0.35294 0.33840
MATES 0.40872 0.45021 0.29262 0.20697 0.34452 0.34376
GROUP-MATES 0.43300 0.44907 0.29663 0.21737 0.36320 0.35391

LLM pretraining optimization, where simply adding more tokens does not guarantee consistent
improvements across all tasks, especially when comparing similar computational budgets [31]]. For
instance, in the official DCLM leaderboard, 7B-2x models do not universally outperform 7B-1x
models despite doubling the training tokens. As highlighted in the DCLM benchmark, Core score
provides a more reliable and comprehensive metric that mitigates individual task variability.

C.3 1B-3x Setup

This experiment illustrates that larger models are more robust to data quality variations and conse-
quently require more extensive training to fully manifest the benefits of data selection. In Table|7| we
further run a set of experiments in the 1B-3x setup, where the training tokens are 3 times more than
1B-1x. Our results show that the absolute Core score improvement of Group-MATES over random
increases from 1.3% (1B-1x) to 1.6% (1B-3x), doubling the gains achieved by MATES. Therefore,
Group-MATES consistently maintains its advantage even as model size and training data scale up.

C.4 MATES Setup

In this section, we compare Group-MATES with previous pretraining data curation baselines, follow-
ing the same setup as MATES [50]. These methods include (1) DSIR [47]: proximity to Wikipedia
based on n-gram features. (2) SemDeDup [[1]: deduplicating semantically similar data. (3) DsDm [L1]:
static approximation of influence functions by a converged proxy model. (4) QuRating [44]: ranking
with educational values distilled from GPT-3.5. As shown in Table [§] Group-MATES achieves
the best average downstream results with minimal additional costs, highlighting the potential of
optimizing group influences in data-efficient pretraining.

C.5 Selection Ratio

In Table[9] we explore the impact of varying the selection ratio of Group-MATES to 10%, 25%, and
50%. A 10% selection ratio does not perform as effectively as the other two, likely due to the loss
of diversity in a high-quality corpus like DCLM when the selection is too aggressive. Both 25%
and 50% achieve comparable results; however, 50% produces more training tokens, making it the
preferred choice for our final selection ratio.
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Table 8: Zero-shot evaluation of pretraining 1B models with different data selection methods on C4.
We report per-task accuracy and the total #FLOPs for each method. All results except Group-MATES
are directly copied from the original MATES paper [50]. Best performances are marked bold.

METHOD@FLOPS“EIQ)‘SCIQ ARC-E ARC-C LoGIQA OBQA BooLQ HELLASWAG PIQA WINOGRANDE AVERAGE
1B SETTING: 1B MODEL, 25B TOKENS

RANDOM (17,7, 658 437 256 27.5 318 60.2 43.8 68.9 50.7 46.4
DSIR (17.67) 658 426 247 28.7 202 597 44.2 68.3 53.2 46.3
SEMDEDUP (19,13, 66.8 455 253 27.6 306 60.2 453 69.7 52.5 47.1
DSDM (22.04) 682 450 265 266 294 590 44.8 68.9 51.9 46.7
QURATING (37.67) 67.1 455 256 269 298 60.3 45.2 70.2 51.6 46.9
MATES (19.97, 67.3 449 259 28.7 322 60.9 453 69.5 52.4 47.5
GROUP-MATES (3037, | 67.8  45.0 255 289 326 609 47.4 70.5 52.4 47.9
Table 9: Results on DCLM 400M-4x setting with different selection ratios.
COMMONSENSE LANGUAGE READING SYMBOLIC WORLD
REASONING UNDERSTANDING COMPREHENSION PROBLEM SOLVING KNOWLEDGE CORE
RATIO (3 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (22 tasks)
10% 0.27575 0.27950 0.13437 0.19149 0.22776 0.22743
25% 0.28573 0.28654 0.15217 0.18646 0.22830 0.23212
50% (OURS) 0.29190 0.28735 0.14997 0.18890 0.22908 0.23362

C.6 Design of Relational Data Influence Model

In this section, we vary the design choices of our relational data influence model, including replacing
the model backbone with BERT-base [9], choosing dot product or an FFN model as the sim function.
As shown in Figure[7al BERT demonstrates weaker abilities to approximate oracle data influences
than BGE, as the latter has been specifically optimized for sentence embeddings. Taking FFN as the
sim function does not significantly decrease the approximation performance but introduces additional
parameters; choosing dot product, the performance dramatically drops. This validates our choice to
align the similarity measurement with the original BGE, i.e., cosine similarity.

C.7 Number of Collected Trajectories

In this section, we examine the effects of number of collected trajectories on the approximation
performance of our relational data influence model. As shown in Figure|7b} scaling up the number of
collected trajectory consistently elevates the performance, but with diminishing returns. Considering
the effectiveness-efficiency trade-off, we finally choose 20k as the number of collected trajectories.

0.7 O 0.7
g 0.5 jjwf/w go.é
é gi “—BERT 20 5
VJ' . — Dot m

0

1000 2000 3000
Training Steps

2k Sk 10k 20k 40k
Number of Trajectories

(a) Model design. (b) #Trajectories.

Figure 7: Performance of relational data influence model
with different designs (a) and number of trajectories (b).

C.8 Rollout Length

In Table[I0] we investigate the effect of varying the rollout length 7" in Group-MATES, considering
values of 2, 10, and 20. We observe that 7' = 10 performs slightly better than T" = 2, suggesting that
a moderate increase in rollout length enables our relational data influence model to better capture
long-term effects. However, increasing 7" to 20 results in a performance decline, likely due to
the increased complexity of modeling combinatorial effects over longer trajectories, which incurs
additional challenges for the relational data influence model. These results indicate the importance
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Table 10: Results on DCLM 1B-1x setting with different rollout length 7'.

COMMONSENSE LANGUAGE READING SYMBOLIC WORLD
REASONING UNDERSTANDING COMPREHENSION PROBLEM SOLVING KNOWLEDGE CORE
T (3 tasks) (6 tasks) (3 tasks) (5 tasks) (5 tasks) (22 tasks)
2 0.36687 0.40461 0.22536 0.20110 0.30817 0.30685
20 0.36549 0.39901 0.21265 0.20501 0.30081 0.30262
10 (OURS) 0.36997 0.39744 0.23922 0.20250 0.30793 0.30747

of selecting an appropriate rollout length that sufficiently reflects group-level data influence while
remaining tractable for the relational data influence model to learn effectively.

D Limitations

Our current study focuses on models ranging from 412M to 2.8B parameters, providing initial
validation of our proposed methods. However, extending these insights to large-scale, production-
level training scenarios remains a promising direction. On one hand, scaling up offers greater
flexibility and potential gains for data selection, as the larger candidate pool and increased demand for
efficiency make sophisticated curation strategies more valuable, and the relative cost of data selection
becomes less significant. On the other hand, large-scale pretraining may introduce new stability and
optimization challenges that call for dedicated methodological advances. We leave the exploration of
these directions to future work.

Future research could further advance group-level data influence theory itself, for example by
characterizing the interactions and dependencies among data groups, analyzing the conditions under
which group-level influences significantly diverge from individual data influences, and developing
new theoretical frameworks that connect influence modeling with generalization and representation
learning. Such work may yield deeper insights into the fundamental principles that govern collective
data effects and provide stronger foundations for principled data curation strategies.

E Broader Impacts

Our work paves the way for a future where efficient pretraining seamlessly integrates data valuation,
curation, and model training into a unified, self-optimizing framework. By advancing group-level
data selection, our approach empowers foundation models to utilize data wisely and purposefully,
significantly reducing computational costs while enhancing scalability and generalization. This break-
through has the potential to lower resource barriers, making high-performance Al more accessible to
a wider range of researchers and organizations.

Beyond efficiency, our work improves the interpretability of training data influence, shedding light
on how different subsets contribute to model learning. As foundation models become increasingly
capable of dynamically adapting to evolving data distributions, they will drive progress in various
fields, from Al-driven scientific discovery to large-scale real-world applications. Moving forward, our
approach lays the groundwork for a new paradigm in pretraining—one where models autonomously
optimize their learning trajectories with minimal human intervention, leading to more efficient,
adaptive, and impactful Al development.
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Table 11: Full results on DCLM 400M-4x. The number beside each task denotes the number of
few-shot demonstrations used for evaluation. We exclude CommonsenseQA from the core score
calculation due to its instability and limited informativeness. For instance, in the original DCLM
paper, the 412M model dramatically outperforms the 1.4B model by 76.6% on this task.

TASK \ RANDOM EDU CLASSIFIER MATES QuaDp  GROUP-MATES
AGI_EVAL_LSAT_AR (3) 0.19565 0.28696 0.20435 0.20000 0.27826
ARC_CHALLENGE (10) 0.29522 0.32253 0.29863 0.29181 0.27730
ARC_EASY (10) 0.57912 0.59975 0.57323  0.58460 0.56860
BIGBENCH_CS_ALGORITHMS (10) 0.44697 0.33712 0.39697 0.43258 0.44091
BIGBENCH_DYCK_LANGUAGES (10) 0.19300 0.21600 0.18800 0.20300 0.16500
BIGBENCH_LANGUAGE_IDENTIFICATION (10) | 0.24690 0.25320 0.25500 0.25310 0.25750
BIGBENCH_OPERATORS (10) 0.14762 0.18095 0.16190 0.14762 0.20952
BIGBENCH_QA_WIKIDATA (10) 0.52099 0.52492 0.52360 0.50431 0.51557
BIGBENCH_REPEAT_COPY_LOGIC (10) 0.00000 0.03125 0.06250 0.00000 0.03125
BOOLQ (10) 0.56881 0.49021 0.59113 0.58899 0.61407
COMMONSENSE_QA (10) 0.37838 0.22195 0.22523 0.31286 0.20393
CoPA (0) 0.62000 0.69000 0.66000 0.74000 0.68000
coQa (0) 0.21195 0.21283 0.22836 0.21308 0.21320
HELLASWAG (10) 0.45230 0.45399 0.45519 0.45589 0.45907
HELLASWAG (0) 0.45638 0.45688 0.45828 0.45818 0.46116
JEOPARDY (10) 0.12347 0.14875 0.11854 0.09442 0.14690
LAMBADA_OPENAI (0) 0.50708 0.45624 0.50340 0.50010 0.50049
MMLU_FEWSHOT (5) 0.24948 0.24992 0.22825 0.25419 0.26629
OPENBOOK_QA 0.33400 0.33600 0.34200 0.34200 0.33400
PIQA (10) 0.70403 0.69369 0.70131 0.70022 0.70185
SQUAD (10) 0.23709 0.23936 0.27436 0.23094 0.25232
WINOGRAD (0) 0.69231 0.70330 0.69963 0.68864 0.69231
WINOGRANDE (0) 0.54538 0.55406 0.53354 0.52802 0.54775
CORE 0.21356 0.21821 0.22260 0.22358 0.23362

Table 12: Full results on DCLM 1B-1x. The number beside each task denotes the number of few-shot
demonstrations used for evaluation. We exclude CommonsenseQA from the core score calculation
due to its instability and limited informativeness. For instance, in the original DCLM paper, the 412M
model dramatically outperforms the 1.4B model by 76.6% on this task.

TASK | RANDOM EDU CLASSIFIER MATES ~ QUAD  GROUP-MATES
AGI_EVAL_LSAT_AR (3) 0.19565 0.23913 0.24783 0.26522 0.27826
ARC_CHALLENGE (10) 0.36007 0.37799 0.36092 0.34386 0.35836
ARC_EASY (10) 0.65362 0.69360 0.64689 0.64226 0.65909
BIGBENCH_CS_ALGORITHMS (10) 0.44091 0.44015 0.43485 0.44394 0.41667
BIGBENCH_DYCK_LANGUAGES (10) 0.22400 0.27300 0.23600 0.17400 0.22600
BIGBENCH_LANGUAGE_IDENTIFICATION (10) | 0.25430 0.24940 0.24370 0.25390 0.25410
BIGBENCH_OPERATORS (10) 0.22381 0.22381 0.20476  0.20000 0.23333
BIGBENCH_QA_WIKIDATA (10) 0.60179 0.60066 0.59151 0.59288 0.58531
BIGBENCH_REPEAT_COPY_LOGIC (10) 0.03125 0.06250 0.06250 0.09375 0.06250
BOOLQ (10) 0.61957 0.51315 0.61988 0.54220 0.62538
COMMONSENSE_QA (10) 0.31368 0.21458 0.27600 0.26536 0.33579
copA (0) 0.70000 0.67000 0.72000 0.70000 0.72000
coQa (0) 0.30527 0.31003 0.31204 0.31229 0.31079
HELLASWAG (10) 0.57648 0.57170 0.58156  0.57220 0.58604
HELLASWAG (0) 0.58186 0.57518 0.58335 0.57837 0.57807
JEOPARDY (10) 0.24318 0.31211 0.24653 0.26231 0.23064
LAMBADA_OPENAI (0) 0.59441 0.55055 0.60120 0.59402 0.60489
MMLU_FEWSHOT (5) 0.25699 0.25345 0.25423  0.25644 0.27533
OPENBOOK_QA 0.38400 0.39200 0.38000 0.37000 0.38600
PIQA (10) 0.73558 0.74102 0.73830 0.74483 0.74429
SQUAD (10) 0.35762 0.41183 0.36471 0.39773 0.39272
WINOGRAD (0) 0.74359 0.75458 0.78755 0.79853 0.77656
WINOGRANDE (0) 0.58800 0.58011 0.57380 0.57853 0.59116
CORE 0.29456 0.29257 0.30288 0.29340 0.30747
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions, such as the
motivation of group-level data selection, the parametrization using a relational data influence
model, and the empirical validation of the proposed method. These claims are consistent
with the experimental results and discussions provided in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a discussion of its limitations in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides a complete set of assumptions in Section [3|and a complete
proof for the theoretical backups in Appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper contains detailed descriptions of the experimental setup, including
datasets and models used, training procedures, and hyperparameters in Section[5] The code
is open-sourced at https://github. com/facebookresearch/Group-MATES.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses public datasets and open-sources its code that faithfully
reproduces the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all training and test details, including the datasets used, the
models employed, and the training hyperparameters in Section [5|and Appendix B}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper reports error bars for small-scale experiments (e.g., Figure [a)), but
given the significant computation cost of large-scale pretraining, the main experiments are
not repeated multiple times. This is a common choice in the field and also the standard
practice on the DCLM benchmark.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details on the type of compute resources used, including
the specific hardware, memory, and the approximate time required for execution of the
experiments in Table [5]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper discusses its potential societal impacts in Appendix [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper discusses the measures taken to ensure the responsible release of the
models, including the use of appropriate licensing and ethical guidelines to prevent misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the original creators of datasets and models used in the
experiments and respects their licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets, such as the relational data influence model,
and provides documentation alongside these assets with sufficient instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components. LLM is only used for writing polishment.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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