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ABSTRACT

Image representations (artificial or biological) are often compared in terms of their
global geometry; however, representations with similar global structure can have
strikingly different local geometries. Here, we propose a framework for compar-
ing a set of image representations in terms of their local geometries. We quantify
the local geometry of a representation using the Fisher information matrix, a stan-
dard statistical tool for characterizing the sensitivity to local stimulus distortions,
and use this as a substrate for a metric on the local geometry in the vicinity of
a base image. This metric may then be used to optimally differentiate a set of
models, by finding a pair of “principal distortions” that maximize the variance of
the models under this metric. We use this framework to compare a set of sim-
ple models of the early visual system, identifying a novel set of image distortions
that allow immediate comparison of the models by visual inspection. In a sec-
ond example, we apply our method to a set of deep neural network models and
reveal differences in the local geometry that arise due to architecture and train-
ing types. These examples highlight how our framework can be used to probe
for informative differences in local sensitivities between complex computational
models, and suggest how it could be used to compare model representations with
human perception.

1 INTRODUCTION

Biological and artificial neural networks transform sensory stimuli into high-dimensional internal
representations that support downstream tasks, and these representations are often described in terms
of their neural population geometry (Chung & Abbott, 2021). This idea has led to a multitude of
proposed measures of representational similarity (Kriegeskorte et al., 2008; Yamins & DiCarlo,
2016; Kornblith et al., 2019; Williams et al., 2021; Klabunde et al., 2023), and these measures are
often used to compare representations within a computational model to the representations within
a brain. However, despite differing in architectures and training procedures, many computational
models of perceptual or neural responses are equally performant on these representational similarity
measures (Schrimpf et al., 2018; Tuckute et al., 2023; Conwell et al., 2024). Are these models
functionally interchangeable, or are the datasets and methods that are used to test them simply
insufficient to reveal their differences?

Often the similarity between two representations is quantified by measuring alignment of the rep-
resentations over a set of natural stimuli that are relatively far apart in stimulus space. In this way,
these measures capture notions of global geometric similarity between representations. However,
systems with similar global structure can have strikingly different local geometries. These local ge-
ometries are often investigated by measuring the sensitivity of a system to small image distortions.
For example, Szegedy et al. (2013) found image distortions that were imperceptible to humans but
led artificial neural networks to misclassify images, which motivated methods for training artificial
neural networks so as to minimize their susceptibility to these adversarial examples (Goodfellow
et al., 2014; Madry, 2017). These observations suggest a need for metrics that compare the local ge-
ometries of image representations and, in particular, highlight the differences between systems even
when global structure seems similar. Furthermore, such metrics may also aid in the development of
network interpretability and explanability tools.
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How can we quantify and compare the local geometry of different image representations? A brute-
force comparison clearly is prohibitive: the space of images is extremely high-dimensional, and the
set of potential distortions equally high-dimensional. Estimating the local geometry of representa-
tions over a moderately dense sampling of this full set of possible distortions is impractical, and
estimating human sensitivity to such a set is essentially impossible. As such, it is worthwhile to
develop a method for judicious selection of stimulus distortions that can be used when comparing a
set of models.

We take inspiration from Zhou et al. (2023). For a pair of models and a base image, they synthesize
distortions along which the two models’ sensitivities maximally disagree. This bears conceptual
similarity to other methods that construct stimuli to optimally distinguish a pair of models (Wang
& Simoncelli, 2008; Golan et al., 2020) or cluster neurons by cell type (Burg et al., 2024), and
builds on earlier work that examined “eigen-distortions” along which individual models are maxi-
mally/minimally sensitive (Berardino et al., 2017). Specifically, Zhou et al. measure the local sen-
sitivity of a model in terms of its Fisher Information matrix (FIM, Fisher, 1925), a classical tool
from statistical estimation theory, and choose the pair of “generalized eigen-distortions” that max-
imize/minimize the ratio of the two models’ sensitivities. Once these image distortions have been
computed, they may be added in varying amounts to a base image to determine the level at which
they become visible to a human. These measured human sensitivities can then be compared to those
of the models, with the goal of identifying which model is better aligned with the local geometry
of the human visual system. The distortions can also be used as model interpretability tools. For
instance, visualizations of the distortions may offer insight into how complex models systematically
differ, providing practitioners with better understanding of model vulnerabilities. However, there is
no principled method for selecting image distortions for comparing more than two models.

Here we define a novel metric for comparing model representations in terms of their relative sensi-
tivities to image distortions. We then use this metric to generate a pair of distortions that maximize
the variance across two or more models under this metric. In analogy with principal component
analysis, our method can be viewed as a dimensionality reduction technique that preserves as much
of the variability in the local representational geometry as possible. As such, we refer to these as the
“principal distortions” of the set of models.

We apply our method to a nested set of hand-crafted models of the early visual system to identify
distortions that differentiate these models and can potentially be used to evaluate how well these
models predict human visual sensitivities. We then apply our method to a set of visual deep neural
networks (DNNs) with varying architectures and training procedures. We find distortions that allow
for visualization of differences in the sensitivities between layers of the networks and neural network
architectures. We further explore differences between standard ImageNet trained networks and their
shape-bias enhanced counterparts, and between standard networks and their adversarially-trained
counterparts. In all cases, we illustrate how the method generates novel distortions that highlight
differences between models.

2 PROBLEM STATEMENT AND EXISTING METHODS

Given a collection of image representations, our goal is to develop a method for comparing the
local geometries of these representations in the vicinity of some base input image. In this section,
we define the local geometry of an image representation in terms of the FIM and review existing
methods for selecting image distortions based on model FIMs.

2.1 LOCAL INFORMATION GEOMETRY OF STOCHASTIC IMAGE REPRESENTATIONS

We assume that each image representation has an associated conditional density p(r|s), where s is
a K-dimensional vector of image pixels and r is a vector of stochastic responses (e.g., biological
neuronal firing rates or deterministic model activations with additive response noise). Figure 1A
depicts a two-dimensional stimulus space and three models mapping stimuli s, s+ ϵ1, and s+ ϵ2 to
conditional densities. Note that the dimension of the responses may vary across representations.

The sensitivity of the representation to a small distortion ϵ depends on the overlap between the
conditional distributions p(r|s) and p(r|s+ ϵ), with less overlap corresponding to higher sensitivity
(Green & Swets, 1966). This sensitivity can be precisely quantified in terms of the Fisher-Rao metric
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Figure 1: Comparing the local geometry of image representations. A) Each model maps stimuli
to stochastic responses in a model’s representation space—biological neurons are inherently noisy,
while a putatively deterministic model can be made stochastic by assuming additive Gaussian re-
sponse noise. For example, Model A maps the stimulus s (solid black circle •) to a conditional
density p(rA|s) on Model A’s representation space (the solid blue circle • and surrounding transpar-
ent blue ellipse represent the mean and covariance of rA conditioned on s). B) A model’s sensitivity
at the base image s to local distortions can be mapped back to the stimulus domain via the model’s
positive semidefinite FIM. In the top panel “Eigen-distortions (Berardino et al., 2017)”, the blue el-
lipse represents the unit level set {v : dA(v) = 1} of the norm induced by Model A’s FIM IA, which
is the set of distortions of the base stimulus s that appear equally distorted according to Model A’s
representation. The eigenvectors of the FIM (ϵ1, ϵ2) can equivalently be interpreted as the distor-
tions that maximize the magnitude of the log ratio of the model’s sensitivities, which is represented
as a solid blue circle • on the number line. In the middle panel “Generalized Eigen-distortions (Zhou
et al., 2023)”, the blue ellipse is copied from the top panel and the orange ellipse is the level set of
Model B’s FIM IB . The generalized eigenvectors of IA and IB (ϵ1, ϵ2) can equivalently be inter-
preted as the vectors that maximize the difference between the log ratios of the models’ sensitivities.
In the bottom panel “Principal distortions (this paper)”, the blue and orange ellipses are as in the
above panels and the green ellipse represents the level set of Model C’s FIM IC . We propose a
general method for comparing an arbitrary number of models, by selecting two stimulus distortions
(ϵ1, ϵ2) that maximize the variance of the log ratios of model sensitivities.

(Rao, 1945; Amari, 2016), a Riemannian metric on the stimulus space (Fig. 1B) that is defined in
terms of the positive semi-definite FIM (Fisher, 1925):

I(s) := Er∼p(r|s)
[
∇s log p(r|s)∇s log p(r|s)⊤

]
,

where ∇s log p(r|s) denotes the gradient of log p(r|s) with respect to s. The FIM is a standard
tool in statistical estimation theory that locally approximates the expected log likelihood ratio (or
KL divergence) between the conditional distributions p(r|s) and p(r|s + ϵ), and provides a lower
bound on the variance of any unbiased estimator of s (Cramér, 1946; Rao, 1945). The FIM has
also been used to link neural representations to perceptual discrimination (Paradiso, 1988; Seung
& Sompolinsky, 1993; Brunel & Nadal, 1998; Averbeck & Lee, 2006; Seriès et al., 2009; Ganguli
& Simoncelli, 2014; Wei & Stocker, 2016). Given the FIM, we can define the sensitivity of the
representation of stimulus s to a distortion ϵ as:

d(s; ϵ) :=
√

ϵ⊤I(s)ϵ, (1)

which quantifies how well an ideal observer could detect small perturbations of the base stimulus in
the direction ϵ.
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As a tractable example, suppose that the conditional response r is Gaussian with stimulus-dependent
mean f(s) and constant covariance Σ; that is, p(r|s) ∼ N (f(s),Σ). Then the FIM at s is

I(s) = Jf (s)
⊤Σ−1Jf (s),

where Jf (s) is the Jacobian of f(·) at s. From this expression, we see that the sensitivities of a
representation to a distortion ϵ depend on how the mean response is changing in the direction ϵ
relative to the noise covariance. This example is relevant to our experimental results, where the
function f(s) denotes the output of a deterministic model evaluated at a stimulus s.

2.2 EIGEN-DISTORTIONS OF AN IMAGE REPRESENTATION

Given a model image representation, Berardino et al. (2017) proposed the use of extremal eigen-
vectors of the model FIM (termed “eigen-distortions”, Fig. 1B, top panel) as model predictions of
the most- and least-noticeable image distortions. For a set of early vision models and deep neu-
ral networks whose parameters were optimized to match a database of human image quality ratings
(Ponomarenko et al., 2009), they computed the eigen-distortions of each model. Despite the fact that
these models all fit the image quality data equally well, their eigen-distortions were quite different,
and human perceptual judgements of the severity of these eigen-distortions varied substantially. The
eigen-distortions of each image representation correspond to its most distinct distortion predictions,
which can then be tested with human perceptual experiments. However, if the eigen-distortions of
two models are similar, they will not be useful in distinguishing the models, since this method is
insensitive to differences in the non-extremal eigenvectors.

2.3 GENERALIZED EIGEN-DISTORTIONS FOR COMPARING TWO IMAGE REPRESENTATIONS

Zhou et al. (2023) proposed comparing two image representations A and B along distortions in
which their local sensitivities maximally differ, which is conceptually similar to previous meth-
ods that construct stimuli that maximize disagreement between models (Wang & Simoncelli, 2008;
Golan et al., 2020). Specifically, they chose distortions to extremize the generalized Rayleigh quo-
tient:

ϵ1(s) = argmax
ϵ

ϵ⊤IA(s)ϵ

ϵ⊤IB(s)ϵ
, ϵ2(s) = argmin

ϵ

ϵ⊤IA(s)ϵ

ϵ⊤IB(s)ϵ
. (2)

Since these distortions correspond to the extremal eigenvectors of the generalized eigenvalue prob-
lem IA(s)ϵ = λIB(s)ϵ, we refer to them as “generalized eigen-distortions” (Fig. 1B, middle panel).
However, this method is limited to comparisons of pairs of models, or of a single model against the
average of other models.

3 PRINCIPAL DISTORTIONS OF IMAGE REPRESENTATIONS

We propose a natural extension of generalized eigen-distortions that allows for comparisons among
more than two image representations. We show that the generalized eigenvalue problem suggests
a metric on image representations, which can be used to optimally choose image distortions that
distinguish more than two models.

3.1 A METRIC ON THE LOCAL GEOMETRY OF IMAGE REPRESENTATIONS

We can re-express the generalized eigen-distortions defined in Equation 2 as the solutions of a single
optimization problem:

{ϵ1, ϵ2} = argmax
ϵ,ϵ′

∣∣∣∣log dA(ϵ)

dB(ϵ)
− log

dA(ϵ
′)

dB(ϵ′)

∣∣∣∣ .
where we’ve used the definition of the sensitivity in equation 1 and simplified notation by omitting
the dependence of sensitivities and distortions on the stimulus, s. We can regroup the numerators and
denominators of the log quotients by model rather than by distortion, to re-express the optimization
problem as follows:

{ϵ1, ϵ2} = argmax
ϵ,ϵ′

mϵ,ϵ′(IA, IB),

4
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where

mϵ,ϵ′(IA, IB) :=

∣∣∣∣log dA(ϵ)

dA(ϵ′)
− log

dB(ϵ)

dB(ϵ′)

∣∣∣∣ . (3)

For any pair of distortions ϵ, ϵ′, the function mϵ,ϵ′(·, ·) is a proper metric on positive semi-definite
matrices. Specifically, it is non-negative, symmetric, obeys the triangle inequality, and is zero when
IA = IB . This metric has several appealing properties:

• Invariance to scaling of the FIMs by positive constants cA, cB > 0:

mϵ,ϵ′(IA, IB) = mϵ,ϵ′(cAIA, cBIB).

This is a desirable property since we are interested in identifying relevant image distortions
that depend on the shape of the FIMs, independent of scaling factors.

• Invariance to permutation of the distortions ϵ and ϵ′:

mϵ,ϵ′(IA, IB) = mϵ′,ϵ(IA, IB).

• When ϵ1 and ϵ2 are the generalized eigen-distortions of IA and IB , mϵ1,ϵ2(IA, IB) is an
approximation of the Fisher-Rao distance between mean-zero Gaussian distributions with
covariances IA and IB (up to scaling factors, see Appx. A). This interpretation suggests a
principled extension of the metric to more than two distortions.

• The metric compares stochastic representations back in stimulus space via their FIMs. This
avoids having to align the stochastic representations, which is a computationally intensive
step that is required when evaluating existing metrics on stochastic representations (Duong
et al., 2023b).

3.2 PRINCIPAL DISTORTIONS FOR COMPARING MULTIPLE IMAGE REPRESENTATIONS

To optimize a pair of image distortions for distinguishing N > 2 representations, A1, . . . , AN , we
choose ϵ1, ϵ2 to maximize the sum of the squares of all pairwise distances between the FIMs under
the metric defined in Equation 3:

{ϵ1, ϵ2} = argmax
ϵ,ϵ′

N∑
n=1

N∑
m=1

m2
ϵ,ϵ′(IAn , IAm). (4)

This is equivalent to maximizing the variance of the image representations’ log sensitivity ratios:

{ϵ1, ϵ2} = argmax
ϵ,ϵ′

N∑
n=1

∣∣∣∣∣log dAn
(ϵ)

dAn
(ϵ′)
− 1

N

N∑
m=1

log
dAm(ϵ)

dAm
(ϵ′)

∣∣∣∣∣
2

We refer to {ϵ1, ϵ2} as the “principal distortions” of the models, analogous to principal component
analysis (Fig. 1B). For a gradient-based optimization algorithm, see Appx. B.

There are several other natural extensions of generalized-eigendistortions when considering N > 2
models. For example, for any p ≥ 1, one can choose distortions ϵ1, ϵ2 that maximize the sum of the
pth power of all pairwise distances. Here we focus on the case of maximizing the variance (p = 2)
and leave an exploration of other moments to future work.

4 EXPERIMENTAL RESULTS

As a demonstration of our method, we generated principal distortions for computational models
previously proposed to capture aspects of the human visual system. All models were implemented
in PyTorch (Ansel et al., 2024) and simulations were performed on NVIDIA GPUs (RTX A6000
and A100 models). As the models are deterministic, we calculate the FIM by assuming the network
output is corrupted by additive Gaussian noise, as in (Berardino et al., 2017). In this case, I(s) =
Jf (s)

⊤Jf (s), where Jf (s) is the Jacobian of the model f(·) at input s and the induced geometry
on stimulus space is the pullback via f(·) of the Euclidean geometry on representation space.

5
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Figure 2: Principal distortions of four early visual models. A) Log sensitivity ratios of the two
principal distortions and two random distortions for each model (Berardino et al., 2017). Models
are nested (LN is the most basic, LGN is the full model). Principal distortions (filled circles) give
rise to diverse log ratios, while random distortions (hollow circles) do not. B) Natural image s and
corresponding optimized principal distortions {ϵ1, ϵ2}. C) Natural image corrupted by principal
distortions, with each pair scaled so as to be equally detectable by one model (as indicated above).
Models are ordered by the log ratio of their sensitivities (panel A). If a model’s thresholds are
proportional to human thresholds, the corresponding pair of scaled distortions should be equally
visible in the top and bottom images. Note: Images are best viewed at high resolution.

4.1 EARLY VISUAL MODELS

We generated principal distortions for a nested family of models designed to capture the response
properties of early stages (specifically, the lateral geneiculate nucleus, LGN) of the primate visual
system (Fig. 2). The full model (LGN) contains two parallel cascades representing ON and OFF
center-surround filter channels, rectification, and both luminance and contrast gain control nonlin-
earities. The other models are reduced versions of this model. LGG removes the OFF channel, LG
additionally removes the contrast gain control, and LN removes both gain control operations. The
filter sizes, amplitudes, and normalization values of each model were previously fit separately to
predict a dataset of human distortion ratings (Berardino et al., 2017, see details in Appx. C).

As these models were explicitly trained to predict human distortion thresholds, we provide a qual-
itative comparison of each model’s sensitivities to human distortion sensitivity (Fig. 2C). For each
model, we adjusted the relative scaling of each principal distortion until the model was equally
sensitive to the scaled distortions while constraining the sum of the Euclidean norms of the two dis-
tortions to be a fixed value of 100; that is, we chose positive scalars k1, k2 such that the sensitivities
were equal, d(k1ϵ1) = d(k2ϵ2), with k1 + k2 = 100. If a model’s thresholds are comparable to
human thresholds, then the pair of images should also appear equally distorted to a human observer.
Visual inspection of these images reveals that both distortions are visible when rescaled for the LGN
model and the LN model, suggesting that these models are closest to human distortion thresholds.
For LG, the scaled ϵ2 distortion is not visible, while the scaled ϵ1 distortion is immediately apparent,
suggesting a strong mismatch with human observer thresholds. The same is true of the LGG model,
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with the roles of the two distortions swapped. These qualitative observations are consistent with
the results of (Berardino et al., 2017), in which experiments on eigen-distortions suggested that the
LGN model was the best of these models in terms of consistency with human distortion sensitivity.
Future work with analogous human perceptual experiments could directly quantify the visibility of
the principal distortions arising from our analysis (see Supp. Fig. 11 for an illustration).

An advantage of our framework is that it can dramatically reduce the number of distortions that are
needed to differentiate a set of models. For instance, to judge how well these models of the early
visual system capture human perceptual discrimination thresholds, Berardino et al. (2017) computed
the extremal eigen-distortions for each of the four models, and then measured human perceptual dis-
crimination thresholds to all eight distortions. In general, their method requires assessing visibility of
2N distortions, for N models. Zhou et al. (2023) considered a pair of generalized eigen-distortions
for each pair of models, for a total of N(N + 1) distortions. In contrast, our method always se-
lects the two distortions that maximize the variance across the models, independent of N . Human
sensitivities to these distortions can then be estimated in perceptual discrimination experiments to
judge which model(s) are closest in terms of the metric we defined Equation 3. The models whose
sensitivities are far from human sensitivities can be discarded and this procedure can be repeated to
best differentiate the remaining models, and so on. If one could reduce the number of models by,
say, a factor of two on each iteration of this process, the total number of stimuli to be assessed scales
as 2 log2(N). This dramatic improvement in efficiency could enable the comparison of significantly
larger sets of models than feasible with previous methods.

4.2 DEEP NEURAL NETWORKS

Deep Neural Networks (DNNs), originally developed for object recognition, have also been ex-
amined as models of the primate visual system (Yamins & DiCarlo, 2016; Schrimpf et al., 2018;
Lindsay, 2021). A plethora of models, varying in architecture and training techniques, have been
proposed, but many of these models perform quite similarly on behavioral tasks or neural bench-
marks (Schrimpf et al., 2018; Tuckute et al., 2023; Conwell et al., 2024). This situation offers a
well-aligned opportunity for use of our principal distortion method. Here, we investigate previously
trained sets of models (no additional training is required to apply our method) and generate principal
distortions to differentiate the image representations.

We first measured the FIM of a set of layers from two architectures trained on the ImageNet ob-
ject classification task—AlexNet (Krizhevsky et al., 2012) and ResNet50 (He et al., 2016)—and
generated the principal distortions that maximally separate these models (Fig. 3, see Sec. D of the
supplement for layer choices and model details). Although these architectures are not currently
state-of-the-art at image recognition or neural prediction, they have been widely used and trained
with various optimization strategies, making them well suited for controlled experiments. (See Supp.
Fig. 12 for a similar test of the method on the modern architectures EfficientNet and ViT.)

Notably, the hierarchical structure of the models is reflected in the log ratios of the sensitivities,
where early layers of the models are closer together in the metric space (Fig. 3D), and late layers
of AlexNet are always more sensitive to ϵ1 when late layers of ResNet50 are more sensitive to ϵ2.
There is additional structure revealed by these principal distortions—AlexNet is more sensitive to
the principal distortion that generally appears concentrated on regions of the image that have more
variability, i.e., the “stuff” in the image (distortion ϵ1 in Fig. 3B), while ResNet50 is more sensitive
to distortions that occur in the relatively constant regions of the image (distortion ϵ2 in Fig. 3B).
The separability of the models and the sensitivity of the networks to the two distortion types was
remarkably consistent across a set of 100 base images chosen from the ImageNet dataset (Fig. 3E,
see Supp. Fig. 6 for additional examples). It is also replicated in a set of six models (3 randomly
initialized AlexNet models and 3 randomly initialized ResNet50 models, each trained on ImageNet-
1k, see Supp. Fig. 14). This distinction was also found in images designed explicitly to test for
possible differences between models due to edge artifacts or contrast sensitivity (Supp. Fig. 7).
As far as we know, this qualitative difference in sensitivities of the architectures to distortions in
different portions of the image has not been documented, demonstrating that our method can reveal
interpretable differences in the local sensitivities of complex computational models.

Networks trained to reduce texture bias The architectural difference observed between
ImageNet-trained AlexNet and ResNet50 suggested that the texture of the image may be driving
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Figure 3: AlexNet versus ResNet50. A) Example base images. B) Optimized principal distortions
(scaled by a factor of 20 for visibility, and using the convention ∥ϵ∥ = 1 here and in other fig-
ures). C) Base image plus principal distortions. D) Log sensitivity ratios of principal distortions
when comparing image representations at multiple layers of AlexNet and ResNet50. Assignment
of ϵ1 and ϵ2 was chosen so that the final tested layer of AlexNet has a positive log ratio. E) Log
sensitivity ratios averaged across 100 base images (error bars are standard deviation). The prin-
cipal distortions organize the networks by architecture—the log sensitivity ratios of AlexNet and
ResNet50 are separated and early layers have smaller log ratios than late layers. AlexNet is more
sensitive to distortion ϵ1, which is concentrated on higher contrast or textured parts of the image
(often the foreground object). ResNet50 is more sensitive to distortion ϵ2 which concentrates power
on relatively smooth parts of the image, such as regions of constant intensity/color.

some of the differences in local geometry. Previous work demonstrated that standard DNNs ex-
hibit strong “texture bias” (Geirhos et al., 2019) and proposed models that explicitly reduce the
texture bias by training on Stylized ImageNet (SIN), a set of images that retains the content of each
ImageNet image but overlays details matched to particular texture. Training on these images can
reduce the model’s reliance on texture for classification. If this training set strongly affected the
local geometry of the networks, we might expect that principal distortions generated for a mixture
of architectures and training sets would be driven by this training set distinction. We find evidence
that this is not the case. We generated principal distortions for 100 base images using a set of layers
from two architectures (ResNet50 and AlexNet) and two different training datasets (ImageNet and
SIN, Fig. 4A). The principal distortions appeared qualitatively similar to those generated when we
investigated only the standard networks (Fig. 4B, more examples in Supp. Fig. 8). Both AlexNet
architectures, regardless of the training type, were more sensitive to the perturbations of higher vari-
ability parts of the image, while both ResNet50 models were more sensitive to the distortions that
were mainly targeting constant areas of the image. To quantify this observation and dissociate the
role of foreground and background information from the high- and low-frequency content in the
image, we ran an experiment using the ImageNet-9 dataset with foreground and background masks,
where we generated principal distortions after applying a low-pass filter to either the foreground or
the background of the image (Supp. Fig. 15). The principal distortion that AlexNet is more sensi-
tive to consistently concentrated on portions of the image with higher spatial frequencies (i.e., parts
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Figure 4: Comparison of AlexNet and ResNet50
variants trained to increase “Shape Bias” of net-
works. A) Log sensitivity ratios of principal dis-
tortions for networks trained on standard Ima-
geNet and Stylized ImageNet (SIN). Average log
sensitivity is computed across 100 base images
(error bars are standard deviation) and the choice
of ϵ1 is set such that d(ϵ1) ≥ 0 for the last tested
layer of the standard AlexNet. B) Example base
image and the optimized principal distortions.
Similar to the analysis of the ImageNet-trained
ResNet50 and AlexNet (Fig. 3), ϵ1 is concentrated
on parts of the image with higher spatial frequen-
cies while ϵ2 is concentrated on parts of the im-
age with relatively solid patches. Both AlexNet
architectures are more sensitive to ϵ1 while both
ResNet50 architectures are more sensitive to ϵ2,
suggesting that the differences in local sensitivi-
ties of these networks depend more on differences
in architecture than training procedure.

of the image that are not smoothed), while ResNet50 is concentrated on parts of the image with
only low-frequency information (the blurred parts of the image, regardless of whether this is in the
foreground or background).

Networks trained to reduce adversarial vulnerability Another well-known example of the use
of training set modifications to achieve robustness in object recognition is that of adversarial training
(AT). Adversarial examples are generated at each step of model training and these stimuli are used
to update the model weights, with the “true” category label used for the update. Previous work has
found that adversarially-trained networks are more aligned with those of biological systems (Madry,
2017; Feather et al., 2023; Gaziv et al., 2023). As adversarial examples are constrained to be very
small perturbations, it seems plausible that the local geometry for AT models would differ from
their standard counterparts. Indeed, we see that the principal distortions generated from the set of
models that included standard and AT trained AlexNet and ResNet50 models reliably separate the
model classes by training type, rather than architecture (Fig. 5A). Most layers of the adversarially
trained models are more sensitive to relatively smooth changes of patches of color in the image, or to
shading around edges, while most layers of the standard models are more sensitive to what appears
as unstructured noise (Fig. 5B, additional examples in Supp. Fig. 9). This is in stark contrast to
the SIN-trained networks of the previous section, for which principal distortions reliably separated
the models by architecture. These examples demonstrate that our method can be used to separate
collections of similar models, and points to its utility in probing complex high-level representations.

5 DISCUSSION

We have introduced a metric on image representations that quantifies differences in local geometry,
and used it to synthesize “principal distortions” that maximize the variance of the metric over a set
of models. When applied to hand-engineered models of the early visual system and to DNNs, our
approach produced novel distortions for distinguishing the corresponding models. In particular, with
the DNN analysis, we revealed that there are qualitative differences in local geometries of ResNet50
and AlexNet architectures, that adversarial training dramatically changes the local geometry, but
stylized ImageNet training does not. Although our qualitative examples in this targeted set of neural
networks do not fully elucidate the recent observations that many different models are equally good
at capturing brain representations, our method provides a direct approach to begin to tease apart the
interplay between local geometry and global structure.

There are several natural methodological extensions. The metric is closely related to the Fisher-Rao
metric between mean zero Gaussians and this relation suggests a natural extension to synthesizing
more than two distortions (Appx. A), analogous to using additional principal components to capture
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Figure 5: Comparison of AlexNet and ResNet50
variants trained to reduce adversarial vulnerabil-
ity. A) Log sensitivity ratios of principal distor-
tions for different layers of standard-trained and
adversarially-trained (AT) models. Average log
sensitivity is computed across 100 base images
(error bars are standard deviation) and the choice
of ϵ1 is set such that d(ϵ1) ≥ 0 for the last
tested layer of the standard AlexNet. B) Exam-
ple base image and the generated principal dis-
tortions. Distortion ϵ1 appears as less structured
noise, and both AlexNet and ResNet50 standard
networks are more sensitive to this perturbation,
while the AT DNNs are more sensitive to ϵ2 which
focuses color changes around the content of the
image, suggesting that the differences in local sen-
sitivities of these networks depend more on differ-
ences in training procedure than architecture.

more variance within a set of high-dimensional vectors. Additionally, while we focus on computing
principal distortions that differentiate a finite set of models, there is a natural extension to computing
the principal distortions that differentiate continuous families of models with a prior distribution over
models.

There are several limitations in our formulation of principal distortions. First, our framework is
based on local differential analyses of a model at a base image, so the sensitivity estimates we ob-
tain via these analyses can only be guaranteed to hold in an infinitesimally small neighborhood of
the base image. If a model is highly nonlinear in the vicinity of a base image, then the local lin-
ear approximation may not accurately reflect model sensitivities. Second, to compute the FIM of
a deterministic model, we assume additive Gaussian response noise, which is not generally repre-
sentative of neural responses in the brain. Poisson variability could be used to better capture neural
responses. Another approach is to fit the model noise structure to measurements of a neural system;
see (Ding et al., 2023) for work along these lines.

Principal distortions provide an efficient method for comparing computational models with human
observers, for whom experimental time for acquiring responses to stimuli is generally severely lim-
ited. Although we only presented qualitative comparisons and examples related to human perception
in this paper, the optimized distortions are a parsimonious choice of stimuli that can be readily in-
corporated into psychophysics experiments. For example, the distortions generated from the early
visual models could be used for a perceptual discrimination experiment with human observers simi-
lar to those performed by Berardino et al. (2017), to compare the human log-ratio sensitivity for the
optimized distortions to that predicted by the models.

The results with DNNs reveal some intriguing properties: some models have stronger sensitivity
biases in the local geometry for perturbing higher variability regions of the space, while others have
more sensitivity to perturbations in relatively blank regions (see Supp. Fig. 7 for direct evidence
of this). This also suggests an interesting question for future distortion detection: in what contexts
are humans more sensitive to perturbations of the “stuff” of the image compared to perturbations in
empty parts of the image? And how do these observed differences relate to previous work investi-
gating how human and neural networks rely on spatial frequencies for classification (Subramanian
et al., 2023)? Finally, beyond direct comparisons with human observers using psychophysics exper-
iments, our method may be useful in the domain of neural network interpretability, where it may
be useful to have direct comparisons of the local distortions that will maximally differentiate sets of
models. Principal distortions are complementary to many currently used model interpretability tools
(e.g., saliency maps, attention weight visualization) since they are explicitly designed to generate
distortions that differentiate a set of models, as opposed to interpreting one model at a time.
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6 REPRODUCIBILITY STATEMENT

The code used to generate principal distortions and details of loading the models is uploaded as a
.zip file for the submission, and will be made available via a public GitHub repository upon pub-
lication. We aim for the distortion generation to be easy for others to use to probe new models.
The mathematical derivation of the algorithm is provided in Appx. B. We have included details in
Appx. C with the parameters of the early visual models, and Appx. D details where checkpoints
were obtained for the tested deep neural networks.
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A RELATION TO THE FISHER-RAO METRIC

The Fisher-Rao distance between two mean zero K-dimensional Gaussian distributions with posi-
tive definite covariance matrices A and B is defined as:

δ2(A,B) := ∥ log(B−1/2AB−1/2)∥2F =

K∑
i=1

(log λi)
2,

where {λi} denote the eigenvalues of the generalized eigenvalue problem Av = λBv (Pinele
et al., 2020). We’d like a metric that’s invariant to arbitrary scalings A 7→ cAA or B 7→ cBB for
cA, cB > 0, which suggests the following definition:

γ2(A,B) = min
cA,cB>0

δ2(cAA, cBB) = min
c∈R

K∑
i=1

(c+ log λi)
2 = KVar({log λi}), (5)

where the final equality uses the fact that the optimal c is the mean of {− log λi}.
Using the facts that

KVar({log λi}) =
1

2K

K∑
i=1

K∑
j=1

(log λi − log λj)
2,

and (log λi − log λj)
2 ≤ (log λ1 − log λK)2 for all i, j, we have

1

K
(log λ1 − log λK)2 ≤ γ2(A,B) ≤ K − 1

2
(log λ1 − log λK)2.

When A = IA and B = IB , then dA(ϵ) =
√
ϵ⊤Aϵ and dB(ϵ) =

√
ϵ⊤Bϵ. If ϵ1 and ϵK denote

the extremal generalized eigenvectors associated with λ1 and λK , respectively, then

log λ1 = 2 log
dA(ϵ1)

dB(ϵ1)
, log λK = 2 log

dA(ϵK)

dB(ϵK)
.

Therefore,

2√
K

∣∣∣∣log dA(ϵ1)

dB(ϵ1)
− log

dA(ϵK)

dB(ϵK)

∣∣∣∣ ≤ γ(A,B) ≤
√
2(K − 1)

∣∣∣∣log dA(ϵ1)

dB(ϵ1)
− log

dA(ϵK)

dB(ϵK)

∣∣∣∣ ,
and so

2√
K

mϵ1,ϵK (IA, IB) ≤ γ(A,B) ≤
√
2(K − 1)mϵ1,ϵK (IA, IB). (6)

Extension to more than two distortions Equation 5 suggests a natural extension for defining a
metric between positive definite matrices using M > 2 distortions. Specifically, it suggests choosing
the distortions to maximize the variance across the log ratios of the sensitivities. To this end, we can
define the squared distance between the local geometries to be the variance (across distortions) of
the log ratio of the the sensitivities:

m2
ϵ1,...,ϵM (A,B) = MVar

({
log

dA(ϵm)

dB(ϵm)

})
.

A set of M principal distortions can then be chosen to maximize the variance across models under
this metric.

B COMPUTING THE TOP TWO OPTIMAL DISTORTIONS

Suppose we have N models with sensitivities {dn(ϵ)}. The optimal distortions {ϵ1, ϵ2} are solu-
tions to the optimization problem

argmax
ϵ1,ϵ2

L(ϵ1, ϵ2), L(ϵ1, ϵ2) :=

N∑
n=1

{
log

dn(ϵ1)

dn(ϵ2)
− 1

N

N∑
m=1

log
dm(ϵ1)

dm(ϵ2)

}2

.
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Differentiating L with respect to ϵ1 yields

∇ϵ1L(ϵ1, ϵ2) = 2

N∑
n=1

{
log

dn(ϵ1)

dn(ϵ2)
− 1

N

N∑
m=1

log
dm(ϵ1)

dm(ϵ2)

}{
In(s)ϵ1
d2n(ϵ1)

− 1

N

N∑
m=1

Im(s)ϵ1
d2m(ϵ1)

}

=

N∑
n=1

{
log

d2n(ϵ1)

d2n(ϵ2)
− 1

N

N∑
m=1

log
d2m(ϵ1)

d2m(ϵ2)

}{
In(s)ϵ1
d2n(ϵ1)

− 1

N

N∑
m=1

Im(s)ϵ1
d2m(ϵ1)

}
,

where we have used the fact that

∇ϵ log d(ϵ) =
1

2
∇ϵ log(ϵ

⊤Iϵ) =
Iϵ

ϵ⊤Iϵ
=

Iϵ

d2(ϵ)
.

Similarly, differentiating L with respect to ϵ2 yields:

∇ϵ2L(ϵ1, ϵ2) = −
N∑

n=1

{
log

d2n(ϵ1)

d2n(ϵ2)
− 1

N

N∑
m=1

log
d2m(ϵ1)

d2m(ϵ2)

}{
In(s)ϵ2
d2n(ϵ2)

− 1

N

N∑
m=1

Im(s)ϵ2
d2m(ϵ2)

}
.

Combining, we have the following gradient-based optimization algorithm.

Algorithm 1: Computing the principal distortions via projected gradient descent
1: Input: Positive definite D ×D matrices I1, . . . , IN , learning rate η > 0, target distortion size

α > 0
2: Initialize: distortions ϵ1, ϵ2 ∈ RD

3: while not converged do
4: for n = 1, . . . , N do
5: v1(n)← Inϵ1
6: v2(n)← Inϵ2
7: d21(n)← ⟨ϵ1,v1(n)⟩
8: d22(n)← ⟨ϵ2,v2(n)⟩
9: u1(n) = v1(n)/d

2
1(n)

10: u2(n) = v2(n)/d
2
2(n)

11: r(n)← log d21(n)− log d22(n)
12: end for
13: ū1 ← mean(u1(n))
14: ū2 ← mean(u2(n))
15: r̄ ← mean(r(n))
16: ∆ϵ1 ←

∑N
n=1 [r(n)− r̄] [u1(n)− ū1]

17: ∆ϵ2 ← −
∑N

n=1 [r(n)− r̄] [u2(n)− ū2]
18: ϵ1 ← ϵ1 + η∆ϵ1
19: ϵ2 ← ϵ2 + η∆ϵ2
20: ϵ1 ← αϵ1/∥ϵ1∥
21: ϵ2 ← αϵ2/∥ϵ2∥
22: end while

C METHODS: EARLY VISUAL MODEL EXPERIMENTS

PyTorch implementations of the early visual models were obtained from (https://github.
com/plenoptic-org/plenoptic, Duong et al., 2023a). The early visual models were
adopted from Berardino et al. (2017), with parameters chosen to maximize the correlation between
predicted perceptual distance and human ratings of perceived distortion, for a wide range of im-
ages and distortions provided in the TID-2008 database (Ponomarenko et al., 2009). Parameters are
reported in Table 1. Note that although the models are nested in their construction and parameter-
ization, the model parameters differ across tested models since they are optimized for each model
independently.

C.1 DATASET

Distortions were generated for images from the Kodak TID 2008 dataset (Ponomarenko et al., 2009).
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LN Model
center-surround, center std 0.5339
center-surround, surround std 6.148
center-surround, amplitude ratio 1.25
LG Model
luminance, scalar 14.95
luminance, std 4.235
center-surround, center std 1.962
center-surround, surround std 4.235
center-surround, amplitude ratio 1.25
LGG Model
luminance, scalar 2.94
contrast, scalar 34.03
center-surround, center std 0.7363
center-surround, surround std 48.37
center-surround, amplitude ratio 1.25
luminance, std 170.99
contrast, std 2.658
LGN Model (Two channels)
luminance, scalar [3.2637, 14.3961]
contrast, scalar [7.3405, 16.7423]
center-surround, center std [1.237, 0.3233]
center-surround, surround std [30.12, 2.184]
center-surround, amplitude ratio 1.25
luminance, std [76.4, 2.184]
contrast, std [7.49, 2.43]

Table 1: Parameters for early visual models, obtained from (Berardino et al., 2017).

D METHODS: DEEP NEURAL NETWORK EXPERIMENTS

With the exception of the experiment described in the next paragraph, we analyzed DNNs were
obtained from the model loading code and checkpoints available at https://github.com/
jenellefeather/model_metamers_pytorch which were used in (Feather et al., 2023),
and allowed for easy loading and selection of the intermediate layer stages for many models that
had previously been proposed as models of human visual perception. The checkpoints for the stan-
dard ResNet50 and AlexNet models were obtained from the public PyTorch checkpoints (Ansel
et al., 2024). The Stylized Image Net AlexNet (alexnet trained on SIN) and ResNet50
(resnet50 trained on SIN) were obtained from https://github.com/rgeirhos/
texture-vs-shape associated with (Geirhos et al., 2019). The checkpoint for the ResNet50
ℓ2(ϵtrain = 3.0) adversarially trained model was obtained from (Engstrom et al., 2019), and the
checkpoint for the Alexnet ℓ2(ϵtrain = 3.0) adversarially trained model was obtained from (Feather
et al., 2023). For all experiments, we only included intermediate layers before the final classification
stage in the principal distortion analysis, and the subset of layers followed those chosen in Feather
et al. (2023). Specifically, for the AlexNet models we included layers relu0, relu1, relu2,
relu3, relu4, fc0 relu, and fc1 relu in each set of anlayses. For the ResNet50 models
we included conv1 relu1, layer1, layer2, layer3, layer4, and avgpool in each set of
analyses.

To demonstrate that our approach holds for more modern architectures, we compared a ViT
vs. and EfficientNet model. These models were obtained from the PyTorch Image Models
(timm) repository (Wightman, 2019). We chose a version of EfficientNet and ViT that were
trained on the size of Images in ImageNet-9 (224 × 224 images), and versions of each archi-
tecture trained with the same image dataset (ImageNet-1k). For the EfficientNet, we tested
model EfficientNet-B0 (timm model tf efficientnet b0) and included layers conv stem,
blocks.0, blocks.1, blocks.2, blocks.3, blocks.4, blocks.5, blocks.6, and
global pool in the analysis. For the ViT, we tested model ViT (Base-Patch16-224) (timm model
vit base patch16 224.augreg in1k) and included layers patch embed, blocks.0,
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blocks.1, blocks.2, blocks.3, blocks.4, blocks.5, blocks.6, blocks.7,
blocks.8, blocks.9, blocks.10, blocks.11 and head in the analysis.

D.1 DATASETS

For the deep neural network experiments we had two sets of images that were used to generate the
principal distortions. For the main experiments, we use a subset of 100 ImageNet images where
each image was chosen from a unique class (randomly chosen from the set of images at https:
//github.com/EliSchwartz/imagenet-sample-images).

For the experiments with background and foreground blur, we used the ImageNet-9 dataset with
foreground/background masks (Xiao et al., 2021). We chose eight random images from each cat-
egory of images, resulting in 72 total images. As this is a relatively small subset of images, we
removed images that had blank backgrounds (by eye) or that seemed to have incorrect masks (as the
masks were automatically generated in the original dataset and not validated with human labeling)
and replaced them with new random images so that the backgrounds would always be affected by
the smoothing procedure. This procedure was done before running the images through the principal
distortion analysis. For the foreground and background blurred images, we blurred the image with
a Gaussian filter with a standard deviation of 5 pixels.

D.2 PRINCIPAL DISTORTION OPTIMIZATION

For each image and each comparison, we ran the gradient descent procedure for principal distortion
optimization for 2500 iterations, using an exponentially decaying learning rate that started at 10.0
and decayed to 0.001 by the final step. The exception to this is for the experiment with ViT (Base-
Patch16-224) vs. EfficientNet-B0, where we ran the optimization for only 500 iterations.

We used a target distortion size of α = 0.1 and at each step of the optimization, we also scaled ϵ so
that the image s+ 1000ϵ would not be clipped when the RGB value was represented between 0–1;
that is, we scaled ϵ so that 0 ≤ s[i] + 1000ϵ[i] ≤ 1 for each value i in the image. This constraint
could potentially bias the perturbations to be more spread out across the image (because all of the
amplitude for the perturbation cannot be focused at a small set of pixels). However, removing this
constraint did not lead to quantitatively different results (Supp. Fig. 10), but the inclusion allows for
more viable comparisons with human perception (as the perturbation can be scaled while maintain-
ing valid values in the image gamut). Finally, if one or more of the FIMs is degenerate (i.e., not
full rank), this can potentially lead to issues in the optimization procedure (though this issue did not
arise in the experiments presented here). To address this, one option is to regularize the Jacobian by
adding a small constant times the identity matrix to the FIM.

D.3 SUPPLEMENTAL FIGURES
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Figure 6: Principal distortions for ResNet50 and AlexNet for six example base images (s, middle
row). Each row shows base images with differently scaled additive perturbations of ϵ1 and ϵ2.
Distortions {ϵ1, ϵ2} are shown in isolation in the top/bottom rows, respectively. The log ratio plot
for each image is at the top of the column.
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Figure 7: Principal distortions for ResNet50 and AlexNet for base images that have been constructed
to have either (A) texture only in the periphery and a blank center (B) texture only in the center and
a blank surround and (C) a full image of texture. The log ratio plot for each image is at the top
of the column. Panels A and B highlight that the AlexNet architecture is more sensitive to the
perturbation with power around the “stuff” of the image (i.e., the non-blank areas), while ResNet50
is more sensitive to a distortion focused on blank areas of the image, and these perturbations are not
sensitive to the choice of low contrast (“black”) or high luminance (“white”) for the blank part of
the space. Panel C highlights that in the case where there is not obvious blank area of the image, the
perturbations become harder to interpret, and this reflects the locally adaptive property of the FI to
the input image.
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Figure 8: Principal distortions for standard ImageNet trained and Shape Image Net Trained (SIN)
AlexNet and ResNet50 architectures for example base images.
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Figure 9: Principal distortions for standard ImageNet trained and adversarially trained AlexNet and
ResNet50 architectures for example base images.
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Figure 10: Example principal distortions for ResNet50 vs. AlexNet comparison where the pixelwise
min/max value for the perturbation has not been constrained to avoid clipping once the perturba-
tion is scaled. Similar to the results in the main text, we see that the principal distortion to which
AlexNet is more sensitive is focused on the part of the image with high-contrast texture features,
while ResNet50 is more sensitive to the perturbation targeting relatively smooth parts of the image.

LN
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LGG
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A C

B

Figure 11: Illustration of method for comparing early visual models to human perception. A) An
example base image (s) and the principal distortions (ϵ1, ϵ2) generated for the four early visual mod-
els (as in Fig. 2). B) Base image corrupted by the two principal distortions (top and bottom row),
scaled by amplitudes that sum to 50 and correspond to different log sensitivity ratios (parenthesized
values below the pairs, also indicated with grey arrows in panel C). A perceptual experiment can be
designed to test which pair of corrupted images (indexed A through I) appear equally distorted to
a human observer. This could be done directly, by showing various pairs of distorted images (i.e.,
s + k1ϵ1 and s + k2ϵ2 with varying amplitudes k1, k2) and asking an observer which of the two
appears more distorted with respect to the original (s). The pair of images for which an observer
cannot decide (i.e., gives random answers) corresponds to the observer’s log sensitivity ratio. Alter-
natively, this could be assessed by measuring the observer’s detection thresholds for each distortion
independently, and then taking their log ratio. This estimated human log sensitivity ratio can then
be compared to the models’ log sensitivity ratios (colored dots, panel C), to assess which model is
best aligned with human behavior. Images are best viewed at high resolution.
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Figure 12: Comparison of ImageNet-1k trained EfficientNet and Vision Transformer. A) Example
principal distortions and associated log sensitivity ratio plots when comparing layers of EfficientNet-
B0 and ViT (Base-Patch16-224). B) When measured over 72 images from the ImageNet validation
set (chosen from ImageNet-9, Xiao et al., 2021), the obtained principal distortions reliably separate
the models by architecture—the layers of EfficentNet are more sensitive to distortion ϵ1, while the
layers of ViT are more sensitive to ϵ2. The principal distortions are qualitatively different than those
obtained when comparing AlexNet and ResNet50—for instance, the principal distortions ϵ2 (i.e., the
distortion that the ViT layers are more sensitive) have notable grid artifacts corresponding to the size
of the input patches to the ViT model. C) The distortions modify or preserve the label computed by
each model, consistent with their predicted sensitivity (see Supp. Fig. 13 for a detailed explanation).
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Figure 13: Adding a principal distortion to the base image changes the prediction of one DNN
but not the other. Principal distortions were generated for intermediate layers of the AlexNet and
ResNet architectures and were computed for a set of 72 base images from the ImageNet validation
set (chosen from images included in ImageNet-9, Xiao et al., 2021). For each image s and principal
distortion ϵi, the distorted images s + kiϵi, with ki varying between 0 and 1, were classified by
the DNNs used for the principal distotion generation (AlexNet or ResNet50). The left plot shows
the proportion of images for which each DNN had the same classification for the distorted image
s + k1ϵ1 as the base image s, for k1 varying between 0 and 1. The right plot is the same, but with
ϵ2 and k2 in place of ϵ1 and k1.

−10 −5 0 5 10

AlexNet (Seed 1)

ResNet50 (Seed 1)

Comparison with multiple training seeds
(N=72 Base Images)

AlexNet (Seed 2)
AlexNet (Seed 3)

ResNet50 (Seed 2)
ResNet50 (Seed 3)

A
Late

Early

Model Layer

AlexNet more 
sensitive to      

     , regardless of 
seed

ResNet50 more 
sensitive to     , 

regardless of seed

B s + 20 

s

s + 20 20 

20 

0.0 0.5 1.0
k1

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 im
ag

es
 m

ai
nt

ai
ni

ng
 

sa
m

e 
la

be
l a

s 
or

ig
in

al
 im

ag
e

0.0 0.5 1.0
k2

C

AlexNet (Seed 1)

ResNet50 (Seed 1)

AlexNet (Seed 2)
AlexNet (Seed 3)

ResNet50 (Seed 2)
ResNet50 (Seed 3)

Figure 14: Principal distortions
generated for multiple random
initializations of AlexNet and
ResNet50 consistently separate
models by architecture type. A)
Log sensitivity ratios of prin-
cipal distortions for networks
trained on standard ImageNet
when comparing image repre-
sentations at multiple layers of
AlexNet and ResNet50, using
three random initializations of
each architecture. Principal dis-
tortions were computed for a
set of 72 base images from the
ImageNet validation set (cho-
sen from images included in
ImageNet-9, Xiao et al., 2021),
and the mean ratio across these
72 images is plotted (error bars
are standard deviation). B)
Example base image, principal
distortions, and distorted im-
ages. The principal distortions
are qualitatively similar to those
observed from a single architec-
ture in Fig. 3. C) Proportion
of images with a changed pre-
diction class (compared to im-
age s) for the distorted images
s + kiϵi. Results are similar to
trends for single seeds of mod-
els from Supp. Fig. 13.
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Figure 15: Control experiment dissociating foreground and background from high- and low-spatial
frequency regions. (A) Example natural base image, image with a blurred background, and image
with a blurred foreground. Images were chosen from ImageNet-9 (Xiao et al., 2021), which contains
masks of the “foreground” parts of the image. Images are 224 × 224 pixels. To construct the
blurred variants, a Gaussian filter with σ = 5 is was applied to the full image, and we used the
provided image masks to construct the Blur Background (Blur BG) condition by adding the original
image foreground to the blurred image background, and the Blur Foreground (Blur FG) condition
by adding the original image background to the blurred image foreground. The associated optimal
distortions are shown for each image, generated from the layers from AlexNet, ResNet50, SIN-
Trained AlexNet, and SIN-Trained ResNet50. In the example image, the distortion AlexNet is most
sensitive to (ϵ1) is biased towards higher frequency (non-blurred) parts of the image, while the
distortion ResNet50 is most sensitive to (ϵ2) is biased towards low-frequency (blurred) parts of the
image. We quantified this observation in (B) by masking the perturbation with the foreground mask,
and measuring the average squared value of each perturbation in this region. If a perturbation is
localized to the foreground, it will have a high perturbation magnitude on this plot. Each point on
the plot corresponds to one of 72 randomly selected images from ImageNet-9 (Xiao et al., 2021),
where 8 images were selected from each category, and the box and whisker plots are defined with the
median given by the line across the box, the box extends from Q1 to Q3, and the whiskers extend to
1.5 IQR. Although there is a slight bias for distortion ϵ1 (defined as the perturbation AlexNet is more
sensitive to), to have more power in the foreground of the image, this is likely due to the general
biases of natural images where often times the background is blurred. If we blur the background,
we see that this difference is exaggerated, while if we blur the foreground, the AlexNet perturbation
shifts to be less concentrated in the foreground while the perturbation ResNet50 is more sensitive to
(ϵ2) becomes more concentrated in the foreground. Points for individual categories are shown in (C),
which show the same trends, and results look similar when just including AlexNet and ResNet50
models in principal distortion generation (not shown).
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