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Long-term Off-Policy Evaluation and Learning
Anonymous Author(s)

ABSTRACT
Short- and long-term outcomes of an algorithm often differ, with

damaging downstream effects. A known example is a click-bait algo-

rithm, which may increase short-term clicks but damage long-term

user engagement. A possible solution to estimate the long-term

outcome is to run an online experiment or A/B test for the potential

algorithms, but it takes months or even longer to observe the long-

term outcomes of interest, making the algorithm selection process

unacceptably slow. This work thus studies the problem of feasibly

yet accurately estimating the long-term outcome of an algorithm

using only the historical and short-term experiment data. Existing

approaches to this problem either need a restrictive assumption

about the short-term outcomes called surrogacy or cannot effec-

tively use short-term outcomes, which is inefficient. Therefore, we

propose a new framework called Long-term Off-Policy Evaluation
(LOPE), which is based on reward function decomposition. LOPE

works under a more relaxed assumption than surrogacy and ef-

fectively leverages short-term rewards to provably and substan-

tially reduce the variance. Synthetic experiments show that LOPE

outperforms existing approaches particularly when surrogacy is

severely violated and the long-term reward is noisy. In addition,

real-world experiments on large-scale A/B test data collected on a

music streaming platform show that LOPE can estimate the long-

term outcome of actual algorithms more accurately than existing

feasible methods.
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Anonymous Author(s). 2023. Long-term Off-Policy Evaluation and Learning.

In Proceedings of ACM Conference (Conference’17).ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The rate of algorithmic developments in online services, such as

recommender and search engines, is rapid. These developments

range from minor adjustments in feature preprocessing to complex

alterations within the algorithm itself. Efficient and reliable mea-

surement of the value of these ideas is crucial to the success of such

services [5, 16]. In particular, there is often interest in understanding

the long-term outcome or reward (e.g., the annual number of active

users or revenue) of these algorithmic changes to make informed

decisions regarding algorithm evaluations and selection [10, 37].

The most accurate and intuitive method to achieve this is to run

an online experiment (or A/B test) comparing new and baseline

algorithms over a sufficiently long period. However, this approach
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of running two (or more) candidate algorithms for a long period

presents several clear disadvantages:

• The process of algorithm selection becomes extremely slow.

If we conduct a year-long online experiment to measure the

number of active users after a full year of deployment, we

may miss opportunities to test other, better technologies

that emerge over the course of that year.

• Running an extended experiment with multiple algorithms

can be highly risky, as some candidate algorithms may

significantly underperform compared to others, negatively

impacting user experience.

Therefore, it is advantageous to develop reliable statistical meth-

ods that use only existing historical datasets (collected by baseline

algorithms prior to the experiment) and short-term experiments

(e.g., several weeks to a month) to accurately estimate the long-term

outcome of algorithms, allowing for quicker yet accurate algorithm

evaluation and selection [5].

A conventional approach to estimating the long-term outcome of

algorithmic changes is through a method known as long-term causal
inference (LCI) [3, 4, 15, 20, 27]. LCI aims to achieve this by using

historical data to infer the causal relationship between short-term

surrogate outcomes (such as clicks, likes) and long-term outcomes

(such as user activeness indicator a year from now). For this to be

valid, LCI necessitates an assumption known as surrogacy. This
requires that the short-term outcomes hold sufficient information to

identify the distribution of the long-term outcome. However, this as-

sumption has been considered restrictive and challenging to satisfy

because it demands the presence of sufficient short-term surrogates

that enable perfect identification of the long-term outcome [5]. In

other words, the connection between short-term and long-term

outcomes must remain entirely consistent across all algorithms.

To bypass the restrictive surrogacy assumption, one could poten-

tially apply off-policy evaluation (OPE) techniques [31, 36], such

as inverse propensity scoring (IPS) and doubly-robust (DR) meth-

ods [12, 28], to historical data for estimating the long-term outcome

of algorithms. Unlike LCI, OPE employs action choice probabilities

under new and baseline algorithms, eliminating the need for sur-

rogacy. However, typical OPE methods cannot take advantage of

short-term rewards, which could be very beneficial as weaker yet

less noisy signals particularly when the long-term reward is noisy.

To address the limitations of both LCI and OPE methods, we

propose a new framework and method, which we call Long-term
Off-policy Evaluation (LOPE). LOPE is a new OPE problem where

we aim to estimate the long-term outcome of a new policy, but we

can use short-term rewards and short-term experiment data. To

solve this new statistical estimation problem efficiently, we develop

a new estimator that is based on a decomposition of the expected

long-term reward function into surrogate and action effects. The

surrogate effect is a component of the long-term reward that can be

explained by the observable short-term rewards, while the action

effect is the residual term that cannot be captured solely by the

short-term surrogates and is also influenced by the specific choice of

1
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Figure 1: The Statistical Problem of Estimating The Long-term Outcomes Using Historical and Short-term Experiment Data
Note: The figure illustrates an example situation where a baseline algorithm was running until May, which generates historical data. An

online experiment comparing a baseline and two new algorithms was launched in June, producing short-term experiment data. At the end of

June, the baseline algorithm performed the best followed by new algorithm 1. However, at the end of the year, new algorithm 1 will be

performing better, but this trend is not yet observed at the end of the short experiment. We aim to infer this long-term outcomes using only

available data.

actions or items. The surrogacy assumption of LCI can be viewed as

a special case of this reward function decomposition since surrogacy

is an assumption that completely ignores the action effect. As LOPE

considers a non-zero action effect, it is a strictly more general

formulation than LCI. To develop a new estimator for the long-

term outcome, we estimate the surrogate effect via importance

weights defined using short-term rewards. The action effect is then

addressed via a reward regression akin to LCI.

To demonstrate the effectiveness of LOPE formally, we provide

a theoretical analysis of its statistical properties showing that (1) it

is unbiased under a less restrictive assumption than surrogacy of

LCI, and (2) it produces much lower variance than typical OPE by

leveraging short-term rewards to estimate the surrogate effect. We

also design a new policy learning algorithm to directly optimize the

long-term outcome based only on historical data by applying LOPE

to policy-gradient estimation. Finally, we perform experiments on

synthetic data and real-world data collected from a large-scale

music streaming service. The results show that LOPE provides

more accurate estimation, algorithm selection, and policy learning

in terms of the long-term outcome than LCI and OPE methods,

particularly with large reward noise and violation of surrogacy.

2 PROBLEM FORMULATION
We first formulate the statistical problem of estimating algorithms’

long-term values. Let 𝑥 ∈ X denote the context vector (e.g., user

demographics, consumption history, weather) and 𝑎 ∈ A denote a

(discrete) action where 𝑎 indicates a particular product, video, song,

or a ranking of them. 𝑤 ∈ {0, 1} identifies a model or algorithm.

For recommender systems applications,𝑤 could be seen as a rec-

ommender model index where 𝑤 = 0 indicates a baseline model

currently running on the system, while𝑤 = 1 indicates a newmodel

not yet deployed. 𝜋𝑤 denotes the action distribution conditional

on the context vector 𝑥 (typically called a policy) induced by the

model 𝑤 , and thus 𝜋𝑤 (𝑎 |𝑥) indicates the probability of action 𝑎

being chosen by model𝑤 for a given 𝑥 . We also consider two types

of rewards, namely short-term and long-term rewards, which are

denoted by 𝑠 ∈ S and 𝑟 ∈ [0, 𝑟max], respectively. The long-term

reward is the primary metric of interest such as the user active-

ness indicator a year from now. Long-term reward is often hard

to observe directly since it requires deploying a policy for some

long period. The short-term rewards can be multi-dimensional and

typically consist of weaker signals such as clicks, conversions, likes,

dislikes, and shorter-term user activeness, and are much easier to

observe and less noisy than the long-term reward. It is thus crucial

to leverage short-term reward observations in situations where the

long-term reward is extremely noisy.

We define the long-term value (a measure of effectiveness) of a

policy 𝜋𝑤 induced by model𝑤 by the expected long-term reward:

𝑉 (𝜋𝑤) := E𝑝 (𝑥 )𝜋𝑤 (𝑎 |𝑥 )𝑝 (𝑟 |𝑥,𝑎) [𝑟 ] = E𝑝 (𝑥 )𝜋𝑤 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)], (1)

where 𝑝 (𝑥) is an unknown context distribution and 𝑝 (𝑟 |𝑥, 𝑎) is an
unknown long-term reward distribution. 𝑞(𝑥, 𝑎) := E𝑝 (𝑟 |𝑥,𝑎) [𝑟 ] is
the expected long-term reward function given context vector 𝑥 and

action 𝑎. If the long-term reward is defined as a binary indicator

of whether a user remains active a year from now, 𝑉 (𝜋𝑤) is the
expected fraction of users still active a year later under policy 𝜋𝑤 .

The main goal of this work is to develop an estimator 𝑉 that
can accurately estimate the long-term value of a new model,
i.e., 𝑉 (𝜋1), without running a long-term experiment of 𝜋1.

Below, we summarize existing approaches and their limitations.
1

Long-term Experiment. The Long-term Experiment method de-

ploys 𝜋1 for a long period and obtains the following data [9, 17].

D𝐸 := {𝑟𝑖 }𝑛𝐸

𝑖=1
, 𝑟 ∼ 𝑝 (𝑟 | 𝜋1), (2)

where 𝐸 stands for Experiment. 𝑝 (𝑟 |𝜋1) is a marginal distribution of

the long-term reward under 𝜋1.
2
After running a long-term online

experiment and obtainingD𝐸 , we can estimate the long-term value

of policy 𝜋1 by the following empirical average estimator.

𝑉AVG (𝜋1;D𝐸 ) :=
1

𝑛𝐸

𝑛𝐸∑︁
𝑖=1

𝑟𝑖 . (3)

1
In Appendix A, we discuss contributions from related work.

2𝑝 (𝑟 | 𝜋1 ) =
∫
𝑥,𝑠

∑
𝑎∈A 𝑝 (𝑥 )𝜋1 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥, 𝑎)𝑝 (𝑟 |𝑥, 𝑎, 𝑠 )𝑑𝑥𝑑𝑠 .

2
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Figure 2: The Surrogacy Assumption
Note: Grey arrows indicate the existence of causal effect of the tail

variable on the head variable. The dashed red arrow is a direct

causal effect that is ruled out by Assumption 2.1.

Since we observe the long-term reward 𝑟 in D𝐸 , the simple es-

timator in Eq. (3) is unbiased, i.e., ED𝐸
[𝑉AVG (𝜋1;D𝐸 )] = 𝑉 (𝜋1).

However, this method is often infeasible, since we need to deploy

the new policy for a long period to observe 𝑟 . Therefore, even

though running a long-term experiment enables an accurate esti-

mation of 𝑉 (𝜋1), it is desirable to develop an alternative statistical

method that are much more feasible.

Long-term Causal Inference (LCI). LCI enables an estimation of

𝑉 (𝜋1) without running a long-term experiment [4, 18]. Instead, this

approach uses a historical datasetD𝐻 that contains short-term and

long-term rewards, and a short-term experiment dataset D𝑆 that

contains only short-term rewards. D𝐻 and D𝑆 are given as

D𝐻 := {(𝑥𝑖 , 𝑠𝑖 , 𝑟𝑖 )}𝑛𝐻𝑖=1 ∼ 𝑝 (𝑥, 𝑠, 𝑟 | 𝜋),
D𝑆 := {(𝑥𝑖 , 𝑠𝑖 )}𝑛𝑆𝑖=1 ∼ 𝑝 (𝑥, 𝑠 | 𝜋1),

whereD𝐻 is a historical dataset that contains only (𝑥, 𝑠, 𝑟 ) and can
be generated by an arbitrary policy.

3 D𝑆 is a short-term experiment

dataset generated by running the new policy only for a short period

and thus it contains only (𝑥, 𝑠).
An important starting point of the LCI approach is the following

surrogacy assumption [4, 20]:

Assumption 2.1. (Surrogacy) The short-term rewards 𝑠 satisfy
surrogacy if 𝑟 ⊥ 𝑎 | 𝑥, 𝑠 .

Figure 2 illustrates this assumption, showing that surrogacy re-

quires that every causal effect of themodel𝑤 or action 𝑎 on the long-

term reward 𝑟 should be fullymediated by the observable short-term

rewards 𝑠 . This enables us to characterize the expected long-term re-

ward function𝑞(𝑥, 𝑎, 𝑠) by using only the context vector 𝑥 and short-

term rewards 𝑠 as E[𝑟 |𝑥, 𝑎, 𝑠] (= 𝑞(𝑥, 𝑎, 𝑠)) = E[𝑟 |𝑥, 𝑠] (= 𝑞(𝑥, 𝑠)).
LCI uses this assumption and estimates the long-term value 𝑉 (𝜋1)
as follows:

𝑉LCI (𝜋1;D𝑆 ,D𝐻 ) :=
1

𝑛𝑆

𝑛𝑆∑︁
𝑖=1

𝑞(𝑥𝑖 , 𝑠𝑖 ;D𝐻 ) . (4)

This estimator is performed on the short-term experiment data D𝑆 .

However, since the long-term reward 𝑟 is missing inD𝑆 , it leverages

a long-term reward predictor 𝑞(𝑥𝑖 , 𝑠𝑖 ;D𝐻 ) trained on the historical

data D𝐻 as a proxy. For example, we can obtain 𝑞(𝑥𝑖 , 𝑠𝑖 ;D𝐻 ) by
performing the following regression problem based on D𝐻 :

𝑞 ∈ argmin

𝑞′∈Q

∑︁
(𝑥,𝑠,𝑟 ) ∈D𝐻

(
𝑟 − 𝑞′ (𝑥, 𝑠)

)
2

, (5)

3
It might be generated by the baseline policy 𝜋0 or by multiple policies other than

𝜋0 (i.e., the multiple logger setting [1, 21]). LCI does not care about what policies

generated D𝐻 , since it uses the dataset only to infer the connection between 𝑠 and 𝑟 .

where Q is some class of reward predictors such as random forest

or neural networks.

LCI is feasible with only historical and short-term experiment

datasets and is justified under surrogacy [3, 4]. Many existing meth-

ods to estimate the long-term value follows this high-level frame-

work [5, 18–20]. However, if this assumption is not satisfied, the

LCI estimator may produce large bias. It also depends highly on

the accuracy of the regression in Eq. (5). Given that Eq. (5) aims

to predict the long-term reward, which is often highly sparse and

noisy, this regression problem is often very challenging. Besides,

LCI does not result in a new learning algorithm that directly opti-

mizes the long-term value 𝑉 (𝜋) since it does not formulate action

𝑎 nor policy 𝜋 .

Typical Off-Policy Evaluation (OPE). Another high-level approach
to feasibly estimate the long-term value 𝑉 (𝜋1) is to apply typical

OPE estimators on the historical dataeset D𝐻 [31, 36]. Here we

consider a situation where the historical dataset D𝐻 is generated

by a baseline policy 𝜋0 (called the logging policy in OPE), i.e.,

D𝐻 := {(𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 )}𝑛𝐻𝑖=1 ∼ 𝑝 (𝑥, 𝑎, 𝑟 | 𝜋0) .
Given that the historical dataset D𝐻 contains long-term reward

𝑟 observations, we can apply typical estimators such as inverse

propensity score (IPS) [28] and doubly robust (DR) [12] as follows:

𝑉IPS (𝜋1;D𝐻 ) :=
1

𝑛𝐻

𝑛𝐻∑︁
𝑖=1

𝜋1 (𝑎𝑖 |𝑥𝑖 )
𝜋0 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖 , (6)

𝑉DR (𝜋1;D𝐻 ) :=
1

𝑛𝐻

𝑛𝐻∑︁
𝑖=1

{
𝜋1 (𝑎𝑖 |𝑥𝑖 )
𝜋0 (𝑎𝑖 |𝑥𝑖 )

(𝑟𝑖 − 𝑞(𝑥𝑖 , 𝑎𝑖 )) + 𝑞(𝑥𝑖 , 𝜋1)
}
,

(7)

where𝑞(𝑥, 𝑎) is a predictor of𝑞(𝑥, 𝑎) and𝑞(𝑥, 𝜋1) := E𝜋1 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)].
We can obtain 𝑞 by regressing the long-term reward 𝑟 using context

vector 𝑥 and action 𝑎 as inputs in the historical dataset. The weight

𝑤 (𝑥, 𝑎) := 𝜋1 (𝑎 |𝑥)/𝜋0 (𝑎 |𝑥) is called the importance weight, and
due to this weighting, the IPS and DR estimators achieve unbiased

estimation of the long-term value based solely on D𝐻 , i.e.,

ED𝐻
[𝑉IPS (𝜋1;D𝐻 )] = ED𝐻

[𝑉DR (𝜋1;D𝐻 )] = 𝑉 (𝜋1).
Despite their unbiasedness, it is well-known that these estimators

based on importance weighting are likely to suffer from substantial

variance [32–34], which we can see by calculating them as

𝑛VD𝐻

[
𝑉DR (𝜋1;D𝐻 )

]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [𝑤 (𝑥, 𝑎)

2𝜎2 (𝑥, 𝑎)]
+ E𝑝 (𝑥 )

[
V𝜋0 (𝑎 |𝑥 ) [𝑤 (𝑥, 𝑎)Δ𝑞,𝑞 (𝑥, 𝑎)]

]
+ V𝑝 (𝑥 )

[
E𝜋 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)]

]
, (8)

where 𝜎2 (𝑥, 𝑎) := V[𝑟 |𝑥, 𝑎] and Δ𝑞,𝑞 (𝑥, 𝑎) := 𝑞(𝑥, 𝑎) −𝑞(𝑥, 𝑎). Note
that the variance of IPS can be obtained by setting 𝑞(𝑥, 𝑎) = 0 by

definition. The variance reduction of DR comes from the second

term where Δ𝑞,𝑞 (𝑥, 𝑎) is smaller than 𝑞(𝑥, 𝑎) if 𝑞(𝑥, 𝑎) is reasonably
accurate. However, the first term in the variance can be extremely

large for both IPS and DR when the long-term reward is noisy

and the weights 𝑤 (𝑥, 𝑎) have a large variation. In particular, the

dependence of their variance on the reward noise 𝜎2 (𝑥, 𝑎) is a
serious issue in our long-term value estimation task since the long-

term reward 𝑟 is often substantially noisy. It is thus crucial to be able

to leverage short-term rewards 𝑠 and short-term experiment data

3
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Table 1: Comparison of the existing and proposed approaches for long-term value estimation

Is it practically feasible? Does not it need surrogacy? Can it utilize short-term rewards? Can it be turned into a learning algorithm?

Long-term Experiment % " " %

Long-term CI " % " %

Typical OPE " " % "

Long-term OPE (ours) " " " "

Note: Long-term Experiment is often considered infeasible since it needs to run a long-term online experiment to observe the long-term

reward 𝑟 under the new policy 𝜋1. Long-term CI is justified only under the surrogacy assumption (Assumption 2.1). In addition, it does not

produce a policy learning method to optimize the expected long-term reward. Typical OPE cannot utilize short-term rewards 𝑠 , which is

extremely useful as weaker but less noisy signals, particularly when the long-term reward 𝑟 is noisy, making it suboptimal in variance.

Figure 3: Reward decomposition employed by LOPE.

D𝑆 (if available) to deal with this variance issue of OPE methods.

However, there is no existing method in OPE that can exploit short-

term rewards to reduce variance.

To achieve this, the following develops a new statistical frame-

work that can take advantage of short-term rewards to provably and

substantially reduce the variance of OPE methods while assuming

only less restrictive assumptions than LCI.

3 LONG-TERM OFF-POLICY EVALUATION
This section proposes our new framework for long-term value esti-

mation called Long-term Off-Policy Evaluation (LOPE), which
integrates the strengths of LCI and typical OPE, i.e., LOPE

• can take advantage of short-term rewards and short-term

experiment data to deal with noisy long-term rewards and

to reduce variance.

• needs only a more relaxed assumption than surrogacy.

• can produce a policy learning algorithm to optimize the

long-term value more efficiently.

Table 1 summarizes the comparison among existing methods

and our methods. Below, we describe the specific construction of

the proposed estimator and its theoretical foundations.

3.1 The LOPE Estimator
To construct our method, we begin with introducing the following

decomposition of the expected long-term reward function.

𝑞(𝑥, 𝑎, 𝑠) = 𝑔(𝑥, 𝑠)︸ ︷︷ ︸
surrogate effect

+ ℎ(𝑥, 𝑎, 𝑠)︸    ︷︷    ︸
action effect

, (9)

where the surrogate effect 𝑔(𝑥, 𝑠) is a factor of the expected reward

function that is predictable by only the short-term surrogate re-

wards 𝑠 while the action effect ℎ(𝑥, 𝑎, 𝑠) is the effect that is not

predictable with only the short-term surrogates. This decompo-

sition does not assume anything since we do not posit specific

forms of the 𝑔 and ℎ functions. Our decomposition can be con-

sidered a generalization of the surrogacy assumption of LCI. If

we assume that ℎ(𝑥, 𝑎, 𝑠) = 0, ∀𝑥, 𝑎, 𝑠 , then Eq. (9) is reduced to

𝑞(𝑥, 𝑎, 𝑠) = 𝑔(𝑥, 𝑠), which is equivalently 𝑟 ⊥ 𝑎 | 𝑥, 𝑠 , recovering
Assumption 2.1. Therefore, as long as being based on Eq. (9), the

resulting estimator has a weaker condition to work compared to

LCI. Eq. (9) also enables us to effectively leverage the short-term

rewards to substantially improve typical OPE methods in terms of

estimation variance.

Based on this decomposition, we design a new estimator by ap-

plying different estimation strategies between the 𝑔 and ℎ functions.

Specifically, our estimator deals with the surrogate effect by apply-

ing importance weighting with respect to the short-term reward

distributions and with the action effect via a reward regression as

𝑉LOPE (𝜋1;D𝐻 )

:=
1

𝑛𝐻

𝑛∑︁
𝑖=1

{
𝜋1 (𝑠𝑖 |𝑥𝑖 )
𝜋0 (𝑠𝑖 |𝑥𝑖 )

(𝑟𝑖 − ˆℎ(𝑥𝑖 , 𝑎𝑖 , 𝑠𝑖 )) + ˆℎ(𝑥𝑖 , 𝜋1)
}
, (10)

where 𝜋 (𝑠 |𝑥) = ∑
𝑎∈A 𝜋 (𝑎 |𝑥)𝑝 (𝑠 |𝑥, 𝑎) is the marginal surrogate

distribution induced by policy 𝜋 and 𝑤 (𝑥, 𝑠) := 𝜋1 (𝑠 |𝑥)/𝜋0 (𝑠 |𝑥)
is called the surrogate importance weight. We also use

ˆℎ(𝑥, 𝜋1) :=
E𝜋1 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [ ˆℎ(𝑥, 𝑠, 𝑎)] in Eq. (10). The first term of LOPE based

on the surrogate importance weight aims to estimate the surro-

gate effect 𝑔(𝑥, 𝑠) in Eq. (9). In contrast, the second term of LOPE

aims to estimate the action effect ℎ(𝑥, 𝑎, 𝑠) via a reward regres-

sion model
ˆℎ, which can be obtained, for example, by performing

ˆℎ = argminℎ

∑
(𝑥,𝑎,𝑠,𝑟 ) ∈D𝐻

(𝑟 − ℎ(𝑥, 𝑎, 𝑠))2, on the historical data.

At a high-level, our LOPE estimator makes the most of the short-

term reward observations to estimate the surrogate effect 𝑔 while

typical OPE does not estimate the 𝑔 function separately from the

other factor of the reward function. In addition, LOPE addresses the

action effect by applying a reward predictor
ˆℎ while LCI completely

ignores the ℎ function by assuming surrogacy.

Below, we demonstrate desirable theoretical properties of LOPE.

First, the following shows that LOPE can be unbiased under a new

doubly-robust style condition.

Theorem 3.1. LOPE is unbiased, i.e., ED𝐻
[𝑉LOPE (𝜋1;D𝐻 )] =

𝑉 (𝜋1), if either of the following holds true:
(1) the surrogacy assumption (Assumption 2.1)
(2) the conditional pairwise correctness assumption, which re-

quires: 𝑞(𝑥, 𝑎, 𝑠) − 𝑞(𝑥, 𝑏, 𝑠) = ˆℎ(𝑥, 𝑎, 𝑠) − ˆℎ(𝑥, 𝑏, 𝑠),∀𝑎, 𝑏 ∈
A, 𝑠 ∈ S.

4
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Theorem 3.1 provides conditions needed for the unbiasednesss

of LOPE. It is unbiased under the surrogacy assumption. However,

it can also be unbiased under a new assumption about the reward

function estimator (
ˆℎ) called conditional pairwise correctness, which

only requires the reward function estimator accurately estimate the

relative long-term reward differences between two different actions,

𝑎 and 𝑏, conditional on short-term rewards 𝑠 . This assumption

is weaker than an accurate estimation of the long-term reward

function 𝑞(𝑥, 𝑎, 𝑠).4 The important point here is that LOPE needs

only one of the assumptions to become unbiased, which can be

considered a new doubly-robust style guarantee.
Next, the following shows that the surrogate importance weight

of LOPE can have substantially lower variance than the vanilla

importance weight of IPS and DR.

Theorem 3.2. The difference in the variance of the surrogate and
vanilla importance weights can be represented as follows.

V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [𝑤 (𝑥, 𝑎)] − V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)]
= E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )

[
V𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

]
,

which is always non-negative.

Theorem 3.2 characterizes the reduction in variance provided

by surrogate importance weighting of LOPE. It is worth noting

that the variance reduction is characterized by the variance of

the vanilla importance weight V𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)], which suggests

that surrogate importance weighting provides increasingly larger

variance reduction when typical weighting has a larger variance.

Based on Theorem 3.2, in Appendix B, we also show that the noise-

dependent term in the variance of LOPE has substantially lower

variance than that in the variance of IPS and DR.

3.2 Estimating Surrogate Importance Weights
When using LOPE, we need to estimate the surrogate importance

weight𝑤 (𝑥, 𝑠) from the logged data. We can achieve this by lever-

aging the following formula (derived via Bayes’ rule).

𝑤 (𝑥, 𝑠) = E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)] . (11)

Eq. (11) implies that we need an estimate of 𝜋0 (𝑎 |𝑥, 𝑠), which we

can derive by regressing 𝑎 on (𝑥, 𝑠). We can then estimate𝑤 (𝑥, 𝑠)
by computing �̂� (𝑥, 𝑠) = E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]. This estimation proce-

dure is easy to implement and tractable, even when the short-term

reward 𝑠 is high-dimensional and continuous. It is worth mention-

ing that, even though LOPE is feasible with only historical data

D𝐻 , we can additionally use short-term experiment data D𝑆 (if

available) to estimate 𝜋0 (𝑎 |𝑥, 𝑠) more accurately, which is expected

to improve estimation of the surrogate effect.

3.3 Extension to Policy Learning
Beyond estimation of the long-term value𝑉 (𝜋1), we can formulate

a problem of learning a new policy to improve the long-term reward

using only historical data. We can formulate this long-term off-
policy learning (long-term OPL) problem as

max

𝜃
𝑉 (𝜋𝜃 )

4
This is because, if 𝑞 (𝑥, 𝑎, 𝑠 ) = ˆℎ (𝑥, 𝑎, 𝑠 ) , conditional pairwise correctness is true,
but the satisfaction of conditional pairwise correctness does not necessarily imply

𝑞 (𝑥, 𝑎, 𝑠 ) = ˆℎ (𝑥, 𝑎, 𝑠 ) .

where 𝜃 ∈ R𝑑 is a policy parameter and 𝑉 (𝜋) is defined in Eq. (1).

A typical approach to solve this learning problem is the policy-

based approach, which updates the policy parameter via iterative

gradient ascent as 𝜃𝑡+1 ← 𝜃𝑡 + ∇𝜃𝑉 (𝜋𝜃 ). Since we do not know

the true gradient∇𝜃𝑉 (𝜋𝜃 ) = E𝑝 (𝑥 )𝜋𝜃 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)∇𝜃 log𝜋𝜃 (𝑎 | 𝑥)],
we need to estimate it from the logged data where we can apply

LOPE. In Appendix D, we show how we can easily extend LOPE

to estimate the policy gradient ∇𝜃𝑉 (𝜋𝜃 ) to learn a new policy to

improve the long-term value based only on the historical data D𝐻 .

The next section empirically demonstrates that LOPE results

in a better policy compared to baseline OPL methods of using IPS

(Eq. (6)) and DR (Eq. (7)) to estimate the policy gradient ∇𝜃𝑉 (𝜋𝜃 ).

4 SYNTHETIC EXPERIMENTS
This section evaluates LOPE on synthetic data to identify the situa-

tions where it is particularly appealing to perform policy evaluation,

selection, and learning regarding the long-term value 𝑉 (𝜋1).5

4.1 Synthetic Data
We create synthetic datasets to compare the estimates to the ground-

truth long-term value of policies. We first define 1,000 unique (syn-

thetic) users represented by 10-dimensional feature vectors 𝑥 , which

are sampled from the standard normal distribution. We then syn-

thesize the expected reward function given 𝑥 and 𝑎 as

𝑞(𝑥, 𝑎; 𝜆) = (1 − 𝜆)𝑔(𝑥, 𝑓 (𝑥, 𝑎)) + 𝜆ℎ(𝑥, 𝑎) (12)

where the 𝑔 and ℎ functions define the surrogate and action effects,

and the 𝑓 function specifies the expected short-term reward func-

tion. Appendix D defines the 𝑓 , 𝑔, and ℎ functions in greater detail.

Note that |A| = 30 in our synthetic experiments. 𝜆 ∈ [0, 1] is an
experiment parameter to control the violation of surrogacy. When

𝜆 = 0, surrogacy is satisfied while a larger value of 𝜆 increasingly vi-

olates the assumption. We use 𝜆 = 0.5 as a default setup throughout

the synthetic experiment to compare methods under a moderate

violation of surrogacy given that, in practice, it is hard to satisfy

and verify with observable data (we vary the value of 𝜆 in one of

our simulations to see its effect on the comparison of methods).

We synthesize the baseline (logging) policy 𝜋0 by applying the

softmax function to the expected reward function 𝑞(𝑥, 𝑎) as

𝜋0 (𝑎 | 𝑥 ; 𝛽) =
exp(𝛽 · 𝑞(𝑥, 𝑎))∑

𝑎′∈A exp(𝛽 · 𝑞(𝑥, 𝑎′)) , (13)

where 𝛽 is a parameter that controls the optimality and entropy of

the logging policy, and we use 𝛽 = 0.5 as default.

In contrast, we define the new policy 𝜋1 by applying an epsilon-

greedy rule as

𝜋1 (𝑎 | 𝑥 ; 𝜖) = (1 − 𝜖) · I
{
𝑎 = argmax

𝑎′∈A
𝑞(𝑥, 𝑎′)

}
+ 𝜖

|A| , (14)

where the noise 𝜖 ∈ [0, 1] controls the quality of 𝜋1, and we set

𝜖 = 0.1 as default.

5
Note that our experiment code for the synthetic experiment can be found in

https://anonymous.4open.science/r/long-term-ope-1A25 and will be made public on

Github upon publication.

5

https://anonymous.4open.science/r/long-term-ope-1A25
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Figure 4: Comparison of the estimators’ MSE, Squared Bias, and Variance with varying data sizes (𝑛)

Figure 5: Comparison of the estimators’ MSE, Squared Bias, and Variance with varying violations of surrogacy (𝜆)

Figure 6: Comparison of the estimators’ MSE, Squared Bias, and Variance with varying reward noise levels (𝜎𝑟 )

Figure 7: Comparison of the estimators’ MSE, Squared Bias, and Variance with varying new policies (𝜖)

4.2 Results in Policy Evaluation and Selection
Figures 4 to 7 compare the MSE, squared bias, and variance of LOPE

(Eq. (10)), LCI (Eq. (4)), IPS (Eq. (6)), and DR (Eq. (7)) against the

ground-truth long-term value 𝑉 (𝜋1). We use the true importance

weight 𝑤 (𝑥, 𝑎) for IPS and DR, while we estimate the surrogate

importance weight𝑤 (𝑥, 𝑠) using D𝐻 and D𝑆 as in Section 3.2 for

LOPE. We also report the accuracy if we could run a long-term

experiment as a skyline reference (grey lines in the figures) showing

the best achievable accuracy by feasible methods.
6

Figure 4 compares the estimators’ accuracy regarding long-term

value estimation when we vary the size of the historical and short-

term experiment data from 200 to 1,000 to compare how sample-

efficient each method is. We observe that LOPE provides the lowest

MSE among feasible methods in all cases. LOPE is substantially

better than OPE methods (IPS and DR), particularly when the data

6
To implement the long-term experiment method, we sample D𝐸 = {𝑟𝑖 }

𝑛𝐸
𝑖=1
∼

𝑝 (𝑟 | 𝜋1 ) from the same synthetic environment as described in Section 4.1 and compute

�̂�AVG (𝜋1;D𝐸 ) as in Eq. (3).

6
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size is small (LOPE achieves 36% reduction in MSE from DR when

𝑛 = 200). This is because LOPE produces substantially lower vari-

ance as shown in Theorem 3.2 by effectively combining short-term

rewards and long-term reward while OPE methods use only the

latter, which is very noisy. In addition, LOPE performs much better

than LCI, particularly when the data size is large (LOPE achieves

71% reduction in MSE from LCI when 𝑛 = 1, 000), since LOPE has

much lower bias. The substantial bias of LCI even with large data

sizes is due to its inability to deal with the violation of surrogacy.

Figure 5 reports the estimators’ accuracy when we vary the value

of 𝜆 from 0.0 to 1.0 and control the violation of surrogacy (a larger

𝜆 increases the violation). The MSE of LCI increases with a more

severe violation of surrogacy since it produces larger bias under

these conditions as shown in the squared bias figure. In contrast,

LOPE is not negatively affected by larger violations of the surrogacy

assumption, since it is based on a reward function decomposition

in Eq. (9) and is free from surrogacy, showing its robustness to the

potential violation of this unverifiable assumption.
7

Figure 6 demonstrates the estimators’ accuracy under varying

levels of noise of the long-term reward, i.e., 𝜎𝑟 from 1.0 to 9.0, to

demonstrate how robust each method is to the noisy long-term

reward. A larger noise on the long-term reward makes long-term

value estimation increasingly difficult and it becomes more impor-

tant to leverage short-term rewards 𝑠 as less noisy signals to reduce

variance. The left plot of Figure 6 shows that LOPE performs the

best in most cases. In particular, when the noise is large, LOPE is

much more accurate than IPS and DR since LOPE has substantially

lower variance due to the effective use of the short-term rewards

(LOPE achieves 45% reduction in MSE from DR when 𝜎𝑟 = 9.0). In

contrast, LOPE is more accurate than LCI when the noise is small,

since the bias becomes more dominant in MSE in that case and

LOPE generally produces much lower bias due to its less restrictive

assumption compared to LCI (LOPE achieves 87% reduction in MSE

from LCI when 𝜎𝑟 = 1.0).

Figure 7 evaluates the estimators’ accuracy with varying values

of 𝜖 from 0.0 to 0.5 to compare how robust each method is to differ-

ent types of new policies. A smaller value of 𝜖 makes the new policy

𝜋1 increasingly better than the baseline policy 𝜋0, which makes

estimation of 𝑉 (𝜋1) relatively difficult. The left plot in Figure 7

shows LOPE is particularly effective compared to other methods

when the performance difference between 𝜋1 and 𝜋0 is large (i.e.,

smaller 𝜖) where estimating 𝑉 (𝜋1) is challenging. This is because
LOPE produces much lower bias than LCI and much lower variance

than OPE methods. As 𝜖 becomes large, every method performs

similarly since the value of the two policies are almost the same.

However, given that we are often interested in estimating the value

of a new policy that potentially improves the baseline policy, the

more accurate estimation by LOPE in such difficult and practical

situations is considered appealing.

In addition to the comparison regarding long-term value esti-

mation, we compare the policy selection accuracy of the methods

under varying values of 𝜎𝑟 (long-term reward noise) from 1.0 to 9.0

and 𝜖 (new policy parameter) from 0.0 to 0.5. For every value of 𝜎𝑟
and 𝜖 , the new policy performs better, i.e., 𝑉 (𝜋1) > 𝑉 (𝜋0). While

7
Note that the MSEs of IPS, DR, and LOPE change with varying values of 𝜆 even

though these methods do not rely on surrogacy. This is because, when we vary the

value of 𝜆, the ground-truth value of the new policy𝑉 (𝜋1 ) also slightly changes.

Figure 8: Comparison of policy selection accuracy of esti-
mators under (left) varying levels of noise on the long-term
reward (𝜎𝑟 ) and (right) new policy parameters (𝜖).

Figure 9: Comparison of test values 𝑉 (𝜋) of policies learned
by eachmethodunder (left) varying training data sizes (𝑛) and
(right) levels of noise on the long-term reward (𝜎𝑟 ). Values
relative to that of LOPE-PG are reported.

𝜎𝑟 does not have any effect on the values of 𝜋0 and 𝜋1, by definition,

a larger 𝜖 makes the new policy increasingly worse and the differ-

ence in the value of the policies smaller, making the policy selection

task more challenging.
8
Figure 8 shows the probability that each

method identifies the better policy of the two (new and baseline

policies) as the accuracy in policy selection. We observe that LOPE

becomes particularly effective when the long-term reward noise is

large and the value difference between 𝜋1 and 𝜋0 is small (i.e., larger

𝜖) where identifying the better policy is challenging. Specifically,

when 𝜎𝑟 = 1.0 and 𝜖 = 0.0, LOPE, IPS, and DR perform perfectly,

successfully choosing the better policy without making a mistake.

However, as 𝜎𝑟 and 𝜖 become larger, LOPE becomes more superior

to baseline methods. In particular, when 𝜎𝑟 = 9.0 in the left plot,

LOPE is about 85% correct in policy selection while IPS and DR

are 79% correct. Moreover, when 𝜖 = 0.5 in the right plot, LOPE

is 65% correct while OPE methods are 55% correct, showing that

LOPE enables not only a more accurate evaluation but also a more

accurate policy selection regarding long-term value.

4.3 Results in Policy Learning
We now compare estimators in terms of their resulting effectiveness

in OPL when they are used to estimate the policy gradient ∇𝜃𝑉 (𝜋𝜃 ).
Here, we use only historical data D𝐻 since OPL is a process of

learning a new policy, and thus when it is performed, short-term

experiment is infeasible.We compare the long-term value of policies

learned via IPS, DR, and LOPE (they are called IPS-PG, DR-PG,

and LOPE-PG, respectively, where PG stands for Policy Gradient)

as well as the regression-based (Reg-based) baseline, which first

8
Specifically, when 𝜖 = 0.0, 𝑉 (𝜋1 ) = 1.61 > 𝑉 (𝜋0 ) = 0.79, while when 𝜖 = 0.5,

𝑉 (𝜋1 ) = 0.82 > 𝑉 (𝜋0 ) = 0.79.
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Table 2: Comparison of the estimators’ MSE (×10−3) when
estimating the long-term value of each of the three policies.
The bold fonts indicate the most accurate method.

policy #1 policy #2 policy #3

LCI (%Δ from LOPE) 8.316 (18.8%) 9.566 (11.0%) 6.476 (13.3%)

IPS (%Δ from LOPE) 8.474 (21.0%) 9.735 (13.0%) 6.614 (15.7%)

DR (%Δ from LOPE) 8.051 (15.0%) 9.411 (9.2%) 6.343 (10.9%)

LOPE (ours) 6.999 8.615 5.715

trains a reward predictor 𝑞(𝑥, 𝑎) based on the historical logged data

D𝐻 ∼ 𝜋0, and chooses the best action for each 𝑥 based on the

estimated reward (i.e., a greedy policy based on 𝑞). We use a neural

network with 3 hidden layers to parameterize the policy 𝜋𝜃 and

obtain 𝑞(𝑥, 𝑎) for LOPE-PG, DR-PG, and Reg-based methods.

Figure 9 compares the long-term value of policies learned by

each method in the test set (higher the better) under varying logged

data sizes (𝑛𝐻 ) and levels of noise on the long-term reward (𝜎𝑟 ).

Note that the test policy values achieved by each method relative

to that of LOPE-PG are reported (LOPE-PG thus has flat lines).

In the left plot, we see that everymethod performsmore similarly

with increased historical data sizes as expected, but particularly

when the logged data size is not large (i.e., 𝑛𝐻 = 500, 1000, 2000),

LOPE-PG performs the best (when 𝑛 = 500, LOPE-PG achieved

about 60% improvement over DR-PG). This superior performance

of LOPE-PG in the small sample regime can be attributed to the fact

that it reduces variance in policy-gradient estimation, which leads

to a more sample-efficient OPL. Moreover, in the right plot, we

can see that LOPE-PG is particularly effective when the long-term

reward is noisy. In particular, when 𝜎𝑟 = 9.0, LOPE-PG outperforms

DR-PG by about 80%. This observation is akin to what we observed

in Figure 6 regarding OPE accuracy, and empirically demonstrates

that the lower-variance policy-gradient estimation achieved by

LOPE-PG results in a better long-term value via OPL.

5 REAL-WORLD EXPERIMENT
This section demonstrates the effectiveness of LOPE using the

logged data collected on a real-world music streaming platform.

We performed a long-term A/B test of three different policies

(policy #1, #2, #3), which optimize content recommendations, over

a 3-week period in May of 2023. Approximately four million users,

chosen at random, were exposed to one of the recommendation

policies during the experiment. We also use a historical logged

dataset consisting of several million data points collected by a

baseline policy prior to the experiment. In these datasets, for each

user request, a recommendation policy recommends a content (as

an action) such as a playlist, album, and podcast on the user’s home

page of the platform. The action space consists of the all candidate

contents, and there are over thousands contents (i.e., |A| > 1, 000)

in our application. As a result of such recommendations, several

short-term rewards were logged including streams, clicks, likes,

and dislikes at week 1 (day 7). We regard streams at week 3 (day

21) as the long-term reward 𝑟 and define the long-term value of a

policy 𝑉 (𝜋) accordingly.
Using these large-scale historical and experiment datasets, we

compare the policy evaluation accuracy of LOPE (ours), LCI, IPS,

and DR by their MSE. Note that these methods use only the histor-

ical dataset and short-term experiment data to estimate the long-

term value of the policies. In the real-world experiment, we never

know the ground-truth long-term policy value 𝑉 (𝜋) as in the syn-

thetic experiment, and thus we consider the estimates of the values

of the policies estimated based on the full experiment data as the

ground-truth
9
and compute the MSE of LCI, IPS, DR, and LOPE

(ours) for each of the three different policies.

Table 2 shows the MSE (lower the better) of estimators when

estimating the long-term value of three different policies from #1 to

#3. The primary observation is that LOPEmost accurately replicates

the result of the actual long-term experiment for all three policies.

LOPE achieves 9.2% ∼ 15.9% reduction in MSE compared to DR

(the second best method), providing a further argument about its

applicability in the industrial problem. In addition, the LCI method

performs similarly to OPE methods in our real-world experiment.

This observation is different from most of the synthetic results (Fig-

ures 4 to 8). This is because in our real-world experiment, the action

space is much larger than that of the synthetic experiment, and

thus the variance issue of OPE methods becomes more severe. Thus,

the result also implies that the LOPE estimator and its variance re-

duction property via leveraging short-term rewards (Theorem 3.2)

is still effective in this large-scale problem.

6 CONCLUSION AND FUTUREWORK
This paper studied the problem of estimating and optimizing the

long-term value of an algorithm without running a long-term on-

line experiment. We proposed a new framework called LOPE, which

integrates the advantages of Long-term Causal Inference (LCI) and

typical Off-policy Evaluation (OPE) methods. LOPE can exploit

the useful short-term reward observations via a simple decomposi-

tion of the reward function and achieves lower variance than OPE

methods under a doubly-robust unbiasedness. LOPE can also be

readily extended to a policy learning procedure to optimize the ex-

pected long-term value directly via estimating the policy gradient

efficiently. Empirical evaluation demonstrated that LOPE enables

the most accurate policy estimation and effective policy learning

among feasible methods.

Our work also raises several directions for future studies. First,

our discussion does not cover how to pre-process the short-term

rewards. However, a more refined method for performing repre-

sentation learning of the short-term rewards may exist to improve

the bias and variance of the LOPE estimator. Moreover, our LOPE

framework as well as existing LCI and OPE methods assume the

distributions of the short- and long-term rewards remain the same

in the historical and experiment datasets (often called the compara-

bility assumption [4, 5]). However, there sometimes exist temporal

effects in the reward distributions (e.g., users may prefer different

types of songs in different seasons). Developing a framework to

deal with violations of the comparability assumption would be con-

sidered valuable in better capturing the real-world non-stationarity

nature of user preferences. Finally, even though LOPE estimates

a week 3 metric most accurately in our real-world experiment, it

would be valuable to perform a similar experiment regarding even

longer-term metrics in the future.

9
It was regarded as the skyline reference (grey lines) in the synthetic experiment.
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A RELATEDWORK
This section summarizes related literature regarding two existing approaches, i.e., LCI and typical OPE.

A.1 Long-term Causal Inference (LCI)
Our work correlates with the literature on long-term causal effect estimation. Utilizing short-term metrics as surrogates to model long-term

causal effects is a typical strategy [15, 27]. Early works relied on the surrogacy assumption requiring the short-term surrogates to entirely

mediate the long-term outcome. Athey et al. [3, 4] employed multi-dimensional surrogates, which may collectively fulfill the statistical

surrogacy criteria even if no individual metric does so independently. Other recent studies have represented surrogates using sequential

models [7], and used surrogates for policy optimization, e.g., McDonald et al. [24], Wang et al. [39], Yang et al. [41]. Several theoretical

analyses derive the semiparametric efficiency bound in LCI [6, 20] and deal with unobserved confounders [37], which is of independent

interest. However, all existing work in LCI relies on surrogacy or related assumptions, which are debatable and unverifiable, causing

significant bias under their violations as shown in our simulations. Furthermore, the conventional LCI framework does not formulate an

action distribution (policy) induced by an algorithm, thus failing to leverage algorithm similarities. LCI also fails to produce a learning

algorithm for direct long-term outcome optimization. To address these limitations, we first provided a more general formulation that

considers policy, enabling us to unify LCI and OPE formulations, and combine the strengths of both to produce our LOPE framework.

Consequently, LOPE does not rely on surrogacy and is provably more robust to violations of such controversial assumptions. In addition,

LOPE can easily be extended to estimate the policy gradient from historical data, facilitating the learning of a new policy, which is not made

possible by LCI methods.

A.2 Off-Policy Evaluation (OPE)
Off-Policy Evaluation (OPE) refers to a statistical estimation problem that estimates the expected reward under a new decision-making policy

using only the historical dataset collected under a different policy. It has gained increasing attention in fields ranging from recommender

systems to personalized medicine as a safer alternative to online A/B tests, which might be risky, slow, and sometimes even unethical. Among

existing OPE estimators, DM and IPS are commonly considered baseline estimators [12, 30, 31, 38]. DM trains a reward prediction model to

estimate the policy value. While DM does not produce large variance, it can be highly biased when the reward predictor is inaccurate. In

contrast, IPS allows for unbiased estimation under standard identification assumptions but often suffers from high variance due to large

importance weights. Doubly Robust (DR) [11, 13, 22] combines DM and IPS to improve variance while remaining unbiased. However, its

variance can still be high under large action spaces [2, 8, 26, 32, 33]. As a result, the primary objective of OPE research has been to optimize

the bias-variance tradeoff, and numerous estimators have been proposed to address this challenge [23, 25, 34, 35, 40].

Compared to typical OPE methods, which do not assume or leverage short-term rewards and short-term experiment data, our LOPE

is designed to harness these valuable additional inputs via a simple reward function decomposition. The use of short-term rewards is

particularly crucial when estimating the long-term outcome, as it is often extremely noisy, and leveraging short-term surrogates as less

noisy signals can make a significant difference. Broadly, our idea of reward function decomposition is related to a recent line of work on

OPE for large action spaces [32, 33], which is based on a different type of reward function decomposition to leverage useful structure in

the action space such as action clusters. While they also provide some variance reduction compared to typical OPE, especially when many

actions exist, our motivation and formulation for enabling reasonable algorithm evaluations and selections leveraging short-term rewards

are fundamentally different.

B OMITTED PROOFS
B.1 Proof of Theorem 3.1

Proof. To show the unbiasedness of LOPE, here we assume that there exists a function 𝑔 : X × S → R that satisfies the following:

Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠) := 𝑞(𝑥, 𝑎, 𝑠) − 𝑞(𝑥, 𝑎, 𝑠) = 𝑔(𝑥, 𝑠), (15)

which requires that the estimation error of the reward function estimator 𝑞 should be characterized by some action-independent function

𝑔(𝑥, 𝑠). In fact, Eq. (15) is satisfied if either of the surrogacy or conditional pairwise correctness is true.

Based on this assumption, the following derives LOPE’s unbiaseness. From the linearity of expectation, first we have

ED [𝑉LOPE (𝜋1;D𝐻 )] = E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎)𝑝 (𝑟 |𝑥,𝑎,𝑠 ) [𝑤 (𝑥, 𝑠) (𝑟 − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)] .
10
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Thus, the following calculates only the expectation of𝑤 (𝑥, 𝑠) (𝑟 − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋).

E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎)𝑝 (𝑟 |𝑥,𝑎,𝑠 ) [𝑤 (𝑥, 𝑠) (𝑟 − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠) (𝑞(𝑥, 𝑎, 𝑠) − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)𝑔(𝑥, 𝑠) + 𝑞(𝑥, 𝜋)] ∵ Eq. (15)

= E𝑝 (𝑥 )

[
𝑞(𝑥, 𝜋) +

∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥)
∑︁
𝑠∈S

𝑝 (𝑠 |𝑥, 𝑎) 𝜋 (𝑠 |𝑥)
𝜋0 (𝑠 |𝑥)

𝑔(𝑥, 𝑠)
]

= E𝑝 (𝑥 )

[
𝑞(𝑥, 𝜋) +

∑︁
𝑠∈S

𝜋 (𝑠 |𝑥)
𝜋0 (𝑠 |𝑥)

𝑔(𝑥, 𝑠)
∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥)𝑝 (𝑠 |𝑥, 𝑎)
]

= E𝑝 (𝑥 )

[
𝑞(𝑥, 𝜋) +

∑︁
𝑠∈S

𝜋 (𝑠 |𝑥)
𝜋0 (𝑠 |𝑥)

𝑔(𝑥, 𝑠)𝜋0 (𝑠 |𝑥)
]

= E𝑝 (𝑥 )𝜋 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑔(𝑥, 𝑠) + 𝑞(𝑥, 𝑎, 𝑠)]
= E𝑝 (𝑥 )𝜋 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑞(𝑥, 𝑎, 𝑠)] ∵ Eq. (15)

= 𝑉 (𝜋1)

□

B.2 Proof of Theorem 3.2
Proof. Since E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)] = E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑎)] = 1, the difference in the variance of surrogate and vanilla

importance weights is attributed to the difference in their second moment, which is calculated below.

V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑎)] − V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑒 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤

2 (𝑥, 𝑎)] − E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑒 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑠)]

= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎)

[
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

]
∵ 𝑤 (𝑥, 𝑠) = E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

= E𝑝 (𝑥 )

[∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥)
∑︁
𝑠∈S

𝑝 (𝑠 |𝑥, 𝑎)
(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)]
= E𝑝 (𝑥 )

[∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥)
∑︁
𝑠∈S

𝜋0 (𝑠 |𝑥)𝜋0 (𝑎 |𝑥, 𝑠)
𝜋0 (𝑎 |𝑥)

(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)]
∵ 𝑝 (𝑠 |𝑥, 𝑎) = 𝜋0 (𝑠 |𝑥)𝜋0 (𝑎 |𝑥, 𝑠)

𝜋0 (𝑎 |𝑥)

= E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )

[∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥, 𝑠)
(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)]
= E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )

[
V𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

]

□

B.3 Additional Theoretical Facts about Variance Comparison
In this subsection, we provide some additional comparisons in the variance of LOPE and DR.
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As a warm-up, we first derive the variance of LOPE by applying the law of total variance several times below.

𝑛VD [𝑉LOPE (𝜋1;D𝐻 )] = V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎)𝑝 (𝑟 |𝑥,𝑎,𝑠 ) [𝑤 (𝑥, 𝑠) (𝑟 − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [V𝑝 (𝑟 |𝑥,𝑎,𝑠 ) [𝑤 (𝑥, 𝑠) (𝑟 − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)]]
+ V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [E𝑝 (𝑟 |𝑥,𝑎,𝑠 ) [𝑤 (𝑥, 𝑠) (𝑟 − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)]]

= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)]

+ V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠) (𝑞(𝑥, 𝑎, 𝑠) − 𝑞(𝑥, 𝑎, 𝑠)) + 𝑞(𝑥, 𝜋)]]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤

2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)]
+ E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [V𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠) + 𝑞(𝑥, 𝜋)]]
+ V𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [E𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠) + 𝑞(𝑥, 𝜋)]]

= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)]

+ E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [V𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠)]]
+ E𝑝 (𝑥 ) [V𝜋0 (𝑎 |𝑥 ) [E𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠) + 𝑞(𝑥, 𝜋)]]]
+ V𝑝 (𝑥 ) [E𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠) + 𝑞(𝑥, 𝜋)]]

= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)]

+ E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [V𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠)]]
+ E𝑝 (𝑥 ) [V𝜋0 (𝑎 |𝑥 ) [E𝑝 (𝑠 |𝑥,𝑎) [𝑤 (𝑥, 𝑠)Δ𝑞,𝑞 (𝑥, 𝑎, 𝑠)]]]
+ V𝑝 (𝑥 ) [E𝜋 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)]]

where 𝜎2 (𝑥, 𝑠) := V𝑝 (𝑟 |𝑥,𝑠 ) [𝑟 ] and we assume surrogacy (Assumption 2.1) just for the ease of exposition.

Similarly to the variance of DR,which is given in Eq. (19), the critical term in the variance is the first termE𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)],
which depends on the squared importance weight and long-term reward variance. However, we can actually show that the first term in the

variance of LOPE can be substantially smaller than that in the variance of DR.

Theorem B.1. The difference in the first term of the variance of LOPE and DR can be represented as follows.

E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑎)𝜎2 (𝑥, 𝑠)] − E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤

2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)] = E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )
[
𝜎2 (𝑥, 𝑠)V𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

]
,

which is always non-negative.

Proof. This can be proven similarly to Theorem 3.2.

E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑎)𝜎2 (𝑥, 𝑠)] − E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑒 |𝑥,𝑎) [𝑤

2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)]

= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎)

[(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)
𝜎2 (𝑥, 𝑠)

]
∵ 𝑤 (𝑥, 𝑠) = E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

= E𝑝 (𝑥 )

[∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥)
∑︁
𝑠∈S

𝑝 (𝑠 |𝑥, 𝑎)
(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)
𝜎2 (𝑥, 𝑠)

]
= E𝑝 (𝑥 )

[∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥)
∑︁
𝑠∈S

𝜋0 (𝑠 |𝑥)𝜋0 (𝑎 |𝑥, 𝑠)
𝜋0 (𝑎 |𝑥)

(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)
𝜎2 (𝑥, 𝑠)

]
∵ 𝑝 (𝑠 |𝑥, 𝑎) = 𝜋0 (𝑠 |𝑥)𝜋0 (𝑎 |𝑥, 𝑠)

𝜋0 (𝑎 |𝑥)

= E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )

[
𝜎2 (𝑥, 𝑠)

∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥, 𝑠)
(
𝑤2 (𝑥, 𝑎) −

(
E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

)
2

)]
= E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )

[
𝜎2 (𝑥, 𝑠)V𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

]
□

Theorem B.1 indicates that the difference in the first term of the variance of two estimators can be represented by the product of the

noise 𝜎2 (𝑥, 𝑠) and the variance of the vanilla importance weight V𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]. This suggests that the reduction provided by LOPE

becomes increasingly large when the long-term reward noise and the variance of the vanilla importance weight are larger. This is particularly

desirable in our long-term value estimation problem since the long-term reward noise is likely to be large. Theorem B.1 also justifies the

empirical observation in Figure 6 where we observe that LOPE substantially outperforms DR and IPS when the long-term reward is large

due to reduced variance.
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B.4 Derivation of Eq. (11) in Section 3.2

𝑤 (𝑥, 𝑠) = 𝜋 (𝑠 |𝑥)
𝜋0 (𝑠 |𝑥)

=

∑
𝑎∈A 𝑝 (𝑠 |𝑥, 𝑎) · 𝜋 (𝑎 |𝑥)

𝜋0 (𝑠 |𝑥)

=
𝜋0 (𝑠 |𝑥)

∑
𝑎∈A (𝜋0 (𝑎 |𝑥, 𝑠)/𝜋0 (𝑎 |𝑥)) · 𝜋 (𝑎 |𝑥)

𝜋0 (𝑠 |𝑥)
∵ 𝑝 (𝑠 |𝑥, 𝑎) = 𝜋0 (𝑠 |𝑥)𝜋0 (𝑎 |𝑥, 𝑠)

𝜋0 (𝑎 |𝑥)
(16)

=
∑︁
𝑎∈A

𝜋0 (𝑎 |𝑥, 𝑠)
𝜋 (𝑎 |𝑥)
𝜋0 (𝑎 |𝑥)

= E𝜋0 (𝑎 |𝑥,𝑠 ) [𝑤 (𝑥, 𝑎)]

C EXTENSION TO LONG-TERM OFF-POLICY LEARNING (LONG-TERM OPL)
Beyond estimation of the long-term value 𝑉 (𝜋1), we can formulate a problem of learning a new policy to improve the long-term reward

using only historical data. Specifically, we can simply formulate this long-term off-policy learning (long-term OPL) problem as

max

𝜃
𝑉 (𝜋𝜃 )

where 𝜃 ∈ R𝑑 is a policy parameter and 𝑉 (𝜋) is defined in Eq. (1). A typical approach to solve this learning problem is the policy-based

approach, which updates the policy parameter via iterative gradient ascent as 𝜃𝑡+1 ← 𝜃𝑡 + ∇𝜃𝑉 (𝜋𝜃 ). Since we do not know the true gradient

∇𝜃𝑉 (𝜋𝜃 ) (= E𝑝 (𝑥 )𝜋𝜃 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)∇𝜃 log𝜋𝜃 (𝑎 | 𝑥)] via the log-derivative trick), we need to estimate it from historical logged data D𝐻 .

A common way to do so is to apply importance weighting as follows.

∇𝜃𝑉IPS−PG (𝜋𝜃 ;D𝐻 ) :=
1

𝑛

𝑛∑︁
𝑖=1

𝜋𝜃 (𝑎𝑖 | 𝑥𝑖 )
𝜋0 (𝑎𝑖 | 𝑥𝑖 )

𝑟𝑖∇𝜃 log𝜋𝜃 (𝑎𝑖 | 𝑥𝑖 ) =
1

𝑛

𝑛∑︁
𝑖=1

𝑤 (𝑥𝑖 , 𝑎𝑖 )𝑟𝑖𝑠𝜃 (𝑥𝑖 , 𝑎𝑖 ), (17)

where𝑤 (𝑥, 𝑎) := 𝜋𝜃 (𝑎 | 𝑥)/𝜋0 (𝑎 | 𝑥) is the (vanilla) importance weight and 𝑠𝜃 (𝑥, 𝑎) := ∇𝜃 log𝜋𝜃 (𝑎 | 𝑥) is the policy score function.

The IPS policy gradient in Eq. (17) is unbiased (i.e., E[∇𝜃𝑉IPS−PG (𝜋𝜃 ;D𝐻 )] = ∇𝜃𝑉 (𝜋𝜃 )) under the following full support condition.

Assumption C.1. (Full Support) The logging policy 𝜋0 is said to have full support if 𝜋0 (𝑎 | 𝑥) > 0 for all 𝑎 ∈ A and 𝑥 ∈ X.

Unfortunately, though, this requirement of full support can be problematic for two reasons. First, violating the requirement can introduce

substantial bias [14, 29, 32]. Second, fulfilling the requirement often leads to excessive variance, since 𝜋0 (𝑎 | 𝑥) becomes small. At first glance,

doubly-robust (DR) estimation may appear helpful for dealing with the variance issue.

∇𝜃𝑉DR−PG (𝜋𝜃 ;D𝐻 ) :=
1

𝑛

𝑛∑︁
𝑖=1

{
𝑤 (𝑥𝑖 , 𝑎𝑖 ) (𝑟𝑖 − 𝑞(𝑥𝑖 , 𝑎𝑖 ))𝑠𝜃 (𝑥𝑖 , 𝑎𝑖 ) + E𝜋𝜃 (𝑎 |𝑥 ) [𝑞(𝑥𝑖 , 𝑎)𝑠𝜃 (𝑥𝑖 , 𝑎)]

}
, (18)

DR incorporates a reward function estimator 𝑞(𝑥, 𝑎) ≈ 𝑞(𝑥, 𝑎) while maintaining unbiasedness under Assumption C.1, and its variance is

often lower than that of Eq. (17). However, unless the rewards are close to deterministic and the reward estimates 𝑞(𝑥, 𝑎) are close to perfect,

its variance can still be extremely large due to vanilla importance weighting, which leads to inefficient OPL [32]. Specifically, the issue of the

IPS and DR policy gradients can be seen by calculating their variance (of the 𝑗-th dimension and a particular parameter 𝜃 ∈ R𝑑 ) as

𝑛VD
[
∇𝜃𝑉DR−PG (𝜋𝜃 ;D𝐻 ) ( 𝑗 )

]
= E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 ) [(𝑤 (𝑥, 𝑎)𝑠

( 𝑗 )
𝜃
(𝑥, 𝑎))2𝜎2 (𝑥, 𝑎)]

+ E𝑝 (𝑥 )
[
V𝜋0 (𝑎 |𝑥 ) [𝑤 (𝑥, 𝑎)Δ𝑞,𝑞 (𝑥, 𝑎)𝑠

( 𝑗 )
𝜃
(𝑥, 𝑎)]

]
+ V𝑝 (𝑥 )

[
E𝜋 (𝑎 |𝑥 ) [𝑞(𝑥, 𝑎)𝑠

( 𝑗 )
𝜃
(𝑥, 𝑎)]

]
, (19)

where 𝜎2 (𝑥, 𝑎) := V[𝑟 | 𝑥, 𝑎] and Δ𝑞,𝑞 (𝑥, 𝑎) := 𝑞(𝑥, 𝑎) −𝑞(𝑥, 𝑎). 𝑠 ( 𝑗 )
𝜃
(𝑥, 𝑎) is the 𝑗-th dimension of the score function. Note that the variance of

IPS can be obtained by setting 𝑞(𝑥, 𝑎) = 0. The variance reduction of DR comes from the second term where Δ𝑞,𝑞 (𝑥, 𝑎) is likely to be smaller

than 𝑞(𝑥, 𝑎). However, we can also see that the variance contributed by the first term can be extremely large for both IPS and DR when the

long-term reward reward 𝑟 is noisy and the weights𝑤 (𝑥, 𝑎) take some large values, which occurs when 𝜋𝜃 assigns large probabilities to

actions that are less likely under 𝜋0.

To deal with the likely high variance of typical off-policy policy gradient estimators, here we extend the LOPE estimator to estimate the

policy gradient from historical data as below.

∇𝜃𝑉LOPE−PG (𝜋𝜃 ;D𝐻 ) :=
1

𝑛

𝑛∑︁
𝑖=1

{
𝑤 (𝑥𝑖 , 𝑠𝑖 ) (𝑟𝑖 − 𝑞(𝑥𝑖 , 𝑎𝑖 , 𝑠𝑖 ))𝑠𝜃 (𝑥𝑖 , 𝑎𝑖 ) + E𝜋𝜃 (𝑎 |𝑥 ) [𝑞(𝑥𝑖 , 𝑎, 𝑠𝑖 )𝑠𝜃 (𝑥𝑖 , 𝑎)]

}
, (20)

where𝑤 (𝑥, 𝑠) := 𝜋𝜃 (𝑠 |𝑥)/𝜋0 (𝑠 |𝑥).
13
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Table 3: Improvements in MSE provided by LOPE against feasible methods in the synthetic experiment. A smaller value
indicates a larger improvement by LOPE. (default experiment parameters: 𝑛 = 500, 𝜆 = 0.5, 𝜎𝑟 = 0.5, and 𝜖 = 0.1). * indicates if the
difference in MSE is statistically significant based on the Mann–Whitney U test (p=0.05).

𝑛 = 200 𝑛 = 1, 000 𝜆 = 0.0 𝜆 = 1.0 𝜎𝑟 = 1.0 𝜎𝑟 = 9.0 𝜖 = 0.0 𝜖 = 0.5

MSE(�̂�LOPE )/MSE(�̂�LCI ) 0.717* 0.285* 0.902* 0.519* 0.126* 0.952 0.382* 1.056

MSE(�̂�LOPE )/MSE(�̂�IPS ) 0.575* 0.712* 0.734* 0.638* 1.588 0.503* 0.622* 0.674*

MSE(�̂�LOPE )/MSE(�̂�DR ) 0.639* 0.779* 0.825* 0.718* 3.325 0.545* 0.739* 0.730*

As corollaries of already shown theorems, we can show the bias-variance advantages of LOPE as a policy gradient estimator below.

Corollary C.1. The LOPE policy-gradient estimator is unbiased, i.e.,

ED𝐻
[∇𝜃𝑉LOPE−PG (𝜋𝜃 ;D𝐻 )] = ∇𝜃𝑉 (𝜋𝜃 ),

if either of the following holds true:
(1) the surrogacy assumption (Assumption 2.1)
(2) the conditional pairwise correctness, which requires: 𝑞(𝑥, 𝑎, 𝑠) − 𝑞(𝑥, 𝑏, 𝑠) = 𝑞(𝑥, 𝑎, 𝑠) − 𝑞(𝑥, 𝑏, 𝑠),∀𝑎, 𝑏 ∈ A, 𝑠 ∈ S.

Corollary C.2. The difference in the first term of the variance of LOPE and DR (for the 𝑗-th dimension and a particular parameter 𝜃 ∈ R𝑑 )
can be represented as follows.

E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤
2 (𝑥, 𝑎)𝜎2 (𝑥, 𝑠)] − E𝑝 (𝑥 )𝜋0 (𝑎 |𝑥 )𝑝 (𝑠 |𝑥,𝑎) [𝑤

2 (𝑥, 𝑠)𝜎2 (𝑥, 𝑠)] = E𝑝 (𝑥 )𝜋0 (𝑠 |𝑥 )
[
𝜎2 (𝑥, 𝑠)V𝜋0 (𝑎 |𝑥,𝑠 )

[
𝑤 (𝑥, 𝑎)𝑠 ( 𝑗 )

𝜃
(𝑥, 𝑎)

] ]
,

which is always non-negative.

Corollaries C.1 and C.2 are immediate by following the procedures to prove Theorems 3.1 and B.1 provided in the previous section.

In particular, these corollaries show that the LOPE policy-gradient estimator has the same doubly-robust style guarantee regarding its

unbiasedness. In addition, it has substantially reduced variance compared to the DR policy-gradient estimator when the long-term reward is

noisy and the vanilla importance weight has a large variance. Since LOPE reduces the variance in policy-gradient estimation, it is expected

to lead to a more sample-efficient policy learning to improve the long-term value, which we will empirically show in the next section.

D ADDITIONAL EXPERIMENT DETAILS
D.1 Detailed Setup
This section describes howwe define the reward functions to generate synthetic data. Recall that, in the synthetic experiments, we synthesized

the expected long-term reward function as

𝑞(𝑥, 𝑎; 𝜆) = (1 − 𝜆)𝑔(𝑥, 𝑓 (𝑥, 𝑎)) + 𝜆ℎ(𝑥, 𝑎), (21)

where we use the following functions as 𝑔(·, ·) (surrogate effect), 𝑓 (·, ·) (expected short-term rewards), and ℎ(·, ·, ·) (action effect), respectively.

𝑔(𝑥, 𝑠) = 𝜃⊤
𝑔,𝑐 (𝑥 )𝑠, 𝑓 (𝑥, 𝑠) = 𝑥⊤𝑀𝑓 𝑒𝑎 + 𝜃⊤𝑓 ,𝑐 (𝑥 )𝑥 + 𝜃

⊤
𝑓 ,𝑎

𝑒𝑎, ℎ(𝑥, 𝑎) = 𝑥⊤𝑀ℎ𝑒𝑎 + 𝜃⊤ℎ,𝑐 (𝑥 )𝑥 + 𝜃
⊤
ℎ,𝑎

𝑒𝑎,

where (𝑀𝑓 , 𝑀ℎ), (𝜃𝑔,𝑐 (𝑥 ) , 𝜃 𝑓 ,𝑐 (𝑥 ) , 𝜃ℎ,𝑐 (𝑥 ) ), and (𝜃𝑔,𝑎, 𝜃 𝑓 ,𝑎, 𝜃ℎ,𝑎) are parameter matrices or vectors to define the expected reward. These

parameters are sampled from a uniform distribution with range [−1, 1]. 𝑐 (𝑥) is a user cluster, which is learned by performing KMeans in the

feature space X, and different user clusters have different coefficient vectors in our reward functions. We set the default number of user

clusters to 3. 𝑒𝑎 is a 5-dimensional feature vector of action 𝑎, which is sampled from a standard normal distribution.

D.2 Additional Results
This section reports and discusses additional synthetic experiment results regarding varying numbers of user clusters and varying levels of

noise on the short-term reward.

First, we compared the robustness of estimators against varying levels of noise on the short-term reward. Figure 10 shows the MSE,

squared bias, and variance under different short-term reward noises. From the figure, we can see that LOPE, IPS, and DR are robust and

perform similarly even with increased noise on the short-term reward, while LCI worsens when the short-term reward noise becomes larger.

This empirical result suggests that LCI more crucially rely on the quality of the short-term reward. In contrast, LOPE relies on short-term

rewards to reduce variance from OPE methods, but it is more robust to noisy short-term reward. Second, we compared the accuracy of

estimators with varying numbers of user clusters (which affects the synthetic reward function as described in the previous subsection) to

confirm the effect of this experiment parameter. Figure 11 shows the MSE, squared bias, and variance of estimators under varying numbers

of user clusters. In the figures, we observe that there exist some small fluctuations in the accuracy metrics of every estimator with different

numbers of user clusters, since this experiment parameters changes the reward functions and the value of 𝜋1. However, it is also true that

relative comparison of estimators does not change with this experiment parameter.
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Figure 10: Comparison of the estimators’ MSE with varying levels of noise on the short-term rewards (𝜎𝑠 )

Figure 11: Comparison of the estimators’ MSE with varying numbers of user clusters
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