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ABSTRACT

We transform the randomness of LLMs into precise assurances using an actua-
tor at the API interface that applies a user-defined risk constraint in finite sam-
ples via Conformal Risk Control (CRC). This label-free and model-agnostic ac-
tuator manages ship/abstain/regenerate/escalate actions based solely on a scalar
score from opaque outputs. We enhance CRC’s computational efficiency and ro-
bustness through Batched Bootstrap CRC (BB-CRC) and Randomized Batched
Weighted-Average CRC (RBWA-CRC), reducing calibration calls and stabiliz-
ing thresholds while maintaining statistical validity. Additionally, we present a
semantic quantification method grounded in gram matrix geometry, resulting in
interpretable signal and metric design. Together these pieces deliver principled
randomness control for LLM hallucination mitigation and LLM-as-judge reliabil-
ity. Our framework is assessed using four datasets, demonstrating its efficacy in
enhancing factual accuracy and measuring LLM-as-judge performance, yielding a
simplified and computationally efficient control layer that converts variability into
statistical validity.

1 INTRODUCTION

Recently developed large language models (LLMs) function as stochastic black boxes, limiting com-
mon user access to logits or internal processes during deployment. Key issues include fabricated
information, hallucination, prompt-injection vulnerabilities, attacks, and inconsistent evaluations
when LLMs evaluate their own outputs, resulting in compromised outputs. These problems under-
mine large-scale reliability and safety due to a lack of explicit, analytical, and scalable uncertainty
control (Aljamaan et al., 2024; Alizadeh et al., 2025; Wang et al., 2025b; Zheng et al., 2023; Shi
et al., 2025; Chen et al., 2024). A flexible, vendor-independent control framework that accounts for
computational context and converts variability into probabilistic guarantees essential for practition-
ers is missing.

We present a Conformal Actuator (CA) framework, a single, monotone gate that directs actions
(ship, abstain, regenerate, escalate) via a scalar, label-free score derived from outputs of black-box
models. Calibrated once via Conformal Risk Control (CRC), the CA enforces a pre-specified risk
budget with finite-sample guarantees. At the API boundary, we create two efficient and analytically
tractable calibrators—Batched-Bootstrap CRC (BB-CRC) and Randomized Batched Weighted-
Average CRC (RBWA-CRC)—that preserve probabilistic validity in finite samples while reducing
calls and smoothing calibration, improving statistical efficiency and robustness. Beyond gating, we
add a quantification layer that quantifies and bounds any offline-flagged risk by a geometrically
principled centered Gram-matrix metric. Crucially, calibration folds ground-truth information into
this cheap, API-only Gram signal, so the deployed score remains label-free yet inherits statistical
guarantees.

We focus on two deployment challenges most significantly impacted by randomness and uncer-
tainty.(i) Hallucination control. Can we ship only answers that are likely factual, while bounding
the “acted-while-unfactual” exposure? (ii) LLM-as-Judge reliability. In utilizing an LLM evalu-
ator for reviewing outputs from other LLMs, to what extent can we rely on this mechanism given
our foundational mistrust of LLM-generated responses? A runtime process that is label-free, opera-
tionally simple, and statistically sound is necessary in both instances.
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We formalize the CA and its guarantees under CRC, present the compute-aware calibrators (BB-
CRC, RBWA-CRC), and evaluate the full system on open-domain QA. Across benchmarks, CRC-
calibrated routing achieves consistent factuality lifting at the target budget, while the Gram-geometry
score—cheap to compute at inference and label-free—delivers the most uniform gains. Overall,
we provide an end-to-end, verifiable deployment pipeline that is (i) label-free at inference,
(ii) compute-aware in calibration, and (iii) statistically valid in finite samples—combining a
efficient actuator with a geometry-based quantification layer for practical, auditable control.

2 RELATED WORK

Conformal prediction (CP) turns arbitrary model scores into uncertainty sets with distribution-free,
finite-sample guarantees under minimal assumptions, spanning classical tutorials and modern vari-
ants such as split CP for regression and conformalized quantile regression (Vovk et al., 2005; Shafer
& Vovk, 2007; Lei et al., 2017; Romano et al., 2019). Robustness beyond exchangeability and au-
diting under shift have been actively studied (Oliveira et al., 2024; Prinster et al., 2022; Tibshirani
et al., 2020), while domain surveys and task-specific adaptations cover NLP and LLM-style outputs
(Campos et al., 2024; Quach et al., 2024; Mohri & Hashimoto, 2024). Conformal Risk Control
(CRC) extend CP from coverage to expected-loss control for bounded, monotone losses, yielding
data-dependent thresholds with finite-sample guarantees that transfer to deployment (Bates et al.,
2021; Angelopoulos & Bates, 2022; Angelopoulos et al., 2025). Methodological extensions include
cross-validated calibration and anytime-valid/sequential control (Cohen et al., 2024; Xu et al., 2024).
In LLM pipelines, CRC has been used for tail-risk alignment, property alignment, metric calibra-
tion, and multi-objective routing/cascades directly at the API layer (Overman et al., 2024; Overman
& Bayati, 2025; Chen et al., 2025; Gomes et al., 2025). Yadkori et al. (2024) employs CRC to
reduce hallucinations by implementing a conformal-abstention strategy with standard scoring and
calibrator.

Without white-box access, one can embed a small batch of outputs, form a Gram matrix
(Scholkopf et al., 1998), and summarize consensus or uncertainty via functionals; this connects to
representation-similarity (CKA) and recent semantic-space uncertainty measures including seman-
tic entropy, kernel language entropy, and log-det (semantic volume) scores (Kornblith et al., 2019;
Farquhar et al., 2024; Kossen et al., 2024; Nikitin et al., 2024; Li et al., 2025). Signals based on
geometry assist in hallucination management, self-consistency, and consensus analysis.(Liu et al.,
2023b; Manakul et al., 2023; Wang et al., 2025a).

3 GRAM GEOMETRY FOR BLACK-B0OX LLLM RESPONSES: SEMANTIC
SUFFICIENCY AND QUANTIFICATION

We require a metric layer that is mathematically stable and depends only on black-box LLM out-
puts. Building on self-consistency—which aggregates multiple reasoning paths to improve reli-
ability (Wang et al., 2023)—and the Semantic Volume view that links uncertainty to embedding
dispersion via log determinants (Li et al., 2025), we work directly in Gram space. This yields per-
mutation invariance, numerical stability, and an outputs-only interface. On this basis, we design a
novel response-level Gram metric that is cheap to compute and readily deployable for safety control,
providing a label-free signal that integrates seamlessly with our conformal actuator.

Let v; = 9(y;) € R? be unit-norm embeddings of n i.i.d. responses in a small queue, stack V &
R™*4 define G := VV'T, center with H := I,, — %11T, and write G := HGH. This yields two
deployable capabilities: (A) semantic sufficiency for batch decisions via leading subspaces, and (B)
per-item quantification via a one-dimensional, intrinsic uncertainty score—both label-free online.

Semantic sufficiency: decisions live in leading Gram subspaces. We compare the leading rank-r
projector of a test batch to class prototypes. For each class k, average calibration Grams to a surro-
gate S (eigengap 7y, > 0), extract its top-r projector P, and build prototype projectors Py from

held-out data. For a test batch form P from the top-r eigenvectors of G. Decide via the spec-
tral-overlap rule

k= arg max (P, Py)p. 3.1
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If the centered Gram of the batch concentrates near its true class mean (||é — Sk llop < €p) and

prototypes are separated, then Pis close to Py and the overlap rule equation A.1 returns the correct
class with a positive margin. Formally:

Theorem 3.1 (Semantic sufficiency of Gram projectors). Let the true class be k* and suppose
|G — Sk+|lop < €n. Define the prototype separation Ap := min; ||P; — P|| 7 and the prototype
eITOr Oproto := || Prr — Pix||7. If

2 1
\/’F En + 5proto < = AP7 (32)
’Yk;* 4

then the spectral-overlap rule equation A.1 selects k = k* with margin

A A A A2
m = <P7Pk:*>F — ?713%}*(<P7PJ)F Z TP

> 0. (3.3)
The Davis—Kahan projector bound and the margin argument are given in the appendix; all lemmas
are deferred to Appendix §A.1.!

Quantification: a one-dimensional, intrinsic energy scale. Per-item uncertainty is quantified
using the interaction energy
e(i; G) = [|Guill2 = [V wil2.

With unit-norm embeddings, e(i; G)? = 22;1 cos? 0;;, so large e indicates batch consensus
(alignment or anti-alignment both count) and small e indicates novelty. The scale is intrinsic:
1 < e(i;G) < +/n, hence the normalized score E(i) := e(i;G)/y/n € [0,1] is a label-free,
permutation-invariant policy signal compatible with CRC.

We instantiate the Gram—Projector Spectral-Overlap (GPSO) decision rule and verify that a sim-
ple L2/no-center pipeline achieves a best macro accuracy of 0.958 on a factual vs. unfactual QA
split, while centered variants enlarge prototype separation (Ap =~ 1.36) with a trade-off in unfac-
tual accuracy. Details of the compact table, algorithm, and LLM experiments are postponed to
Appendix §A.2.1.

Both semantic sufficiency (decisions via leading subspaces) and quantification (one-dimensional
energy) live entirely in Gram space. This yields an auditable, label-free, model-swap-stable scalar
Q for our CRC actuator in §4.

4 BATCHED BOOTSTRAP CRC

4.1 MONOTONICITY—CONSISTENT ACTIONABLE LOSS (POLICY—FIRST DESIGN)

Our Conformal Actuator uses a single actionable loss paired with a calibration-only quality flag:
Ly, A) = ax(QW)) ma(y) €[0,1],  R(\) = E[L(Yaew, V)] @1

Here, Q(y) is any scalar policy score; ay : R — [0,1] is a gate that is pointwise bounded and
monotone (non-increasing) in A; and mg(y) € [0, 1] is an offline flag encoding the task’s risk to be
controlled.

The family {ay} is the control mechanism—instantiated as a binary indicator, a quantile gate, or a
smooth gate—under the sole assumption that it is monotone in A. As )\ increases, the action moves
consistently in one direction (e.g., becomes stricter). Consequently, A is the single tuning knob
that carries ground-truth calibration into a physical actuator (escalate, re-route, regenerate, abstain),
while requiring no labels at test time.

The flag mg is a bounded, task-chosen signal that marks outcomes to avoid when the policy acts
(e.g., factuality errors upon acceptance, or over-unification that harms diversity). It is evaluated only
during calibration using ground truth. CRC then learns the co-movement between this designated

"'We implement the same rule in feature space using C' := V" HV; spectral duality ensures equivalence to
the item-space analysis, see Proposition A.3.
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flag and the actionable policy by selecting A to control R()\). At deployment, mg is not used; we
apply the learned gate a5(Q(y)) in real time.

The gate a) is label-free and can run on cheap signals (e.g., Gram-based measurements), while mg
may be expensive/sparse/noisy and is used only in calibration. After tuning, no online labels are
needed: we threshold a scalar policy score, which is compute-efficient, and with BB-CRC/RBWA,
batching and bootstrap smoothing reduce LLM calls while preserving finite-sample validity.

4.2 BB-CRC AND RBWA-CRC

With ¢ g defined, our goal is to select a single global threshold )\ that keeps the expected loss
well bounded. Conformal Risk Control (CRC) provides such a finite-sample guarantee. However,
when the loss depends on LLM outputs, naive CRC can be costly because each assessment may
require multiple model invocations. Batched Bootstrap CRC (BB-CRC) addresses both validity and
efficiency by reusing a small held-out set and resampling it internally.

We split n=G1 instances into G equal batches and, within each batch, draw K bootstrap repli-
cates from the same held-out data. A bias-corrected bootstrap average then yields a data-dependent
threshold ) that controls risk in finite samples. Practically, this delivers (i) fewer LLM calls at
a fixed risk budget by recycling a batch via resampling, and (ii) validity by design maintaining
exchangeability and theoretical guarantee.

Lemma 4.1 (Distributional invariance). Under the general assumptions, Ynew | {Z] : j =
1,....K; g =1,...,G} £ Yaew ~ Py (4.2), and, for each j = 1,... K, Zf"'l | {27 -
i=1,...,K;g=1,..,G} 2 ZE" ~ Py (4.3).

This Lemma 4.1 underpins the BB-CRC procedure. Given the calibration replicates, a new outcome
and a “next-round” bootstrap replicate from an unused batch behave as draws from the same popu-

lation. This lets us compare the new outcome to the bootstrapped world under exchangeability and
motivates the BB-CRC desgin. We now present the BB-CRC algorithm.

Algorithm 4.1 Batched Bootstrap Conformal Risk Control (BB-CRC)

1: Input: trajectories {Yk}}j:l, batches G, replicates K, tolerance «
2: Partition {Y} }7_, into {B,}5, of equal size I = n/G
3: forg=1to G do
4: Draw K bootstrap replicates {Z}/_, from B,
5: end for
G K
6: Az inf{N\: ot SO L(ZL ) + ghy < af A A
g=1j=1
7: Return 5\2

Theorem 4.2 (Finite-sample BB-CRC). Assume {Bg}gill are i.i.d and {Yy1,...,Y, 1} are ex-
changeable for g = 1,2,...,G 4+ 1. Let Y,o,, = Y, 11. With loss L right-continuous w.r.t. \ and

bounded in [0, 1] and L(-, Apax) < @, the estimator Az returned by Algorithm 4.1 satisfies

Using Lemma 4.1, BB-CRC calibrates by contrasting held-out losses with the “next-batch” bootstrap
world, yielding Az with the guarantee in Theorem 4.2. We next generalize by replacing within-batch
resampling with a single randomized convex combination across items. The Randomized Batched
Weighted Average CRC (RBWA-CRC) method draws a simplex-valued weight vector p, per batch
and computes a weighted mean of item losses in place of bootstrap replicates. This preserves finite-
sample validity, introduces a transparent variance dial via the weight law, and enables mix-aware
calibration—while leaving deployment unchanged (we still act via ay).



Under review as a conference paper at ICLR 2026

Algorithm 4.2 Randomized Batched Weighted Average Conformal Risk Control (RBWA-CRC)

1: Input: {Y;}}_,, batches G, weight law P, tolerance o
2: Partition {Y}} into {Bg}?:1 with |By| =1 =n/G, {pg}le are i.i.d.
3: forg = 1:G do
4: Sample py = (pg1;---,Pg,1) ~ Ps, independent of B,
50 SetLy(\) = pgi L(Yyi, )
6: end for
. 1 & 1
7. Ap — <11’lf{A : Gi-i—]_ gz:Zng(A) + m S a}) N Amax
8: Return 5\1,

Theorem 4.3 (Finite-sample RBWA-CRC). Assume {Bg}?jll are i.i.d and {Yy1,...,Yy 1} are
exchangeable for g = 1,2,...,G + 1. Let Yo, = Yyi1 = Yg41,1. With loss L right-continuous
w.rt. X\ and bounded in [0,1] and L(-, Anax) < «, the estimator Ay, returned by Algorithm 4.2
satisfies

E[L(Yaew: Mp)] < a.

Remark: RBWA-CRC subsumes BB-CRC. Let {w;}/<, “*" Uniform({1,...,I}) and set
u; = #{j  w; =4i}/K, withu = (uq,...,ur) € S and Pgs the law of u. Choosing p, ~ Ps in
RBWA-CRC reproduces the BB-CRC resampling scheme within the RBWA template. Thus RBWA-
CRC is a strict generalization: it retains the exchangeability logic, bias correction, and finite-sample
validity, while replacing resampling with exogenous simplex weights that smooth and stabilize the
empirical risk curve. In practice, design the loss once via equation 4.1, calibrate a single threshold

with BB-CRC (bootstrap reuse) or RBWA-CRC (mix-aware weighted averaging), and deploy using
the action rule alone.

4.3 WHY RANDOMIZED WEIGHTS HELP IN RBWA-CRC

Empirical Risk vs a Stability (SE) across a
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Figure 1: Calibration comparison. Left: Empirical risk at the calibrated threshold versus o.
RBWA closely tracks y = « as its property of unbiased smoothing and anti-concentration, while
both BB-CRC and RBWA-CRC remain well-bounded and BBCRC is more conservative. Right:

Stability (measured as standard error of M) versus . RBWA demonstrates superior threshold sta-
bility, while BBCRC attains a moderate enhancement in stability compared to standard CRC.

RBWA computes the per-batch statistic

I
LQ(A) = Zpg,i gg,i(/\)a gg,z()‘) = L(Yg,ia )\) € [07 1}, pg € S,
i=1
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with exogenous weights p, independent of B,. The two theorems below show—without assuming
a specific loss form—why this randomization stabilizes calibration: random weights act as an unbi-
ased smoother with a single variance dial and remove lattice ties (anti-concentration). In practice,
this smooths the CRC risk curve and yields more stable thresholds, without changing the actuator.

Theorem 4.4 (RBWA moments: unbiased smoothing, variance dial, and anti-concentration). Let
pgy ~ Dirichlet(nl) with n > 0 and set k = In. For any fixed \ and any bounded losses

{g.:(N}i=y [0,1):
(a) Unbiasedness: E[Lg4(\) | £] = p(X).

(b) Variance dial: Var(Lg()\) | £) = Varemp(£y(N))/(k + 1). Thus, for any t > 0,

Varemp(4y) Varemp(4y)
Pr(|Ly—p|>t]l) < —2220 Pr(Ly>p+t|l)< P9 .
I‘(| g M|— | )— (I‘i+1)t2 5 I'( g_N+ | )—Varemp(gg)_i_(m_i_l)tg
(c) Anti-concentration: if (¢1(\), ..., ¢r(X)) is not constant, then Ly(\) has no atoms (Pr(Lgy =t |

£) = 0 for all t), hence threshold ties caused by discrete lattice values disappear.

Keeping the weight precision x = I roughly constant across folds makes dispersion comparable
across iterations. A CLT then yields closed-form bands for L (\) and supports a simple operational
rule: choose the smallest A whose upper CLT band (plus the standard +1/(G+1) correction) lies
below a.

Theorem 4.5 (RBWA calibration CLT under precision stabilization). Fix a \. Assume batches are
i.i.d., losses are bounded in [0,1]. Let p, ~ Dirichlet(1). Let

E[Varemp(£y)]
+1

they are well-defined because {{}$_, are i.i.d.. Assume Var () is finite. Then

p(L) = Elug], Var(L) = + Var(uy)

G
VG (Le — (L)) = N(O.Var(L)), Lg= %ZLQ

as G — oo.

On LLM responses (ASQA) in Fig. 1(a), both BB-CRC and RBWA stay bounded by the risk budget,
with RBWA aligning more closely to the target y=c, while CRC and BB-CRC exhibit conservatism.
This agrees with Theorems 4.4-4.5: Dirichlet randomization yields an unbiased, anti-concentrated
batch loss, so Lg(A) is smooth and the calibration constraint tends to be active, matching « up
to CLT-scale fluctuations. In (Fig. 1 (b)), RBWA is observed to achieve the lowest standard er-
ror/optimal parameter stability of the calibrated threshold across a.

5 EXPERIMENTS: LLM FACTUALITY LIFTING

5.1 DATA GENERATION PIPELINE AND METRICS

Two key questions are discussed: (i) Can our conformal actuator framework reduce LLM halluci-
nation by improving factual accuracy across various datasets and contexts? (ii) Can the framework
align an LLM-as-Judge score with factuality to make its randomness measurable in terms of factu-
ality and reliability?

We evaluate across four complementary QA datasets, each surfacing a distinct failure mode:
ASQA—ambiguity and under-specification (Stelmakh et al., 2023); NQ-Open—single-hop factoid
retrieval (Lee et al., 2019; Kwiatkowski et al., 2019); HotpotQA—multi-hop composition (Yang
etal., 2018); and AmbigQA—aliases and answer sets (Min et al., 2020). To probe sensitivity, we add
two ablations: a decoding entropy stress test and a vendor swap.

For every open-domain QA query, we create a varied response set combining plain answers with
structured noise, and assess each candidate using the clear metric Factuality Severity (FS). All
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artifacts are kept provider-agnostic across OpenAl, Together, and Gemini (OpenAl et al., 2024;
Grattafiori et al., 2024; Team et al., 2024). We hold the measurement pipeline fixed—decoding
knobs, the counts of paraphrases and answers per item, and the normal-noise mix while span-
ning providers and model sizes (e.g., Llama-3.3-70B, Mixtral-8§ x 7B, Llama-3.1-8B, GPT-40-mini)
(Grattafiori et al., 2024; Jiang et al., 2024; Grattafiori et al., 2024; OpenAl et al., 2024). Separating
what we measure from what we vary (datasets, temperatures, and models) shows that conclusions
do not hinge on any single setting: The criteria for being far from truth” and "out of consensus” are
consistently maintained across various tasks and providers.

To measure deviation from references, we employ a BERTScore-F1 (Zhang et al., 2020) adjusted
to the baseline focusing on answer head. Define R, as the paraphrased reference set for a given
question ¢, and head(a) as the candidate’s head. We introduce Factuality Severity (FS) as

FS(a) = 1 max BERTScoreF1(head(a), ) € [0, 1]. (5.1)

FS(a) = 0 signals exact alignment with the reference, indicating the response is essentially a para-
phrase. Scores near 1 imply semantic divergence. Prioritizing response head reduces bias from
reasoning and length.

An LLM judge gives a rubric-based score J(a) € [0,100] to the answer head (correctness, faith-
fulness, completeness, clarity; G-Eval style) (Liu et al., 2023a); we normalize this as Jyorm(a) =
J(a)/100 and define LLM-as-Judge Severity (JS) as JS(a) = 1 — Jyorm () ranging from O to 1.

5.2 FACTUALITY LIFTING ON ACTIONABLE POLICY

We retain the same policy—first loss:
Ly, ) =ax(Q) -m(y),  ax(u)=1{u > A}, (5.2)

where m(y) € [0,1] is an offline factuality severity used only for calibration and Q(y) is a
label-free, online policy score. At deployment we compute Q(y), apply the gate a5 (Q(y)), and
never read m(y). The single knob A therefore maps statistical calibration into a physical action
(ship/abstain/regen/escalate), while cleanly separating measurement (m) from action (Q)). We in-
stantiate two choices for the online score:

¢ (P1) Gram-energy consensus Qr(y) = E(y) € [0,1]: a row-energy signal from the response-queue
centered Gram geometry (cf. Eq. 2.4), cheap and label-free.

e (P2) LLM-as-Judge Q;(y) = Jum(y) € [0,1]: a rubric grade on the answer head from a light grader
(G-Eval style).

Across four QA datasets (ASQA, NQ-Open, HotpotQA, AmbigQA) and two ablations, we hold the
measurement pipeline fixed and vary dataset, temperature, and provider. Under these controlled
variations, both policy scores, Gram energy (Jr and LLM-as-Judge @) ;, lift factuality, with Qg
exhibiting more uniform improvements across tasks and risk budgets (Fig. 2). By design, Qg is a
consensus-seeking, outputs-only signal derived from centered Gram geometry: it is normalized to
[0, 1], permutation-invariant, and—in entropy stress tests—suppresses isolated outliers while con-
centrating acceptance on dense semantic modes; in vendor/model swaps, its dependence on outputs
plus a fixed encoder preserves acceptance regions and supports a portable, API-level control layer.
(2 ;7 remains operationally useful wherever a rubric is available; paired with CRC, its score becomes
measurable and risk-trackable, though its FS lift attenuates at larger a.

5.3 BASELINE

Name Policy score ) Gate / Calibration

G-Eval-Naive  Judge score Qn = Joom € [0,1]  Fixed X € {0.99,0.95,0.90,0.85,0.80} (no guarantees)
G-Eval-CRC Judge score Q5 = Jhorm BB-CRC threshold A(«) (finite-sample validity)
Gram-CRC Gram energy Qr = E € [0,1] RBWA-CRC threshold A\(«) (finite-sample validity)

Table 1: Mode summary. Modes vary in online score () and calibration (fixed vs. CRC ).
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Figure 2: Factuality lifting across diversified settings. Heatmaps show the % drop in F'S from
Unshipped to Shipped under the same gate aj; rows are benchmarks (incl. ablations), columns
are risk budgets «; left/right panels differ only by the policy score Q (Qg vs. Q). With Qg (left),
reductions are high and notably uniform across datasets and «, remaining stable under entropy stress
and provider/model swaps. With @ ; (right), the judge-based policy also yields substantial gains,
with lift varying more by task and budget.

To baseline the actuator, we ablate along two axes: (i) the online policy score Q € {Q,Qr} and
(ii) how the threshold A is set (fixed versus CRC). This yields three deployment modes that all use
the same one-knob gate a ) but differ only in the score and calibration (Table 1).

Method «=0.01 0.05 0.10 0.15 0.20
G-Eval-Naive 12.8 9.7 8.9 9.1 9.0

G-Eval-CRC 98.9 783 653 550 465
Gram-CRC 97.9 96.7 93,6 894 86.0

Table 2: FS reduction (%) across risk budgets «. Entries are the percentage drop in F'S; higher
is better. Moving from a fixed judge threshold to CRC (G-Eval-Naive—G-Eval-CRC) shows the
gain from calibration, while switching the policy score to Gram energy (G-Eval-CRC— Gram-CRC)
yields the strongest and most uniform lift—for example, at a=0.20 the reductions are 86.0%
(Gram-CRC) vs. 46.5% (G-Eval-CRC) vs. ~ 9% (G-Eval-Naive).

Crossing policy (Qg vs. Q) with calibration (fixed threshold vs. CRC) yields three modes that
share the same actuator a)y: G-Eval-Naive (pure baseline; fixed judge threshold, no guarantees),
G-Eval-CRC (judge policy made risk-controlled), and Gram-CRC (full geometry policy). This de-
sign serves two purposes. First, G-Eval-CRC is both a strong baseline against Gram-CRC and
our instrument for controlling LLM-as-judge randomness: calibration turns the judge score into a
measurable, risk-tracking knob. Second, G-Eval-Naive isolates the value of calibration itself. Table
2 quantifies the two-step story: Naive—CRC captures the gain from validity (e.g., 9% — 46.5%
FS reduction at a=0.20), while G-Eval-CRC—Gram-CRC captures the gain from the policy signal
(to 86.0% at «=0.20). Our conformal risk control framework maintains risk within budget and
stabilizes thresholds, allowing for single calibration and frequent deployment with controlled LLM
randomness.

6 CONCLUSION

We introduce a concise calibrate-once, deploy-often framework for controlling risk in black-box
LLMs. This model operates using a single scalar actuator with a unified monotone threshold. The
Conformal Risk Control (CRC) methodology provides finite-sample assurances within a specified
risk level a. Two variants further strengthen reliability and efficiency: BB-CRC (batched boot-
strap CRC) boosts data efficiency by pooling across bootstrap splits, and RBWA-CRC (randomized
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batch weight) minimizes threshold variance, enhancing deployment stability. Alongside CRC, our
Gram geometry sufficiency principle swiftly provides auditable uncertainty quantification at the API
boundary by converting complex semantics into dependable metrics. Taken together, these pieces
constitute a general and portable template for risk control: any task with a monotone loss can inherit
the same actuator-and-threshold mechanism, making our approach immediately extensible beyond
LLM setting to broader risk control problems.

In real-world LLM settings, the calibrated actuator systematically tames stochastic generative vari-
ability in black-box models. The actuator meets target risk budgets and produces consistent fac-
tuality lift, thereby mitigating hallucination without token-level probabilities or labels. Beyond
generation, the same actuator enables LLM-as-judge routing and triage: it makes judge pipelines
measurable, portable across models, and auditable for production governance. In short, a single
calibrated actuator turns LLM variability into validity: geometry (Q)g) provides provider-agnostic
gains, and CRC makes those gains allocatable at a user-chosen risk budget.

Limitations & Future Work. We highlight two directions. (1) Relaxed exchangeability. Our
guarantees rest on exchangeability; relaxing this assumption to handle covariate shift, prompt drift,
and temporal dependence is a key next step. (2) LLM-as-judge at scale. We aim to broaden
the judge setting from QA factuality to pairwise ranking, critique grading, safety adjudication, and
multi-judge ensembling, exploring how () and CRC interact with rubric design, aggregation, and
adversarial prompting.

Use of Al for language editing. We used OpenAl ChatGPT and Overleaf Writefull solely for
language polishing (grammar, clarity, and style) of author-written text. All ideas, experiments, and
conclusions are the authors’ own. The authors reviewed and verified all content and take full respon-
sibility for any errors.
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A  PROOFS

A.1 SECTION 3: PROOFS, SELF-CONSISTENCY LINK, DUALITY

Unit-norm embeddings v; = 9(y;) € R V € R™? withrows v/ ;G =VV'"; H =1, — 1117,
G = HGH.

Setup and notation. Let G € R™ " be the centered sample Gram matrix computed from a test
batch of n vectors. For each regime (class) k € {1,..., K}, take M, calibration batches of size n

and compute their centered Grams C:‘,(Cm) form = 1,2, ..., Mj. Denote S, := ]E[é | k], decomposed
as Sy = Uy AU, , which is estimated by

S = Gim Sy = Up AUy
My mZ 1 *
and assume an eigengap at rank r:

Ve = A(Sk) — Arp1(Sk) > 0.

Let Py, := U,gr) (U, ,ET) )T be the (theoretical) rank-r population projector for class k. From calibration
data, form empirical prototype projectors P, (at rank 7): for the calibration batch let U,gr) be the
top-r eigenvectors (corresponding to the r top eigenvalues) of S, and define P, = U, ,gr) (U ,ET))T.
Similarly, for the test batch let let U") be the top-r eigenvectors of G and define P = U(") (U (T))T
the sample projector. Define the between-class separation (on prototypes)

Ap = min||P; — P .
P gﬂ;g”; 0|l

Classifier

k = arg mgx(p, P)r. (A.1)
This depends on the test data only through G (via P) and the stored Gram-space prototypes {Pk}

A.1.1 PROJECTOR PERTURBATION AND SEMANTIC SUFFICIENCY (MAIN-TEXT
THEOREM 3.1)

Lemma A.1 (Davis—Kahan projector perturbation; Frobenius form). If |G — S |lop < &, then the
top-r projector P of G obeys HP Pillr < f

Proof. Let © = diag(6y,...,0,) be the diagonal matrix of principal angles between the subspaces

span(U(") and span(U,gT)) . The Davis—Kahan sin © theorem (Yu et al., 2015) gives the operator-
norm bound

IG=Silop _ &

|| sin Ollop < .
V& Tk

Hence, by || - |7 < V7 || - [lops

Isin®llr < Vilsin®fo, < e

=15

For rank-r orthogonal projectors P}, and P associated with U, ,ET) and U,
1P = Pyl = (P = Pu) (P = Py)) = te(P) + trx(P,) — 2tx(PPy)
=2r = 2u((0) U@ T O)

The singular values of U (T))TU,Y) are cos 61, . .., cos 0,, the cosines of the principal angles, hence

(T TUS W) T@D)) = [0 TU |2 = Zcosf’
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Therefore
T T
|P— Py =2 (1—cos?6;) =2 sin?6; =2 sin O3,
i=1 i=1
then

~ 2
||P—P]§||F=\[2||Si11@”pS\@'ﬁé"n< \/FEI
Tk Yk
O

Theorem A.2 (Semantic sufficiency of Gram projectors). Under the conditions stated in Theo-

rem 3.1 of the main text, the spectral-overlap rule selects the correct class with margin m >
A% /4> 0.

Proof. By Lemma and the concentration assumption ||G — S~ llop < €n.
- 2y
1P~ Pl < 2,
Vi

Triangle inequality then gives

A - - 24T
I8 = Prelle < 1P = ol + | = Pl < 2020 + s =i .
Recall for rank-r orthogonal projectors A, B we have || A||% = || B||% = r and

1
(A,B)p =7 - 5|A- BJ}.

Thus, for any j # k*,

(P, Pe)r = (P, Pj)r = 5 (1P = PillE — 1P — Pel).

N =

By the reverse triangle inequality ||15 — PjHF > Hpj _ Pk*”F _ HI:, _ Pk*HF- Let Ap —
min;p+ | Pj — P+ || . Then for every j # k*,

A 1 2 1 1 A
(P, Py)r — (P, Pj)F > i(AP—p) - 5/)2 = 5(A%—2App) = TP(AP—QP)-

Consequently, if p < %A p, which is assured by condition equation 3.4, then every right-hand side
is positive and hence (P, Py)p > (P,Pj>p for all j # k*, so k = k*. Finally, if the stronger
condition equation 3.4 holds then p < iA p,SOAp —2p > %A p and therefore the overlap margin
satisfies

. A IR Ap Ap A%
= P,Py)p — (P, P; > — = —
This completes the proof. O

A.1.2 SPECTRAL DUALITY (ITEM VS. FEATURE SPACE)

Proposition A.3 (Spectral duality). Let V. € R H := I, — 21117, and Z := HV. Let

Z = USW be a compact SVD with U € R™*", ¥ € R™*", W € R¥". Define S := ZZ7,
C := Z" Z, and projectors

Ps :=U,U,, Po =W, W,
Then S and C' share the same nonzero singular spectrum, and
) p(b) a)Trr(b) [|2 (a) p(®) a)T i) 112
(P, Py = | UOTU [, (P, P e = WO
Here (a) and (b) index two different batches of centered data, each with its own SVD and associated

projector.
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Proof. Since ZW, = U,.X, and Z'U, = W,%,, it follows that U, = ZWTETTl and W, =
ZTU, X1, which yields the claimed identities. The overlap formulas follow from (A, B)g
tr(AT B) and standard properties of principal angles.

Corollary A.4 (Feature-space sufficiency). Let C' := Z' Z and C} := E[C | k] with eigengap
(C) =M\ (Cy) — )\T_H(Ck) > 0. Let Qy, be the rank-r projector of C, Qk the prototype projector
from calibration, and Q the test projector from C. Define Ag = min;, HQJ QeHF If

~ NG _
1€ = Clop < en, oy &n T 1@k — Quellr < 1 Ag,
Viex

then

~

k = arg max <@, @k>F

recovers the correct class k = k* with overlap margin at least A2 / 4.

Proof. Same as the proof of Theorem 2.1, with ZZ " replaced by Z " Z and left singular subspaces
replaced by right singular subspaces. O

A.1.3 INTERACTION-ENERGY RANGE (QUANTIFICATION)

Theorem A.5 (Unit-norm interaction—energy bound). If||v;||2 = 1foralli, then1 < e(i; G) < \/n,
with e = \/n when all v; align with v; and e = 1 when v; L vj;.

Proof. With ||v;]|2 = 1, the j = i term in equation 3.1 gives f(i; G)? > 1. Since |(v;, v;)| < 1,
n
[EG)? =D (vi,v;)* <,
j=1

hence f(i;G) < \/n. Both bounds are attainable by orthogonality (lower) and equality (upper)
configurations. O

A.2 SECTION 3: ALGORITHM AND RESULTS

A.2.1 GRAM-PROJECTOR SPECTRAL-OVERLAP (GPSO) CLASSIFIER — INTUITION &
IMPLEMENTATION

Given a small batch of responses, we embed each answer head (unit-norm) and form a Gram ge-
ometry that is (i) permutation-invariant over items, (ii) label-free at test time, and (iii) stable under
model swaps. The decision lives in the leading Gram subspace: we compare the test batch’s top-r
projector to calibrated prototype projectors via spectral overlap. Under a concentration assumption
and prototype separation, the overlap rule recovers the correct class with a positive margin (Theorem
3.1 main text).?

Notation. Unit-norm embeddings v; = ¥ (y;) € R4, batch matrix V € R"*4, centering
H=1I,-11",Z:= HV,

item-space Gram G = ZZT = H(VV T )H, feature-space scatter C = Z ' Z.
For class k, the prO_]CCtOI‘ is Py (item-space) or Q) (feature-space), with prototypes Por Q a test
batch yields Por Q. The spectral-overlap rule chooses

k= arg max(fg Pk> r or equivalently with feature-space projectors

?Feature/item-space duality ensures the same procedure works in feature space with C' = Z ' Z (Proposi-
tion A.3).
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Centering and L2. L2 normalization removes scale/length bias in encodings; centering (H) re-
moves the rank-one mean component so that leading directions represent consensus deviations rather
than the global mean. In practice, centering enlarges prototype separation Ap but can also change
the best operating rank r and the unfactual class geometry; we therefore report both centered and
non-centered pipelines (cf. ablations A/B/C/D below).

We implement in feature space by default (numerically cheaper when d < n):

~ T A % ) )
_ {V HV  (centered) Q = proj, (C), sp=(Q,Qr)r

VTV (no centering) ’
Rank r selection by eigengap. On2 class-average scatter (or bootstrap average) we pick r =

argmax;(A; — Aj11) subject to 1 < r < 7,y then re-project any averaged projector back to
rank 7.

Algorithm A.1 GPSO (Calibration + Inference; feature-space implementation)

1: Inputs: Embeddings V' € R"*? (rows unit-norm), class label € {good,bad}, prototypes
{Qr}, rank cap rpax.

2: Preprocess: Optionally center with H = I — 1117;set C <~ VT HV (or VTV if no center-
ing).

3: szlk choice: On calibration, average class scatters to C};ar (or bootstrap-average); choose 7y,
by eigengap; set final r <— miny, 7.

4: Prototype(s): For each class k, collect projectors Qg’) from calibration or bootstrap replicates,
average QY + B LS~ Q') then project back to rank r: Q < proj, (Q™Y).

s: Test projector: () < pI‘O]T(C)

6: Scores & decision: sj, < (Q Qi) F, k arg maxy, Sk, M 4= S — MaxX,_; S;.

7: Diagnostics (logged): prototype separation Ap = Hngod — Qpad||F; concentration ¢ =
[Ciest — C|lop; eigengap i at 7; prototype dispersion dprore = medianb||Q,(€b) — Qillr;
margin-condition flag [(2v/7/7k)e + dproo < Ap/4]; normalized margin m/r.

Within-question (stratified). For each question ¢, split good/bad into train/test (ratio 0.6/0.4 by
default), build prototypes on train with bootstrap replicates (B = 8), and test on the held-out items.
Repeat ngpiis = 5 times per ¢ with a fixed seed; report per-split and per-question means.

Pipelines (ablations). We compare three scatter constructions that isolate the role of centering and
L?:

(A) L2+centered (Good Gram): V row-normalized, C=VTHV.

(B) L2/no-center: V row-normalized, C=VTV.

(C) no-L2+center: raw rows, C = VI HV.

(D) no-L2+no-center: raw rows, C = V V.

Remark (duality). Ttem-space GPSO with G and feature- space GPSO with C are spectrally equlva-

lent; our implementation adopts C for efficiency while the theory in §3 and App. A.1 is stated in G
for clarity (Proposition A.3).

A.2.2 EXPERIMENT SETTINGS AND COMPACT RESULTS (FACTUAL VS. UNFACTUAL QA;
GROUPED CV)

Each row is an answer head with fields question, text, and forced_generation (Boolean).
We treat good = (forced_generation=False) and bad = (True). Embeddings use
all-MiniLM-L6-v2 with L2 row normalization unless disabled by the pipeline. All runs are
seeded and grouped by question to prevent leakage.
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For each fold we record: predicted class for held-out good/bad batches; unnormalized and nor-
malized margins (m, m/r); rank r; prototype separation Ap; concentration & (spectral norm

Hétest — CP™|op); eigengap i; prototype dispersion dprow; and a Boolean margin-condition pass

flag
2y/r
1
€+ 6proto < ZAP .
Yk ———
—_— RHS
LHS
Global summaries report macro and per-class accuracies, mean normalized margins, mean Ap,

average rank, and the fraction of folds that satisfy the margin condition.

Within-question uses 60%/40% stratified train/test with ngyis = 5 and bootstrap B = 8 for proto-
type stability; LOO uses other questions as calibration pools (skipping low-count classes) and tests
on the held-out question.

Table 3: GPSO across datasets: macro/class accuracies and prototype distance Ap.

Dataset Pipeline Macro acc  Acc (factual)  Acc (unfactual) Ap
ASQA (A) L2+centered 0.856 0.956 0.756  1.427
ASQA (B) L2/no-center 0.972 1.000 0.944 1.412
ASQA (C) no-L2+center 0.922 0.956 0.889 1.442
ASQA (D) no-L2/no-center 0.967 1.000 0.933 1412
HotpotQA  (A) L2+centered 0.924 0.939 0.909 1.430
HotpotQA  (B) L2/no-center 0.977 1.000 0.955 1.160
HotpotQA  (C) no-L2+center 0.955 0.955 0.955 1415
HotpotQA (D) no-L2/no-center 0.955 1.000 0.909 1.161
NQ-Open  (A) L2+centered 0.947 1.000 0.894 1.463
NQ-Open  (B) L2/no-center 0.970 1.000 0.939 0.932
NQ-Open  (C) no-L2+center 0.955 0.939 0.970 1.451
NQ-Open (D) no-L2/no-center 0.970 0.985 0.955 0.924

Findings. (i) Best macro accuracy is consistently achieved by L2/no-center (B), which preserves
length-free directions while letting the mean component contribute discriminative variance in this
binary factuality task. (ii) Centering increases prototype separation (Ap = 1.36 for A/C) but
trades off with unfactual accuracy (bad-class geometry differs once the mean is removed). (iii)
The margin condition is auditable: folds with larger Ap and stable prototypes (small dpror0) Show
higher normalized margins and a higher fraction of passes.’

Interpretation. Pipelines with centering and L2 (A/C) align with the spectral theory: they enlarge
prototype separation A p and yield cleaner subspace structures by removing length and mean effects.
Yet, in practice, preserving the mean (B/D) consistently improves the accuracy, suggesting that
the mean embedding itself carries label-related signals. This tension indicates that centering may
enhance interpretability and theoretical guarantee, while non-centering may better capture dataset-
specific features.

Compact algorithm and summary appear in Appendix A.1.4-A.1.5 of the paper; §3 presents the
sufficiency theorem and its margin bound, and §4 connects the Gram geometry to a 1-D consensus
score used by CRC.

3These diagnostics mirror Theorem 3.1’s sufficient condition and are logged by the evaluator for each fold.
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A.3 PROOFS FOR SECTION 4

Lemma 4.1 (Distributional invariance). Under the general assumptions, Yiew | {ZJ“? D] o=
1,...,K;g:l,...,G}gYnewwle (4.2), and, for each j = 1,..., K, ZJ.G'H | {Z7 -
i=1,...,K;g=1,...,G} 2 ZE* ~ Py (4.3).

Proof. Equation equation 4.2 follows immediately because Y.y is independent of {Yg}le.

G+1
Z;

For equation 4.3 we need only verify that the marginal law of equals Py. Forany y € R,

P(ZH <y) =B1{Z] " < y}]

here g, stand for the probability P(Z{ ! = V,%*1). Thus Z*" ~ Py, completing the proof. [J

Theorem 4.2 (Finite-sample BB-CRC). Assume {B, } are i.i.d and {Yy1,...,Yy 1} are ex-
changeable for g = 1,2,...,G + 1. Let Yy, = nt1- Wlth loss L right- contznuous w.r.t. A and

bounded in [0, 1] and L(-, )\max) < q, the estimator Az returned by Algorithm 4.1 satisfies

Proof. First relate the fresh outcome Y,y to the next-round pseudo-outcomes { ZjG+1 }5(:1:

E[L(Ynew,)\z)] :E_E[L( neW7 )|{Zg}],q 1}:|

— EB[E[L(29H, Az) {2956 lﬂ (' =1,...,K)(By Lemma 4.1)

~E[E ZL 28 A 2SS |

j=1
K
~E %Z L(ZE,A7).

Define
G+l K

A,Z:mf{A GIDE Zz:: }

then \y > 5\’2, thus
L(Z§ Az) < L(Z§YNy), (G =1,...,K)

because L(-, \) is decreasing with respect to A\. Hence
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Exchangeability of the G + 1 blocks implies

K
K.,G
ZL ZG+1 )] = [ Z ZG+1 3y ) [{Z9} 5 ngl]]
j=1 j=1
G+l K
K,G
=E[E[g4 > £ > L2 ) 2SS
g=1 j=1
(By exchangeablhty {{Zg}j 1}G+1
G+1

Elks > #3173

< «, (By definition of N, 7)
establishing the desired risk bound. O

Theorem 4.3 (Finite- sample RBWA-CRC). Assume {B, }G+1 are i.iid and {Yy1,...,Yy 1} are
exchangeable for g = 1,2,...,G + 1. Let Yy = Yp41 = Yoy1.1. With loss L right-continuous

w.rt. A and bounded in [O, ] and L(-, Anax) < v, the estimator )\, returned by Algorithm 4.2
satisfies

E[L(Yaew: Ap)] < o

Proof. Tmagine that we have pseudo-batch Bgy1 = {Y5414}/_; and pseudo-sample pg1 ~ Ps
which is independent of {p,}5_, and {B, }GJF1 Now

E[L(Ynew)‘pﬂ :E:E[L(YGHJ» )‘{( 97p9)}g 17pG+1H

= E[E[L(Yo11,6: 3) [{(Bys )} o1 paa] |, (= 1,0T)

(By exchangeability of {Yg 14} ))
I

=E|E])_ pes1i LYo, Ap) [ {( By pg) Y51, pis1]
- =1

I
(This line follows from ZPG-H,Z‘ = 1)}
i=1

I
= E[ZPG+1,1'L(YG+1,¢’ /\p)]
i=1
= E[Los1(3y)]
Notice that {Lg}f:f satisfy the assumption of Theorem 1 in “Conformal Risk Control”, thus our
theorem holds.

Define
G+1

;\; = inf{)\ : %ﬂ Z Ly(N) < a}.

g=1

then 5\17 > 5\;, thus
L(Yat1iAp) < LVai14,N), (i=1,2,...,1)
because L(-, \) is decreasing with respect to A\. Hence

E[LGH(;\,,)} < E[LGH(}\;)]
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Exchangeability of the G + 1 blocks implies

E[Lo+1(0)] = E[E|Las1(0) |{(By,pg) 11|
G+1
= [ G+1ZL X )1 {(Bg, pg) GH” (By exchangeability of {(Bg, py) G+11

G+1

= E[%ﬂ Z Lg(j‘;)]

< «, (By definition of 5\;)

*

Proof. Let {Z}<Kk g<c be the calibration replicates, and let {Z CH'l}]< x denote hypothetical
replicates from a future batch G+1. Conditioning on calibration batches and using Lemma 4.1,

E{KXB Yaew) ’{Zf}} = E[((G+1,))|{2]}], ji=1,....K,

hence

E[gj\,ﬁ(ynew)] =E ! ZZ}(G‘FL])

By calibration, Rpp(}) + & < a implies Rps(\) < a — &. Since each £,(g,j) € [0,1], the
augmented (G +1)-batch average obeys
1 = G 1
(G+1 < 7< — i) <
G+ DK ZE 2:: ) s galere) g e
Taking expectations and using exchangeability across batches yields E[¢ 5 5(Ynew)] < O

Appendix: Proofs for §4.3

Theorem 4.4 (RBWA moments: unbiased smoothing, variance dial, and anti-concentration). Let
pg ~ Dirichlet(nl) with n > 0 and set k := In. For any fixed \ and any bounded losses

{fgi(N)}Hoy C [0,
(a) Unbiasedness: E[Ly(\) | £] = p(X).

(b) Variance dial: Var(Ly()) | £) = Varemp({y(N))/(k + 1). Thus, for any t > 0,

Varemp (€) Varemp({g)

Pr(|Ly—up| >t <
(g —ul 2t 0) < (k+1)t2 Varemp({g) + (K + 1)t2

Pr(Ly>p+t]0) <

(c) Anti-concentration: if (¢1()\), ..., ¢r(X)) is not constant, then Ly(\) has no atoms (Pr(Lgy =t |
£) = 0 for all t), hence threshold ties caused by discrete lattice values disappear.

Proof (a)—(b) For symmetric Dirichlet with total mass £ = In, E[p,;] = 1/I, Var(py,) =
W Cov(pg,i,Pg,j) = 12(,{+1 fori # j. Hence E[L, | ¢] = >, E[p,y.]¢; = v and

Varemp (¢
Var(L, | ZVar pg.i)l2 +QZCOV (Pg,i>Pg,j )il _%pl()'
1<j

Chebyshev’s Inequality and Cantelh s Inequality yield the displayed tail bounds.

(c) The Dirichlet law has a continuous density on the simplex interior (for parameters > 0). The
linear map f(p) = ), pil; is non-constant when the /; are not all equal; its level set {p : f(p) = t}
is a codimension-1 slice of the simplex and has Lebesgue measure zero. Therefore Pr(Ly, = ¢ |
0) =0.
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ID  Benchmark (split) #Q ParaP Ans N Mix (N/E/Z) Entropy 7
Cl  ASQA (dev) 60 10 150 (.75/.00/.25) 0.90
C2  NQ-Open (val) 60 6 16 (.67/.00/.33) 0.86
C3  HotpotQA (val) 60 10 100 (.60/.00/.40) 0.86
C4  AmbigQA (dev) 60 10 150 (.75/.00/.25) 0.86
C5  AmbigQA (dev) (ablation: decoding entropy) 40 10 150 (.75/.00/.25) 0.86
C6 NQ-Open (val) (ablation: vendor/model) 60 6 16 (.67/.00/.33) 0.86

Table 4: Benchmarks and per-item sampling settings used in the hallucination study. The mix
column shows (normal/enforced/noise).

Theorem 4.5 (RBWA calibration CLT under precision stabilization). Fix a \. Assume batches are
i.i.d., losses are bounded in |0, 1]. Let p, ~ Dirichlet(1). Let

E[Varemp(£g)]
+1
they are well-defined because {Eg}g:l are i.i.d.. Assume Var({) is finite. Then

u(L) = E[p,], Var(L) = + Var(ug)

G
VG (Le — (L)) = N(O,Var(L)),  Lg= éZLg
g=1
as G — oo.

Proof. Conditional moments. By Theorem 4.1, E[L, | ¢ = p(XA) and Var(L, | £) =
Varemp(¢(A))/(k + 1) = Varemp(£(A))/(x + 1) in probability.

Triangular-array CLT. For fixed \, the L, () are independent, uniformly bounded, and have asymp-
totically constant variance. The Lindeberg—Feller CLT applies, giving

VG (Lo (V) ~ E[Lg(V)]) = N (0, Varemp(£(N))/(x +1)).
Since E[Ly(A)] = p(A), Slutsky’s lemma yields the stated limit. O

B EXPERIMENT

B.1 APPENDIX: HALLUCINATION EXPERIMENT SETTINGS AND CONFIGURATIONS

Scope and outputs. For each question we generate a response cloud, compute Factuality Sever-
ity = 1 — max,cpers BERTScore-F1(a,r). All runs are seeded and logged to timestamped,
self-describing CSVs: a per-answer file (scores, margins, types, decoding knobs) and a per-run
file (dataset/split, sample counts, model/provider, seeds, thresholds, and paths). Together model IDs
are normalized to serverless fallbacks to avoid availability regressions.

Benchmarks and roles. We evaluate across four core datasets—ASQA (dev), NQ-Open (valida-
tion), HotpotQA (validation), AmbigQA (dev)—plus two ablations that stress decoding entropy and
vendor/model choice. Each configuration fixes decoding knobs and the normal/enforced/noise mix,
while paraphrasing a canonical gold to reduce aliasing of surface forms.

Shared knobs: alias-normalization for Together; n_per_call=5; rate-limit ~ 0.8s; severity mix weight
logged; seeds: C1=42, C2=7, C3=11, C4=23, C5=23, C6=8.

Example prompts (verbatim, used in data generation). We use minimal, auditable prompts. For
paraphrasing the canonical gold: System: ‘“You rewrite text. Output a succinct standalone paraphrase.” User:
“Paraphrase the following answer in different wording, preserving the exact meaning and factual content. Keep
it concise and standalone. Avoid hedging, qualifiers, or extra details. Answer: {gold}.” For normal answers:
System: “Answer the question with the canonical short answer first; then add at most one brief justification.
Be concise.” User: {question}. For enforced canonical answers: System: “Answer with the canonical short
answer first; then a single, concrete supporting detail. Avoid aliasing, avoid hedging, avoid contradictory state-
ments.” User: {question}. (Noise/outlier strings are programmatically injected: gibberish, off-topic, fabricated
citations, prompt-injection strings, contradictions, emoji floods, and multilingual snippets.)
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ID Provider Model Temp Top-p MaxTok Embed BERTScore

Cl Together Llama-3.3-70B-Instr. Turbo 1.3 1.0 256 MiniLM-L6-v2 RoBERTa-large
C2 OpenAl gpt-40-mini 0.1 1.0 96 MiniLM-L6-v2 RoBERTa-large
C3 Together Mixtral-8x7B-Instr. v0.3 1.2 1.0 256 MiniLM-L6-v2 RoBERTa-large
C4 Together Llama-3.1-8B-Instr. Turbo 0.7 0.9 256 MiniLM-L6-v2 RoBERTa-large
C5 Together Llama-3.1-8B-Instr. Turbo 1.3 1.0 256 MiniLM-L6-v2 RoBERTa-large
C6 Together Llama-3.1-8B-Instr. Turbo 0.1 1.0 96 MiniLM-L6-v2 RoBERTa-large

Table 5: Provider/decoding and measurement settings, linked by ID to Table 4.

B.2 LLM-AS-A-JUDGE: IMPLEMENTATION DETAILS

We use an LLM as a rubric-based grader for short QA answers, producing a continuous 0—100 direct-assessment
score on the answer head (same head definition as in the main text). Scores are later normalized and mapped to
severity via JS(a) = 1 — J(a)/100.

JUDGE MODEL AND PARAMETERS

¢ Primary model: meta-1lama/Meta-Llama-3.1-8B-Instruct-Turbo (Together).
e Alternative: gpt—4o-mini (OpenAl).

¢ Decoding: temperature = 0.2, top_p = 1.0, max_tokens = 200.

* Output scale: single overall score in [0, 100] with one decimal.

* Seed/reproducibility: fixed RNG seed = 7 to stabilize few-shot ordering.

¢ Rubric weights: correctness 0.60, faithfulness 0.20, completeness 0.15, clarity 0.05 (weights sum
to 1.0).

B.2.1 WHAT IS SCORED

For each item, the judge sees: (i) the question text g, (ii) a compact reference set R, (concise paraphrases of
acceptable answers), and (iii) the answer head of the candidate a (first sentence or Final: field, truncated to
< 16 tokens). This reduces style/length effects and prevents rationales from masking factual errors.

We use an aspect rubric with fixed weights:

1. Correctness (0.60): factual accuracy and semantic match to ¢ and R,.
2. Faithfulness (0.20): no contradictions or hallucinations relative to R,.
3. Completeness (0.15): covers the essential point(s) asked by gq.
4

. Clarity (0.05): concise and unambiguous phrasing.

To reduce score compression, the prompt embeds 3 few-shot anchors (low/mid/high) that illustrate how the
0-100 scale should be used.

B.2.2 PROMPT TEMPLATE (VERBATIM)

We employ a compact, instruction-only template that requires strict JSON output. Placeholders in {braces}
are filled per example.

You are a meticulous grader for short QA responses.

Score each candidate on a 0{100 scale with ONE decimal place
Be strict: wrong facts should sharply reduce the score.
are provided, use general knowledge.

(e.g., 81.7).
If no references

Rubric (weights sum to 1.0):
— Correctness ({w_correctness}):

factual accuracy & semantic match to the question and references.
— Faithfulness ({w_faithfulness}):

no hallucinations or contradictions vs. references.

- Completeness ({w_completeness}):
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covers essential point (s) requested.
- Clarity ({w_clarity}):

concise, unambiguous wording.

Scoring examples (anchors):
{anchors_block}

Return ONLY a compact JSON object with keys "score" and "subscores";
"subscores" must contain "correctness", "faithfulness", "completeness",
"clarity". Example:

{"score": 88.6, "subscores": {"correctness": 56.0, "faithfulness": 17.6,
"completeness": 11.0, "clarity": 4.0}}

Now grade this:
Question: {gquestion}

References: {references} # short list or "N/A"
Candidate: {candidate} # answer head only

B.2.3 ANCHOR EXAMPLES (VERBATIM)

We rotate/shuffle three anchors (by a fixed seed) to calibrate the scale.

- Q: "Who wrote ’Pride and Prejudice’?"
A: "Pride and Prejudice was written by Jane Austen." -> 95.0 (exact)
- Q: "Who wrote ’Pride and Prejudice’?"
A: "It’s probably Charles Dickens, I guess." —-> 15.0 (incorrect; hedging)
- Q: "Capital of Australia?"
A: "Canberra. It’s not Sydney or Melbourne." -> 90.0 (precise; disambiguates)

B.2.4 NORMALIZATION AND SEVERITY

The judge produces J(a) € [0, 100]; we compute Jnorm(a) = J(a)/100 and
JS(a) = 1 — Jnorm(a) € [0,1].

Low JS indicates high factual alignment; values near 1 flag deviation via error, omission, or contradiction.

B.3 APPENDIX (FOR §4.2): IMPLEMENTATION AND CROSS-VALIDATION DETAILS

Data and artifacts (two policy scores). For each question we materialize a self-consistency queue by
sampling a small cloud of responses or judge rationales under fixed decoding knobs. Each element is em-
bedded with a single encoder (unit-norm rows), and we log two separable signals per item y: (i) a label-
free geometry score E(y) € [0,1] from Gram row energies (Eq. 2.4; aggregated and projected as defined);
and (ii) an offline factuality-severity flag gs(y) € [0, 1] drawn from references or rubric-graded scores (e.g.,
FS = 1 —BERTScore-F1, or JS = 1 — J/100 from an LLM judge). When using the judge as an online policy,
we also record the normalized judge score Jnorm(y) = J(y)/100 € [0, 1] along with subscores (correctness,
faithfulness, completeness, clarity) from a fixed rubric/anchor prompt. The responses-level CSV stores per-
item E summaries (e.g., queue median), gg, and (optionally) Jnorm With subscores; a parameters-level CSV
records dataset/model/seed/knobs for reproducibility.

Policy score () (definition) Action (gate) Key strengths

Qe: Qe(y) = E(y) (Eq. 2.4) Accept on high consen- Gram geometry; centroid coupling; statisti-
sus cally traceable

Qc: Qa(y) = Jnorm(y) (§4.1)  Accept on high judge Direct control of judge pipeline; reliability
score gains; rubric-aligned

Table 6: Compact summary of the two instantiations of the ()-policy.

We instantiate the policy-first loss of Eq. (4.2) with either geometry or judge as Q:
Le(y,\) =HE@WY) > as(y),  Lay:A) = H{Juorm(y) > A} gs(y).

Both are monotone in \: as X increases, the system accepts fewer items, so the loss cannot increase. Interpre-
tation is identical: we incur loss only when we act (accept) and the item is bad (unfactual according to gg).
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Normalizing £ and Jnorm to [0, 1] renders A dimensionless and comparable across folds/days. For robustness
we may Huberize/clip gz to dampen tails; the actuator never reads gz online. (Judge scoring, normalization,
and rubric details appear in §5.2; severity JS in Eq. (4.2).)

To assess generalization at the “new question” granularity, we adopt grouped CV with disjoint question blocks
per fold. On calibration folds we treat pairs (Q;, gs,;) as exchangeable—where Q; € {F;, Juorm,: } depend-
ing on the policy—and apply CRC to select a single global threshold per policy, Ag(a) and Ac(cr). We use
two compute-aware calibrators: BB—CRC (batched bootstrap reuse) and RBWA—-CRC (randomized simplex
weights). Both operate on the same bounded, monotone losses and differ only in how they stabilize the empir-
ical risk curve. In BB—CRC, the smallest right-open threshold satisfying the bias-corrected constraint

1 G K @) 1
g
(G+1)K;Z£(Zf N+t e

=1;j=1

is returned as \; RBWA-CRC replaces per-replicate sums by per-batch randomized weighted averages
> Pgi L(Yg,i, A) with pg ~ Dirichlet(n1), yielding an unbiased smoother with a one-knob variance dial.
The calibrator only sees (Q, gg) pairs; no labels or logits are needed at deployment time. (Formal CRC details
and the compute-aware variants are in §3.)

We calibrate one threshold per policy on a scalar, deployment-time score ): Qg = E (label-free Gram en-
ergy) or Q¢ = Jnorm (LLM-as-Judge). Both share the same policy-first actuator 1{Q > 5\} and the same
calibration-only severity gg, yielding a single-knob control that transfers unchanged to production. Geometry
offers statistical traceability and interpretability via auditable batch consensus, while the judge policy directly
steers judge-driven pipelines and can improve their reliability under a frozen rubric—all without requiring
ground truth at runtime. (See §3 for guarantees and §5.2 for judge implementation.)

C BASELINE IMPLEMENTATION DETAILS

Each benchmark dataframe row contains at least: severity_f1 (unfiltered factuality severity; lower is
better) and a judge score (LLMJUDGE_score._normé€ [0, 1], or LLMJUDGE_score/100). Other columns
(question, model, provider, etc.) are logged but unused by the actuator. FS is defined as F'S = 1 —
BERTScore-F1 (answer head, reference) with head length < 16 tokens.

We use the policy-first loss and gate (Eq. (4.1), (5.3)):
L(y,A\) =ax(Qv)) - as(y),  ax(u) =1{u > A}

At deployment we compute Q(y) and apply a5 (Q(y)); gs is calibration-only. This yields a bound on
acted-while-bad intensity E[L(Yaew, A)] < « in finite samples for the CRC modes.

G-Eval-N (G-Eval Naive): @ = Jyom. We evaluate a fixed list of thresholds A € {0.99, 0.95,0.90, 0.85, 0.80}.
For fairness to CRC plots, we display the corresponding cells beside @ € {0.01,...,0.20} (visual alignment

only; no guarantees). G-Eval-CRC (G-Eval Risk Control): Q = Jnom. We calibrate a single A(a/) per setting
using BB-CRC (Alg. 4.1, Thm. 4.2) and deploy the same hard gate. Grand-CRC (Grand Risk Control): Q = F

(centered-Gram energy, [0, 1] after normalization). We calibrate \(c) using BB-CRC (Alg. 4.2, Thm. 4.3) with
Dirichlet weights at fixed precision, then deploy the same hard gate.

Given a dataframe D with columns {severity_f1, LLMJUDGE_score_norm}:

1. For each threshold A (fixed in G-Eval-N or calibrated X(a) in CRC modes), define shipped mask M =
{Jnorm > A} (for judge modes) or M = {E > A} (for Grand-RC).

2. Compute FSipped = mean(severity £1[M]), FSuhippea = mean(severity £1[-M]).

3. Report FS-reduction(%) = 100 - (1 — FSqnippea/FSunshippea) and the acceptance rate |M|/|D|.

When either group is empty we emit NaN and exclude from the aggregate.

D MORE EXPERIMENT RESULTS

The six panels span four QA regimes—AmbigQA (aliases/answer sets), NQ-Open (single-hop), HotpotQA
(multi-hop), and ASQA (under-specification)—plus two controlled ablations designed to probe robustness: a
high-entropy decoding setting (AMBIGQA-ENT) and a vendor/model swap on NQ-Open. The short codes
in Table 7 bind figure titles to the exact CSV artifacts used for reproducibility and align with our FS-on-
answer-head measurement.
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Table 7: Benchmark mapping used in the six-panel comparisons. Short codes are the compact
labels used in figure titles. For JudgeQ CSVs, the same names appear with the suffix __judged.

Panel Short code CSV dataset_name
1 AMBIGQA-ENT ambigga--1lama8b__hiT__ablation_entropy-ns40_responses
2 AMBIGQA ambigga--llama8b_midT_ns60_responses
3 ASQA asga--llama70b__hiT_ns60_responses
4 HOTPOTQA hotpot_mixtral8x7b__hiT noised0_ns60_responses
5 NQ-OPEN ng--gpt4omini__loT_-light_ns60_responses
6 NQ-OPEN-VEND ng.-1lama8b__loT_-_ablation_vendor_ns60_responses

Reading the six-panel plots. For each budget o € {0.01,...,0.20}, the (calibrated) actuator as partitions
candidates into Unshipped and Shipped; bars report mean for each group (lower is better). Panel titles use the
short codes above; legends are placed outside the axes to preserve title visibility. The gate and metric are fixed;
only the policy score changes between the next two figures.

QE (Gram geometry) results. Across all six panels, the shipped sets exhibit a large drop for every a,
including the entropy stress test (panel 1) and the vendor swap (panel 6), indicating stability to decoding noise
and provider/model variation. Aggregated over panels, the geometry policy sustains high reductions as «
grows (e.g., 97.9% — 86.0% from «=0.01 to 0.20 in Table 8), consistent with consensus-seeking acceptance
in centered Gram space.

Switching the policy to ) ;. We now hold the actuator and calibration protocol fixed and replace the online
score with a rubric-normalized judge (Q ), so differences isolate the policy signal rather than changes in gating
or measurement.

Qs (LLM-as-judge) results. The judge policy also lifts factuality across panels but shows a stronger depen-
dence on « (and mild task-to-task variation), which is compatible with rubric/style sensitivity; CRC turns its
threshold into a measurable one-knob control with finite-sample validity. In the compact summary (Table 8),
the FS reduction moves from 98.9% at a=0.01 to 46.5% at «=0.20.

Compact cross-policy summary. Table 8 aggregates the six-panel plots by reporting (unshippedsshipped ) and the
percentage reduction at each « for both policies. Geometry maintains uniformly lower shipped severity across
budgets, while the judge policy is competitive at tight budgets and provides an interpretable baseline for a
rubric-driven pipeline under the same actuator.

Table 8: Compact FS reduction across . For each policy (GramQ, JudgeQ) and «, we report
FSunshipped> F'Sshipped> and the percentage reduction from Unshipped to Shipped (higher is better).
FS follows the paper’s definition F'S = 1 — BERTScore-F1(answer head, reference).

Policy « FSunshipped FSshipped FS reduction (%)

GramQ 0.01 0.892 0.019 97.9
GramQ 0.05 0.892 0.030 96.7
GramQ 0.10 0.885 0.057 93.6
GramQ 0.15 0.874 0.093 89.4
GramQ 0.20 0.859 0.120 86.0
JudgeQ 0.01 0.903 0.010 98.9
JudgeQ 0.05 0.904 0.197 78.3
JudgeQ 0.10 0.905 0.314 65.3
JudgeQ 0.15 0.905 0.408 55.0
JudgeQ 0.20 0.907 0.485 46.5

Calibration quality and stability. Table 9 summarizes empirical risk and threshold stability for CRC vari-
ants. All three keep acted-while-bad risk near or below the budget, while RBWA tracks o most closely and
reduces the standard error of the calibrated threshold: e.g., at «=0.15 the empirical risks are 0.039 (BB-CRC),

0.039 (CRC), 0.138 (RBWA) with SE(S\) of 7.46 x 10™%, 5.79 x 10™*, and 2.89 x 10™*, respectively; at

=0.05, SE(}) falls from ~ 1.3x 10~ (BB-CRC/CRC) to 4.61 x 10~* (RBWA). These patterns match the
smoothing/anti-concentration analysis for RBWA and the bootstrap reuse in BB-CRC.
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Table 9: Calibration summary across a. Empirical risk and its standard error (SE) for each
method, together with the Stability (SE of \).

Method o Empirical risk  Risk SE  Stability (SE of )\)

BB-CRC 0.01 0.012 0.012 0.001299
BB-CRC 0.05 0.012 0.012 0.001299
BB-CRC 0.10 0.026 0.018 0.000375
BB-CRC 0.15 0.039 0.022 0.000746
BB-CRC 0.20 0.062 0.030 0.000194
CRC 0.01 0.012 0.012 0.001321
CRC 0.05 0.012 0.012 0.001321
CRC 0.10 0.026 0.018 0.000419
CRC 0.15 0.039 0.022 0.000579
CRC 0.20 0.062 0.030 0.000248
RBWA 0.01 0.000 0.000 0.000000
RBWA 0.05 0.026 0.018 0.000461
RBWA 0.10 0.074 0.031 0.000189
RBWA 0.15 0.138 0.042 0.000289
RBWA 0.20 0.171 0.045 0.000236

Takeaway. Across heterogeneous QA regimes and stress tests, a single calibrated gate converts variability into
validity; @ provides a provider-agnostic consensus signal with uniform gains, while () ; with CRC yields a
deployable judge pipeline with a measurable, risk-tracked knob.
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