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ABSTRACT
This paper describes FineMotion’s gesture generating system en-
try for the GENEA Challenge 2022. Our system is based on auto-
regressive approach imitating recurrent cell. Combined with a spe-
cial windowed auto-encoder and training approach this system
generates plausible gestures appropriate to input speech.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Automatic animation generation for humanoid characters is be-
coming increasingly popular. Most 3D characters are still animated
using expensive motion capture or a small set of predefined anima-
tions.

Recent advances in facial animation generation [1, 4] provide
a realistic facial expression from audio. Moreover, JALI Viseme
Model [2] was already used in recent projects like Cyberpunk2077.
Automatic gesture generation, on the other hand, has several exist-
ing approaches, including [3, 6, 7, 10], but no standard, ready-for-
production solution. One possible explanation for that is the lack
of a unified method for reliable comparison. Multiple standards
for humanoid rigs and skeletons are also present making it even
more challenging to use open-source solutions. Furthermore, some
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existing approaches generate motions in 3D, while others generate
motions in 2D. As a result, comparing them is difficult.

The GENEA Challenge 2020 [8] was held to address this issue.
The main goal of this challenge was to determine which models for
automatic gesture generation based on speech recording performed
better on the same data. The main result of this challenge was
that some models outperformed the previous year’s best methods
results while remaining far from realmotion. Even though the target
domain was relatively simple: the dataset only contains recordings
for one person, and the generated motion was examined for the
upper body without fingers. Because there are numerous ways
to improve the challenge target, the organizers decided to hold
another challenge.

In comparison to the previous one, the task of GENEA Challenge
2022 is more difficult. The proposed models should generate mo-
tions for more than one person during the conversation. A person’s
behavior during a dialogue differs greatly from that of a single
performance. The training and testing datasets included examples
of the target person gesticulating while listening to the companion.
However, these gestures are independent of speech. This behavior
could have a significant impact on motion generation systems based
on input speech.

We provide a solution that is based on both the speech input
and the history of previously generated motions. This system gen-
erates plausible gestures from speech using a special windowed
auto-encoder and training approach.We also tried to explain the dif-
ference between challenges and resulting models by testing one of
the previous approaches that performed well on the previous chal-
lenge. Our code and some video examples are publicly available1
to help other researchers reproduce our systems.

Our paper is organized as follows: Section 2 describes data pro-
cessing, which is shared by all experiments; Section 3 describes
our models; Section 4 discusses our results; and Section 5 is for the
conclusion.

2 DATA PROCESSING
This time, the organizers of the challenge provided a large dataset
based on the «Talking With Hands 16.2M» [9] dataset. It includes
motion capture recordings as well as audio and textual transcripts of
several people having a conversation. Mocap data includes motion
data for the entire body, including fingers.

1https://github.com/FineMotion/GENEA_2022
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Exploring the data we found several peculiarities which could
affect the data-processing pipeline:

• Mocap skeleton differs from common industry formats (for
example, Blender’s Meta-Rig): the spine has a discontinuity,
shoulders have extra bones and hands have a different wrist
structure.

• Hand motion is inconsistent: some recordings lack data for
finger motion, while others contain glitches and jerks.

• Audio recordings contain speech for both speakers. Some
audio cuts are applied to the track in order to conceal confi-
dential information, which greatly complicates speech pro-
cessing.

To overcome the aforementioned difficulties, we attempted to
construct the following data processing pipeline. The pose is rep-
resented by 3-dimensional axis-angle rotation vectors for all bone
joints and also the position of the root bone. We also leave only
non-constant values and normalize them over the training dataset’s
mean andmaximum values. As the result, pose representations with
164 real value features are produced. We tried different represen-
tations for audio (MFCC, Mel-spectrogram, log Mel-spectrogram)
with different framerate but found no significant difference during
training.We choseMFCC extracted at the same framerate as motion
(30fps).

As mentioned before, audio recordings contain speech for both
speakers in dialogue. However, organizers provide transcripts only
for the target person’s speech. We assumed, that using audio while
the target person is silent could help to predict visual response to
the companion’s speech. But to help model distinguishing the target
person’s speech from the other, we added the textual information
as follows. First, we built a vocabulary of symbols on the training
dataset. Second, we use one-hot vectors to represent symbols. Fi-
nally, we concatenate audio features with obtained vectors that
are uniformly distributed within word spans. Figure 1 shows an
example of such alignment.

Figure 1: Example of audio and text features alignment

3 MODELS
3.1 Seq2seq
We started to design our architecture taking inspiration from a solu-
tion that performed well in the previous competition. The seq2seq
model by [5] based on both audio and text features achieved the
highest median score on human-likeness and the second highest on
appropriateness. Unlike the previous work, we propose eliminating
separate encoders for audio and text features. We also decided to
use a simple seq2seq instead of a context encoder. To keep the

context encoder’s main feature of using more context, we decided
to use a wider input features window than the length of the output
predicting sequence. Other components, such as the loss function
and decoder initialization, remained unchanged. Figure 2 depicts
the final seq2seq model scheme.

Figure 2: Scheme of Seq2Seq model

Here 𝑎𝑖−𝑝 , . . . , 𝑎𝑖+𝑓 is an input features window for output mo-
tion 𝑚𝑖 , . . . ,𝑚𝑖+𝑘 , where 𝑓 >= 𝑘 . 𝑚𝑖−𝑝 , . . . ,𝑚𝑖−1 are the output
poses from the previous step.

This model produced good loss function values during our tests,
but the resulting motions converged to minor movements around
the rest pose. We also tried some training strategies, such as feeding
zeros instead of previous poses and adding additional dropouts
inside the motion decoder to force the model to focus on input
features. However, this shows only minor improvements.

We believe this defect in the method manifested itself due to
the significant differences in the datasets used in this and previous
challenges. The last year’s challenge dataset only included one
actor’s performance. There were no long pauses in monologue, in
contrast to the dialogue speech, and no audio artifacts, allowing the
model to create a consistent mapping between speech and gestures.
As a result, we require a new model to address the following issues:

(1) Predict expressive motions from actual speech
(2) Realistically continue motion in the absence of speech

We tried to solve the aforementioned problems with the following
architecture.

3.2 ReCell
We discovered that the model provided in [6] generates a variety of
poses but they are unstable. This model creates a single animation
frame from a sliding window of audio features. We used auto-
regressive input to stabilize predicted motions. We also tweaked
the feature window encoder. The original model for frame 𝑖 takes
input 𝑎𝑖−𝑘/2, . . . , 𝑎𝑖+𝑘/2, passes it through a single-direction GRU,
and takes the last output. We decided to take the 𝑘/2-th output
from bidirectional GRU, which corresponds to the current frame.
We found that this modification produced slightly more expres-
sive motion, which could be seen in our supplementary materials.
We called this model "ReCell" because it replicates recurrent cell
behavior. Figure 3 depicts the model’s architecture.

To avoid the seq2seq model’s convergence to a rest pose, we
should strike a balance between auto-regressive input and speech
features. The authors of [7] faced the same problem. To overcome
this, they forced themodel to extract useful features from the speech
input by pretraining the model without auto-regression. Then they
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Figure 3: ReCell model architecture

also used the teacher forcing technique to let the model properly
integrate auto-regressive input. As the result, we attempted to
implement these ideas in the following manner.

In order to optimize the training procedure and allow teacher-
forcing we first slice input data sequences into small sub-sequences
of 10 successive poses and speech features each. On each training
step, the model receives a batch of sub-sequences along with a pose
corresponding to (𝑖−1)-th element, where 𝑖 indicates the start of the
sub-sequence. Then we iterate through this sub-sequence starting
from (𝑖−1)-th pose in an auto-regressive manner, passing the output
of the previous iteration as an input in the current iteration.

We additionally apply small changes in training input depending
on epoch number:

• During the first 10 epochs, we zero the starting pose as well
as some poses between iterations. A number of epochs were
chosen empirically, as the loss stopped decreasing after 10
epochs without zeroing.

• After the first 10 epochs, we use starting pose from data, but
instead, replace some intermediate predicted poses with real
ones imitating the teacher-forcing technique.

The precise strategy for replacing frames along with a description
of model hyperparameters will be provided in 3.4. On prediction,
we go through the entire recording frame by frame, beginning with
zero pose as auto-regressive input.

3.3 Windowed auto-encoder
To overcome motion instability we trained a simple linear auto-
encoder to reduce the dimension of the output vectors. It has two
major components, as usual: encoder and decoder. Input poses are
projected into lower-dimensional space by the encoder. In turn, the
decoder must reconstruct the input pose from its lower-dimensional
representation.

The encoder has one hidden layer, that converts the input vector
to a size of 512. After that, we apply ReLU as an activation function.
Then we apply another linear layer and Tanh function to normalize.
We set the final size of the output vector equal to 60 as it is the
smallest possible size that allows retaining enough information
while also providing compact representation. When we decreased
the size of the output vector we started to notice visible artifacts
on the reconstructed motion.

We use one additional hidden linear layer to restore the vector
from the encoded state, which translates the encoder output vector
of dimension 60 into 512. Next, a ReLU function and an output linear
layer were used, which translates the vector of 512 into dimension
164. Since normalized features with values that range between [0,
1] were fed to the auto-encoder input, the decoder output is then

normalized by the Tanh function and shifted to [0, 1], which showed
better results than Sigmoid during our experiments.

We discovered that when such an auto-encoder is trained, the
reconstructed pose is mostly similar to the input pose, but it occa-
sionally provides unrealistic poses for the left shoulder. We believe
this behavior is related to rare jerks in training data. To address this
issue, we decided to improve our auto-encoder by reconstructing
a short sliding window of poses rather than the single pose. As a
result, we stack three sequential frames into a combined vector and
fed it to the auto-encoder, implying that the initial and output vec-
tors were of dimension 164×3. In everything else, the auto-encoder
architecture is similar to that described above. In order to get a pose
for the current frame we average its corresponding poses from all
sequential windows it appears in (e.g for 5th pose we average pose
vectors 𝑝5 from sequences [𝑝3, 𝑝4, 𝑝5], [𝑝4, 𝑝5, 𝑝6], [𝑝5, 𝑝6, 𝑝7]).

3.4 Final pipeline
Our final approach is as follows. As the main model, we used the
ReCell model with the following parameters.

First of all, our Bi-directional encoder consists of a linear high-
way and GRU. Linear highway, in turn, consists of three sequential
blocks with linear layer, batch normalization, and dropout with
ReLU as the activation function to encode audio features. As men-
tioned before, we use GRU to extract contextual features from the
window of audio features. The size of this window is equal to 61.
All hidden sizes are equal to 150.

At the same time, we put the pose from the previous step through
another highway with a bottleneck of size 40. It contains only two
linear layers with ReLU between them and dropout to prepare
model output for auto-regression. It enables us to obtain more
complex and informative features, as well as translate vectors to
the required size. This operation we call Hidden Highway.

Finally, outputs of the Bi-directional encoder and Hidden High-
way are concatenated together to create the final feature vector.
Then, we apply another batch normalization, ReLU, and Dropout
to the resulting feature vector and push it through the last linear
layer to produce the next pose.

During the teacher-forcing, we zeroed frames between iterations
with a probability of 0.5 in the first ten epochs, and we also replaced
some frames with real ones with a probability of 0.5 in the following
epochs.

To train the network, we use MSELoss and the Adam optimizer
with default parameters from PyTorch.

We also train the main model to predict audio-encoder repre-
sentations rather than poses. Then, using the Savitsky-Golay filter,
we reconstruct the poses and smooth the predictions. We use 26
MFCC coefficients concatenated with one-hot encodings of text
transcripts as input speech representation.

It’s also worth noting that our auto-encoder was trained using
the entire train dataset. However, in order to train the ReCell model
we selected samples from the most frequently encountered speaker.
We also removed audio cuts-related fragments.

4 RESULTS AND DISCUSSION
As in the previous challenge, the organizers provide [11] human-
evaluation results for comparing the systems. As before there are
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Table 1: Summary statistics of user-study ratings

Human-likeness Appropriateness
Percent matched

ID Median Mean (splitting ties)

FNA 70 ∈ [69, 71] 66.7 ± 1.2 74.0 ∈ [70.9, 76.9]
FBT 27.5 ∈ [25, 30] 30.5 ± 1.4 51.6 ∈ [48.2, 55.0]
FSA 71 ∈ [70, 73] 68.1 ± 1.4 57.1 ∈ [53.7, 60.4]
FSB 30 ∈ [28, 31] 32.5 ± 1.5 53.8 ∈ [50.4, 57.1]
FSC 53 ∈ [51, 55] 52.3 ± 1.4 53.0 ∈ [49.5, 56.3]
FSD 34 ∈ [32, 36] 35.1 ± 1.4 51.5 ∈ [48.1, 54.9]
FSF 38 ∈ [35, 40] 38.3 ± 1.6 51.7 ∈ [48.2, 55.1]
FSG 38 ∈ [35, 40] 38.6 ± 1.6 54.8 ∈ [51.4, 58.1]
FSH 36 ∈ [33, 38] 36.6 ± 1.4 60.5 ∈ [57.1, 63.8]
FSI 46 ∈ [45, 48] 46.2 ± 1.3 55.1 ∈ [51.7, 58.4]

two main metrics: human likeness and appropriateness. The first
evaluates how predicted motions are realistic, and the second esti-
mates the correspondence between speech and predicted motions
from it. While human-likeness evaluation follows the previous
challenge, the approach to estimating appropriateness is different.

Investigating the results of the previous challenge organizers
found that calculated appropriateness was highly correlated with
the quality of generation motion. Therefore, this time they decided
to calculate appropriateness in a different way. They ask evalua-
tion study participants not to estimate the result videos alone but
compare the corresponding audio-video pair with the mismatched
one. It could help to find out if generated motion really appropriate
to speech or just random. Table 1 presented by organizers shows
the results of human-evaluation.

Our system (FSD) achieved slightly poor results on both metrics
for the full-body motion: 34 on the human-likeness median score
and 51.5% on Appropriateness percent matched.

Ourmodel outperforms the provided baseline by human-likeness,
although, there are models that showed significantly better results.
Moreover, there is a model that outperforms even real motion by
human-likeness. This leads us to assume that there is huge room
for improvement in our approach.

The low score in human-likeness could be connected with insuffi-
cient fluidity of movement and periodic jerks. It could be smoothed
with an even stronger filter but that could result in inexpressive,
overly smoothed «jelly-like» movements. Also the lowest score of
appropriateness means that generated motions do not have any se-
mantics. It is only hand movements that follow the speech rhythm.
Additional features, like Glove or BERT embeddings for a textual
transcript, could be used to add semantics. We suppose that results
can further be improved by extensive data cleanup. For example,
only motions corresponding to actual speech can be used for train-
ing. Thus, even the seq2seq approach has room for improvement
and presumably is able to show better results.

During the previous 2020 GENEA Challenge organizers also
found that objective metrics such as average jerk and Hellinger
distance may not correlate with visual quality. Therefore, we de-
cided not to rely on objective metrics during the development of
our system and to use only visual assessment. However, organizers

also provided [11] some objective metrics for the final evaluation
of the submitted approaches.

5 CONCLUSION
The proposed challenge raised issues that are difficult to solve di-
rectly with a tried-and-true method. However, with additional data
processing and training techniques, it may be possible to solve the
problem relatively successfully. Although the proposed approach
is far from ideal it has the potential to be improved. We believe
that, with somemodifications, the alternative sequence-to-sequence
approach could also produce better results.
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