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Abstract

The core operation of current Graph Neural Networks (GNNs) is the aggregation
enabled by the graph Laplacian or message passing, which filters the neighborhood
node information. Though effective for various tasks, in this paper, we show that
they are potentially a problematic factor underlying all GNN methods for learning
on certain datasets, as they force the node representations similar, making the nodes
gradually lose their identity and become indistinguishable. Hence, we augment
the aggregation operations with their dual, i.e., diversification operators that make
the node more distinct and preserve the identity. Such augmentation replaces the
aggregation with a two-channel filtering process that, in theory, is beneficial for
enriching the node representations. In practice, the proposed two-channel filters
can be easily patched on existing GNN methods with diverse training strategies,
including spectral and spatial (message passing) methods. In the experiments, we
observe desired characteristics of the models and significant performance boost
upon the baselines on 9 node classification tasks. 1

1 Introduction

As a generic data structure, graph is capable of modeling complex relations among objects in many
real-world problems [32, 41, 13]. Motivated by the success of Convolutional Neural Networks
(CNNs) [31] on images, graph convolution [54] is defined on the graph Fourier domain and the
node spatial neighborhood domain [58], respectively, in the form of spectral- and spatial-based
methods. Based on the 2 methodologies, different (linear) graph filters and (non-linear) deep learning
techniques [30] are combined, giving rise to Graph Neural Networks (GNNs), achieving remarkable
progress [6, 22, 19, 28, 52, 38, 37].

Most existing graph filters can be viewed as operators that aggregate node information from its direct
neighbors. Different graph filters yield different spectral GNNs or spatial aggregation functions.
Among them, the most commonly used is the renormalized affinity matrix [28]. By adding an identity
matrix to the adjacency matrix, i.e., a self-loop in the graph topology, renormalized affinity matrix
is created as a low-pass (LP) filter [39] mainly capturing low-frequency signals, which are locally
smooth features across the whole graph [53]. Aggregation processes, in the form of message passing
used in spatial-based methods, as in e.g., GraphSAGE [22] and GraphSAINT [57], are also node-level
LP filters which make nodes become similar to their neighbors.

The main idea of neighborhood feature aggregation is to exploit the intrinsic geometry of the data
distribution: if two data points are close (or connected) to each other on the manifold, they should

1See the follow-up work in [36, 37]
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also be close to each other in the representation space. This assumption is usually referred to as
manifold (local invariance) [1, 24, 8, 7], assortative mixing (assortativity) [42], homophily [40, 36, 33]
or smoothness [27, 35] assumption, which plays an essential role in the development of various
kinds of algorithms including dimensionality reduction [1] and semi-supervised learning [61]2. This
assumption naturally holds in many real world networks [40, 26], e.g., social networks, citation
networks, evolutionary biology etc.. However, in contrast to homophily, there also exists a large
number of heterophily networks where individuals with diverse characteristics tend to gather in the
same group [45], e.g., dating networks [63] and fraudsters in online purchasing networks [43]. On
these networks, there is no strong reason to impose smoothness assumption and on the contrary,
non-smoothness pattern between nodes turns out to be important.

With the above in mind, in this paper we first propose a method to measure the smoothness of the
input features and output labels of an attributed graph based on Dirichlet energy and graph signal
energy. With the proposed method, we measure the smoothness of 9 real world datasets, which shows
that signal defined on graph is generally a mixture of smooth and non-smooth graph signals and
each part plays an indispensable role. Motivated by this discovery, we argue that, to learn richer
representations, the distinctive information between nodes should also be extracted. Hence, we design
a two-channel filterbank (FB) [14] GNN framework which use low-pass (LP) and high-pass (HP)
filters together to learn the smooth and non-smooth components, respectively. FB-GNN framework
can easily be plugged into spatial methods, with LP filter for aggregation operation and HP filter for
diversification operation. With experiments on 9 real world datasets, we find that the the HP channel
indeed plays and important role in the representation learning, and one-channel baseline methods can
gain significant performance boost after being augmented by two-channel methods.

2 Preliminaries

After introducing the prerequisites, in this section, we formalize the idea behind graph signal filtering.
We use bold fonts for vectors (e.g., v), vector blocks (e.g., V ) and matrix blocks (e.g., Vi). Suppose
we have an undirected connected graph G = (V, E , A) without bipartite component, where V is the
node set with |V| = N , E is the edge set, A ∈ RN×N is a symmetric adjacency matrix with Aij = 1
if and only if eij ∈ E otherwise Aij = 0, D is the diagonal degree matrix, i.e., Dii =

∑
j Aij and

Ni = {j : eij ∈ E} is the neighborhood set of node i. A graph signal is a vector x ∈ RN defined on
V , where xi is defined on the node i. We also have a feature matrix X ∈ RN×F whose columns are
graph signals and each node i has a feature vector Xi,: with dimension F , which is the i-th row of X .

2.1 Graph Laplacian and Affinity Matrix

The (Combinatorial) graph Laplacian is defined as L = D − A, which is a Symmetric Positive
Semi-Definite (SPSD) matrix[11]. Its eigendecomposition gives L = UΛUT , where the columns of
U ∈ RN×N are orthonormal eigenvectors, namely the graph Fourier basis, Λ = diag(λ1, . . . , λN )
with λ1 ≤ · · · ≤ λN and these eigenvalues are also called frequencies. The graph Fourier transform
of the graph signal x is defined as xF = U−1x = UTx = [uT

1 x, . . . ,u
T
Nx]T , where uT

i x is the
component of x in the direction of ui.

A smaller λi indicates a smoother basis function ui defined on G [12], which means any two elements
of ui corresponding to two connected nodes will have more similar values. This is because finding
the eigenvalues and eigenvectors of graph Laplacian is actually solving a series of conditioned
minimization problems relevant to the smoothness of the function defined on G.

Some variants of graph Laplacians are commonly used in practice, e.g., the symmetric normalized
Laplacian Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2, the random walk normalized Laplacian
Lrw = D−1L = I −D−1A. Lrw and Lsym share the same eigenvalues, which are inside [0, 2), and
their corresponding eigenvectors satisfy ui

rw = D−1/2ui
sym.

The affinity (transition) matrix derived from Lrw is defined as Arw = I − Lrw = D−1A and its
eigenvalues λi(Arw) = 1 − λi(Lrw) ∈ (−1, 1]. Similarly, Asym = I − Lsym = D−1/2AD−1/2

is an affinity matrix as well. Renormalized affinity matrix is introduced in [28] and defined as

2In this paper, we do not distinguish the name of this assumption.
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Ârw = D̃−1Ã, where Ã ≡ A+ I, D̃ ≡ D+ I and λ(Ârw) ∈ (−1, 1]. It essentially defines a random
walk matrix on G with a self-loop added to each node in V and is widely used in GCN as follows,

Y = softmax(Ârw ReLU(ÂrwXW0) W1) (1)

where W0 ∈ RF×F1 and W1 ∈ RF1×O are parameter matrices. L̂rw can be defined as I − Ârw.
Âsym ≡ D̃−1/2ÃD̃−1/2 can also be applied in GCN and L̂sym = I − Âsym. Specifically, the nature
of transition matrix makes Ârw behave as a mean aggregator (Ârwx)i =

∑
j∈{Ni∪i} xj/(Dii + 1)

which is applied in [22] and is important to bridge the gap between spatial- and spectral-based graph
convolution methods.

2.2 Measure of Smoothness and (Dirichlet) Energy

Dirichlet Energy is often used to measure how variable a function is [17] and for signal defined on
graph, it can measure the global smoothness of the signal [48, 5, 49] and is defined as follows.

Definition 1. (Dirichlet Energy) The Dirichlet energy of vector block X and column vector x defined
on G are separately defined as

EG
S (X) = tr(XTLX), EG

S (x) = xTLx (2)

Note that EG
S is always non-negative since L is SPSD. The graph signal energy is defined as follows.

Definition 2. (Graph Signal Energy [18, 51]) The signal energy of block vector X and column
vector x defined on undirected graph G are separately defined as

EG(X) = tr(XTX), EG(x) = xTx (3)

The signal energy represents the amount of contents in a graph signal and we will draw the correlation
between EG

S and EG and explain how they can be used to measure the smoothness and non-smoothness
of a graph (block) signal.

Take column vector x for example, EG
S (x) can be written as,

xTLx =
∑
i

λi(u
T
i x)

TuT
i x =

∑
i

λi

∥∥uT
i x
∥∥2
2

The frequency λi before
∥∥uT

i x
∥∥2
2

can be considered as a scalar weight and EG
S (x) focuses on

measuring the component of x in the direction of non-smooth ui, who has a large weight λi. A small
EG

S (x) means x does not contain much non-smooth components. EG(x) can be written as

xTx =
∑
i

(uT
i x)

TuT
i x =

∑
i

∥∥uT
i x
∥∥2
2

Signal x can be decomposed into smooth and non-smooth components, and the amount the non-
smooth component can be measured by

EG
NS(x) = EG(x)− EG

S (x) = xT (I − L)x =
∑
i

(1− λi)
∥∥uT

i x
∥∥
2

Note that EG
NS(x) can be negative and a small EG

NS(x) indicates that x is highly non-smooth.

Upon the above analysis, we define S(x) to measure the smoothness of a signal as follows

S(x) =
EG

S (x)

EG(x)
, S(X) =

EG
S (X)

EG(X)
(4)

Graph signal with a small S-value means it is a smooth function define on G. S can be different
depends on the Laplacian we use to train GNN and S can be larger than 1. In this paper, we use Lsym

and L̂sym to measure the smoothness of input features X and labels y for different GNNs.
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3 Filterbanks in GNNs: From One Channel to Two

In this section, we state why it is necessary to switch to the two-channel filtering process from only
one-channel. Then, we propose the filterbank-GNN framework which can learn a mixture of smooth
and non-smooth graph signals.

3.1 Motivation

Table 1: Dataset Overview: Network Characteristics and S-values measured by Lsym

datasets Cornell Wisconsin Texas Actor Chameleon Squirrel Cora CiteSeer PubMed

Network Info

#nodes 183 251 183 7600 2277 5201 2708 3327 19717
#edges 295 499 309 33544 36101 217073 5429 4732 44338

#features 1703 1703 1703 931 2325 2089 1433 3703 500
#classes 5 5 5 5 5 5 7 6 3

S-values
input feature 0.904 0.873 0.854 0.901 0.99 0.987 0.862 0.799 0.832

label 0.883 0.877 0.909 0.836 0.747 0.782 0.288 0.35 0.501
diff (label - feature) -0.021 0.004 0.055 -0.065 -0.243 -0.205 -0.574 -0.449 -0.331

We use blue and red shades to demonstrate the relation between label and feature: the label of the blue shaded datasets is smoother than its feature and red datasets
are less smooth.

We measure the smoothness of 9 frequently used benchmark datasets and present the results with the
network characteristics for each task in Table 1). It shows that the input features and ground truth
labels of different datasets are all mixtures of smooth and non-smooth graph signals but in different
proportions. Besides, it illustrates that different tasks have different demands of learning how to
smoothen the input signals. For example, in Cora, Citeseer and Pubmed, the ground truth labels are
much smoother than the input features, such pattern motivates us to learn how to smoothen the input
signals; while in Wisconsin and Texas, the labels are less smooth than the input features, thus there is
no reason that we still learn how to smoothen the input signals. Therefore, to accommodate different
situations, we propose that we should learn both smooth and non-smooth components of the input
features adaptively instead of merely extracting the smooth part. This motivates us to use filterbanks
(LP and HP filters) to filter the signals in GNNs.

LP, HP Graph Filters and Filter Banks The multiplication of L and x acts as a filtering operation
over x, adjusting the scale of the components of x in frequency domain. To see this, consider

x =
∑
i

uiu
T
i x, Lx =

∑
i

λiuiu
T
i x (5)

The projection uiu
T
i x corresponding to a large |λi| will be amplified, while the one corresponding to

a small |λi| will be suppressed. More specifically, a graph filter that filters out smooth (non-smooth)
components is called HP (LP) filter. Generally, the Laplacian matrices (Lsym, Lrw, L̂sym, L̂rw) can
be regarded as HP filters [14] and affinity matrices (Asym, Arw, Âsym, Ârw) can be treated as LP filters
[39]. In general, we denote HP and LP filters as LHP and LLP respectively.

On the node level, left multiplying HP and LP filters on x can be understood as diversification and
aggregation operations, respectively. For example, if we implement Lrw and Arw on the i-th node,
we have

(Lrwx)i =
∑
j∈Ni

1

Dii
(xi − xj), (Arwx)i =

∑
j∈Ni

1

Dii
xj (6)

Intuitively, HP filters depict the differences between one node and its neighbors; While LP filters
focus on the similarity within a neighborhood, from which we can obtain missing or “hidden” features
of one node. We believe that these two conjugate components are both indispensable to portray a
node.

Mathematically, multiplying with LP filter (aggregation) is a linear projection, which will project
the features to a fixed subspace. We will lose the expressive power by only using LP filter, and the
missing half is the HP component of the learned signals, as LLP + LHP = I , which satisfies the
perfect reconstruction property [14].

The two-channel linear filterbank which contains a set of filters LLP and LHP is widely used in graph
signal processing [15, 14], but are rarely used in graph neural networks. Inspired by this technique,
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we propose the two-channel filterbank GNNs in section 3.2, which can extract both smooth and
non-smooth components from input features.

3.2 Filter Bank assisted GNNs (FB-GNNs)

X O

XH

XL

ReLU( ⋅ ; WH)

ReLU( ⋅ ; WL)

HP

LP

αL

αH

A ReLU(⋅ )

Figure 1: Two-Channel Learning: Information needed for HP and LP filters, XH and XL, are
separately extracted from the input signal X by nonlinear transformations. After being filtered by HP
and LP, which are both derived upon adjacency matrix A, the filtered signals are again recombined
adaptively to form the output O.

Spectral-based FB-GNNs We use previously defined LLP and LHP (see section 3.1) to construct
the two-channel FB-GNNs as follows (learning framework is provided in figure 1)

H l
L = LLPReLU(H l−1W l−1

L ), H l
H = LHPReLU(H l−1W l−1

H ) (7)

H l = ReLU
(
αl
L ·H l

L + αl
H ·H l

H

)
, l = 1, . . . , n

where H0 = X; W l−1
L ,W l−1

H ∈ RFl−1×Fl are learnable parameter matrices for the non-linear
feature extractor focusing on disentangling the smooth and non-smooth information from input H l−1,
separately; αl

L, α
l
H ∈ [0, 1] are learnable scalar parameters which can learn the relative importance

of H l
L and H l

H and keep a balance between them; l is the layer number and suppose the FB-GNN
has n layers. In this way, the hidden output H l is able to learn a mixture of smooth and non-smooth
signals.

Spatial-based FB-GNNs Inspired by (6) and (7), the two-channel spatial-based method can be
implemented by designing different aggregator (LP filter) and diversification operator (HP filter) as
follows,

(ĥl
i)L = ReLU(W l−1

L hl−1
i ), (ĥl

i)H = ReLU(W l−1
H hl−1

i )

(hl
i)L =

∑
j∈{Ni∪i}

wij

(
(ĥl

i)L + (ĥl
j)L

)
, (hl

i)H =
∑

j∈{Ni∪i}

wij

(
(ĥl

i)H − (ĥl
j)H

)
, (8)

hl
i =ReLU

(
αl
L · (hl

i)L + αl
H · (hl

i)H

)
, , i ∈ V, l = 1, . . . , n

where W l−1
L ,W l−1

H ∈ RFl×Fl−1 are learnable parameter matrices to extract LP and HP features
for two channels; wij is the connection weight between node i and node j derived from adjacency
matrix, it can be a fixed value or a learnable attention coefficient such as [52]; αl

L, α
l
H ∈ [0, 1] are

learnable scalar parameters; l is the layer number.

Computational Cost: Parameters and Runtime The spectral two-channel learning introduces
additionally one GCN operation and one weighted sum (with negligible costs introduced with non-
linearity and weighted sum before output); For spatial methods, similarly, the two-channel learning
introduces one additional node-wise subtraction and one additional weighted sum for training on
each pair of nodes. Thus, the computational cost and the number of parameters are approximately
doubled;

For runtime, overlooking the minor overhead of synchronization, the computations introduced
by the additional pass are naturally parallelizable with the original pass (for their independently
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associated parameters) both in the forward and backward passes. Therefore, no significant additional
computational time will be incurred on modern GPU architectures.

4 Related Works

Dirichlet energy Dirichlet energy (more generally in p-Dirichlet form) is usually used as a regu-
larizer or objective function to impose local neighborhood smoothness in various machine learning
tasks, e.g., spectral clustering [1], image processing [16, 4, 60], non-negative matrix factorization
[7], matrix completion, principal component analysis (PCA), semi-supervised learning [64, 65, 2].
It has different names in different literature, e.g., Laplacian regularizer [60], manifold regularizer
[7], quadratic energy function [64], etc.. The definition of smoothness derived from Dirichlet energy
in (4) can be considered as a continuous relaxed form of normalized cut (ratio cut) [20, 50], which
is closely related to graph partition problems. Instead of using Dirichlet energy as a part of loss
function during training process, we point out that combining with graph signal energy, it can be used
to measure the smoothness of the input features and output labels for a given learning task. With this,
the necessity of learning the non-smoothness component can be confirmed.

Measuring Smoothness The authors of [44] propose a node homophily to measure the smoothness
of ground truth labels of dataset as follows,

1

|V|
∑
v∈V

#v ’s neighbors who have the same label as v
#v ’s neighbors

[63] proposes edge homophily ratio, which is the fraction of edges that the connected nodes share the
same label (i.e.,, intra-class edges). Both of these methods do not provide an extension definition on
block vector. Thus, they fail to measure the smoothness of the input features and cannot be used to
compare the difference of smoothness between the input features and labels. [59] proposes row-diff
and col-diff to measure the average of all pairwise distances between the node features and the
average of pairwise distances between columns of the representation matrix. But quantifying pairwise
distance is inconsistent with the definition of smoothness introduced in section 1 which focuses on
measuring the distance between connected nodes. [37] studies homophily from post-aggregation
node similarity perspective. [35] uses statistical hypothesis testing to detect the effect the edge bias.

On Addressing Heterophily Geom-GCN [44] uses a geometric aggregation scheme and a bi-level
aggregator to capture the information of structural neighborhoods, which can be distant nodes. These
can efficiently take use of the geometric relationships defined in the latent space. H2GCN [63]
designs ego- and neighbor-embedding separation, aggregation of higher-order neighborhoods, and
combination of intermediate representations to generalize the limitation of existing GNNs beyond
homophily setting. Non-local GNNs [34] propose a simple and effective non-local aggregation frame-
work with an efficient attention-guided sorting for GNNs. CPGNN [62] models label correlations
through a compatibility matrix, which is beneficial for heterophilic graphs, and propagates a prior
belief estimation into the GNN by using the compatibility matrix. FAGCN [3] learns edge-level
aggregation weights as GAT [52] but allows the weights to be negative, which enables the network
to capture high-frequency components in the graph signals. GPRGNN [10] uses learnable weights
that can be both positive and negative for feature propagation. This allows GPRGNN to adapt to
heterophilic graphs and to handle both high- and low-frequency parts of the graph signals. BernNet
[23] designs a scheme to learn arbitrary graph spectral filters with Bernstein polynomial to address
heterophily.

The aforementioned works design various tricks, trying to take use of multi-hop neighborhood
information and capture long-range dependencies with the belief that heterophily problem could
be alleviated with the help of the distant nodes. Although these methods show some promising
results, the effectiveness is limited and do not jump out of the scope of neighborhood aggregation. In
this paper, We target directly its cause, handling heterophily problem by seeking the distinctiveness
between nodes with an additional channel to learn the non-smoothness components.
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5 Experiments

In this section, we first validate whether the two-channel filtering and learning procedure lead to
better representation learning when patched on popular shallow GNN baselines3: GraphSAINT [57],
GraphSAGE [22], Graph Attention Network (GAT) [52], GCN [28], Geom-GCN-P (-S and -I) [44]
and Graph Wavelet Neural Network (GWNN) [55]. Deeper GNNs are shown to have the potentials
of mitigating the heterophily problem by extracting multi-hop neighborhood information. For them,
we test the two-channel framework on two state-of-the-art methods GCNII and GCNII* [9], with
varied model depths. After these, we validate the effectiveness of each proposed component with a
detailed ablation test.

The experiments are conducted in the form of node classification4 under supervised learning setting
and performed on 9 datasets including Cornell, Wisconsin, Texas, Actor, Chameleon, Squirrel, Cora,
Citeseer, and Pubmed (details to be found in the appendix). Their rough characteristics are shown in
Table 1.

5.1 Experimental Setup

In supervised learning of shallow GNNs, we keep the same training configurations for GraphSAINT
and FB-GraphSAINT on the 9 datasets, which are the random walk sampler with length 2 (RW)
setting5 in GraphSAINT [57]; for GWNN [55] and FB-GWNN, we use the same hyperparameters
s = 1.0, t = 10−4 on the 9 datasets6. Other GNNs and their two-channel variants are under the same
experiment settings as [22] and [44]. We use Âsym as low-pass spectral filter and L̂sym as high-pass
spectral filter 7.

For supervised learning on deep GNNs, GCNII, GCNII*, FB-GCNII, and FB-GCNII* use λ = 1.5
and α = 0.2 on Actor and Squirrel. Other deep models use the same training configurations as
GCNII [9] on the remaining 7 datasets.

For all experiments, we use the same 48%/ 32%/ 20% splits for training, validation and testing as in
[44]. We report the average performance of all models on the test sets over 10 splits8. We tune the
learning rate in {0.01, 0.05, 0.1}, weight decay in {0, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2},
and dropout in {0, 0.1, 0.2, . . . , 0.9}.

(a) Low-Pass Channel (b) High-Pass Channel (c) Two Channels Combined

Figure 2: t-SNE Visualization of the Learned Node Embeddings in Different Channels of FB-GCN
for Squirrel Dataset.

3Source code submitted within supplementary materials and to be published after the review.
4See Appendix B for experimental results on graph classification tasks.
5The name “random walk sampler with length 2 setting” is what the authors used in their paper and they use

the name PPI-large-2 in their code.
6This set of hyperparameters is the same as that of the original paper when training GWNN on Cora.
7We will discuss other filters in Appendix E
8We obtain the performance of GAT, GCN, and GEOM-GCN-P(-S and -I) directly from [44]; and we

reproduce other baseline models and implement all the filterbank GNNs.
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Table 2: Supervised Learning of Shallow GNNs

Models/Datasets Cornell Wisconsin Texas Actor Chameleon Squirrel Cora CiteSeer PubMed

Diff of S-values -0.021 0.004 0.055 -0.065 -0.243 -0.205 -0.574 -0.449 -0.330

Spatial Methods(%)
GraphSAINT 70.27 71.35 72.97 17.89 43.86 33.27 84.69 73.2 89.42

FB-GraphSAINT 78.38(8.11) 80(8.65) 75.68(2.71) 19.08(1.19) 46.05(2.19) 36.06(2.79) 87.5(2.81) 74.76(1.56) 89.88(0.46)
GraphSAGE 54.05 66 56.76 14.67 40.13 24.14 80.64 72.36 85.49

FB-GraphSAGE 63.14(9.09) 70(4) 58.05(1.29) 23.27(8.6) 39.74(-0.39) 24.6(0.46) 83.7(3.06) 72.58(0.22) 86.31(0.82)

Spectral Methods(%)
GAT 54.32 49.41 58.38 28.45 42.93 30.03 86.37 74.32 87.62

FB-GAT 64.86(10.54) 60.78(11.37) 64.86(6.48) 30.66(2.21) 47.37(4.44) 31.8(1.77) 88.73(2.36) 77.12(2.8) 88.16(0.54)
GCN 52.7 45.88 52.16 26.86 28.18 23.96 85.77 73.68 88.13

FB-GCN 62.16(9.46) 56.86(10.98) 62.16(10.00) 31.21(4.35) 32.89(4.71) 24.73(0.77) 85.92(0.15) 75.24(1.56) 88.54(0.41)
Geom-GCN-P 60.81 64.12 67.57 31.63 60.9 38.14 84.93 75.14 88.09

FB-Geom-GCN-P 64.86(4.05) 72.55(8.43) 70.27(2.70) 31.02(-0.61) 67.20(6.30) 49.66(11.52) 85.17(0.24) 76.23(1.09) 88.25(0.16)
Geom-GCN-S 55.68 56.67 59.73 30.3 59.96 36.24 85.27 74.71 84.75

FB-Geom-GCN-S 56.54(0.86) 56.94(0.27) 62.16(2.43) 31.25(0.95) 61.49(1.53) 37.27(1.03) 85.43(0.16) 75.21(0.5) 85.88(1.13)
Geom-GCN-I 56.76 58.24 57.58 29.09 60.31 33.32 85.19 77.99 90.05

FB-Geom-GCN-I 57.38(0.62) 60.68(2.44) 62.21(4.63) 31.45(2.36) 60.76(0.45) 35.27(1.95) 85.45(0.26) 77.69(-0.3) 90.48(0.43)
GWNN 70.67 72.22 69.44 20.92 33.63 29.13 84.49 72.47 83.6

FB-GWNN 80.11(9.44) 84.67(12.45) 77.78(8.34) 22.24(1.32) 37.36(3.73) 30.6(1.47) 85.6(1.11) 72.83(0.36) 85.92(2.32)

Baseline Average 59.41 60.49 62.32 26.2 46.46 31.44 85.15 74.33 87.3
FB-Baseline Average 65.93(6.52) 67.81(7.32) 66.65(4.33) 27.52(1.32) 49.11(2.65) 33.75(2.31) 85.94(1.27) 75.21(0.97) 87.93(0.63)

The results are averaged from 10 independent runs. The (values) represent the difference of performance brought by patching FB.

Table 3: Statistics of Datasets (measured by L̂sym instead of Lsym) and Comparison of the Output
Smoothness

datasets Cornell Wisconsin Texas Actor Chameleon Squirrel Cora Citeseer Pubmed

S-values

input feature 0.172 0.385 0.205 0.567 0.831 0.87 0.617 0.515 0.529
label 0.139 0.328 0.301 0.511 0.638 0.681 0.188 0.209 0.272

diff (label - feature) -0.033 -0.057 0.096 -0.056 -0.193 -0.189 -0.429 -0.306 -0.257

GCN output 0.037 (0.102) 0.124 (0.204) 0.139 (0.162) 0.397 (0.114) 0.595 (0.043) 0.578 (0.103) 0.156 (0.032) 0.112 (0.097) 0.234 (0.038)
FB-GCN output 0.099 (0.040) 0.269 (0.059) 0.201 (0.100) 0.531 (0.020) 0.655 (0.017) 0.683 (0.002) 0.172 (0.016) 0.148 (0.061) 0.247 (0.025)

These results are obtained from 10 independent runs. The stds are negligible so they are not presented (mostly < 0.002).This table shows how FB- patched baseline could better reconstruct the label
smoothness, i.e., we want the S-value of the output to be closer to that of the labels. The (values) stand for the absolute difference between the S-values of the output of the methods and those of the
ground truths. Better reconstruction between the two methods on each task is marked bold.

5.2 Supervised Learning of Shallow GNNs

In Table 2, we summarize the mean accuracy of shallow baseline GNNs and their filterbank versions.
The best performance is highlighted. Also, we record the performance differences between baselines
and the two-channel augmented methods in the brackets. For better intuitive understanding of the
effectiveness of incorporating the high-pass filter, we present in Figure 2 the t-SNE visualization
of the learned embedding in different channels of FB-GCN for Squirrel dataset. Those of the other
datasets will be provided in the appendix D.

From the results we can see that, our propose methods generally boost the performance of almost all
cases, especially when the labels are not much smoother than the input features indicated, considering
the S-values in Table 3.

Table 3 shows that the S-values of FB-GCN outputs are closer to the S-values of the ground truth
labels (see the absolute differences in the bracket) compared with those of GCN outputs. This
indicates that FB-GCN is able to learn better representations which can reconstruct both the smooth
and non-smooth part of the ground truth labels. Note that we measure the smoothness by L̂sym instead
of Lsym, because GCN is train with renormalized affinity matrix Âsym.

5.3 Supervised Learning of Deep GNNs

In this subsection, we build deep multi-hop filterbank models based on the architecture of GCNII and
GCNII* [9] to see if the two-channel method is capable to assist deep GNN models. We report mean
accuracy, highlight best performing depth, and record performance difference in brackets in Table 4.
In general, FB-GCNII and FB-GCNII* achieve better results than the unpatched GCNII and GCNII*
at different depths, especially on Wisconsin and Texas, where the non-smooth part of representations
are desirable.
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Table 4: Supervised Learning of Deep Multi-scale GNNs

Models\Datasets Cornell Wisconsin Texas Actor Chameleon Squirrel Cora CiteSeer PubMed

GCNII-8 70.54 73.88 71.08 33.7 60.61 37.49 85.69 75.54 88.62
FB-GCNII-8 75.95(5.41) 82.35(8.47) 74.59(3.51) 35.37(1.67) 60.43(-0.18) 39.69(2.2) 86.04(0.35) 75.51(-0.03) 89.97(1.35)

GCNII-16 74.86 74.12 69.46 33.62 55.48 35.98 87.3 76.54 88.28
FB-GCNII-16 77.57(2.71) 82.55(8.43) 77.03(7.57) 35.12(1.5) 56.78(1.3) 39.38(3.4) 87.5(0.2) 76.67(0.13) 89.39(1.11)

GCNII-32 72.7 70.2 69.46 31.61 53.71 35.92 88.13 76.08 87.89
FB-GCNII-32 72.81(0.11) 78.63(8.43) 80.27(10.81) 32.99(1.38) 54.98(1.27) 36.81(0.89) 88.33(0.2) 76.49(0.41) 89.1(1.21)

GCNII-64 71.89 68.84 66.49 28.76 54.14 36.1 88.49 77.08 89.57
FB-GCNII-64 76.49(4.6) 76.27(7.43) 76.22(9.73) 29.57(0.81) 54.39(0.25) 36.79(0.69) 87.92(-0.57) 77(-0.08) 89.65(0.08)

GCNII*-8 72.97 78.82 72.7 34.89 62.48 40.72 86.14 75.06 89.7
FB-GCNII*-8 76.76(3.79) 82.94(4.12) 78.11(5.41) 35.87(0.98) 65.11(2.63) 41.19(0.47) 86.94(0.8) 76.32(1.26) 90.2(0.5)

GCNII*-16 76.49 81.57 75.41 34.18 58.86 39.88 87.46 75.8 86.69
FB-GCNII*-16 76.95(0.46) 82.39(0.82) 76.76(1.35) 35.4(1.22) 59.98(1.12) 40.08(0.2) 87.48(0.02) 76.43(0.63) 89.95(3.26)

GCNII*-32 74.32 77.06 77.84 33.78 56.27 37.69 88.35 76.55 89.37
FB-GCNII*-32 74.51(0.19) 80.78(3.72) 84.86(7.02) 34.73(0.95) 57.65(1.38) 41.24(3.55) 88.16(-0.19) 76.89(0.34) 89.92(0.55)

GCNII*-64 72.43 73.53 75.41 32.72 53.82 36.83 88.01 77.13 90.3
FB-GCNII*-64 75.84(3.41) 81.57(8.04) 80.54(5.13) 34.89(2.17) 57.52(3.7) 39.81(2.98) 87.44(-0.57) 77.03(-0.1) 89.98(-0.32)

Baseline Average 73.28 74.75 72.23 32.91 56.92 37.58 87.45 76.22 88.8
FB-Baseline Average 75.86(2.58) 80.94(6.19) 78.55(6.32) 34.24(1.33) 58.36(1.44) 39.37(1.79) 87.48(0.03) 76.54(0.32) 89.77(0.97)

The results are averaged from 10 independent runs. The (values) represent the difference of performance brought by patching FB.

Table 5: Ablation Results: Accuracy (%)

#Channels Transformation
Cora Cornell Texas

Mean Std Mean Std Mean Std

1 linear 83.92 1.0 64.86 2.2 70.60 1.9
1 nonlinear 84.69 0.5 70.27 0.8 72.97 0.8
2 linear 85.02 2.1 75.64 2.0 74.15 2.1
2 nonlinear 87.50 1.6 78.38 1.5 75.68 1.0

Color indicators are added to differentiate the performance of each test
case: the greener the better, the redder the worse.

5.4 Ablation Tests

In this subsection, we perform ablation tests by using FB-GraphSAINT [57] on Cora, Cornell and
Texas accordingly, which are the three principally different datasets measured by L̂sym in Table 3 .
The ablation tests would examine the effectiveness of each proposed component. The results are
summarized in Table 5. The results show that both the non-linear feature extractor and two-channel
filtering architecture are able to help capture richer information under different S-value distributions
of input features and output labels.(See more ablation results in Appendix C.3)

Moreover, to emphasize the importance of HP component, we also test the learnable coefficients
αL and αH for two components on FB-GraphSAINT over the 9 datasets at the validation stage (see
Table 7 in Appendix C.1). For most of the tasks, neither the coefficients for LP nor HP are negligible.
Among 6 out of 9 tasks, the learned coefficients for the HP components are even greater, this indicates
the necessity of the HP components in graph representation learning.

In addition, from the averaged real-time change of the learned coefficients αL and αH in the output
layer of FB-GraphSAINT on Cora, Cornell and Texas during training (see Figure 3 in Appendix
C.2), we can see that αL and αH will converge to a pair of values that explains how the smooth
and non-smooth features will be mixed. The fact that the ratio αH/αL is close to 1 again shows
that the importance of the non-smooth part in constructing the output signal. More specifically, the
importance (red line) is higher when the demand of non-smooth outputs (diff values) is higher. See
more ablation study of GCN on PPI in Appendix C.3.

6 Conclusion

This paper recognizes the role of high-frequency information in graph representation learning. The
proposed HP filter completes the spectrum of graph filters and yield significantly better representations
on several empirical tasks. The importance of the non-smooth component in graph signals can be
revealed by the new defined S-value.
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A Dataset Descriptions

For node classification. there are 4 main categories:

Cora, Citeseer, and Pubmed are 3 benchmark datasets [47] in the category of Citation network.
Such networks use nodes to represent papers and edges to denote citations. Node features are the
bag-of-words representation and node labels are classified into different academic topics.

Cornell, Texas, and Wisconsin belong to the webpage dataset WebKB [44] created by Carnegie Mellon
University. Each node represents a web page, and the edges are hyperlinks between nodes. Node
features are the bag-of-words representation and node labels are in five classes.

Chameleon and Squirrel are twi page-to-page networks in the Wikipedia network [46]. Nodes
represent web pages and edges show mutual links between pages. Node features are informative
nouns in the Wikipedia pages and nodes are classified into 5 groups based on monthly views.

Actor refers to the Actor co-occurrence network. A node correspond to an actor, and an edge exists if
two actors occur on the same Wikipedia page. Node features correspond to some keywords in the
Wikipedia pages, and nodes are categorized into five classes of words of actors actor’s Wikipedia.

B Graph Classification

For the graph classification tasks, we compare the patched methods FB-GIN-0 and FB-GIN-ϵ against
the baselines GIN-0 and GIN-ϵ, with the same experiment setting as [56]. The results (accuracy and
standard deviation) are provided in Table 6.

C More Ablation Tests

C.1 Ablation Coefficients

C.2 Real Time Change of Coefficients
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(b) Cornell (diff = -0.033)
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Figure 3: αL and αH in the output layer of FB-GraphSAINT trained on Cora, Cornell and Texas.
The mean curves and the std bands are obtained over 20 independent runs. See diff values in table .

C.3 Ablation Tests on PPI

D t-SNE Visualization
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Table 6: Results and Hyperparameters of Graph Classification

Task Method lr weight decay gamma width batch size dropout concat Acc

MUTAG

GIN-0 89.4
FB-GIN-0 0.036104 0.0001034 -0.48239 128 32 0.75127 0 91.4035
GIN-eps 89

FB-GIN-eps 0.003584 0.011275 64 32 0.75859 0 94.74

PROTEINS

GIN-0 76.2
FB-GIN-0 0.047597 0.00042991 1.269 8 32 0.064654 1 80.784
GIN-eps 75.9

FB-GIN-eps 0.006173 0.02751 8 128 0.26964 0 79.4375

PTC

GIN-0 64.6
FB-GIN-0 0.0083924 0.0059482 0.72171 16 32 0.082378 0 68.578
GIN-eps 63.7

FB-GIN-eps 0.049951 0.00029225 16 128 0.30306 0 71.429

NCI1

GIN-0 82.7
FB-GIN-0 0.00039327 0.01014 0.95777 128 128 0.01526 1 84.428
GIN-eps 82.7

FB-GIN-eps 9.94E-05 0.0083156 128 128 0.70224 1 84.123

IMDB-B

GIN-0 75.1
FB-GIN-0 0.010815 0.00024241 0.83553 128 128 0.97456 1 83
GIN-eps 74.3

FB-GIN-eps 0.015596 0.0047105 32 32 0.80636 1 78.111

IMDB-M

GIN-0 52.3
FB-GIN-0 0.00067325 0.0042346 1.4691 64 128 0.80828 1 53.467
GIN-eps 52.1

FB-GIN-eps 0.00061908 0.037266 64 128 0.92727 1 53.259

RDT-B

GIN-0 92.4
FB-GIN-0 0.01262 0.047278 -0.41963 8 128 0.48795 0 94
GIN-eps 92.2

FB-GIN-eps 0.0068918 0.016003 128 128 0.4131 0 93

RDT-M5K

GIN-0 57.5
FB-GIN-0 0.0011204 0.017434 -0.02748 8 128 0.35465 1 65.6
GIN-eps 57

FB-GIN-eps 0.0026491 0.0492 8 128 0.55127 1 68.4

COLLAB

GIN-0 80.2
FB-GIN-0 2.88E-04 0.047982 -0.3438 128 128 0.66614 1 86.3
GIN-eps 80.1

FB-GIN-eps 0.00019472 0.00031991 128 128 0.1088 1 85

Table 7: αL and αH in the Output Layer of FB-GraphSAINT

Cornell Wisconsin Texas Actor Chameleon Squirrel Cora Citeseer Pubmed

αL 0.436 0.441 0.57 0.54 0.701 0.675 0.509 0.514 0.473
αH 0.45 0.499 0.6 0.557 0.713 0.65 0.464 0.503 0.478

αH/αL 1.032 1.132 1.053 1.031 1.017 0.963 0.912 0.979 1.011

The results are averaged from 10 independent runs. If the ratio is higher than 1.0, then the high frequency signals are more
important. The higher the ratio, the more important HP filter is.
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Table 8: Ablation Tests on PPI

#Channels Transformation F1-score Std

1 linear 59.4 0.8

1 nonlinear 69.5 0.3

2 linear 71.8 0.6

2 nonlinear 73.9 0.4
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(a) Actor: LP Channel (b) Actor: HP Channel (c) Actor: Two Channels

(d) Chameleon: LP Channel (e) Chameleon: HP Channel (f) Chameleon: Two Channels

(g) Cornell: LP Channel (h) Cornell: HP Channel (i) Cornell: Two Channels

(j) Texas: LP Channel (k) Texas: HP Channel (l) Texas: Two Channels

(m) Wisconsin: LP Channel (n) Wisconsin: HP Channel (o) Wisconsin: Two Channels

Figure 4: t-SNE Visualization of the Learned Node Embeddings for heterophilic datasets (other than
Squirrel, which is presented in the main manuscript) under 3 configurations.
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(a) Citeseer: LP Channel (b) Citeseer: HP Channel (c) Citeseer: Two Channels

(d) Cora: LP Channel (e) Cora: HP Channel (f) Cora: Two Channels

(g) Pubmed: LP Channel (h) Pubmed: HP Channel (i) Pubmed: Two Channels

Figure 5: t-SNE Visualization of the Learned Node Embeddings for homophilic datasets under 3
configurations.
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E Discussion of Filters

E.1 Lazy Random Walk Matrix

In graph signal processing, lazy random walk defined in the following equation is often used as a LP
filter [14],

Alrw =
1

2
(I +Arw). (9)

It can be seen as adding Dii self-loops to the i-th node of A and normalize it to be a random walk
matrix and 0 ≤ λi(Alrw) ≤ 1. Such spectral property makes it a standard band-pass filter, which can
avoid some theoretical confusion due to negative eigenvalues. Unlike Ârw, Alrw maintains certain
topology properties of Arw, e.g., stationary distribution and eigenvectors. In practice, these properties
are supposed to be changed, unless one has strong prior knowledge that GNNs will benefit from the
renormalized one.

Furthermore, it is found that adding self-loops can shrink the magnitude of the dominant eigenvalue
so that the influence of long-distance nodes will be reduced, which makes the filtered signal more
dependent on local information [21]. There is growing empirical evidence showing that adding
self-loops will lead to effective graph convolutions on some applications [29, 53]. Compared to Ârw,
Alrw works better at reducing the magnitude of dominant eigenvalue under certain conditions. We
show it in the following theorem.

Theorem 1. We denote the generalized lazy random walk matrix and the generalized renormalized
adjacency matrix respectively by

Aγ
lrw =

1

1 + γ
(γI +Arw), Âγ

rw = D̃−1
γ Ãγ ,

where Ãγ = γI +A, D̃γ = γI +D. Suppose G has no isolated node, i.e., Dii > 0 for all i, and for
positive γ, we have

λ2(A
γ
lrw)

λ1(A
γ
lrw)

≥ λ2(Â
γ
rw)

λ1(Â
γ
rw)

, (10)

where λ1(·) and λ2(·) are the largest and second largest eigenvalues a matrix.

Proof. Detailed proof can be found in Appendix E.2.

The HP filer derived from Alrw is (I −Arw)/2 and they can be used as a set of filterbank in FB-GNN
framework. From table 9 we can see that, FB-GNNs with lazy random walk matrix can boost the
performance of baseline GNNs more significantly than symmetric renormalized affinity matrix on
heterophilic datasets Cornell, Wisconsin, Texas and Film, where baseline GNNs underperform MLP.
And on homophilic datasets, where baseline GNNs outperform MLP, FB-GNNs with symmetric
renormalized affinity matrix perform better.
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Table 9: Comparison of FB-GNNs with lazy random walk and symmetric renormalized affinity
matrix

Models\Datasets Cornell Wisconsin Texas Film Chameleon Squirrel Cora Citeseer Pubmed

MLP 85.14 87.25 84.59 36.08 46.21 29.39 74.81 73.45 87.86

GCN 60.81 63.73 61.62 30.98 61.34 41.86 87.32 76.70 88.24
FB-GCM-sym 83.78 87.45 84.59 35.47 65.66 50.56 87.34 76.42 89.74
FB-GCN-lazy 85.14 87.25 86.49 36.11 61.07 46.28 87.46 76.24 89.57

GAT 59.19 60.78 59.73 29.71 61.95 43.88 88.07 76.42 87.81
FB-GAT-sym 87.30 85.88 82.70 36.00 63.75 44.07 87.34 76.45 89.03
FB-GAT-lazy 88.92 89.22 88.65 36.83 62.80 43.56 87.28 76.92 89.43

GraphSage 82.97 87.84 82.43 35.28 47.32 30.16 85.98 77.07 88.59
FB-GraphSage-sym 86.44 88.43 86.22 35.88 48.11 33.24 86.62 78.01 89.05
FB-GraphSage-lazy 86.49 87.45 87.30 35.00 48.57 30.44 86.35 76.48 88.58

diff(FB-sym, baseline) 18.18 16.47 16.58 3.79 2.30 3.99 -0.02 0.23 1.06
diff(FB-lazy, baseline) 19.19 17.19 19.55 3.99 0.61 1.46 -0.09 -0.18 0.98

Table 10: More comparisons of FB-GNN with lazy random walk and symmetric renormalized matrix

Models\Datasets CitationFull_dblp Coauthor_CS Coauthor_Physics Amazon_Computers Amazon_Photo

MLP 77.39 93.72 95.77 83.89 90.87

GCN 85.87 93.91 96.84 87.03 93.61
FB-GCM-sym 85.90 95.33 97.03 91.54 95.57
FB-GCN-lazy 85.51 95.31 97.07 91.32 95.53

GAT 85.89 93.41 96.32 89.74 94.12
FB-GAT-sym 84.94 94.13 OOM 89.57 94.58
FB-GAT-lazy 85.35 95.30 OOM 91.10 94.88

GraphSage 81.19 94.38 OOM 83.70 NA
FB-GraphSage-sym 85.66 94.97 OOM 88.01 91.40
FB-GraphSage-lazy 85.02 95.00 OOM 87.12 91.02

diff(FB-sym, baseline) 1.18 0.91 0.45 2.88 -0.02
diff(FB-lazy, baseline) 0.98 1.30 0.49 3.02 -0.06

E.2 Proof of Eigengap

Proof. Denote the symmetric normalized lazy random walk matrix and the generalized symmetric
renormalized adjacency matrix respectively by

Aγ
slrw =

1

1 + γ
(γI +Asym), Âγ

sym = D̃−1/2
γ ÃγD̃

−1/2
γ

It is easy to verify that
λ(Aγ

slrw) = λ(Aγ
lrw), λ(Âsym) = λ(Âγ

rw)

where λ(·) denotes the spectrum of a matrix. Since λ1(A
γ
lrw) = λ1(Â

γ
rw) = 1, to prove the theorem,

it is necessary and sufficient to prove

λ2(A
γ
slrw) ≥ λ2(Â

γ
sym) (11)

It is easy to show that D1/21 is an eigenvector of Aγ
slrw corresponding to λ1(A

γ
slrw) and D̃

1/2
γ 1 is an

eigenvector Âγ
sym corresponding to λ1(Â

γ
sym).

By the Rayleigh quotient theorem ([25]),

λ2(A
γ
slrw) = max

x⊥D1/21

xTD−1/2(γD +A)D−1/2x

(1 + γ)xTx
(12)
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By the Rayleigh quotient theorem and the Courant-Fischer min-max theorem ([25]),

λ2(Â
γ
sym) = max

x⊥D̃
1/2
γ 1

xT D̃
−1/2
γ (γI +A)D̃

−1/2
γ x

xTx

= min
{S:dimS=n−1}

max
{x:0 ̸=x∈S}

xT D̃
−1/2
γ (γI +A)D̃

−1/2
γ x

xTx

≤ max
x⊥D1/21

xT D̃
−1/2
γ (γI +A)D̃

−1/2
γ x

xTx
(13)

Then from (12) and (13) we obtain

λ2(A
γ
slrw)− λ2(Â

γ
sym)

≥ max
x⊥D1/21

xTD−1/2(γD +A)D−1/2x

(1 + γ)xTx

− max
x⊥D

1/2
γ 1

xT D̃
−1/2
γ (γI +A)D̃

−1/2
γ x

xTx

= max
y⊥D1

yT (γD +A)y

(1 + γ)yTDy
+ min

y⊥D1

(
−yT (γI +A)y

yT D̃γy

)

≥ min
y⊥D1

(
yT (γD +A)y

(1 + γ)yTDy
− yT (γI +A)y

yT D̃γy

)

= min
y⊥D1

(
(yT (γD +A)y)(yT (γI +D)y)

((1 + γ)yTDy)(yT (γI +D)y)

− (yT (γI +A)y)(((1 + γ)yTDy))

((1 + γ)yTDy)(yT (γI +D)y)

)

= min
y⊥D1

γ
(
1 + yTAy

yTDy
yTy
yTDy

− yTy
yTDy

− yTAy
yTDy

)
((1 + γ)yTDy)(yT (γI +D)y)/(yTDy)2

= min
y⊥D1

γ
(
1− yTAy

yTDy

)(
1− yTy

yTDy

)
((1 + γ)yTDy)(yT (γI +D)y)/(yTDy)2

≥ 0

F Hyperparameters

In this subsection, we report the optimal hyperparameters that are searched for FB-GNNs.
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Table 11: Hyperparameters for baseline models
Datasets Models\Hyperparameters lr weight_decay dropout hidden results

Cornell

GCN 0.05 5.00E-04 0.4 32 60.81
GAT 0.005 5.00E-04 0.6 8 59.19

GraphSAGE 0.1 1.00E-04 0.1 32 82.97
MLP 0.05 1.00E-04 0.5 32 85.14

Wisconsin

GCN 0.05 5.00E-04 0.3 32 63.73
GAT 0.005 5.00E-04 0.2 8 60.78

GraphSAGE 0.1 1.00E-04 0.1 32 87.84
MLP 0.05 1.00E-04 0.4 32 87.25

Texas

GCN 0.05 5.00E-05 0.4 32 61.62
GAT 0.005 5.00E-04 0.1 8 59.73

GraphSAGE 0.1 5.00E-04 0.2 32 82.43
MLP 0.05 5.00E-04 0.3 32 84.59

Film

GCN 0.05 5.00E-04 0.3 32 30.98
GAT 0.005 1.00E-04 0.2 8 29.71

GraphSAGE 0.1 5.00E-04 0.3 32 35.28
MLP 0.05 5.00E-05 0.9 32 36.08

Chameleon

GCN 0.05 5.00E-05 0.3 32 61.34
GAT 0.005 1.00E-04 0.3 8 61.95

GraphSAGE 0.1 5.00E-04 0.5 32 47.32
MLP 0.05 5.00E-05 0.3 32 46.21

Squirrel

GCN 0.05 5.00E-05 0.6 32 41.86
GAT 0.005 1.00E-04 0.2 8 43.88

GraphSAGE 0.1 5.00E-05 0.6 32 30.16
MLP 0.05 5.00E-05 0.4 32 29.39

Cora

GCN 0.05 5.00E-05 0.9 32 87.32
GAT 0.005 1.00E-04 0.7 8 88.07

GraphSAGE 0.1 5.00E-05 0.6 32 85.98
MLP 0.05 5.00E-04 0.4 32 74.81

Citeseer

GCN 0.05 5.00E-04 0.5 32 76.7
GAT 0.005 5.00E-04 0.6 8 76.42

GraphSAGE 0.1 1.00E-04 0.6 32 77.07
MLP 0.05 5.00E-05 0.6 32 73.45

Pubmed

GCN 0.05 5.00E-05 0.2 32 88.24
GAT 0.005 5.00E-05 0.1 8 87.81

GraphSAGE 0.1 5.00E-05 0.2 32 88.59
MLP 0.05 1.00E-04 0.1 32 87.86

CitationFull_dblp

GCN 0.05 5.00E-05 0.8 32 85.87
GAT 0.005 1.00E-04 0.3 8 85.89

GraphSAGE 0.05 5.00E-05 0.2 32 81.19
MLP 0.05 5.00E-04 0.3 32 77.39

Coauthor_CS

GCN 0.05 5.00E-05 0.2 32 93.91
GAT 0.005 5.00E-05 0.2 8 93.41

GraphSAGE 0.1 5.00E-05 0.2 32 94.38
MLP 0.05 5.00E-05 0.2 32 93.72

Coauthor_Physics

GCN 0.05 5.00E-05 0.1(0.3) 32 96.84
GAT 0.005 5.00E-04 0.5 8 96.32

GraphSAGE - - - - OOM
MLP 0.05 5.00E-05 0.5(0.6) 32 95.77

Amazon_Computers

GCN 0.05 5.00E-05 0.1 32 87.03
GAT 0.005 5.00E-05 0.2 8 89.74

GraphSAGE 0.1 5.00E-05 0.1 32 83.7
MLP 0.05 5.00E-05 0.2 32 83.89

Amazon_Photo

GCN 0.05 5.00E-05 0.2 32 93.61
GAT 0.005 5.00E-05 0.2 8 94.12

GraphSAGE
MLP 0.05 5.00E-05 0.4 32 90.87
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Table 12: Hyperparameters for FB-GNNs

Datasets Models\Hyperparameters
symmetric renormalized adjacency matrix lazy random walk matrix

lr weight_decay dropout hidden results weight_decay dropout results

Cornell

MF-GCN 0.05 1.00E-03 0.3 32 83.78 5.00E-04 0.3 85.14
MF-GAT 0.05 5.00E-04 0.2 8 87.3 5.00E-04 0.3 88.92

MF-GraphSAGE 0.05 5.00E-04 0.1 32 86.44 5.00E-04 0.1 86.49
MF-Geom-GCN* 0.05 5.00E-04 0.3 32 82.99 5.00E-04 0.3 83.41

Wisconsin

MF-GCN 0.05 5.00E-04 0.1 32 87.45 5.00E-04 0.4 87.25
MF-GAT 0.05 5.00E-04 0.3 8 85.88 5.00E-04 0.2 89.22

MF-GraphSAGE 0.05 5.00E-04 0.2 32 88.43 5.00E-04 0.3 87.45
MF-Geom-GCN* 0.05 5.00E-04 0.3 32 85.66 5.00E-04 0.3 86.1

Texas

MF-GCN 0.05 5.00E-04 0.1 32 84.59 1.00E-03 0.3 86.49
MF-GAT 0.05 1.00E-04 0.6 8 82.7 5.00E-04 0.4 88.65

MF-GraphSAGE 0.1 5.00E-04 0.2 32 86.22 5.00E-04 0.1 87.3
MF-Geom-GCN* 0.05 5.00E-04 0.3 32 83.41 5.00E-04 0.3 84.41

Film

MF-GCN 0.05 5.00E-03 0.2 32 35.47 5.00E-03 0.2 36.11
MF-GAT 0.05 5.00E-04 0.5 8 36 5.00E-04 0.5 36.83

MF-GraphSAGE 0.05 5.00E-04 0.1 32 35.88 5.00E-05 0.4 35
MF-Geom-GCN* 0.05 5.00E-05 0.6 32 34.26 5.00E-05 0.7 34.08

Chameleon

MF-GCN 0.05 5.00E-05 0.7 32 65.66 5.00E-05 0.7 61.07
MF-GAT 0.005 5.00E-04 0.5 8 63.75 5.00E-04 0.4 62.8

MF-GraphSAGE 0.05 5.00E-04 0.6 32 48.11 5.00E-04 0.6 48.57
MF-Geom-GCN* 0.05 5.00E-05 0.8 32 63.8 5.00E-05 0.8 62.23

Squirrel

MF-GCN 0.05 5.00E-05 0.6 32 50.56 5.00E-05 0.6 46.28
MF-GAT 0.005 5.00E-05 0.5 8 44.07 5.00E-04 0.5 43.56

MF-GraphSAGE 0.05 5.00E-04 0.5 32 33.24 5.00E-04 0.6 30.44
MF-Geom-GCN* 0.05 5.00E-05 0.7 32 40.02 5.00E-05 0.8 39.02

Cora

MF-GCN 0.05 5.00E-04 0.8 32 87.34 5.00E-04 0.7 87.46
MF-GAT 0.05 5.00E-05 0.6 8 87.34 1.00E-04 0.6 87.28

MF-GraphSAGE 0.05 5.00E-05 0.7 32 86.62 1.00E-04 0.6 86.35
MF-Geom-GCN* 0.05 1.00E-04 0.6 32 87.81 1.00E-04 0.7 87.3

Citeseer

MF-GCN 0.05 5.00E-03 0.3 32 76.42 5.00E-03 0.3 76.24
MF-GAT 0.05 1.00E-04 0.6 8 76.45 5.00E-04 0.6 76.92

MF-GraphSAGE 0.05 5.00E-05 0.7 32 78.01 5.00E-05 0.7 76.48
MF-Geom-GCN* 0.05 5.00E-04 0.6 32 78.02 5.00E-04 0.7 77.02

Pubmed

MF-GCN 0.05 5.00E-04 0.3 32 89.74 5.00E-04 0.2 89.57
MF-GAT 0.05 5.00E-05 0.3 8 89.03 5.00E-05 0.4 89.43

MF-GraphSAGE 0.05 5.00E-05 0.3 32 89.05 5.00E-05 0.3 88.58

CitationFull_dblp

MF-GCN 0.05 5.00E-05 0.6 32 85.9 0.00E+00 0.6 85.51
MF-GAT 0.05 5.00E-05 0.6 8 84.94 5.00E-05 0.5 85.35

MF-GraphSAGE 0.05 5.00E-05 0.3 32 85.66 5.00E-05 0.6 85.02

Coauthor_CS

MF-GCN 0.05 1.00E-04 0.3 32 95.33 1.00E-04 0.4 95.31
MF-GAT 0.05 5.00E-05 0.4 8 94.13 5.00E-05 0.5 95.3

MF-GraphSAGE 0.05 5.00E-05 0.3 32 94.97 5.00E-05 0.5 95

Coauthor_Physics

MF-GCN 0.05 5.00E-05 0.4 32 97.03 5.00E-05 0.4 97.07
MF-GAT - - - - OOM - - OOM

MF-GraphSAGE - - - - OOM - - OOM

Amazon_Computers

MF-GCN 0.05 1.00E-05 0.4 32 91.54 5.00E-05 0.4 91.32
MF-GAT 0.05 5.00E-05 0..2 8 89.57 5.00E-05 0.3 91.1

MF-GraphSAGE 0.05 5.00E-05 0.6 32 88.01 5.00E-05 0.5 87.12

Amazon_Photo

MF-GCN 0.05 5.00E-05 0.4 32 95.57 1.00E-04 0.3 95.53
MF-GAT 0.05 1.00E-04 0.2 8 94.58 1.00E-04 0.4 94.88

MF-GraphSAGE 0.05 5.00E-05 0.5 32 91.4 5.00E-05 0.6 91.02
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