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ABSTRACT

Assessing causal effects in the presence of unobserved confounding is a challeng-
ing problem. Existing studies leveraged proxy variables or multiple treatments
to adjust for the confounding bias. In particular, the latter approach attributes the
impact on a single outcome to multiple treatments, allowing estimating latent vari-
ables for confounding control. Nevertheless, these methods primarily focus on a
single outcome, whereas in many real-world scenarios, there is greater interest
in studying the effects on multiple outcomes. Besides, these outcomes are often
coupled with multiple treatments. Examples include the intensive care unit (ICU),
where health providers evaluate the effectiveness of therapies on multiple health
indicators. To accommodate these scenarios, we consider a new setting dubbed as
multiple treatments and multiple outcomes. We then show that parallel studies of
multiple outcomes involved in this setting can assist each other in causal identifi-
cation, in the sense that we can exploit other treatments and outcomes as proxies
for each treatment effect under study. We proceed with a causal discovery method
that can effectively identify such proxies for causal estimation. The utility of our
method is demonstrated in synthetic data and sepsis disease.

1 INTRODUCTION

Estimating average causal effects from observed data is an important problem in many areas, such
as social sciences, biological sciences, and economics. A critical challenge in estimating causal
effect arises from the presence of unobserved confounders. To tackle this problem, existing works
relied on additional measurements, such as instrumental variables (Pokropek, 2016), proxy variables
(Miao et al., 2018), and additional treatments (Wang & Blei, 2019).

In particular, the proximal causal learning (Miao et al., 2018; Tchetgen et al., 2020; Cui et al., 2023)
leverages two proxy variables - a treatment-inducing proxy and an outcome-inducing proxy - to
account for unmeasured confounders. With such proxies, one can identify the causal effect (Cui
et al., 2023) by estimating nuisance parameters. However, these methods required to pre-specify
proxy variables, which may not be feasible in real applications. Recently, another deconfounding
framework was proposed Wang & Blei (2019), by exploiting multiple treatments to estimate the
confounders to adjust for the confounding bias. Based on this framework, Wang & Blei (2021);
Miao et al. (2022) further associated the proxy variables with other treatments for identification.

However, in many real scenarios, we are more interested in multiple outcomes rather than a single
isolated outcome. Besides, these outcomes are often coupled with multiple treatments. To illustrate,
consider the Intensive Care Unit (ICU) scenario with sepsis disease (Johnson et al., 2016) as a mo-
tivating example, where healthcare providers may monitor various parameters, such as White blood
cell count, Mean blood pressure, and Platelets, to assess the effectiveness of therapeutic treatments
including Norepinephrine, Morphine Sulfate, and Vancomycin. Such scenarios are often encoun-
tered but were ignored in the literature. To fill in this blank, we introduce a novel setting: multiple
treatments and multiple outcomes, where we consider the case when treatments are continuous.

Our setting is a natural extension to the multiple treatments setting (Wang & Blei, 2019) in the
sense that the shared confounder of multiple treatments also affects multiple outcomes recorded, as
evidenced by extensive examples in Sec. 3. Here, we revisit the ICU example for illustration. In this
example, the unobserved confounder can refer to the health outcomes at the previous stage, which
not only determine the therapy dosage but also can affect outcomes at the next stage.
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Moreover, having multiple outcomes of interest can aid in the mutual identification of each other.
Concretely, we show that there can always exist two admissible proxies that can guarantee the iden-
tifiability for each outcome under treatment effect study. This conclusion holds as long as there exist
missing edges in the bipartite graph between treatments and outcomes, which can naturally hold
since some treatments may only impact a few outcomes. Back to the ICU example, morphine may
have no obvious influence on the White Blood Cell Counts (Anand et al., 2004; Degrauwe et al.,
2019). Under this guarantee, we identify such proxies via hypothesis testing for causal edges be-
tween each treatment and outcome. With such identified proxies, we estimate the treatment effect
with a kernel-based proximal doubly robust estimator that can well handle continuous treatment ef-
fects. As a contrast, multiple treatments with a single outcome (Wang & Blei, 2019) can suffer from
larger biases due to the non-identifiability of latent confounders giving rise to multiple treatments.
To demonstrate the utility and effectiveness of our method, we apply it both to a synthetic dataset
and Medical Information Mart for Intensive Care (MIMIC III) (Johnson et al., 2016).

It is interesting to note that recently (Zhou et al., 2020) also studied the multiple outcomes with only
a single treatment. However, it relied on the no qualitative U -A interaction assumption (U,A resp.
denote latent confounders and treatment), which may not hold when the outcome model is complex.

Contributions. To summarize, our contributions are:

1. We introduce a new setting that involves multiple treatments and multiple outcomes, which can
accommodate many real scenarios.

2. We show that this setting facilitates causal identification under mild conditions.
3. We employ hypothesis testing via a proper discretization of treatments to identify proxies.
4. We demonstrate the utility of our methods on both synthetic and real-world data.

2 RELATED WORKS

Causal Inference with Multiple Treatments. Wang & Blei (2019) and follow-up studies
(D’Amour, 2019; D’Amour, 2019; Imai & Jiang, 2019; Miao et al., 2022) considered the scenario of
multiple treatments with shared confounding structure, to adjust for confounding bias using factor
models. Based on this framework, Wang & Blei (2021) further leveraged the proxy variables for
identification, where certain treatments themselves act as proxies for other treatments. However,
this assumption may not hold when all treatments affect the outcome. In this paper, we consider a
natural extension from a single outcome to multiple outcomes under the multiple treatments setting,
which facilitates the identification by exploiting certain treatments and outcomes to be proxies.

Causal Inference with Multiple Outcomes. Multiple outcomes are common in randomized con-
trolled trial and recent research has explored the analysis of treatment effects in such cases (Lin et al.,
2000; Roy et al., 2003). Kennedy et al. (2019) propose scaled effect measures method to estimate
the effects of multiple outcomes. Additionally, Yao et al. (2022) suggested leveraging data from
multiple outcomes to estimate treatment effects. In a recent work, (Zhou et al., 2020) show nonpara-
metric identifiability under the assumption of conditional independence among at least three parallel
outcomes. However, this relied on the no qualitative U -A interaction assumption, which may not
hold when the outcome model of Y |U,A is complex. In contrast, our method leverages multiple
treatments that are often coupled with outcomes recorded, which provides proxies for identification
in a more flexible way.

Proximal Causal Learning for Identifiability. To estimate the treatment effect on a single out-
come in the presence of latent confounders, Miao et al. (2018); Tchetgen et al. (2020); Cui et al.
(2023) proposed to use two proxy variables of unobserved confounders for causal identification.
With such proxies, one should solve for nuisance/bridge functions under completeness assumptions,
which were then used in the doubly robust estimator (Cui et al., 2023) for causal estimations. How-
ever, these works pre-specified the proxies. Furthermore, their emphasis was primarily on binary
treatments. In contrast, in our scenario, our method enjoys the capability to identify proxy variables
through causal discovery and estimate causal effects for continuous treatments.

3 MULTIPLE TREATMENTS AND MULTIPLE OUTCOMES

Problem setup & Notations. We consider the setting of causal inference with multiple treatments
and multiple outcomes. Specifically, our data is composed of n i.i.d samples {ai,xi,yi}i=1:n with
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covariates X, I (I > 1) treatments A = [A1, · · · , AI ], J (J > 1) outcomes Y := [Y1, · · · , YJ ]
that recorded after treatments are received. Here, we assume that all treatments are continuous.
We denote [m] := {1, · · · ,m} for any integer m > 0. For a subset S ⊆ [m], we denote
OS := {Oi|i ∈ S} as the subset of O for any variables O : Ω → Rm that can denote A, X,
and Y in our setting. Correspondingly, we denote O−S := {Oi|i /∈ S} as the complementary
set of OS . Besides, we respectively use E[·] and P(·) to denote the expectation and the proba-
bility distribution of a random variable. For any discrete variables X and Y with K and L cat-
egories, we define P(X|y) := [P(x1|y), · · · ,P(xK |y)]⊤, P(x|Y ) := [P(x|y1), · · · ,P(x|yl)] and
P(X|Y ) := [P(X|y1), · · · ,P(X|yL)] as probability matrices.
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Figure 1: Different settings of causal inference: (a). single treatment and single outcome; (b) mul-
tiple treatments and single outcome; (c) single treatment and multiple outcomes; (d) ours with mul-
tiple treatments and multiple outcomes. A, Y, U respectively denote treatments, outcomes, and
the unobserved confounder marked by the dotted circle. We mark the pair of (treatment, outcome)
involved in the causal effect study as blue and corresponding proxy variables as gray.

Our goal is to estimate the average treatment effect (ATE) for multiple treatments of interest. Specif-
ically, for each outcome Yj we would like to estimate:

E[Yj |do(aS)], (1)
∀AS ⊂ A. Note that our setting in Fig. 1 (d) is a natural extension from the multiple treatments
setting (Wang & Blei, 2019) in Fig. 1 (b), from a single outcome to multiple outcomes. In many real-
world scenarios, instead of a single experiment, it is more interesting to evaluate the effectiveness of
treatments/interventions to multiple outcomes (Yao et al., 2022) of interest. To illustrate, consider
the Intensive Care Unit (ICU) scenario with sepsis disease (Johnson et al., 2016) as a motivating
example of Fig. 1 (d), where we can not only observe multiple treatments such as Norepinephrine
(A1), Morphine Sulfate (A2), and Vancomycin (A3) but also record health indicators such as White
blood cell count (Y1), Mean blood pressure (Y2), and Platelets (Y3). As shown in our learned causal
graph in Fig. 1 (d) that aligns well with existing findings, different health indicators are associated
with different subsets of treatments. As each health indicator represents a crucial aspect of sepsis,
our focus is on examining the treatment effects associated with each of them. Another example is
the recommendation system (Yao et al., 2022), where companies conducted A/B experiments to test
the effectiveness of website layout changes towards multiple metrics including user retention, and
server CPU usage. Note that Zhou et al. (2020) also considered the multiple outcomes setting, but it
was only with a single treatment, as shown in Fig. 1 (c). This setting may not capture the scenarios
where multiple treatments together are under study, such as the ICU scenario mentioned earlier.

The additional incorporation of multiple outcomes is not only of practical interest but can also
facilitate the identification of causal effect in Eq. 1 when the ignorability condition fails. This is
because, for each pair of (AS , Yj) under study, we can leverage other treatments and outcomes as
proxy variables that can identify the causal effect under unobserveness (Miao et al., 2018). As shown
in Fig. 1, we can respectively useA2 and Y1 as outcome-induced and treatment-induced proxies that
are sufficient to identify the causal effect of A1 to Y3. In contrast, the multiple treatments setting
(Fig. 1 (b)) (Wang & Blei, 2021; 2019) required the existence of a null proxy that has no effect on
the outcome, which may not always be satisfied for a fixed outcome. On the other hand, the multiple
outcomes setting (Fig. 1 (c)) relied on the no qualitative U -A interaction assumption, which may
not hold when the outcome model of Y |U,A is complex.

We first introduce some basic assumptions that our method to identify Eq. 1 is built upon.
Assumption 3.1 (Structural Causal Model with Shared Confounding). We assume a structural
causal model (SCM) (Pearl, 2009) over {U,A,X,Y}, where we assume that (i) U denotes un-
observed confounders that shared among all treatments and outcomes: Yj(a) ⊥ A|X,U for each
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j, where Yj(a) denotes the potential outcome with A = a received; (ii) there are no directed edges
between treatments: Ai1 ⊥ Ai2 |X,U for any i1 ̸= i2, or between outcomes: Yj1(a) ⊥ Yj2(a)|X,U
for any j1 ̸= j2 and a.

Assumption 3.1 (i) is similar to and naturally remains valid as long as the shared confounding as-
sumption among multiple treatments (Wang & Blei, 2019) holds. This is because the unobserved
confounder U often represents underlying factors that can impact various interconnected outcomes.
To illustrate, consider the examples in Wang & Blei (2019).

• Genome-wide association studies (GWAS). The goal is to evaluate the effect of genes on a
specific trait, where U refers to shared ancestry that can also affect other related traits.

• Computational neuroscience. The causes are multiple measurements of the brain’s activity. The
effect is a measured behavior. U refers to dependencies among neural activity, which can affect
multiple behaviors and thoughts.

• Social Science. The policymakers evaluated the effect of social programs on social outcomes that
include poverty levels and upward mobility (Morgan & Winship, 2015), which can be simultane-
ously affected by the program preferences, i.e., U.

• Medicine. The confounder U refers to treatment preferences, which can simultaneously affect
health outcomes/indicators that are linked to those treatments.

Note that in some other cases (e.g., the sepsis disease in the ICU), U can include the outcomes
recorded at the last step, which can also affect the treatments and outcomes at the next step.

In addition, the absence of direct causal relationships between outcomes or between treatments, as
stipulated in assumption 3.1 (ii), naturally applies to many scenarios. These scenarios include the
aforementioned ones in which outcomes are only affected by treatments and covariates while treat-
ments are only affected by covariates. Additionally, it encompasses other examples where treatments
can be additionally affected by outcomes recorded at the last step.

Next, we introduce the null-proxy assumption that guarantees the identification of causal effects by
exploiting other treatments and outcomes.
Assumption 3.2 (Null-proxy for AS and Yj). We assume that at least one of the following holds: (i)
|Y| ≥ 3 and there is at least one missing edge from AS to Y−j; (ii) |A−S | ≥ 2 and there exists at
least one missing edge from A−S to Yj; (iii) there is at least one missing edge from A−S to Y−j .
Remark 3.3. Note that If we are interested in single treatment effect, the above assumption holds
for all i ∈ [I] and j ∈ [J ] as long as (i) and (ii) are respectively required in Zhou et al. (2020) and
Wang & Blei (2021). If these conditions fail, we can also identify the ATE as long as there are at
most IJ − 2 edges in the bipartite graph between A and Y.
Remark 3.4. We will show later that this assumption can be empirically tested from data.

Roughly speaking, this assumption implies the presence of missing edges from A and Y, as long
as the bipartite graph between them is not overly dense. It can naturally hold since in scenarios
with multiple treatments and multiple outcomes, some outcomes may be only associated with a
few treatments. To illustrate, consider the GWAS example in which each trait can be associated
with only a few genes, and Fig. 1 (d) in the example of sepsis disease in ICU where White blood
cell count (Y1) is only associated with Norepinephrine (A1) and Vancomycin (A3). To understand
how this assumption affects the ATE in Eq. 1, it is important to note that two variables within the
A−S ∪ Y−j , characterized by the presence of missing edges, can serve as valid proxies for Eq. 1
to be identifiable. Compared to Wang & Blei (2021) that assumed the existence of null proxies for
a single outcome, our assumption is easier to satisfy by exploiting other treatments and outcomes
provided as proxies. Back to the example of sepsis disease in Fig. 1 (d), the null proxy does not
exist (as illustrated in Fig. 1 (b)) if we only consider Platelets (Y3) as a single outcome; while we
can take A2 and Y1 as proxies since A2 does not affect Y1. Recently, an alternative null treatment
approach was introduced (Miao et al., 2022). However, it required at least half of the treatments do
not causally affect the outcome, which is much more stringent than ours.

To guarantee identifiability for each outcome, we additionally require positivity assumption that was
commonly made in proximal causal inference (Miao et al., 2018; Cui et al., 2023).

Assumption 3.5 (Consistency and Positivity). (i) Y (A,Z) = Y , (ii) 0 < p(A = a|U,X) < 1 a.s.
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4 IDENTIFIBILITY

We show that Eq. 1 is identifiable based on proximal causal learning. Different from previous works
that pre-specify proxies, we propose to select admissible proxies based on causal discovery.

4.1 IDENTIFICATION WITH PROXIES

We first show that as long as assump. 3.2 holds, there always exist two admissible proxies namely
WS,j , ZS,j that can help to identify Eq. 1. According to Miao et al. (2018), such two proxies should
adhere to the following conditional independence:

ZS,j ⊥ Yj | AS ,A−S\WS,j ,U, (2)
(ZS,j , AS) ⊥WS,j | A−S\WS,j ,U, (3)

as illustrated in Fig. 1 (d) by taking S := {1}, j := 3, WS,j = A2 and ZS,j = Y1. Note that here
we have omitted X in Eq. 2, 3 since they are observed confounding variables and can thus be easily
adjusted for. Such conditions imply that there is no directed edge between ZS,j and WS,j ∪ Yj . In
fact, these conditions can be guaranteed by assump. 3.2, as shown in the following lemma.
Lemma 4.1. Suppose Assumptions 3.1 and 3.2 hold for AS ⊂ A and Yj ∈ Y. Then, there exist
two admissible proxies (ZS,j ,WS,j) that satisfy Eq. 2, 3.

Remark 4.2. Intuitively, Lemma. 4.1 is guaranteed by the condition of the missing directed edges,
i.e., assump. 3.2. Specifically, if J ≥ 3, any two Yj1 , Yj2 ̸∈ Y−j can be taken as ZS,j and WS,j

since we have assumed that outcomes do not interact with each other. Otherwise, when there exists
missing edges from AS to Y, we can also find (ZS,j ,WS,j). Please refer to the proofs for details.

This condition means we can find proxies from other treatments and outcomes. We will show in
the next section how to identify proxies ZS,j and WS,j via causal discovery. Finally, we need the
completeness assumptions for two bridge functions for causal identification.
Assumption 4.3. Let ν denote any square-integrable function. Then for any S and j ∈ J , we have

1. (Completeness for outcome bridge functions). We assume that E[ν(U)|aS ,WS,j ,x] = 0 and
E[ν(ZS,j)|aS ,WS,j ,x] = 0 for all (aS ,x) iff ν(U) = 0 almost surely.

2. (Completeness for treatment bridge functions). We assume that E[ν(U)|aS , ZS,j ,x] = 0 and
E[ν(WS,j)|aS , ZS,j ,x] = 0 for all (aS ,x) iff ν(U) = 0 almost surely.

Assump. 4.3, which has been widely adopted in the literature of causal inference (Miao et al., 2018;
Cui et al., 2023; Tchetgen et al., 2020), is necessary to guarantee the existence and the uniqueness
of solutions to integral equations. Similar to Cui et al. (2023), we also need regularity conditions
that are left in the appendix. Under these assumptions, we have the following identifiability result:
Theorem 4.4. Suppose assump. 3.1-3.5, 4.3 hold for AS and Yj . Then E[Yj |do(aS)] is identifiable.

In contrast to previous works such as Miao et al. (2018); Wang & Blei (2021); Miao et al. (2022) that
required the pre-specification of proxy variables, our method can identify the proxies by exploiting
multiple treatments and multiple outcomes, which can be easily obtained in many real scenarios.
Particularly, even when the condition of null proxy treatment fails, Thm. 4.4 suggests that we can
also identify the causal effect by exploiting multiple outcomes. Additionally, thanks to multiple
treatments, our assumption is weaker than that of Zhou et al. (2020).

In the next section, we show assump. 3.2 can be tested and we can find proxies via causal discovery.

4.2 IDENTIFY PROXIES VIA CAUSAL DISCOVERY

Assump. 4.1 and Thm. 4.4 show the existence of suitable proxies. In this section, we perform a
hypothesis-testing approach to identify such proxies WS,j and ZS,j by learning the causal relations
from A to Y, building upon previous works by Miao et al. (2018); Liu et al. (2023b;a). With this
approach, we can also test whether assump. 4.1 holds. We denote WS,j , ZS,j as W,Z for brevity.

Since we assume that the treatments do not interact with each other and the outcomes do not interact
with each other, we can conduct the null hypothesis: H0 : Ai ⊥ Yj |U, for each Ai ∈ A and
Yj ∈ Y. Since treatments do not interact with each other, rejecting the null hypothesis indicates
a direct causal edge from Ai to Yj . Similar to estimating ATE, previous works (Miao et al., 2018)
also required the prior specification of one proxy to carry out such hypothesis testing on discrete
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treatments. In our paper, we extend to continuous treatments; moreover, our method only requires
one single proxy that could be taken from any Ai′ ̸= Ai. Next, we introduce some fundamental
assumptions that are easy to hold in many scenarios.
Assumption 4.5 (NULL-TV Lipschitzness). For any i ∈ [I], we assume u 7→ P(Ai′ |Ai,U = u)
and u 7→ P(Ai′ |U = u) are Lipschitz continuous with respect to Total Variation (TV) distance.
Mathematically speaking, ∀u,u′ ∈ supp(U), we have

TV (P(Ai′ |Ai,U = u),P(Ai′ |Ai,U = u′)) ≤ LAi′ |u− u′|;
TV (P(Ai′ | U = u),P(Ai′ |U = u′)) ≤ LAi′ |Ai

|u− u′|.

This assumption is widely used in conditional independence testing or conditional density estima-
tion (Warren, 2021; Neykov et al., 2021; Li et al., 2022), and has recently been employed in causal
inference. Generally speaking, it restricts our attention to scenarios where the conditional distri-
butions are appropriately smooth, which can hold in many scenarios such as Additive Noise Model
(ANM), Huber contamination model, exponential tilting model, etc 1. With such a smoothness,
assump. 4.5 allows us to obtain conditional independence even after the discretizing continuous
treatments. Specifically, we denote N bins {Un}Nn=1 and {An}Nn=1 as measurable partition of U
and Ai′ in the hypothesis testing of H0 : Ai ⊥ Yj |U. Denote U and Ai′ as discretized version of U
and Ai′ such that U = k iff U ∈ Uk. Then we have

P(ai′ ∈ An|ai) =
N∑

k=1

P(ai′ ∈ An|U ∈ Uk, ai)P(U ∈ Uk|ai) := P(ai′ ∈ An|U, ai)P(U|ai),

P(Yj ≤ y|ai) =
N∑

k=1

P(Yj ≤ y|U ∈ Uk, ai)P(U ∈ Uk|ai) := P(Yj ≤ y|U, ai)P(U|ai).

When N is large enough, we have P(ai′ ∈ An|U ∈ Uk, ai)
(1)
≈ P(ai′ ∈ An|U = u, ai)

(2)
= P(ai′ ∈

An|U = u)
(3)
≈ P(ai′ ∈ An|U ∈ Uk) for any u ∈ Uk, where “(2)” is due to conditional independence

between Ai′ and Ai. To see “(1)” and “(3)”, we note that for P(ai′ ∈ An|U ∈ Uk, ai),
TV (P(ai′ ∈ An|U ∈ Uk, ai),P(ai′ ∈ An|U = u, ai))

=TV

(
1

P(U ∈ Uk|ai)

∫
u′∈Uk

P(ai′ ∈ An|u′, ai)dP(u′|ai),P(ai′ ∈ An|U = u, ai)

)
=

∫
Uk

TV

(
P(ai′ ∈ An|U = u′, ai),P(ai′ ∈ An|U = u, ai))d

(
P(u′|ai)
P(Uk|ai)

))
≤ L|u′ − u| ≤ ε,

when diam(Uk) ≤ ε
L that can be satisfied as long as N is large enough. We then have P(Ai′ |U) ≈

P(Ai′ |U, ai). Similarly, we have P(Yj ≤ y|U, ai) ≈ P(Yj ≤ y|U) when H0 holds. That implies
conditional independence Yj ⊥ Ai|U ∈ Uk for each k, which is crucial for hypothesis testing.

Similar to Miao et al. (2018); Liu et al. (2023b), for hypothesis testing, we assume that
Assumption 4.6. For each ai ∈ supp(Ai), the matrix P(Ai′ |U, ai) is invertible.

Under assump. 4.6, we have P(U|ai) ≈ P(Ai′ |U)−1P(Ai′ |ai) and that

P(Yj ≤ y|ai) ≈ P(Yj ≤ y|U, ai)P(Ai′ |U)−1P(Ai′ |ai).
As mentioned earlier, if H0 holds, P(Yj ≤ y|U, ai) ≈ P(Yj ≤ y|U). In this regard, P(Ai′ |ai)
is the only source of variability with respect to ai. Similar to Miao et al. (2018), we can therefore
determine whether H0 holds by testing the linearity between P(Yj ≤ y|ai) and P(Ai′ |ai). To test
such a linearity, we should make sure that P(Yj ≤ y|ai) and P(Ai′ |ai) can be estimated well, as
shown in the following assumption that can easily hold via Maximum Likelihood Estimation (MLE).

Assumption 4.7. Denote qy := {P(Yj ≤ y|ai)}Mi=1 and Q :=
{
P(Ai′ |ai)

}M

i=1
. Suppose we have

available estimators (q̂y, Q̂) that satisfy
√
n(q̂y − qy)

d→ N(0,Σy) Q̂
p→ Q, Σ̂y

p→ Σy, where Σ̂y and Σy are positive-definite. (4)
1 Please refer to the appendix for more examples that satisfy the TV Lipschitzness.
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Under assump. 4.7, we can calculate the residue ξy of regressing Σ̂
−1/2
y q̂y on Σ̂

−1/2
y Q̂, and check

how far ξy is away from 0 to assess whether H0 is correct. Formally, we have the following result.

Theorem 4.8. Denote Q1 := Σ
−1/2
y Q⊤, Ωy := I −Q1

(
Q⊤

1 Q1

)−1
Q⊤

1 . We thus have ξy = Ω̂yQ̂1.

We select a1, ..., aM with M > N . Then under assump. 4.5-4.7, if H0 is correct, we have
√
nξy

d→
N(0,Ωy), where the rank of Ωy is M −N and nξ⊤y ξy → χ2

M−N .

Given a significance level α, one can reject H0 as long as nξ⊤y ξy exceeds the (1 − α)th quantile of
χ2
M−N , which guarantees a type I error no larger than α asymptotically. Thm. 4.8 demonstrates that

under certain conditions, the detection of conditional independence is feasible with only a single
proxy variable Ai′ for U. With Thm. 4.8, we can conduct hypothesis testing iteratively for each
edge between A and Y. In this regard, we can test assump. 3.2 and find proxies WS,j and ZS,j that
satisfy conditional independence in Eq. 2, 3. Once we have identified such proxies, we can perform
a causal estimation of ATE, which will be introduced in the next section.

5 ESTIMATION

With identified proxiesWS,j andZS,j at hand, we introduce our method to estimate the causal effect.
Following Tchetgen et al. (2020); Cui et al. (2023), we first solve the outcome bridge functions h
and treatment bridge functions q from the following Fredholm integral equations, where we replace
WS,j and ZS,j with W and Z for brevity:

E[Y − h(A,W )|A,Z] = 0, E [q(A,Z)− 1/p(A|W )|A,W ] = 0. (5)

Intuitively, the bridge function h and q respectively serve a similar role as the regression function
E[Y |a,W ] and the propensity score 1/p(a|Z) in classical causal inference. To solve h, q, we use
the Maximum Moment Restriction (Mastouri et al., 2021; Xu et al., 2021) with kernel method:

min
h∈HAW

1

n2

n∑
i,j=1

(yi − hi)(yj − hj)k
g
ij + λh ∥h∥2HAW

(6)

min
h∈QAZ

1

n2

n∑
i,j=1

(1/pi − qi)(1/pj − qj)k
m
ij + λq ∥q∥2QAZ

, (7)

where pi := p(ai|wi) denotes the propensity score, and h and q belong to the reproducing kernel
Hilbert space (RKHS) HAW ,HAZ with ∥·∥HAW

, ∥·∥HAZ
and kernels kgij := kg((ai, zi), (aj , zj)),

kmij = km((ai, wi), (aj , wj)). After estimating h and q, we employ Colangelo & Lee (2020); Wu
et al. (2023) to estimate the causal effect:

E[Y |do(a)] ≈ En[Khbw
(A− a) q(a, Z)(Y − h(a,W )) + h(a,W ))], (8)

where the indicator function I(A = a) in the doubly robust estimator for binary treatments (Colan-
gelo & Lee, 2020) is replaced with the kernel function Khbw

(ai − a) = 1/hbwK ((ai − a)/hbw)
(hbw > 0 is the bandwidth), as a smooth approximation to make the estimation for continuous
treatments feasible. In Wu et al. (2023), this estimator coupled with Eq. 6 was shown to enjoy the
optimal convergence rate with hbw = O(n−1/5). Please refer to the appendix for details.

6 EXPERIMENTS

In this section, we evaluate our method on synthetic data and a real-world application that studies
the treatment effect for sepsis disease.

Compared baselines. (i) Generalized Propensity Score (GPS) (Scharfstein et al., 1999) that es-
timated the causal effect with generalized propensity score; (ii) Targeted Maximum Likelihood
Estimation (TMLE) (Van Der Laan & Rubin, 2006) that used Targeted Maximum Likelihood Es-
timation to estimate causal effects; (iii) POP (Zhou et al., 2020) that used multiple outcomes and
linear structural equations to estimate causal effects; iv) Deconf. (Linear) (Wang & Blei, 2019)
that estimated unobserved confounders from multiple treatments to estimate causal effects, where
the outcome model is linear; v) Deconf. (Kernel) that the outcome model is kernel regression; vi)
P-Deconf. (Linear) (Wang & Blei, 2021) that used null proxy on the basis of Wang & Blei (2019)
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to estimate causal effects, where the outcome model is linear; vii) P-Deconf. (Kernel) that uses
kernel regression to estimate the outcome model.

Evaluation metrics. We calculate the causal Mean Absolute Error (cMAE) across 10 equally spaced
points in supp(A) := [0, 1]: cMAE := 1

10

∑10
i=1 |E[Y

ai ]−Ê[Y ai ]|. The truth E[Y a] is derived through
Monte Carlo simulations comprising 10,000 replicates of data generation for each a.

𝑈

𝐴1

𝑌1

𝐴2 𝐴3 𝐴5

𝑌2 𝑌3 𝑌4

𝐴4 𝑀𝑆𝑁𝐸𝑉𝐴𝑁

𝑊𝐵𝐶 𝑀𝐵𝑃 𝑃𝐿𝑇

𝐻𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠

(a) (b)

Figure 2: The causal graph over treatments (blue) and outcomes (yellow) of (a) synthetic data and
(b) real-world data. The DAG of (b) is estimated using hypothesis testing in Sec. 4.2

6.1 SYNTHETIC STUDY

Data generation. We follow the DAG in Fig. 2 and following structural equations to generate data:
U ∼ Uniform[−1, 1], Ai = gi(U)+ϵi, with gi chosen from {linear, tanh, sin, cos, sigmoid} and
ϵi ∼ N(0, 1), and Y is a non-linear structure, namely Y1 = 2 sin(1.4A1 + 2A2

3) + 0.5(A2 + A2
4 +

A5) +A3
3 + U + ϵ1, Y2 = −2 cos(1.8A2) + 1.5A2

4 + U + ϵ2, Y3 = 0.7A2
3 + 1.2A4 + U + ϵ3, and

Y4 = 1.6e−A1+1 + 2.3A2
5 + U + ϵ4 with {ϵi}4i=1 ∼ N(0, 1).

Implementation details. For hypothesis testing in identifying proxies, we set the significant level
α as 0.05, the A,W, Y are discretized by quantile and the bin numbers of A,W, Y as I := |A| =
15,K := |W | = 8, L := |Y | = 5, respectively. We estimate qy, Q in Eq. 4 using empirical
probabilities. For the causal estimator in Eq. 8, we choose the Gaussian Kernel with bandwidth
hbw = 1.5σ̂An

−1/5 where σ̂A is the estimated standard deviation (std) of A. We run each algorithm
20 times to calculate the average cMAE.

Causal effect estimation. We estimate the average causal effect of A3 → Y1, (A1, A3) → Y1,
A2 → Y2, (A1, A5) → Y4 and report the results in Tab. 1. As we can see, our approach consistently
provides accurate estimates of causal effects. In contrast, the GPS and TMLE suffer from large
biases as the ignorability condition does not hold. Besides, Deconf. method also suffers from
large biases due to the non-identifiability of latent confounders giving rise to multiple treatments.
Although P-Deconf. performs well under the existence of a null proxy, it fails to estimate well when
this condition is not met, as seen in the case of A3 (or A1, A3) to Y1 where there is no null proxy
for Y1. Additionally, the biases in the POP method may arise from the requirement of the condition
that each treatment impacts all outcomes, which does not hold for all treatments in our scenario.

Table 1: C-MAE of our method and other baselines on synthetic data. Each method was replicated
20 times and evaluated for A ∈ [0, 1] in each replicate.

Method A3 → Y1 (A1, A3) → Y1 A2 → Y2 (A1, A5) → Y4
600 1200 600 1200 600 1200 600 1200

GPS 0.97±0.33 0.64±0.17 - - 0.46±0.21 0.33±0.14 - -
TMLE 0.48±0.16 0.43±0.16 - - 0.68±0.28 0.42±0.15 - -
POP 2.64±0.49 2.57±0.33 - - 2.17±1.31 1.52±0.65 - -

Deconf.(Linear) 2.52±0.41 2.59±0.40 6.05±1.58 5.81±1.49 1.23±0.54 1.34±0.41 1.31±0.35 1.16±0.30

Deconf.(Kernel) 0.60±0.08 0.48±0.12 4.12±0.80 3.67±1.10 0.35±0.20 0.38±0.19 0.24±0.24 0.29±0.25

P-Deconf.(Linear) 2.52±0.41 2.59±0.40 6.05±1.58 5.81±1.49 1.08±0.26 1.19±0.18 1.81±0.44 1.77±0.27

P-Deconf.(Kernel) 0.60±0.08 0.48±0.12 4.12±0.80 3.67±1.10 0.26±0.16 0.21±0.14 0.19±0.12 0.20±0.10

Ours 0.28±0.09 0.27±0.09 0.49±0.20 0.48±0.14 0.29±0.14 0.23±0.09 0.17±0.09 0.22±0.14

Hypothesis Testing for Causal Discovery. To further explain the advantage over the POP that also
considers multiple outcomes, we compare the accuracy of causal relations inference. Concretely, we
measure the precision, recall, and the F1 score of inferred causal relations with n = 600 samples,
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and the result shows that our method is more accurate: F1 (ours: 0.78± 0.06 vs POP: 0.57± 0.07),
precision (ours: 0.91±0.08 vs POP: 0.45±0.03), and recall (ours: 0.69±0.06 vs POP: 0.79±0.19).

6.2 TREATMENT EFFECT FOR SEPSIS DISEASE

In this section, we apply our method to the treatment effect estimation for sepsis disease.

Data Preparation. We consider the Medical Information Mart for Intensive Care (MIMIC III)
dataset (Johnson et al., 2016), which consists of electronic health records from patients in the ICU.
From MIMIC III, we extract 1,165 patients with sepsis disease. For these patients, three treat-
ment options are recorded during their stays: Vancomycin (VAN), Morphine Sulfate (MS), and
Norepinephrine (NE), which are commonly used to treat sepsis patients in the ICU. After receiving
treatments, we record several blood count indexes, among which we consider three outcomes in this
study: White blood cell count (WBC), Mean blood pressure (MBP), and Platelets (PLT).

Implementation details. For hypothesis testing, we set α = 0.05, and the bin numbers for uniform
discretization of A,W, Y as I := |A| = 10,K := |W | = 6, L := |Y | = 5, respectively. The
estimation of qy, Q in Eq. 4 and the hyperparameters in Eq. 8 is similar to the synthetic data.

Causal discovery. Our obtained causal diagram is depicted in Fig. 2(b). As illustrated, Vancomycin
exhibits a significant causal influence on White Blood Cell Count and Platelets, which is in accor-
dance with existing clinical research (Rosini et al., 2015; Mohammadi et al., 2017). Furthermore,
Fig. 2 demonstrates a close association between the prescription of morphine and Mean Blood Pres-
sure and Platelets, but it does not appear to exert a noticeable influence on White Blood Cell Counts,
aligning with the known pharmacological side effects of morphine as reported in Anand et al. (2004);
Degrauwe et al. (2019); Simons et al. (2006). Additionally, we observe that Norepinephrine causally
affects all blood count parameters, as also found in previous studies (Gader & Cash, 1975; Larsson
et al., 1994; Belin et al., 2023).

Causal Effect Estimation. We estimate the causal effect of VAN → WBC, NE → MBP, MS →
PLT and report the curve of causal effect across dosage in Fig. 3. As shown, vancomycin, used to
control bacterial infections in patients with sepsis, initially lowered white blood cell counts and then
leveled off because of its bactericidal and anti-inflammatory properties. Besides, Norepinephrine, as
a vasopressor, can increase blood pressure. Also, Fig. 3 shows that Morphine has a negative effect
on platelet counts. Our findings are consistent with the literature studying the effects of three drugs
on blood count indexes (Rosini et al., 2015; Degrauwe et al., 2019; Belin et al., 2023).
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Figure 3: The curve of E[Y |do(a)] with respect to A of WBC (left), MS (middle), and PLT (right).

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduce a new setting called multiple treatments and multiple outcomes, which
is a natural extension of the multiple treatments setting to scenarios where multiple outcomes are
of interest. Under this new scenario, we show the identifiability of the causal effect if the bipartite
graph over treatments and outcomes is not dense enough, which can easily hold. We then employ
hypothesis testing for causal discovery to identify proxy variables. With such identified proxies,
we estimate the causal effect with a kernel-based doubly robust estimator that is provable to be
consistent. We demonstrate the utility on synthetic and real-world data.

Limitation and Future Works. Our method requires the proxy variable for hypothesis testing to
detect causal edges. Nevertheless, as demonstrated in the experiment presented in Appendix E.2,
the type-I error could still be influenced if the selected proxy variables lack sufficient strength. A
possible solution to this problem is to select the most appropriate proxy variable according to the
Bayes Factor that can be used to control the posterior Type-I error.
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Sinno HP Simons, Daniëlla WE Roofthooft, Monique van Dijk, Richard A van Lingen, Hugo J
Duivenvoorden, John N van den Anker, and Dick Tibboel. Morphine in ventilated neonates: its
effects on arterial blood pressure. Archives of Disease in Childhood-Fetal and Neonatal Edition,
91(1):F46–F51, 2006.

Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction to
proximal causal learning. arXiv preprint arXiv:2009.10982, 2020.

11



Under review as a conference paper at ICLR 2024

Mark J Van Der Laan and Daniel Rubin. Targeted maximum likelihood learning. The international
journal of biostatistics, 2(1), 2006.

Yixin Wang and David Blei. A proxy variable view of shared confounding. In International Con-
ference on Machine Learning, pp. 10697–10707. PMLR, 2021.

Yixin Wang and David M Blei. The blessings of multiple causes. Journal of the American Statistical
Association, 114(528):1574–1596, 2019.

Andrew Warren. Wasserstein conditional independence testing. arXiv preprint arXiv:2107.14184,
2021.

Yong Wu, Yanwei Fu, Shouyan Wang, and Xinwei Sun. Doubly robust proximal causal learning for
continuous treatments. arXiv preprint arXiv:2309.12819, 2023.

Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its application
to confounded bandit policy evaluation. Advances in Neural Information Processing Systems, 34:
26264–26275, 2021.

Leon Yao, Caroline Lo, Israel Nir, Sarah Tan, Ariel Evnine, Adam Lerer, and Alex Peysakhovich.
Efficient heterogeneous treatment effect estimation with multiple experiments and multiple out-
comes. arXiv preprint arXiv:2206.04907, 2022.

Ying Zhou, Dingke Tang, Dehan Kong, and Linbo Wang. The promises of parallel outcomes. arXiv
preprint arXiv:2012.05849, 2020.

12



Under review as a conference paper at ICLR 2024

APPENDIX

A Preliminaries 14

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.2 Lipschitzness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B Regularity condition 15

C Identification 15

C.1 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.2 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.3 Proof of Theorem 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.4 Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.5 Null-TV Lipschitzness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Estimation 21

E Experiments 21

E.1 Synthetic Study of Sec. 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.2 Limitations about Hypothesis Testing in Sec. 7 . . . . . . . . . . . . . . . . . . . 23

E.3 Real-word Study of Sec. 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13



Under review as a conference paper at ICLR 2024

A PRELIMINARIES

A.1 NOTATION

In this section, we will define some notations used throughout the proof in the appendix. Moreover,
we will introduce other notations in the corresponding subsection.

Table 2: Table of Notations

Notation Meaning

X,U Covariates and unobserved confounders

A = [Ai]i=1:I I (I > 1) treatments,

Y = [Yj ]j=1:J J (J > 1) outcomes

OS = {Oi|i ∈ S} the subset of O for any variables O that can denote A, X, and Y

O−S = {Oi|i /∈ S} the complementary set of OS

do(aS) do(AS = aS), intervention variable AS with a value of aS
Y (a) the potential outcome with A = a

E[·],P[·] the expectation and the probability distribution of a random variable

P(X | y) [P(x1 | y), · · · ,P(xk | y)]⊤

P(x | Y ) [P(x | y1), · · · ,P(x | yl)]
P(X | Y ) [P(X|y1), · · · ,P(X|yl)]

[I] {1, 2, 3, . . . , n}
|OS | the number of subsets of O is S

WS,j , ZS,j two admissible proxies of AS → Yj

{Un}Nn=1, {An}Nn=1 measurable partition of U and Ai′

U,Ai′ discretized version of U and Ai′

qy {P(Yj ≤ y|ai)}Mi=1

Q
{
P(Ai′ |ai)

}M

i=1

q̂y, Q̂ available estimators of qy, Q

A\B Set subtraction

supp(A) {a ∈ A : a ̸= 0}
TV(·, ·) Total Variation (TV) distance

||f ||TV
1
2∥f∥1

||x||1
√∑

i |xi|

A.2 LIPSCHITZNESS

In this section, we introduce the definition of Lipschitz Continuous. Given a metric space (X , ρ), a
function f : X → R is L-Lipschitz with respect to the metric ρ if

|f(x)− f(x′)| ≤ Lρ(x, x′) ∀x, x′ ∈ X .

Definition A.1 (Total variation distance). The total variation distance between two probability mea-
sures P and Q on a measurable space (Ω,X ) is defined as

∥P−Q∥TV = sup
A⊂X

|P(A)−Q(A)| = 1

2
∥P−Q∥1.
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B REGULARITY CONDITION

Following Miao et al. (2018); Cui et al. (2020), we use the Picard’s Theorem (Carrasco et al., 2007)
to characterize the existence of solutions to equations of the first kind by the singular value decom-
position of the associated operators.
Lemma B.1. Given Hilbert spaces H1 and H2, a compact operator K : H1 7−→ H2 and its adjoint
operator K ′ : H2 7−→ H1, there exists a singular system (λn, φn, ψn)

+∞
n=1 of K with nonzero

singular values {λn} and orthogonal sequences {φn ∈ H1} and {ψn ∈ H2}. Then the equation of
the first kind Kh = ϕ, where ϕ be a given function in H2, has solution if and only if

1. ϕ ∈ N (K ′)
⊥, where N (K ′) = {h : K ′h = 0} is the null space of the adjoint operator K ′;

2.
∑+∞

n=1 λ
−2
n |⟨ϕ, ψn⟩|2 < +∞.

In the following two lemmas, we show the existence of bridge functions under the completeness
conditions. We replace WS,j and ZS,j with W and Z for brevity
Lemma B.2. Assume Assumption 2 condition 1, Assumption 5 condition 1 and the following condi-
tions for almost all a:

•
∫ ∫

p(w|z, a)p(z|w, a)dwdz <∞ and
∫
E2[Y |z, a]p(z|a)dz <∞;

•
∑∞

n=1 λ
−2
a,n|⟨E[Y |z, a], ϕa,n⟩|2 <∞.

Then there exists function h ∈ L2(W |A = a) for almost all a such that

E[Y |Z,A] =
∫
h(w,A)dP(w|Z,A),

Lemma B.3. Assume Assumption 4.3(2) and the following conditions for almost all a:

•
∫ ∫

p(w|z, a)p(z|w, a)dwdz <∞ and
∫
p−2(a|w)p(w|a)dw <∞;

•
∑∞

n=1 λ
′−2
a,n |⟨p−1(a|w), ϕ′a,n⟩|2 <∞.

Then there exists function h ∈ L2(Z|A = a) for almost all a such that

E[q(a, Z)|A = a,W ] =
1

p(A = a|W )

C IDENTIFICATION

This section comprises proofs for all results presented in sec. 3 and sec. 4, along with additional
extensions.

C.1 PROOF OF LEMMA 4.1

Lemma 4.1. Suppose Assumptions 3.1 and 3.2 hold for AS ⊂ A and Yj ∈ Y. Then, there exist
two admissible proxies (ZS,j ,WS,j) that satisfy Eq. 2, 3.

Proof. We consider a limiting case in which only one of the three assumptions is satisfied.

1. If Assumption 3.2 (i) is satisfied and Assumption 3.2 (ii) and (iii) are not satisfied, that implies
|Y| ≥ 3. Since there exists at least one missing edge from AS to Y−j , we can choose ZSj ∈
{Y | A−S ̸→ Y, Y ∈ Y−j} and WSj ∈ Y−j\ZSj as two types of proxies. It follows that there
must be no unblocked causal pathway between ZSj and Yj conditional on U,Ai,A−i\WSj , and
ZSj , Ai ⊥WSj | (U,A−i\WSj) since ZSj only passes U and A−i\WSj to Yj . Thus, Zij and Wij

that satisfy the conditional independencies in Conditions 2 and 3 are identifiable.

2. If Assumption 3.2 (ii) is satisfied and Assumption 3.2 (i) and (iii) are not satisfied, that implies
|A−S | ≥ 2. Since there exists at least one missing edge from A−S to Yj , we can choose ZSj ∈
{Y | A−S ̸→ Y, Y ∈ Yj} and WSj ∈ A−S\ZSj as two types of proxies.

3. If Assumption 3.2 (iii) is satisfied and Assumption 3.2 (i) and (ii) are not satisfied, that im-
plies there is at least one missing edge from A−S to Y−j . We can choose (ZSj ,WSj) ∈
{(Y,A) | A ̸→ Y,A ∈ A−S , Y ∈ Y−j} as two type of proxies.
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Remark C.1. Since we are dealing with a single treatment, we can relax Assumption 3.2. According
to Remark 3.3, if the entire bipartite graph between A and Y has at most IJ − 2 edges, then the
proxies are identifiable for each pair (Ai, Yj). Specifically, if deg+(Ai) = J or deg−(Yj) = I ,
where deg− and deg+ refer to the indegree and outdegree of a vertex, then we have Wij , Zij ∈
{A\Ai} ∪ {Y\Yj}. On the other hand, if deg+(Ai) < J and deg−(Yj) < I , we can choose
Wij , Zij ∈ A\Ai such that Zij is the vertex that is not connected to Yj and Wij is a vertex other
than these two points.

𝐴1 𝐴2 𝐴𝐼−1𝐴1 𝐴𝐼⋯

𝑌1 𝑌2 𝑌3

𝐴1 𝐴2 𝐴𝐼−2𝐴1 ⋯ 𝐴1 𝐴𝐼𝐴𝐼−1

𝑌1 𝑌1

𝐴1 𝐴2 𝐴𝐼−2𝐴1 ⋯ 𝐴𝐼

𝑌1 𝑌1

(a) (b) (c)

Figure 4: Example diagrams of three proof situations, where we omit confonder U

C.2 PROOF OF THEOREM 4.4

Theorem 4.4. Suppose assump. 3.1-3.5, 4.3 hold for AS and Yj . Then E[Yj |do(aS)] is identifiable.

Proof. Based on Lemma 4.1, we can identify two type of proxies ZSj and WSj , which satisfy the
conditional independencies in Eq. 2 and 3, respectively. As a result, under Assumption 3.1-3.5 and
Assumption 4.3, we can identify E[Yj | do(aS)].

C.3 PROOF OF THEOREM 4.8

To proceed with our analysis, we now shift our attention to proving Theorem 4.8. To this end, we
first present a series of lemmas that will prove useful in our subsequent proof.

Lemma C.2. Assume z 7→ P((X,Y )|Z = z) are Lipschitz continuous with respect to Total Vari-
ation (TV) distance. Suppose that {Vj}Jj=1 is a measurable partition of the support of Z, and that
diam(Vj) ≤ 2ε

L for every bin Vj in the partition. Then, for all z0 ∈ Vj , it holds that

TV (P((X,Y )|Z ∈ Vj),P((X,Y )|Z = z0)) ≤ ε.

Proof. Consider a Borel measurable function z 7→ µz defined on a Polish space S, where µz =
P((X,Y )|Z = z). Additionally, let Vi ⊆ S be a Borel set within S. We denote ν = P((X,Y )|Z =

z0) and λ(Z) = P(Z)
P(Z∈Vj)

as a probability measure on Vj . Therefore, we obtain the following:

TV (P((X,Y )|Z ∈ Vj),P((X,Y )|Z = z0))

=TV

(
1

P(Z ∈ Vj)

∫
Vi

P((X,Y )|Z = z)dP(z),P((X,Y )|Z = z0)

)
=TV

(∫
Vi

µzdλ(z), ν

)
= TV

(∫
Vi

µzdλ(z),

∫
Vi

νdλ(z)

)
=
1

2

∣∣∣∣∫
Vi

µz − νdλ(z)

∣∣∣∣ ≤ 1

2

∫
Vi

|µz − ν|dλ(z)

=

∫
Vi

TV (µz, ν)dλ(z) ≤
1

2
L |z − z0| ≤ ε

where the last inequation is due to the Lipschitzness of z 7→ P((X,Y )|Z = z).

Lemma C.3 (Shao (2003)). LetX1, X2, · · · and Y be random k-vectors satisfying an(Xn−c) → Y
in distribution, where c ∈ Rk and {an} is a sequence of positive numbers with limn→+∞ an = +∞.
Let g be a function from Rk to R. Suppose that g has continuous partial derivatives of order m > 1
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in a neighborhood of c, with all the partial derivatives of order smaller than m − 1 vanishing at c,
but with the mth-order partial derivatives not all vanishing at c. Then

amn {g(Xn)− g(c)} → 1

m!

k∑
i1=1

· · ·
k∑

im=1

∂mg

∂xi1 · · · ∂xim

∣∣∣∣∣
im=c

Yi1 × · · · × Yim indistribution,

where Yj is the jth component of Y .

Theorem 4.8. Denote Q1 := Σ
−1/2
y Q⊤, Ωy := I −Q1

(
Q⊤

1 Q1

)−1
Q⊤

1 . We thus have ξy = Ω̂yQ̂1.

We select a1, ..., aM with M > N . Then under assump. 4.5-4.7, if H0 is correct, we have
√
nξy

d→
N(0,Ωy), where the rank of Ωy is M −N and nξ⊤y ξy → χ2

M−N .

Proof. As we mentioned before, we denote N bins {Un}Nn=1 and {An}Nn=1 as measurable partition
of U and Ai′ in the hypothesis testing of H0 : Ai ⊥ Yj |U. Denote U and Ai′ as discretized
version of U and Ai′ such that U = k iff U ∈ Uk. By the definition of conditional probability and
Ai ⊥ Ai′ | U, we have

P (ai′ ∈ An|ai) =
N∑

k=1

P (ai′ ∈ An|U ∈ Uk, ai)P (U ∈ Uk|ai) := P
(
ai′ ∈ An|U, ai

)
P
(
U|ai

)
,

P (Yj ≤ y|ai) =
N∑

k=1

P (Yj ≤ y|U ∈ Uk, ai)P (U ∈ Uk|ai) := P
(
Yj ≤ y|U, ai

)
P
(
U|ai

)
.

For the first equation, we line up all the An in a row,
P
(
Ai′ |ai

)
= P

(
Ai′ |U, ai

)
P
(
U|ai

)
.

By Assumption 4.6, the matrix P(Ai′ |U, ai) is invertible, then we obtain

P (Yj ≤ yj |ai) = P
(
Yj ≤ yj |U, ai

)
P
(
Ai′ |U, ai

)−1 P
(
Ai′ |ai

)
According to Lemma C.2, as long as the partition is fine enough, namely diam(Uk) ≤
min{ε/LAi′ , ε/LAi′ |Ai

}, we have

TV (P (Yj ≤ yj |U ∈ Uk) ,P (Yj ≤ yj |U = u)) ≤ ε

2
,

TV (P (Yj ≤ yj |U ∈ Uk, ai) ,P (Yj ≤ yj |U = u, ai)) ≤
ε

2
.

If H0 holds, we have
|P (Yj ≤ yj |U ∈ Uk)− P (Yj ≤ yj |U ∈ Uk, ai)|

≤ |P (Yj ≤ yj |U ∈ Uk)− P (Yj ≤ yj |ai,U = u)|
+ |P (Yj ≤ yj |ai,U = u)− P (Yj ≤ yj |U ∈ Uk, ai)|

= |P (Yj ≤ yj |U ∈ Uk)− P (Yj ≤ yj |U = u)|
+ |P (Yj ≤ yj |U = u, ai)− P (Yj ≤ yj |U ∈ Uk, ai)|

(1)

≤2TV (P (Yj ≤ yj |U ∈ Uk) ,P (Yj ≤ yj |U = u))

+ 2TV (P (Yj ≤ yj |U ∈ Uk, ai) ,P (Yj ≤ yj |U = u, ai))

≤ε
where (1) is derived from Def. A.1. Similar, according to Lemma C.2, we have

TV (P(ai′ ∈ An|U ∈ Uk, ai),P(ai′ ∈ An|U = u, ai)) ≤ ε.

Therefore
P (Yj ≤ yj |ai) = P

(
Yj ≤ yj |U, ai

)
P
(
Ai′ |U, ai

)−1 P
(
Ai′ |ai

)
=

[
P
(
Yj ≤ yj |U, ai

)
− P

(
Yj ≤ yj |U

)
+ P

(
Yj ≤ yj |U

)]
·
[
P
(
Ai′ |U, ai

)−1 − P
(
Ai′ |U

)−1
+ P

(
Ai′ |U

)−1
]
P
(
Ai′ |ai

)
= P

(
Yj ≤ yj |U

)
P
(
Ai′ |U

)−1 P
(
Ai′ |ai

)
+∆P

(
Ai′ |ai

)
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where

∆ = P
(
Yj ≤ yj |U

) [
P
(
Ai′ |U, ai

)−1 − P
(
Ai′ |U

)−1
]

+
[
P
(
Yj ≤ yj |U, ai

)
− P

(
Yj ≤ yj |U

)]
P
(
Ai′ |U

)−1

+
[
P
(
Yj ≤ yj |U, ai

)
− P

(
Yj ≤ yj |U

)] [
P
(
Ai′ |U, ai

)−1 − P
(
Ai′ |U

)−1
]
.

By Ai ⊥ Ai′ | U, we have

lim
ϵ→0

P
(
Ai′ |U, ai

)−1 − P
(
Ai′ |U

)−1
= [0].

where [0] denote the zero matrix.

By H0, we have
lim
ϵ→0

P
(
Yj ≤ yj |U, ai

)
− P

(
Yj ≤ yj |U

)
= [0].

With the above two equations, we have
lim
ϵ→0

∆ = [0],

lim
ϵ→0

P(Yj ≤ yj |ai) = P
(
Yj ≤ yj |U

)
P
(
Ai′ |U

)−1 P
(
Ai′ |ai

)
.

Considering all bins of supp(Ai), this can be written in the form of transition probability matrix:

lim
ϵ→0

qTy = P
(
Yj ≤ yj |U

)
P
(
Ai′ |U

)−1
Q,

which means qTy ∼ Q is linear under H0.

According to Assumption 4.7, since
√
n(q̂y − qy)

d→ N(0,Σy), Q̂
p→ Q, Σ̂y

p→ Σy , applying Slut-

sky’s theorem, we have n
1
2 (ξy −ΩyΣ

− 1
2

y qy)
D→ N(0,ΩyΩ

T
y ), where Ωy = I −Q1

(
Q⊤

1 Q1

)−1
Q⊤

1 .

Because Ωy is a symmetric, idempotent matrix, we have n1/2(ξy − ΩyΣ
−1/2
y qy)

d→ N(0,Ωy).

When there are enough bins, ΩyΣ
−1/2
y qy → 0, which implies that n1/2ξy

d→ N(0,Ωy).

Because Q1 has rank N , Q1

(
Q⊤

1 Q1

)−1
Q⊤

1 is an idempotent matrix of rank N . Hence, Ωy is an
idempotent matrix of rank M − N . For fixed y, applying Lemma C.3 with g(x) = x⊤x, we have
Ty = g(n1/2ξy)

d→ N(0,Ωy)
TN(0,Ωy).

Because Ωy is an idempotent matrix of rank M − N , there exists a unitary matrix V such
that V ΩyV

⊤ = diag(1, . . . , 1, 0, . . . , 0), a diagonal matrix with M − N eigenvalues equal
to one. Thus, V N(0,Ωy) ∼ N{0, diag(1, . . . , 1, 0, . . . , 0)}, and N(0,Ωy)

⊤N(0,Ωy) =

{V N(0,Ωy)}⊤{V N(0,Ωy)} ∼ χ2
M−N . Therefore, nξ⊤y ξy

d→ χ2
M−N .

Given a significance level of α, we can reject the null hypothesis H0 if nξ⊤y ξy exceeds the (1−α)th
quantile of the χ2

r distribution. This ensures that the type I error is no larger than α asymptotically.

C.4 ADDITIONAL INFORMATION

To satisfy the conditions of Theorem 4.8, we need to estimate Σy and Q. The probability matrix
Q can be estimated using empirical probabilities. When considering the covariance matrix, it is
important to recognize that each element of the vector qy corresponds to a distribution function. To
estimate it, we can utilize the empirical probability distribution function. The central limit theorem
ensures that the estimate converges to a normal distribution as the sample size increases. Alterna-
tively, we have the option to discretize the variable Yj and divide it into a finite number of bins.
Specifically, suppose the bins {El}Ll=1 is a measurable partition of the support of Yj . Then let
q⊤ = (q⊤1 , . . . , q

⊤
L−1); then under H0, we have

q ≈ {P
(
yj ∈ E1 | U

)
P
(
Ai′ |U

)−1
, ...,P

(
yj ∈ EL−1 | U

)
P
(
Ai′ |U

)−1}

Q 0 0
...

...
...

0 0 Q

 .
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Denote the diagonal matrix on the right hand side as Q0. We can construct a new test statistic T that
aggregates all levels of Yj by replacing (q̂y, Q̂) with (q̂, Q̂) wherever they appear in the construction
of ξy and Ty .

Corollary C.4. Suppose we have available estimators (q̂, Q̂0) that satisfy

√
n(q̂ − q)

d→ N(0,Σ) Q̂0
p→ Q0, Σ̂

p→ Σ

where Σ̂ and Σ are positive-definite. Denote Q2 := Σ−1/2Q⊤
0 , Ω := I − Q2

(
Q⊤

2 Q2

)−1
Q⊤

2

and ξ = Ω̂Q̂2. We select a1, · · · , aM with M > N . Then under Assumption 4.5, 4.6 and 4.7,
if H0 is correct, we have

√
nξ

d→ N(0,Ω), where the rank of Ω is (M − N) × (L − 1) and
nξ⊤ξ → χ2

(M−N)(L−1).

Aggregating all levels of an M -category outcome results in a chi-square test with (M −N)(L− 1)
degrees of freedom. In the case where q degenerates into distributions of discrete variables, we
can estimate it using empirical probabilities, and then estimate the covariance matrix accordingly.
Besides, we can also use q = {E(Yj | ai), . . . ,E(Yj | ai)}⊤ in construction of the test statistic and
perform the test on the mean scale.

When there are also observed confounders X, the above proof also holds. We just need to notice

P (ai′ ∈ An|ai,x) = P
(
ai′ ∈ An|U, ai,x

)
P
(
U|ai,x

)
,

P (Yj ≤ y|ai,x) = P
(
Yj ≤ y|U, ai,x

)
P
(
U|ai,x

)
.

The rest of the proofs are similar.

In sec. 4, the hypothesis testing is presented under the assumption that the random variables U
and Ai′ are bounded. However, it is important to note that our hypothesis test can also be applied
when the random variables are unbounded. This is due to the fact that when the obtained bound is
sufficiently large, the probability of falling in the tail of the distribution becomes arbitrarily small.
Specifically, we divide the domain of U into ΩU := {|U| ≤ T} ∪ {|U| > T}, and further partition
{|U | ≤ T} := ∪N

n Un.

P (Yj ≤ yj |ai) =
N∑

k=1

P (Yj ≤ yj ,U ∈ Uk|ai) + P (Yj ≤ yj , |U| > T |ai)

=

N∑
k=1

P (Yj ≤ yj |U ∈ Uk, ai)P (U ∈ Uk|ai)

+ P (Yj ≤ yj | |U| > T, ai)P (|U| > T |ai)

=

N∑
k=1

P (Yj ≤ yj |U ∈ Uk, ai)P (U ∈ Uk|ai) + εTP (Yj ≤ yj | |U| > T, ai)

P(ai′ ∈ An|ai) =
N∑

k=1

P (ai′ ∈ An,U ∈ Uk|ai) + P (ai′ ∈ An, |u| > T |ai)

=

N∑
k=1

P (ai′ ∈ An|U ∈ Uk, ai)P (U ∈ Uk|ai)

+ P (ai′ ∈ An| |u| > T, ai)P (|u| > T |ai)

=

N∑
k=1

P (ai′ ∈ An|U ∈ Uk, ai)P (U ∈ Uk|ai) + εTP (ai′ ∈ An| |u| > T, ai)

Upon conducting our analysis, we have discovered that when T is large enough, the probability of
falling the tail region becomes arbitrarily small. Moreover, this item has nothing to do with ai, so it
will not affect our analysis of whether it is linear.
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C.5 NULL-TV LIPSCHITZNESS

To start, we’ll provide some specific examples of distributions that fall into different Lipschitzness
classes.
Example C.5. Suppose (X,Z) ∼ N(µ1, µ2, σ

2
1 , σ

2
2 , ρ), where ρ is the correlation between X and

Z, then z 7→ P(X|Z = z) be NULL-TV Lipschitzness.

Proof. Easy to obtain the conditional distribution of X given z is given by the normal distribution
X | z ∼ N(µ3, σ

2
3), where µ3 = µ1 + ρσ1

σ2
(z − µ2) and σ2

3 = σ2
1

(
1− ρ2

)
. We would like

to prove that the function z 7→ P(X|Z = z) is NULL-TV Lipschitz, which means that it has a
Lipschitz constant. To do so, we calculate the total variation distance between P(X|Z = z) and
P(X|Z = z′).

TV (P(X|Z = z),P(X|Z = z′)) =
1

2

∫
p (x | z)− p (x | z′) dx

=
1

2

∫
∂p(x|ξ)
∂z

(z − z′) dx

=
1

2
|z − z′|

∫
∂p(x|ξ)
∂z

dx

Thus we find that the total variation distance is bounded by L |z − z′|, where L is a Lipschitz con-
stant that depends on the partial derivative of the probability density function with respect to z.
Observe that ∂p(x|ξ)

∂z is a function of the form a(x + b) exp(−c(x + d)2), which is absolute inte-
grable. we can conclude that L is finite, which implies that z 7→ P(X|Z = z) is indeed NULL-TV
Lipschitz.

In fact, Neykov et al. (2021) demonstrated that if the log-conditional density is sufficiently smooth,
the resulting distribution belongs to the TV Lipschitzness class. A wide range of exponential family
distributions possess a smooth log-conditional distribution, which satisfies Assumption 4.5.
Example C.6. Suppose that g(x, y, z) : [0, 1]3 7→ [−M,M ] is a bounded L-Lipschitz function, i.e.,
|g(x, y, z)− g(x′, y′, z′)| ≤ L(|x− x′|+ |y − y′|+ |z − z′|). Take P(X,Y, Z) ∝ exp(g(x, y, z)).
Then

pX,Y |Z(x, y|z) =
exp(g(x, y, z))∫

[0,1]2
exp(g(x, y, z))dxdy

,

be NULL-TV Lipschitz which Lipschitz constant is e2L − 1.

Besides, in Bayesian networks, it is often useful to determine the total variation distance between
the joint distributions of several random variables. If each of these distributions is log-Lipschitz
continuous, then their product is guaranteed to be TV-Lipschitz continuous. This result is particu-
larly useful in Bayesian networks, where it can be used to simplify the analysis of the propagation
of probabilities between nodes. Refer to Literature Honorio (2012) for details.

Recently, Dolera & Mainini (2020) provide general conditions for getting a global form of Lipschitz
continuity for dominating probability kernels, sharing the common form:

π(B|x) :=
∫
B

g(x, θ)π(dθ) ∀B ∈ F .

For Exponential models, namely

f(x|θ) = eΦ(x,θ)h(x), g(x, θ) =
f(x|θ)
ρ(x)

=
eΦ(x,θ)∫

Θ
eΦ(x,τ)π(dτ)

for some measurable functions h : X → (0,+∞) and Φ : X × Θ → R. Here, π denotes the
prior probability measure. If θ 7→ ∇xΦ(x, ·) is Lipschitz for any x ∈ X, then we have NULL-TV
Lipschitz constant

L := ess sup
x∈X

(C[g(x, ·)π)])2
(∫

Θ

|∇θΨ(x, θ)|2g(x, θ)π(dθ)
) 1

2

< +∞
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In the field of causal inference, recent works by Farokhi (2023); Guo et al. (2022) have employed
similar assumptions, leading to partial identification of causal effects in the presence of noisy co-
variates.

D ESTIMATION

With proxies W and Z, we should solve the nuisance functions h, q in Fredholm integral Equa-
tions equation 5. After estimating h and q, we employ Colangelo & Lee (2020); Wu et al. (2023) to
estimate the causal effect:

E[Y |do(a)] ≈ En[Khbw
(A− a) q(a, Z)(Y − h(a,W )) + h(a,W ))], (9)

where the indicator function I(A = a) in the doubly robust estimator for binary treatments Colan-
gelo & Lee (2020) is replaced with the kernel function Khbw

(ai − a) = 1/hbwK ((ai − a)/hbw)
(hbw > 0 is the bandwidth), as a smooth approximation to make the estimation for continuous treat-
ments feasible. In Wu et al. (2023), this estimator coupled with Eq. 6 was shown to enjoy the optimal
convergence rate with hbw = O(n−1/5). Following Wu et al. (2023), we need to some assumptions
about kernel function.

Assumption D.1. The second-order symmetric kernel function K (·) is bounded differentiable, i.e.,∫
k(u)du = 1,

∫
uk(u)du = 0, κ2(K) =

∫
u2k(u)du <∞. We define Ω

(i)
2 (K) =

∫
(k(i)(u))2du.

Assump. D.1 adheres to the conventional norms within the domain of nonparametric kernel estima-
tion and maintains its validity across widely adopted kernel functions, including but not limited to
the Epanechnikov and Gaussian kernels

Theorem D.2. Under assump. 3.1, 3.2 and 4.3 and D.1, suppose ∥ĥ−h∥2 = o(1), ∥q̂−q∥2 = o(1)

and ∥ĥ−h∥2∥q̂− q∥2 = o((nhbw)
−1/2), nh5bw = O(1), nhbw → ∞, h0(a,w, x), p(a, z|w, x) and

p(a,w|z, x) are twice continuously differentiable wrt a as well as h0, q0, ĥ, q̂ are uniformly bounded.
Then for any a, we have the following for the bias and variance of the PKDR estimator given Eq. 8:

Bias(β̂(a)) := E[β̂(a)]−β(a) = h2bw
2
κ2(K)B+o((nhbw)

−1/2),Var[β̂(a)] =
Ω2(K)

nhbw
(V +o(1)),

where B = E[q0(a, Z)[ ∂
∂Ah0(a,W ) ∂

∂Ap(a,W |Z) + 1
2 (

∂2

∂A2h0(a,W ))]], V = E[I(A =

a)q0(a, Z)
2(Y − h0(a,W ))2].

The proof of the Thm. D.2 is detailed in Wu et al. (2023).

E EXPERIMENTS

In this appendix, we provide more details of two experiments of sec. 6.1. Besides, we also conduct
a new experiment to illustrate the limitation of hypothesis testing in Sec. E.2.

E.1 SYNTHETIC STUDY OF SEC. 6.1

We present the results of hypothesis testing and offer implementation details of causal estimation in
the context of synthetic data.

E.1.1 HYPOTHESIS TESTING FOR CAUSAL DISCOVERY

Data generation. We describe the data generating mechanism of section 6.1. We consider five
treatments {Ai}5i=1, four outcomes{Yi}4i=1, and one unobserved confounder U . We use the follow-
ing structural equations: U ∼ Uniform(−1, 1), Ai = gi(U) + ϵi, with gi randomly chosen from
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{linear, tanh, sin, cos, sigmoid} and ϵi ∼ N(0, 1) and Y is a non-linear structure. Specifically,

A1 = 0.5× (U + 5) + ε1
A2 = 0.5× (tanh (U) + 3) + ε2
A3 = 0.5×

(
sin

(
π
8U

)
+ 3

)
+ ε3

A4 = 0.5×
(

1
1.0+exp(U)+3

)
+ ε4

A5 = 0.5×
(
cos

(
π
8U

)
+ 3

)
+ ε5

where ϵi ∼ N(0, 1).



Y1 = 2 sin
(
1.4A1 + 2A2

3

)
+0.5

(
A2 +A2

4 +A5

)
+A3

3 + U + ϵ1
Y2 = −2 cos (1.8A2) + 1.5A2

4 + U + ϵ2
Y3 = 0.7A2

3 + 1.2A4 + U + ϵ3
Y4 = 1.6e−A1+1 + 2.3A2

5 + U + ϵ4

where ϵi ∼ N(0, 1).

Independence test: i) Fisher that Fisher conditional independence test; ii) POP that The Promises
of Parallel Outcomes; iii) Ours that proxy based approach.

Implementation details. For hypothesis testing, we set the significant level α as 0.05, and the bin
numbers for discretization ofA,W, Y as I := |A| = 15,K := |W | = 8, L := |Y | = 5, respectively.
The asymptotic estimators in Eq. 4 are obtained by empirical probability mass functions. The sample
size is set to {400; 600; 800; 1, 000; 1, 200; 1, 400; 1, 600}. To remove the effect of randomness, we
repeat for 50 replications.
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Figure 5: Performance of our method and baselines under the setting of multi-treatments and multi-
outcomes.

Results. As Fig. 5, we present the performance of our method and the baselines in the context of
multiple treatments and outcomes. Notably, our method consistently outperforms all other alterna-
tives across most metrics. It is evident that the POP method which operates within a similar multi-
outcome setting, exhibits significantly poor performance due to its dependence on the assumption
of linear structural equations. In comparison to Fisher testing, our approach not only demonstrates
superior performance but also exhibits greater stability, as it effectively leverages information from
proxy variables associated with other treatments.

Influence of bin numbers. Fig. 6 shows the F1 score, precision, and recall of our method with
bin numbers varying from 2 to 11. As observed, precision improves as we increase the number of
bins, up to a point where it reaches its peak at 9 bins, beyond which further increments do not yield
significant improvements.
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Figure 6: F1 score, precision, and recall of our method under different bin numbers.

E.1.2 CAUSAL EFFECT ESTIMATION IN SEC. 6.1

We introduce implementation details of the causal effect estimation.
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Implementation details. For A3 → Y1, A2 → Y2 and (A1, A3) → Y1, we select two proxies:
Z = Y3 and W = A5. For (A1, A5) → Y4, we select two proxies: Z = Y2 and W = A3. For the
PMMR method, we use the Gaussian kernel where the bandwidth is determined by the median trick.
Specifically, we set γ−1 = median{∥xi−xj∥22}i<j∈I for indices subset I ⊂ {1, . . . , n}. Regarding
the regularization parameters, denoted as λh and λq , we select them according to the Tab. 3.

Table 3: Hyperparameters for and PMMR models.

λh1 λh2 λq1 λq2

A3 → Y1 0.05 0.05 0.20 0.20
A2 → Y2 0.20 0.20 1.00 1.00

(A1, A3) → Y1 0.20 0.20 1.00 1.00
(A1, A5) → Y4 0.20 0.20 0.20 0.20

For density estimation, we also choose the Gaussian kernel. For bandwidth, we employ three-fold
cross-validation, where the bandwidth is chosen as 20 values uniformly distributed in logarithmic
space, ranging from 10−0.1 to 1.

E.1.3 VISUALIZING DISTRIBUTION OF TREATMENTS AND OUTCOMES

As shown in Fig. 7, all treatments tend to be distributed according to a normal distribution, pri-
marily influenced by the noise in the data. Conversely, the four observed outcomes manifest a
predominantly long-tailed distribution.

E.2 LIMITATIONS ABOUT HYPOTHESIS TESTING IN SEC. 7

In the conclusion section, we mention that the testing may suffer from large type-I errors in causal
relations identification if the strength of the proxy variable is not strong enough. In order to gain a
more comprehensive understanding of this issue, we measure the effect of varying proxy variable
strength on the hypothesis testing results.

Data generation. Here we conduct two experiments, whose structural equations are listed as fol-
lows. For each experiment, we generate 1,000 samples. To explore the impact of proxy variable
strength on the hypothesis testing, we set the coefficient of the proxy variables β change from 0.1,
1, 10, 20, 50, and 100.

Experiment (I)

U ∼ N (0, 1) ,

A = U + ε1,

W = β × U + ε2,

Y =

{
A+ U + ε3, A→ Y

U + ε3, A ̸→ Y.

where ϵi ∼ N(0, 1).

Experiment (II)

U ∼ N (0, 1) ,

A = U + ε1,

W = β × tanh (U) + ε2,

Y =

{
A+ U + ε3, A→ Y

U + ε3, A ̸→ Y.

where ϵi ∼ N(0, 1).

Implementation details. For hypothesis testing, we set the significant level α as 0.05, and the bin
numbers for discretization of A,W, Y as I := |A| = 15,K := |W | = 8, L := |Y | = 5. The
asymptotic estimators in Eq. 4 are obtained by empirical probability mass functions. To remove the
effect of randomness, we repeat for 50 replications.

Results. For A→ Y , we report the type-II error to see if we successfully detect this edge, while for
A ̸→ Y , we report the type-I error to see whether we falsely reject the null hypothesis. According to
Tab. 4, we find that when A ̸→ Y , we get a larger type-I error as the strength decreases. This is be-
cause in scenarios where A ̸→ Y , as the proxy strength diminishes, its ability to explain the variable
U decreases. Consequently, it becomes challenging to utilize them in hypothesis testing. Moreover,
we find that non-linear functions can make it more difficult to infer independent relationships, thus
requiring strong proxy strength.
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Figure 7: Histograms of Synthetic dataset; sample size=1000.

Table 4: The experimental results in the presence of proxy variables of different strengths. For
A→ Y , we report the Type-II error; for A ̸→ Y , we report the Type-I error.

Proxy strength Linear Nonlinear

A→ Y (Type-II) A ̸→ Y (Type-I) A→ Y (Type-II) A ̸→ Y (Type-I)

β = 0.1 0.00 1.00 0.00 1.00
β = 1 0.00 0.24 0.00 0.58
β = 10 0.02 0.04 0.02 0.12
β = 20 0.00 0.06 0.00 0.01
β = 50 0.00 0.12 0.00 0.04
β = 100 0.02 0.04 0.02 0.02
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E.3 REAL-WORD STUDY OF SEC. 6.2

We introduce more details for the experiment in Sec. 6.2, including hypothesis testing, implementa-
tion details of the causal effect estimation, and visualization of treatments and outcomes’ distribu-
tions.

Hypothesis Testing of Baselines We present the estimated causal graph by two baseline methods,
Fisher’s independence test and POP. The learned DAGs are shown in Fig 8.

As shown, the DAGs estimated by both methods do not align well with established medical knowl-
edge. For instance, previous research, such as the study by Gader & Cash (1975), has demonstrated
that Norepinephrine indeed leads to an increase in blood pressure however the Fisher method fails
to detect this relation. Furthermore, both methods find that all treatments have no significant effect
on platelets, which is different from existing studies (Belin et al., 2023).

𝑀𝑆𝑁𝐸𝑉𝐴𝑁

𝑊𝐵𝐶 𝑀𝐵𝑃 𝑃𝐿𝑇

𝐻𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠

(a)

𝑀𝑆𝑁𝐸𝑉𝐴𝑁

𝑊𝐵𝐶 𝑀𝐵𝑃 𝑃𝐿𝑇

𝐻𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠

(b)

Figure 8: The causal graph over treatments (blue) and outcomes (yellow) of (a) Fisher (b) POP.

Implementation details of causal effect estimation. For NE → MBP, we select two proxies:
Z = WBC and W = MS and X = NE. For VAN → WBC, we select two proxies: Z = PLT
and W = MBP. For MS → PLT, we select two proxies: Z = MBP and W = VAN. For
PMMR method, we use the Gaussian kernel where the bandwidth is determined by the median trick.
Regarding the regularization parameters, denoted as λh and λq , we select it according to the Tab. 5.

Table 5: Hyperparameters for PMMR models in mimic dataset

λh1
λh2

λq1 λq2

VAN → WBC 0.2 0.2 0.1 0.1
NE → MBP 0.2 0.2 0.2 0.2
MS → PLT 0.2 0.2 0.2 0.2

Distribution of Treatments and Outcomes. As Fig. 9, we present the histograms for the treat-
ments and outcomes observed in the MIMIC. It is important to note that normal reference ranges for
blood indicators in healthy individuals are as follows: White Blood Cell Count (4-10), Mean Blood
Pressure (70-105), and Platelets (100-300).
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Figure 9: Histograms of treatments and outcomes in MIMIC dataset; sample size=1165.
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