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Abstract

Electromagnetic field simulation is central to designing, optimizing, and vali-
dating photonic devices and circuits. However, costly computation associated
with numerical simulation poses a significant bottleneck, hindering scalability and
turnaround time in the photonic circuit design process. Neural operators offer a
promising alternative, but existing SOTA approaches,NeurOLight, struggle with
predicting high-fidelity fields for real-world complicated photonic devices, with
the best reported 0.38 normalized mean absolute error in NeurOLight. The inter-
plays of highly complex light-matter interaction, e.g., scattering and resonance,
sensitivity to local structure details, non-uniform learning complexity for full-
domain simulation, and rich frequency information, contribute to the failure of
existing neural PDE solvers. In this work, we boost the prediction fidelity to an
unprecedented level for simulating complex photonic devices with a novel oper-
ator design driven by the above challenges. We propose a novel cross-axis fac-
torized PACE operator with a strong long-distance modeling capacity to connect
the full-domain complex field pattern with local device structures. Inspired by
human learning, we further divide and conquer the simulation task for extremely
hard cases into two progressively easy tasks, with a first-stage model learning an
initial solution refined by a second model. On various complicated photonic de-
vice benchmarks, we demonstrate one sole PACE model is capable of achieving
73% lower error with 50% fewer parameters compared with various recent ML
for PDE solvers. The two-stage setup further advances high-fidelity simulation
for even more intricate cases. In terms of runtime, PACE demonstrates 154-577×
and 11.8-12× simulation speedup over numerical solver using scipy or highly-
optimized pardiso solver, respectively. We open sourced the code and compli-
cated optical device dataset at PACE-Light.

1 Introduction

With advances in integrated photonics, photonic structures capable of transmitting or processing in-
formation are gathering increasing interest, fueled by the optical communication [24] and the recent
resurgence of photonic analog computing [5, 20, 23, 36, 39, 40]. Light-empowered communication
and computing offer a promising pathway for reshaping future AI systems, prompting the optical
community to discover compact, customized devices [7, 32, 38] to overcome the limitations of bulky
optical components. In this optical design process, numerical simulators, e.g., the popular finite dif-
ference frequency domain (FDFD) algorithm [11], is heavily used to obtain accurate optical fields
for characterizing and optimizing device behavior. However, the significant time and computational
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Figure 1: Challenges of complicated optical device simulation: (a-d) and learning framework (e).

costs associated with Maxwell partial differential equation (PDE) simulations, exacerbated by the
need for finely tailored meshes and numerous simulation runs for iterative optimization, pose sub-
stantial bottlenecks in the design loop.

Recently, neural PDE solvers [3, 8, 9, 15, 16, 27, 33] have emerged as promising surrogate models
for fast and accurate PDE solving. NeurOLight [8] represents the state-of-the-art (SOTA), ex-
tending neural operators to parametric photonic device simulations in a physics-agnostic manner.
However, it still exhibits large errors in simulating real-world complicated optical devices, reporting
a 0.38 normalized mean absolute error on the etched multi-mode interference (MMI) device [26].
One may wonder what the major challenges are, given the successes of neural operators in many
scientific PDEs. Firstly, for complicated devices, the permittivity distribution is discrete and highly
contrasting, transforming the Maxwell PDE into a multi-scale problem [1], further leading to com-
plex light-matter interactions such as scattering and resonance, as illustrated in Fig. 1(a). Secondly,
their optical fields are highly sensitive to local structural changes; even minor alterations can signif-
icantly impact the field, as depicted in Fig. 1(b). Moreover, with diversifying field patterns along
the light propagation path, it shows non-uniform learning complexity especially in regions distant
from the input light source. Finally, a spectral analysis provides insights into the frequency-domain
challenges, as illustrated in Fig. 1(d). Unlike simpler systems where low frequencies dominate
(e.g., Darcy flow shown in Fig. 10), complicated devices exhibit rich frequency spectra with high-
frequency components. This diversity underpins the difficulty faced by previous neural PDE solvers
in accurately simulating complicated photonic devices, supporting the assertion in [15] that no single
model can universally solve all types of PDEs.

In this work, we tackle the challenging real-world complicated optical device simulation problem.
We vastly boost prediction fidelity and keep 154-577× and 11.8-12× speedup over traditional nu-
merical solver [11] on a 20-core CPU with scipy or highly-optimized pardiso solver, respectively.

Overall, we make the following key contributions:

• We introduce a novel cross-axis factorized PACE operator backbone, effectively capturing
complex physical phenomena across the full domain in a parameter-efficient manner.

• We employ a divide-and-conquer approach inspired by human learning for extremely chal-
lenging cases, with a first-stage PACE-I to learn a rough approximation of the optical field,
refined by a second-stage PACE-II.

• On various complicated device benchmarks, one sole PACE significantly outperforms base-
lines, achieving 73% lower error with 50% fewer parameters. Even compared to the best
baseline, it lowers prediction error by over 39% with 17% fewer parameters. Our two-
stage method further advances high-fidelity simulation for extremely challenging cases.

• We open-source the complicated optical device datatset and code at PACE-Light to facili-
tate AI for PDE community.

2 Preliminaries

2.1 Neural Operators for PDE

Recently, neural operators have emerged as a novel approach for developing machine learning
models aimed at solving partial differential equations (PDEs). These models focus on learning
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the mapping between the function spaces in a purely data-driven fashion. This holds the general-
ization capability within a family of PDEs and can potentially be adapted to different discretiza-
tions. Various function bases are utilized to build the operator learning model, such as the Fourier
bases [16, 29, 2, 8], wavelet bases [9], spectral method [33], and attention layer [15, 3, 14]. These
models have demonstrated remarkable performance and efficiency in solving specific types of prob-
lems, often achieving record-breaking results in certain applications. Despite their successes, it’s
important to recognize that the field of PDEs encompasses a wide variety of equations, each with
its own unique properties and characteristics. As pointed out in recent research [15], there is no
guarantee that a single type of data-driven model can effectively address all types of PDEs.

2.2 Optical Field Simulation with Machine Learning

Analyzing the propagation of light through optical devices is crucial for the optimization and design
of photonic circuits. For a linear isotropic optical device, with a time-harmonic continuous-wave
light beam shining on its input port, we can obtain the steady-state electromagnetic field distributions
E(r) = x̂Ex+ ŷEy+ ẑEz and H(r) = x̂Hx+ ŷHy+ ẑHz by solving the steady-state frequency-
domain curl-of-curl Maxwell PDE under absorptive boundary conditions [11],(

(µ−1
0 ∇×∇×)− ω2ϵ0ϵr(r)

)
E(r) = jωJe(r),

(
∇× (ϵ−1

r (r)∇×)− ω2µ0ϵ0
)
H(r) = jωJm(r) (1)

where ∇× is the curl operator, µ0 is the vacuum magnetic permeability, ϵ0 is the vacuum electric
permittivity, ϵr is the relative electric permittivity, and Jm and Je are the magnetic and electric cur-
rent sources, respectively. The finite difference frequency domain (FDFD) method, a widely adopted
numerical technique detailed in [11], is used to discretize these continuous-domain equations into an
M ×N mesh grid. This transforms the Maxwell PDEs into a linear system AX = b. Solving this
system with a large sparse matrix A ∈ CMN×MN is computationally expensive and challenging to
scale. Although improvements have been made, such as replacing the scipy solver with the more
efficient pardiso solver, the process remains prohibitively costly for large-scale applications.

Building neural networks (NNs) to accelerate this time-consuming simulation process has been in-
vestigated in predicting some key design parameters [26] or the entire optical field [30, 17, 4, 8].
NeurOLight extends the neural operator to optical field simulation, enabling learning a physics-
agnostic parametric Maxwell PDE solver and achieving SOTA accuracy, while its performance on
real-world complicated photonic device is still not satisfactory.

3 Understand the Problem Setup and Challenge

In this study, we aim to build a physics-agnostic neural operator Ψθ for parametric photonic device
simulation in a data-driven fashion to approximate the ground-truth Maxwell PDE solver Ψ∗ : A →
U described in Eq. (1). Here, U represents the solution space for the optical field in CΩ×du and A =
(Ω, ϵr, ω,J) represents the observation space of the Maxwell PDE, both defined over the continuous
2-D physical solving domain Ω = (lx, lz). We follow NeurOLight [8] to discretize the simulation
domain Ω as Ω̃ = (M,N,∆lx,∆lz) with adaptive mesh granularity, i.e., with grid steps ∆lx =

lx/M and ∆lz = lz/N . Moreover, (Ω̃, ϵr, ω) in the raw observation A is encoded as informative
wave priors, Pz = ej

2π
√

ϵr
λ 1zT∆lz and Px = ej

2π
√

ϵr
λ x1T∆lx , where x = (0, 1, · · · ,M − 1) and

z = (0, 1, · · · , N − 1), reflecting the propagation behaviors of light through different media. The
input light source J is further modeled as a masked light source field HJ

y .

Therefore, as illustrated in Fig. 1(e), the overarching objective is formulated as learning operator Ψθ

that maps A† = (ϵr,H
J
y ,Px,Pz) to the target field U by optimizing the empirical error,

θ∗ = min
θ

Ea∼A†
[
L
(
Ψθ(a), u

)]
, (2)

3.1 Challenges in Predicting the Light Field of Complicated Photonic Devices

NeurOLight [8] delivers a pioneering effort in extending neural operators to the simulation of pho-
tonic devices, achieving SOTA accuracy. However, it still yields significant errors, particularly for
real-world complicated devices, with a reported 0.38 normalized mean absolute error for etched
MMI device [26, 12]. This leads us to an interesting reflection: despite the successes of neural
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operators in solving scientific PDEs, why do they still fall short in complicated photonic device sim-
ulation? Below, we provide a detailed analysis that highlights the underlying learning challenges.

➊ Complicated light-matter interaction in the optical field of real-world photonic device.
Permittivity ϵr, a critical parameter in photonic devices, greatly impacts how light propagates
through media. Designing new devices often involves manipulating the ϵr distribution across
the domain. However, due to manufacturing limitations, ϵr changes are discrete rather than
smooth. Moreover, researchers explore patterning materials with highly contrast permittivity to
design compact devices [26, 31]. This discrete and highly contrasting permittivity transforms
the Maxwell PDE into a multiscale PDE problem [1], with complicated light-matter interactions
such as scattering resonance happening, shown in Fig. 1 (a), which has been shown difficult to
predict from both scientific computing and operator learning perspectives [21, 35].

➋ Significant prediction field variations from minor structural changes. Due to the complex
light-matter interactions within the field, even a slight change in the photonic structure can result
in drastically different optical fields under the same input conditions, as shown in Fig. 1(b). This
calls for a powerful backbone model that is capable of building the relationship between local
rival changes with the global optical field transition.

➌ Non-uniform learning difficulty along the spatial domain. As shown in Fig. 1(c), with light
shining in from a specific position and direction, it propagates through the media, resulting in
non-uniform learning difficulties along the spatial domain. Due to the vast diversity of potential
internal structures along the light propagation path, the light patterns are becoming highly diverse.
Consequently, the data collected for training also incorporates the same phenomenon where many
similar patterns are seen during training near the input sources, whereas the model faces more
diverse patterns at greater distances. This makes it hard for the model to learn how to predict
further regions, especially when the domain is elongated. This issue is analogous to the roll-out
error encountered in temporal PDE modeling at the large time steps.

➍ Rich frequency information lies in the predicted field. We show the energy spectrum of the
optical field in the frequency domain in Fig. 1 (d). The field, characterized by complex interac-
tions such as scattering and resonance, exhibits rich frequency information, unveiling the learning
complexity from a frequency-domain analysis. This confirms the usage of high-frequency modes
in NeurOLight, underscoring the need for a parameter-efficient, robust, and powerful backbone
model to resolve the parameter efficiency and overfitting issue with large modes.

4 Proposed PACE Methods

In this paper, we follow the standard operator learning model architecture as

a†(r) → v0(r) → v1(r) → · · · vK(r) → u(r), ∀r ∈ Ω. (3)

We start with the convolutional stem used in [8] to project the PDE observation a†(r) into a higher-
dimensional feature space of dimension C. This is followed by a sequence of K cascaded neural
operator blocks, which gradually reconstruct the complex optical field within the C dimensional
space. At last, a head with two point-wise convolutional layers projects the vK(r) to the optical
field space u(r). Fig. 2(a) shows the proposed PACE neural operator block structure, formulated as,

vk+1(r) := FFN
(
(Kv

′
k)(r) + vk

)
+ vk, ∀r ∈ Ω; v

′
k(r) = pre-norm(vk(r)), (4)

where K is the our proposed PACE operator and FFN(·) is a feedword network used in [8]. To
stabilize the model performance when scaling to deeper layers, we add pre-normalization [34] and
follow [13] to add a double skip. In this work, we consistently use the NeurOLight operator in
the first two blocks to align our model with the horizontal and vertical wave prior encoding method
adopted from NeurOLight, which we found slightly improves our accuracy.

4.1 Parameter-efficient and Effective Cross-axis Factorized PACE Operator

The neural operator design is key to obtaining satisfactory accuracy on a given PDE task. With the
well-discussed challenges in Sec. 3.1, we derive key insights that have guided the development of our
PACE operator in Fig. 2(b): (1) Long-distance full-domain modeling capacity, especially effectively
modeling how local features impact the whole domain; (2) Isotropic model architecture with no
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Figure 2: (a) PACE block with double skip and pre-normalization; (b) Our cross-axis factorized PACE operator.

down-sampling/ patching without losing local details; (3) Parameter efficiency under the needs of
capturing high-frequency features.

Given the isotropic requirements, an operator based on Fourier bases is an ideal candidate as it
achieves full-domain attention in the O(nlogn) time complexity. However, the rich frequency
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Figure 3: Factorized FNO [27, 8].

information lying in the optical field requires the
use of large frequency modes, making the FNO [16]
with huge parameters and severe overfitting issues.
NeurOLight [8] and Factorized FNO [29] propose
to decompose the FNO block with independent 1-D
FNO blocks in the full N -dimensional domain Ω (see
Fig. 3), therefore, solving the parameter concern when
utilizing high-frequency modes and serving as a regu-
larization for overfitting. The only difference between
NeurOLight and Factorized FNO [29] is whether they
chunk the input or copy the input to the independent 1-D FNO block. We argue that their theoretical
success is attributed to the implicit full-domain integration in Corollary 4.1.
Corollary 4.1. The factorized Fourier integral operator K [29, 8] factorizes the original Fourier
integral operator [16] along each dimension n in the N-dimension domain Ω,

(Kvk)(r1) =

N∑
n

F−1
n (Fn(κ

n
ϕ) · Fn(r2))(r1), ∀r1 ∈ Ω, (5)

where each item explicitly computes a 1-D kernel integral,
∫
Ωn

κ(r1, r2)
nvk(r2)

ndvk(r2)n. It im-
plicitly implements full-domain kernel integration in Ω by stacking K, i.e., K0 ◦ K1 ◦ · · · ,

However, the reliance on implementing full-domain integration with multi-layers makes them weak
operator candidates to achieve our first requirement, i.e., a strong model that is capable of building
full-domain modeling between local structures with the global fields.

Proposed cross-axis 2-D factorized integral kernel. Aware of the above shortcomings of previous
factorized FNO variants, in our 2-D domain, we propose to factorize the full domain integral in a
cross-axis way along the horizontal (h) and vertical (v) axis:

(Kvk)(r1) =

∫
Ω

κ(r1, r2)vk(r2)dvk(r2), ∀r1 ∈ Ω,

≈
∫
Ωh

κ(r1, r2)
h

∫
Ωh

κ(r1, r2)
vvk(r2)dvk(r2)

vdvk(r2)
h, ∀r1 ∈ Ω.

(6)

This factorization enables an explicit factorized full-domain integration. It provides a strong way
to capture the relationship between points in the domain Ω, building the relationship between local
structure with the complicated field pattern. The implementation of the above cross-axis integral
can be efficiently implemented by Fourier Transform F(·) when the kernel κ(r1, r2) = κ(r1 − r2),
as follows,

(Kvk)(r1) = F−1
h (Fh(κ

h) · Fh(F−1
z (Fv(κ

v) · Fz(r2)))(r1), ∀r1 ∈ Ω, (7)

in a nlogn complexity (n = MN in our 2-D cases with Ω ∈ CM×N ).

Group-wise cross-axis integration. For input r with a channel dimension C, it can be viewed as
the sampling of a set of functions {rl(·, ·)}Cl=1 on grid point in the 2-D discretized domain Ω = Ωh×
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Figure 4: The proposed cascaded learning flow with two stages. The first stage learns an initial and rough
solution, followed by the second stage to revise it further. A cross-stage distillation path is used to transfer the
learned knowledge from the first stage to the second stage.

Ωv . The learnable integral kernel intrinsically performs information exchange along different grid
points in Ω. Similar to the multi-head design in Transformer, which assumes different heads extract
different information, we can also partition the C basis functions into g disjoint sub-groups and feed
each sub-group through our cross-axis factorized kernel. This grouping further reduces the number
of parameters to (κh + κv) × CoCi

g , showing significant parameter reduction compared to FNO
(κh×κv ×CoCi) and Factorized FNO ((κh+κv)×CoCi), showing excellent parameter efficiency
when utilizing large frequency modes is a must. We do an ablation study in Appendix A.4 to
investigate the choices of different group g, where we find g = 4 strikes the best between parameter
efficiency and model performance.

Explicit projection unit ξ for extracting high frequency information. The optical field shows
rich information in the frequency spectrum, reciting a special care of high-frequency information.
Besides utilizing high-frequency modes, we propose to add an explicit projection module before
the cross-axis integral, which is very simple as one linear layer followed by a non-linear activation,
given non-linear activation is known to help generate high-frequency features [22].

Self-weighted path for enhanced instance-based local feature attention. The optical field’s re-
sponse is intricately linked to the minute variations in different photonic device structures. A self-
weighted path is introduced to ensure the model can pay different attention to regions of significant
influences for varying device structures. An instance-based weight is generated by passing the fea-
ture map after the projection unit through a linear layer and a Sigmoid unit, and then multiplied
with the results after the cross-axis integral unit to provide instance-based attention.

Overall, the above ingredients are assembled together as our proposed PACE operator, as shown in
Fig. 2 (b), which implements a self-weighted 2-D cross-axis factorized integral transform.

4.2 Cascaded Learning from Rough to Clear

With the effective PACE operator design, the prediction fidelity can be largely improved by only us-
ing a 12-layer PACE model (see Section. 5.2.1). But for some complicated benchmarks (e.g., etched
MMI 3x3/5x5), it still yields ∼ 10% mean squared error, which is not satisfying. A straightforward
solution might involve scaling up the model size, expecting additional layers would enhance perfor-
mance. However, as demonstrated in [27], scaling to deep layers shows saturated performance after
exceeding a specific number.

Existing ML for PDE solving work typically learns a model in a one-shot way by directly learning
the underlying relationship from input-output pairs. Unlike AI systems, humans don’t learn new
and difficult tasks in a one-shot manner; instead, they learn skills progressively, starting with easier
tasks and gradually moving to harder ones. For example, instead of directly learning how to solve
equations, students first learn basic operations, such as addition and multiplication, and then move
on to solving complex equations.

Hence, inspired by this human learning process, unlike previous work that directly learns a one-stage
model, we propose to divide the challenging optical field prediction problem into two sequential la-
tent tasks. The first task, undergoing the same problem setup as discussed in Sec. 3, could predict an
initial, rough optical field based on the less informative raw PDE observation (we only have the light
source and device permittivity distribution). Then, the successive second task could refine the rough
prediction further by capturing more details and nuances, by accepting the predicted field Ψθ1 and
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device permittivity ϵr as the input. Therefore, we assign higher Fourier modes to enable sufficient
capacity. The divide-and-conquer way results in a cascaded two-stage model architecture, as shown
in Fig. 4. The cascaded learning model is trained jointly (PACE-I + PACE-II) with the optimization
target as the sum of two losses L(Ψθ1(a), u)+L(Ψθ2(Ψθ1(a), ϵr), u), where the first L(Ψθ1(a), u)
serves as intermediate supervision that enfores the first stage model condensate the learned knowl-
edge. To better connect the two-stage model, we propose a cross-stage feature distillation path to
distill learned feature from the previous stage to the last by using a simple Linear→Sigmoid path.

5 Experimental Results

5.1 Experimental Setup

Benchmarks: We evaluate our methods on real-world complicated photonic devices that pose sig-
nificant simulation challenges for ML surrogate models. This includes the Etched MMI with ran-
domly placed rectangular cavities, used in [8], and the metaline device [37, 19] featuring two layers
of randomly dimensioned meta-atoms. These devices present a highly discrete and contrast per-
mittivity distribution and complex light-matter interactions, making them ideal for testing the
effectiveness of our model. We generate our datasets using the open-source 2-D FDFD simulator,
Angler [11], with generation details in Appendix A.1.

Baselines: We evaluate the proposed PACE model against a range of baselines, including the SOTA
neural operator work, NeurOLight [8], for optical simulation. We also include representative op-
erator learning models for scientific PDEs based on Fourier bases(FNO [16], Factorized FNO (F-
FNO) [28, 29], U-NO [2], tensorized FNO (TFNO) [13]), attention kernels [15], and the latent
spectral method (LSM) [33]. We also incorporate UNet [17, 4] and Dilated ResNet (Dil-ResNet)
[25]. For a fair comparison, we keep a model size budget of under/near 4 million (M) parameters
for baselines, except LSM [33] where the original implementation is adopted. Details on model
configurations are in the Appendix A.3.

Training setting and metric: All models undergo training for 100 epochs using the AdamW opti-
mizer with a weight decay of 1e−5 in a batch size of 4. To balance the optimization among different
fields, we use normalized mean squared error (N-MSE) as the learning objective,

L
(
Ψθ(a),Ψ

∗(a)
)
= (∥Ψθ(E(a))−Ψ∗(a)∥2)/∥Ψ∗(a)∥2. (8)

We don’t use the previously-used mean absolute error (MAE) [8] as the metric given for complex-
valued optical fields; we argue that L2 distance is a more accurate metric to evaluate the distance
in the complex plane with a detailed analysis in Appendix A.6. We adopt the superposition-based
mix-up technique [8] to generate input light combinations randomly to augment training data.

5.2 Main Results

5.2.1 Prediction Quality of Single PACE Model

In Tab. 1, we compare our 12-layer PACE model with various baselines on multiple real-world de-
vice benchmarks, showing significant 73.85% smaller test error with 51.67% fewer parameters on
average. Notably, even when compared to the best baseline, 16-layer NeurOLight, we show over
39% lower test error with over 17% fewer parameters. Given the challenge ➋ that trial structure
change can totally change the optical field, model relying on downsampling or patching fails to
capture the local details, confirming the failure of the UNet and Transformer model. Moreover, the
challenge ➊ and challenge ➌ call for a powerful model with long-distance modeling capability. Al-
though Dil-ResNet utilizes a dilated block to enlarge the receptive field, it is insufficient for a large
domain, validated by the result that it shows much better accuracy on the small Metaline than the
etched MMI3x3. Capturing long-range dependency with the Fourier operator provides an efficient
way to the isotropic model without any downsampling, therefore making the Fourier-operator type
model show consistently better accuracy than other baseline methods. However, due to the chal-
lenge ➍ that there is rich frequency information in the predicted field, FNO-2d falls short due to the
impediment of utilizing large modes given the large parameter count. We also compared it with the
tensorized FNO 2d. However, we find the general tensor decomposition hurt the accuracy of this
challenging task. NeurOLight shares a similar insight of Factorized FNO by factoring Fourier ker-
nel with several independent 1-D Fourier kernels; however, as we argued before, it fails to establish
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Table 1: Comparison of # parameters, training error (last epoch), and test error on three benchmarks among our
PACE and various baselines. We use geo-means to report overall improvements across different benchmarks.

Benchmarks Model #Params (M) ↓ Train Err (10−2) ↓ Test Err (10−2) ↓
UNet [17, 4] 3.88 63.03 65.32

Dil-ResNet [25] 4.17 51.34 51.79
Attention-based model [15] 3.75 70.05 69.85

U-NO [2] 4.38 34.22 42.86
Latent-spectral method [33] 4.81 55.07 55.16

FNO-2d [16] 3.99 32.51 38.71
Tensorized FNO-2d [13] 2.25 35.52 36.61
Factorized FNO-2d [29] 4.02 24.2 32.81

NeurOLight [8] 2.11 15.58 17.21

Etched MMI 3x3

PACE 1.71 9.51 10.59
UNet [17, 4] 3.88 65.73 66.01

Attention-based model [15] 3.75 74.16 74.20
U-NO [2] 4.38 37.92 42.24

Latent-spectral method [33] 4.81 53.9 54.01
FNO-2d [16] 3.99 33.12 36.49

Tensorized FNO-2d [13] 2.25 39.11 39.45
Factorized FNO-2d [29] 4.02 22.18 26.06

NeurOLight [28] 2.11 18.04 17.41

Etched MMI 5x5

PACE 1.71 11.66 11.91
UNet [17, 4] 3.88 39.12 39.61

Dil-ResNet [25] 4.17 12.37 13.20
Attention-based model [15] 3.75 63.99 64.10

U-NO [2] 4.38 19.27 22.09
Latent-spectral method [33] 4.81 31.60 31.94

FNO-2d [16] 3.21 19.73 20.88
Tensorized FNO-2d [13] 1.58 30.60 31.04
Factorized FNO-2d [29] 2.68 8.51 9.28

NeurOLight [8] 1.49 6.76 6.09

Metaline 3x3

PACE 1.24 3.32 2.82
Improvement over best baseline NeurOLight [8] -17.70% -41.23% -39.03%

Improvement over all baselines -51.67% -72.57% -73.85%

Table 2: Comparison between our two-stage model and simply scaling more layers. All models use the same
Fourier modes setup.

Benchmarks Model Cross-stage dist. #Params (M) ↓ Train Err (10−2) ↓ Test Err (10−2) ↓
PACE-12 layer - 1.73 9.51 10.59

PACE-20 layer - 3.135 6.46 7.04
PACE-I + PACE-II ✘ 3.151 4.66 5.83Etched MMI 3x3
PACE-I + PACE-II ✔ 3.151 4.14 5.32

PACE-12 layer - 1.73 11.66 11.91

PACE-20layer - 3.135 7.74 7.88
PACE-I + PACE-II ✘ 3.151 6.17 6.78Etched MMI 5x5
PACE-I + PACE-II ✔ 3.151 5.43 6.15

a strong full-domain modeling capacity by linking local details to the global complex field. Overall,
our PACE block benefits from a physically meaningful cross-axis Fourier kernel factorization, equip-
ping the capacity to capture full-domain dependency in a parameter-efficient way. Visualization of
predicted results is in Appendix A.10.

5.2.2 Quality Improvement with Two-stage Model

We further compare the proposed cascaded two-stage model with the common practice of solely
increasing # layers. We set the PACE-I as a 12-layer PACE model with Fourier modes(#Mode =70,
#Mode =40), and PACE-II as a 8-layer PACE model with larger Fourier modes (#Mode =100, #Mode
=40). As shown in Tab. 2, the two-stage setup introduces slight overhead for one extra set of stem
and head but shows a clear margin over only increasing the number of layers in terms of both train
error and test error. The cross-stage feature distillation further provides meaningful guidance by
transferring learned features to the second-stage model, leading to the best accuracy for the two-
stage setup. In Appendix A.7, we also show that the cross-stage distillation trick can improve model
accuracy, similar to a more costly training setup, by training the two-stage models sequentially.
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5.2.3 Speedup over Numerical Tools

To develop a fast surrogate ML model that can replace the Maxwell PDE solver, it’s crucial to

11.8 x

12.0x154.2 x

577.7 x
5.1 x

10.6 x

Figure 5: Speedup of PACE over angler [11]
using scipy (S)/ pardiso (P) with simula-
tion granularity (0.05nm) and (0.075nm).

evaluate the speed-up of our PACE model compared to
the FDFD numerical simulator Angler [11]. We vary the
simulation domain size and set the grid step to 0.05 nm,
scaling the discretized size pardiso linear solvers, re-
spectively and number of frequency modes to ensure the
model has sufficient capacity to capture the entire sim-
ulation domain. For comparison, we employ a 20-layer
joint PACE model. As shown in Fig. 5, our PACE model
achieves a speed-up of 150-577× and 12× over Angler
on a 20-core Intel i7-12700 CPU using the scipy and
We further set a larger simulation granularity, 0.075 nm,
to check speedup if we tolerate simulation quality loss
in commercial tools. However, we find that setting a
larger granularity results in a significantly different field,
as qualitatively shown in reb-Fig.3, with a corresponding
N-MSE error of 1.2. Even though in this case, PACE still shows a 5.1-10.6× speedup over pardiso-
based Angler with much better fidelity.

5.3 Discussion

Cross-axis PACE block design choices. In Tab. 3, we independently alter individual components
Table 3: Model design ablation on Metaline dataset.

Variants #Params
(M)↓

#Train Err
(10−2)↓

#Test Err
(10−2)↓

8-layer PACE 0.82 5.65 4.82
No self-weighted path 0.8 6.33 5.66 (+0.84)

No projection unit 0.8 6.58 5.97 (+1.15)
Use TFNO 1.06 10.80 9.51 (+4.69)

within the PACE operator to assess
their effectiveness. The self-weighted
path, which provides instance-specific
weights, significantly improves model
accuracy across various photonic de-
vice patterns. Removing this compo-
nent results in a 17% increase in error,
highlighting its importance. Similarly,
eliminating the high-frequency projec-
tion unit leads to a 23% worse error, em-
phasizing its crucial role in capturing high-frequency features. To further illustrate this, we visualize
the feature maps in the frequency domain before and after applying the nonlinear activation in the
high-frequency projection unit. As shown in Fig. 11, the nonlinear activation effectively amplifies
high-frequency components, supporting our claim and validating the design decision to incorporate
an additional high-frequency projection path. Lastly, we replace our cross-axis Factorized integral
kernel with a recent tensorized FNO (TFNO) [13] (tucker decomposition with rank 0.02). While
TFNO effectively models long-range dependencies, matching our parameter count required aggres-
sive decomposition, which significantly degraded performance. This comparison underscores the
advantage of our physically grounded cross-axis factorized kernel.

Generalization to out-of-distribution testing. As an operator model that is parameter-agnostic, it

Seen  in training
Unseen  in training

Interested C-band range
(1.53-1.565)

Figure 6: Generalize to unseen wavelength in inter-
ested C-band (1.53-1.565) and outside C-band.

is important to test the generalization for out-
of-distribution data with unseen parameters.
We re-generate photonic devices with different
device configurations (size, etched region, etc.)
and unseen frequencies in our interested wave-
length range (1.53-1.565 µm), i.e., C-band. As
shown in Fig. 6, our PACE model generalizes
well on unseen simulation frequency and new
devices. It is a vital test to prove the useful-
ness of PACE in helping device design within
an interested wavelength range. We also test
the accuracy outside the C-band, where PACE
shows good accuracy on neighboring wave-
lengths while holding a 10-15% error at a further range. This is expected since wave propagation is
sensitive to frequency. It can be mitigated by incorporating sampled wavelengths into training.
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NeurOLight PACE

Large error in low-
freq. Fail to track high-

freq.

Figure 8: The radial energy spectrum of predicted fields from NeurOLight and PACE. NeurOLight fails to
align precisely with the targeted field in both low-frequency and high-frequency parts.

Are PACE a general enhancer module for Fourier-type operator? We further investigate whether
our new PACE operator is a general enhancer for other Fourier operators, rather than a dedicated mod-
ule for our own model architecture. We randomly insert four PACE blocks into Facztoried FNO [27]
and test the error on Metaline3x3 and Etched MMI 3x3 benchmarks, showing up to 28% error re-

Figure 7: Insert 4 PACE module (➋: g=2;
➌: g=4) randomly in Factorized FNO(➊).

duction as shown in Fig. 7 with much fewer parameters.

Comparison with operator for multi-scale PDE. Notic-
ing that our problem shares similar complexities in solv-
ing multi-scale PDEs with neural operator [18, 35], we
further compare our approach with the recent method [35]
that alternates Fourier operator with dilated convolution
layer to better capture local details. On the etched MMI
3x3 dataset, we implement a 14-layer model with alter-
nating NeurOLight block and dilated convolution layer.
It yields a 1.73 M parameter count similar to our PACE
but shows a 17.4 N-MSE error, much worse than ours
(10.59).

Spectrum of the predicted field: The predicted field spectrums of PACE and NeurOLight are
in Fig. 8. Although NeurOLight uses the same frequency modes, it fails to align well with both
the low-frequency and high-frequency regions. PACE excellently aligns with the baseline spectrum
compared to NeurOLight,

6 Conclusion

In this work, we pace the simulation fidelity on highly challenging complicated photonic devices
to an unprecedented level. Our novel cross-axis factorized PACE operator enables the neural PDE
solver to capture complex relationships between local device structures and the resulting complex
optical field across the entire simulation domain. Furthermore, we introduce a cascaded two-stage
learning paradigm to further enhance the prediction quality when one sole PACE is not sufficient,
demonstrating better quality enhancement than simply adding more layers. Experiments demon-
strate that PACE achieves a remarkable 73% reduction in error with 50% fewer parameters compared
to previous methods. Our method also offers significant speedup (11.8x to 577x) over traditional
numerical solvers. Looking forward, we aim to integrate our model into the design optimization
loop for photonic devices and circuits. Moreover, we want to emphasize that our proposed operator
and learning strategy are not dedicated to photonic cases but generally applied to challenging PDE
problems with similar problem characteristics, e.g., multi-scale PDE problems.

Limitations and Broader Impact. This work focuses on steady-state optical field solutions using
the FDFD method. Exploring the effectiveness of operator learning for the Finite-Difference Time
Domain (FDTD) can be an interesting direction. Moreover, the FFT kernels on GPU are not fully op-
timized [6]. Employing specialized, optimized FFT kernels can unlock even greater computational
efficiency on GPUs, further accelerating the neural PDE solver.
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A Appendix

A.1 Dataset Generation

We generate our customized etched MMI and Metaline dataset using the open-source FDFD simu-
lator angler [11]. For each type of device, we random sample 5.12 K device configuration following
the Tab. 4, and generate single-source data by sweeping the input light over the input ports. We ran-
domly sample the device’s physical dimension, input/output waveguide width and input light source
frequencies. For etched MMIs, we randomly sample etched cavity sizes, ratios (which determine
the number of cavities in the MMIs), and permittivities in the controlling region. For Metaline, we
randomly sample the metaatom physical dimension with a fixed total number of 20.

We discretize the domain of etched MMI by 80× 384, and the domain of metaline by 128× 144.

Table 4: Summary of etched MMI device design variable’s sampling range, distribution, and unit.
Variables Value/Distribution Unit

Metaline 3× 3 Etched MMI 3× 3 Etched MMI 5× 5

Length U(8, 10) U(20, 30) U(25, 35) µm
Width U(10, 12) U(5.5, 7) U(7.5, 9) µm
Port Length 1.5 1.5 1.5 µm
Port Width U(0.5, 0.8) U(0.8, 1.1) U(0.8, 1.1) µm
Taper Length 3 4.5 4.5 µm
Taper Width 1.3 1.3 1.3 µm
Border Width 0.25 0.25 0.25 µm
PML Width 1.5 1.5 1.5 µm
Wavelengths λ U(1.53, 1.565) U(1.53, 1.565) U(1.53, 1.565) µm
Cavity Ratio - U(0.05, 0.1) U(0.05, 0.1) -
Note 2-layer random meta-atoms random slots random slots -
Relative Permittivity ϵr {2.07, 12.11} {2.07, 12.11} {2.07, 12.11} -

A.2 Training Settings

We implement all models and training logic in PyTorch 2.3. We use A100 and A6000 to train our
models and report the latency running on a single A100 GPU with torch.compile. For Bench-
marking FDFD simulator performance, we use the Intel 12th Gen Intel(R) Core(TM) i7-12700 with
20 CPU cores. We split all single-source examples into 72% training data, 8% validation data, and
20% test data.

For training, we set the number of epochs to 100 with an initial learning rate of 0.002, cosine learning
rate decay, and a mini-batch size of 4. We use adamW as the optimizer with the weight decay 1e-5
to avoid over-fitting. Moreover, we apply stochastic network depth with a linear scaling strategy.

A.3 Model Designs

To ensure a comprehensive evaluation, we compare our proposed model against recently published
and available SOTA baselines, encompassing various architectural paradigms such as the Fourier-
operator models, attention-based models, and latent space methods. To maintain fairness in com-
parison, we constrain the parameter count of all models to be under 4 M in most cases and use
open-sourced implementations.

Here, we report the model details for baselines for the etched MMI dataset.

UNet. We construct a 4-level convolutional UNet with a base channel number of 36, following the
open-sourced implementation2. The total parameter count is 3.88 M.

Dil-ResNet [25]. We use the implementation in open-sourced pdearena [10]3, with a channel num-
ber of 128 and enabled normalization. The total parameter count for Dil-ResNet is 4.17 million.

2https://github.com/JeremieMelo/NeurOLight
3https://pdearena.github.io/pdearena/
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FNO-2d [16]. We use 6 2-D FNO layers, and the Fourier modes are set to (#Mode =32, #Mode
=10) for the etched MMI dataset and (#Mode =16, #Mode =16) for the Metaline dataset, resulting
in the total parameter count as 3.99 M or 3.21 M. We use the implementation4.

Tensorized FNO-2d [13]. One obvious advantage is that our model features low parameters. Hence,
we will compare it with tensorized FNO, which compresses the model weights with the tensor de-
composition method. We adopt the implementation in5 and use the model designed for the darcy
flow problem. We use 5 2-D FNO layers, and the Fourier modes are set to (#Mode =40, #Mode =20)
for the etched MMI dataset and (#Mode =24, #Mode =24) for the Metaline dataset. Tucker decom-
position is used with a rank of 0.42. The total parameter count is 2.25 M and 1.58 M, respectively,
for the two types of datasets.

F-FNO-2d. For factorized Fourier neural operator (F-FNO), we use 13 F-FNO layers with a channel
number of 52. The Fourier modes are set to (#Mode =70, #Mode =40) for etched MMI dataset and
(#Mode =36, #Mode =36) for Metaline dataset, leading to the total parameter count as 4.02 M and
2.68M. The FNO-2d implementation is referred to6. We use the same projection head as ours.

U-NO-2d [2]. For U-shaped neural operators, we follow the implementation7. We use their 11-layer
UNO with a base channel 24. The total parameter count is 4.38 M.

Attention-based operator [15]. For the attention-based neural operator, we choose the most recent
Transformer-type model [15] and use its official implementation8. We use 3 layer-attention with 12
heads. The total dimension is 128. The total parameter count is 3.75 M.

Latent Spectral Method [33]. For the latent spectral method, we use the original implementation
in9. The number of bases is set to 12, and the channel number is 32. The patch size is set to 4×4.
The total parameter count is 4.8 M.

NeuroLight [8]. We use the same implementation10 in the original paper with 16 layers. For the
etched MMI dataset, the Fourier modes are set to (#Mode =70, #Mode =40). For the Metaline
dataset, Fourier modes are set to (#Mode =36, #Mode =36). The total number of parameters is
2.11M and 1.49 M for the two cases.

PACE. For our proposed PACE, we use 12 layers, with the first two being the same factorized layers
in [8], since we found it is important first to generate some meaningful wave patterns and then do
global information swapping. The Fourier modes are set to (#Mode =70, #Mode =40). We use the
same convolution stem in [8] to extract information before going through the feature propagator and
the same projection head. The total number of parameters is 1.73M. For the second stage PACE-II
model, we use 8 layers with all being PACE operators, where Fourier modes are set to (#Mode =100,
#Mode =40) For the Metaline dataset, we solely use a 12-layer PACE with Fouier modes being
(#Mode =36, #Mode =36).

A.4 Ablation study on group number choices

We run an 8-layer PACE model on the Metaline dataset by setting the group size to 1, 2, 4, and show
the train and test error in Tab. 5 We use #group=4 in our paper, which balances between parameter
efficiency and test error.

A.5 Ablation Study of Double Skip and Pre-Normalization

We further investigate whether the observed improvements in accuracy are attributed to the incorpo-
ration of double skip connections and pre-normalization, which were incorporated into our model to
stabilize it in deeper layers with better generalization. We add these two techniques to NeurOLight
and compare them with ours PACE in Tab.. 6. The double skip and pre-normalization can make the
model generalize well for test data, while the training error is slightly improved as normalization

4https://github.com/JeremieMelo/NeurOLight
5https://github.com/neuraloperator/neuraloperator
6https://github.com/alasdairtran/fourierflow
7https://github.com/ashiq24/UNO/blob/main/navier_stokes_uno2d.py
8https://github.com/BaratiLab/FactFormer/tree/main
9https://github.com/thuml/Latent-Spectral-Models

10https://github.com/JeremieMelo/NeurOLight
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Table 5: Ablation on # group on an 8-layer PACE model on the Metaline dataset.

# Group #Params
(M)↓

#Train Err
(10−2)↓

#Test Err
(10−2)↓

1 2.15 4.89 4.55
2 1.27 5.33 4.80
4 0.825 5.65 4.82

Table 6: Ablation on the comparison between PACE and NeurOLight with the adopted double skip
and pre-normalization.

Model Double skip & Pre-norm. #Params
↓

#Train Err
(10−2)↓

#Test Err
(10−2)↓

NeurOLight-16 layer ✕ 2108258 15.58 17.21
NeurOLight-16 layer ✔ 2110306 15.26 15.87

PACE-12 layer ✕ 1709026 10.32 11.06
PACE-12 layer ✔ 1710562 9.60 10.60

can be seen as some linear affine. However, it still shows much worse accuracy than our model,
especially given the context our model is shallower with fewer parameters.

A.6 L2 distance is a more informative metric compared to L1 distance for distance
evaluation

Corollary A.1. Consider two complex numbers in polar form, z1 = r1∠ϕ1 and z2 = r2∠ϕ2. Their
mean square error is rotation invariant, as shown by:

|z1, z2|22 = |r1 cosϕ1 − r2 cosϕ2|2 + |r1 sinϕ1 − r2 sinϕ2|2 = r21 + r22 − 2r1r2 cos(ϕ1 − ϕ2). (9)

This distance metric depends solely on the difference in signal norm and angle between z1 and z2.
However, their mean absolute error is the rotation variant:

|z1, z2|1 = |r1 cosϕ1 − r2 cosϕ2|+ |r1 sinϕ1 − r2 sinϕ2|. (10)

In the complex plane, optimizing MAE equates to minimizing the summed L1 distances of the real
and imaginary components. However, the L1 distance is rotation-variant. A simple rotation of the
two complex numbers on the plane results in changing L1 distance, as shown in Fig. 9, while the
true distance does not alter. Therefore, it is not an appropriate metric as it cannot accurately measure
proximity in the complex plane. In this way, we use L2 distance in the loss (mean squared loss) that
is rotation invariant, as proved in corollary A.1, which exactly captures the distance in the complex
plane.

L1 distance
Im

Re

L2 distance

Figure 9: L1 and L2 distance in the complex plane.
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Figure 10: Radial energy spectrum for one solution of Darcy flow problem.

Table 7: Results of train two-stage model sequentially.
Benchmarks Model Cross-stage dist. #Params (M) ↓ Train Err (10−2) ↓ Test Err (10−2) ↓

PACE-12 layer - 1.73 9.51 10.59

Etched MMI 3x3 PACE-I→ PACE-II ✔ 3.151 3.91 5.06

PACE-12 layer - 1.73 11.66 11.91

Etched MMI 5x5 PACE-I→ PACE-II ✔ 3.151 5.51 6.15

A.7 Train two-stage model sequentially

We also show the error by training our proposed two-stage model sequentially in Tab. 7, which
shows a similar error to our joint training approach when equipping with our proposed cross-stage
feature distillation.

Training sequentially is more costly than joint training, as second-stage training requires first infer-
encing with the first stage to get the predicted results.

A.8 Visualization of energy spectrum

We generate the prediction field’s radial energy spectrum by first transferring the image from the
spatial domain to the spectral domain and then shifting the transferred image to the center. Then,
the wavenumber is computed as the distance with respect to the center.

We sum the squared magnitude of the Fourier coefficients that fall into the specific number, which
is implemented following open-sourced code 11.

We also visualize one example of darcy flow problem, as shown in Fig. 10. It shows highly distant
characteristics compared to our optical field, with most information concentrating on low-frequency
parts.

A.9 Visualization of feature map before/after non-linear activation in our explicitly
designed high-frequency projection path

We visualize the first 6 channels of feature maps before and after the nonlinear activation in the
last PACE layer by showing them in the frequency domain. As shown in Fig. 11, the nonlinear
activation can ignite high-frequency features, which confirms our claim and validates our design
choice of injecting an extra high-frequency projection path.

A.10 Visualization of prediction

We provide visualization figures on etched MMI 3x3 devices in Fig. 12 and metaline devices in
Fig. 13. We provide the predicted fields Ψ(a), the groud-truth field Ψ(a)∗ and the residual er-
ror Ψ(a)∗ − Ψ(a) of Dil-ResNet, Facztoried FNO, NeurOLight and our PACE. For etched MMI
test cases, we show both the single 12-layer PACE model and the joint 20-layer model PACE-I +
PACE-II. Our PACE shows much better prediction results with a near-black error map compared to
other baseline methods.

11https://github.com/autonomousvision/projectedgan/blob/main/torch_utils/utils_spectrum.py
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Before nonlinear

After nonlinear

Figure 11: Frequency-domain visualization of feature map before and after non-linear activation in the last
PACE block(The center represents low frequency). The pattern is shifted to the center to understand the fre-
quency content better.

Figure 12: Visualization of test cases on etched MMI 3x3 devices with random input sources.
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Figure 13: Visualization of several test cases on Metaline devices with random input sources.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: We open-source the dataset and code.

Guidelines:

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:[Yes]

Justification: We report the error bar when we test the performance on generalization ex-
periments.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer:[Yes]
11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[NA]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer:[Yes]
Guidelines:

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer:[NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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