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Abstract

Extant studies predominantly address catastrophic forgetting within a simplified
continual learning paradigm, typically confined to a singular data domain. Con-
versely, real-world applications frequently encompass multiple, evolving data
domains, wherein models often struggle to retain many critical past information,
thereby leading to performance degradation. This paper addresses this complex
scenario by introducing a novel dynamic expansion approach called Learning
Expandable and Adaptable Representations (LEAR). This framework orchestrates
a collaborative backbone structure, comprising global and local backbones, de-
signed to capture both general and task-specific representations. Leveraging this
collaborative backbone, the proposed framework dynamically creates a lightweight
expert to delineate decision boundaries for each novel task, thereby facilitating the
prediction process. To enhance new task learning, we introduce a novel Mutual
Information-Based Prediction Alignment approach, which incrementally optimizes
the global backbone via a mutual information metric, ensuring consistency in the
prediction patterns of historical experts throughout the optimization phase. To miti-
gate network forgetting, we propose a Kullback–Leibler (KL) Divergence-Based
Feature Alignment approach, which employs a probabilistic distance measure to
prevent significant shifts in critical local representations. Furthermore, we intro-
duce a novel Hilbert-Schmidt Independence Criterion (HSIC)-Based Collaborative
Optimization approach, which encourages the local and global backbones to cap-
ture distinct semantic information in a collaborative manner, thereby mitigating
information redundancy and enhancing model performance. Moreover, to accel-
erate new task learning, we propose a novel Expert Selection Mechanism that
automatically identifies the most relevant expert based on data characteristics. This
selected expert is then utilized to initialize a new expert, thereby fostering positive
knowledge transfer. This approach also enables expert selection during the testing
phase without requiring any task information. Empirical results demonstrate that
the proposed framework achieves state-of-the-art performance. Code is available
at https://github.com/yrluestc/NeurIPS2025-LEAR.
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1 Introduction

Modern deep learning frameworks have shown exceptional effectiveness across various visual tasks
[15, 19]. However, the high performance of these approaches largely depends on large datasets,
which are frequently unavailable in settings marked by constant change. This approach to learning is
known as Continual/Lifelong Learning (CL), which aims to create a model that can continuously
integrate new information while preserving all previously learned knowledge. Catastrophic forgetting
is a significant issue that hinders the model’s performance on earlier tasks [32], arising when the
model tries to adjust its parameters to learn new tasks.

Among the various approaches to mitigate catastrophic forgetting in continual learning [41],
Expansion-Based Methods (EBMs) have emerged as leading and highly effective strategies. The
core idea is to dynamically expand the model’s internal structure by adding task-specific modules
to allocate dedicated capacity for each new task. However, current EBMs primarily focus on Class-
Incremental Learning (CIL) [37] within a single domain, neglecting the scenario of learning across
multiple domains, known as Domain-Incremental Learning (DIL). Although studies [44, 51, 21]
have investigated DIL, their evaluated domains (e.g., Aircraft [29], MNIST [27]) have achieved
near-perfect accuracy with pre-trained ViTs [10], making these benchmarks inadequate for assessing
genuine continual learning capabilities. Therefore, we establish a more challenging and more realistic
Multi-domain Continual learning (MDCL) scenario, where the task sequence comprises not only
complex domains with large discrepancies but also a mixture of domains with underlying similarities.
In this study, we aim to improve the model’s performance in MDCL by considering three aspects
including plasticity, stability and efficiency. To implement this goal, we propose a novel approach
called LEAR and its core idea is to fully explore the stable and dynamic representations extracted by
the pre-trained ViT backbones to achieve fast adaptation while adaptively optimizing the backbones
to maintain all previously learned information.

(1) Plasticity. Existing EBMs improve downstream task performance by integrating task-specific
prompts [46, 36] or adapters [30, 49] into a fixed pretrained backbone. However, these methods
focus on exploring representations from a single pre-trained backbone, which fails to address more
challenging data domains such as CUB-200 [39] and ImageNet-R [17]. Thus, to improve plasticity in
a challenging MDCL scenario, we introduce a novel collaborative backbone architecture for LEAR,
comprising a global and a local backbone, designed to capture general and task-specific information
across all tasks. Leveraging this collaborative backbone structure, the proposed LEAR framework
dynamically generates a lightweight expert to learn the decision boundary for each new task, thereby
achieving commendable performance. The results presented in Tab. 1 and 2 demonstrate that our
method achieves superior performance on most individual datasets in the MDCL scenario, which also
validates that EBMs with frozen pretrained backbones cannot provide sufficient plasticity in MDCL.

(2) Stability. Many EBMs have been shown to achieve excellent stability in CIL. However, the
excellent stability is usually achieved by freezing all parameters of the pre-trained models during the
training, which may lead to forgetting of historical tasks in MDCL, especially when facing the severe
domain shifts (e.g. ChestX [43] → ImageNet-R) in long task sequences. To address this limitation,
we propose a unified optimization function to regulate the optimization behaviour of the collaborative
backbone structure. This function consists of a Mutual Information-Based Prediction Alignment
(MIBPA) loss and a Kullback–Leibler Divergence-Based Feature Alignment (KLDBFA) loss. The
former dynamically optimizes the global backbone while preventing negative knowledge transfer
at the prediction level, and the latter aligns historical and current representation distributions at the
feature level. Such a design enables LEAR to achieve rehearsal-free continual learning by actively
consolidating historical knowledge at both the prediction and feature levels when fine-tuning the
collaborative backbones with new task data, rather than freezing parameters passively. Such a design
has not been explored in the existing CL field. Furthermore, to mitigate optimization interference
and information redundancy between the collaborative backbones, we propose a novel Hilbert-
Schmidt Independence Criterion-Based Collaborative Optimization (HSICBCO) strategy to encourage
two backbones to capture different semantic information, thus promoting effective complementary
learning of MDCL tasks. The experimental results demonstrate that LEAR significantly outperforms
all baseline methods in terms of overall average accuracy in three MDCL scenarios.

(3) Efficiency. Many existing EBMs usually ignore the task relevance and do not explore the
previously learned parameter information to accelerate the new task learning. As a result, these
methods optimize each new expert from scratch, which may result in considerable computational
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costs and parameter redundancy when dealing with MDCL that contains analogous data domains. To
address this issue, we aim to promote the efficient learning process of LEAR by proposing a novel
Expert Selection Mechanism (ESM) that selectively transfers the parameter information learned by
a selected expert into the new expert construction process. Specifically, the proposed ESM models
each expert’s knowledge as a Gaussian memory distribution and only preserve its critical statistical
information. For each new task, the proposed ESM selects the most relevant expert by minimizing
the Mahalanobis distance between stored distributions and incoming data, and reuses its parameters
to facilitate new task learning. During the testing phase, ESM autonomously routes testing samples
to the most suitable expert in a task-agnostic manner.

The principal contributions of this research are enumerated as follows : (1) This paper explores
the challenging MDCL scenarios by proposing a novel approach called Learning Expandable and
Adaptable Representations (LEAR) that optimizes and manages a collaborative backbone structure,
comprising a global backbone and a local backbone, respectively. This design can help capture
general and task-specific representations, which achieve excellent performance in MDCL. (2) A novel
MIBPA approach is proposed to optimize the global backbone via a mutual information measure
that ensures the consistency of the prediction pattern of each history expert when adjusting the
parameters of the global backbone. (3) A novel KLDBFA approach is proposed to regulate the
optimization behaviour of the local backbone by preventing significant changes in many critical local
representations. Such a design can preserve task-specific representation information and prevent
significant negative knowledge transfer effects. (4) A novel HSIBCO strategy is proposed to enforce
the disentanglement between global and local representations, which avoids information redundancy
and improves the model’s performance. (5) A novel ESM is proposed to select the most relevant expert
according to the data’s characteristics, which is used in the training phase to promote the positive
knowledge transfer process and in the testing phase to implement the expert selection procedure. The
results from an extensive suite of experiments demonstrate that our proposed approach significantly
outperforms existing baselines across all experimental configurations.

2 Related Work
Rehearsal-based techniques represent a widely adopted strategy for mitigating forgetting by dynam-
ically incorporating a limited number of historical examples into the memory buffer [5, 6]. These
memory samples are leveraged alongside new training instances to enhance model performance
during the new task learning. Thus, the quality of the memorized samples is paramount within
the rehearsal-based optimization framework [14]. Moreover, rehearsal-based approaches can be
augmented through the integration of regularization techniques, with the objective of further elevating
the overall efficacy of the model [2, 9, 20, 45]. In addition, memory studies have proposed to train
the generative models to implement the memory system, which can provide infinite generative replay
samples [1, 33, 35, 50, 23].

Prompt-based techniques leverage frozen pre-trained models like Vision Transformers (ViT) [10] as
feature extractors, adapting them to sequential tasks through task-specific learnable prompt parameters.
Current approaches employ diverse prompt management strategies including L2P [47]’s shared
prompt pool with query-key retrieval mechanism, DualPrompt [46]’s separation of task-agnostic
(G-Prompt) and task-specific (E-Prompt) components, and CODA-Prompt [36]’s attention-weighted
cross-task prompt expansion. HiDe-Prompt [40] further advances performance by hierarchically
decomposing class-incremental learning objectives for optimized task adaptation.

Expansion-based methods represent a robust approach to mitigating network forgetting in continual
learning [8]. Such an approach dynamically expands the network architecture to enhance the learning
ability of the new task [22, 38]. Beyond convolutional neural networks, expansion-based techniques
have also been explored to leverage the capabilities of ViTs as the foundational network. These
methods usually create self-attention blocks with the task-specific classifier to adapt to the new task
learning [11, 48, 30, 49]. However, these methodologies typically involve freezing the pre-trained
model, which limits their adaptability to complex and unknown data domains. We provide additional
information on the related work in Appendix-A from Supplementary Materials (SM).

3 Methodology
3.1 Problem Definition
CL seeks to develop a model capable of acquiring knowledge across multiple sequences of tasks while
retaining previously acquired information. This paper addresses a more pragmatic learning context in
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Figure 1: The training framework of the proposed LEAR. The data samples from new tasks are
processed through a collaborative backbone structure to learn task-shared, task-specific and backbone-
distinct representations via the proposed MIBPA, KLDBFA and HSICBCO, respectively. ESM
constructs memory distributions and selects relevant experts for network expansion and test evaluation.

which each task encompasses previously unseen challenging data domains. Let DS
i = {xj ,yj}

nS
i

j=1

and DT
i = {xj ,yj}

nT
i

j=1 denote the i-th training and testing datasets, respectively. In a class-
incremental learning scenario [3], a data split procedure is performed to divide the training dataset
DS

i into Ci subsets {DS
i,1, · · · ,DS

i,Ci
} according to the category, where each task Tj is associated

with a training dataset DS
i,j formed by samples from several adjacent classes. In the context of a

specific task learning Tj , the model is restricted to utilizing only the training dataset DS
i,j , with all

preceding datasets {DS
i,1, · · · ,DS

i,j−1} being inaccessible. In DIL, each task is conceptualized as
a distinct data domain, denoted as {DS

1 , · · · ,DS
n}, with n representing the total number of tasks.

In contrast to these two CL scenarios which posit that each task comprises non-overlapping and
heterogeneous data samples, a new task within our MDCL encompasses data samples that exhibit not
only similar semantic characteristics with previously seen tasks but also significant domain shifts.
Consequently, it becomes imperative to leverage existing parameters to facilitate learning these
analogous tasks, thereby accelerating the training process and minimizing resource consumption.
Once the final task learning is finished, the model’s efficacy is assessed across all testing datasets
{DT

1 , · · · ,DT
n } through the lens of classification accuracy.

3.2 Collaborative Backbone Structure

Recent investigations in CL have assessed the efficacy of leveraging a pre-trained ViT [10] to
enhance model performance. These methodologies typically incorporate the pre-trained ViT as
the primary backbone, facilitating the expert construction process while concurrently freezing its
parameters to mitigate catastrophic forgetting. Nevertheless, this architectural design constrains the
model’s capacity for learning in the context of novel tasks, particularly when the incoming data
exhibits divergent domain characteristics. This paper addresses this limitation by introducing a novel
collaborative backbone architecture, comprising global and local backbones, each instantiated via a
pre-trained ViT to facilitate rapid adaptation. Specifically, the global backbone incrementally updates
its parameters throughout the optimization phase, with the objective of generating a task-shared
representation applicable across tasks. Conversely, the local backbone is engineered to dynamically
adapt to new tasks through parameter adjustments. We propose to optimize only the final three layers
of the global and local backbone to mitigate computational expenses.

Let Fθg : X → Z ′ denote a global backbone, implemented using a pre-trained ViT, which receives a
data sample x over the data space and returns a feature vector z′ over the feature space Z ′. Similarly,
let Fθl : X → Z ′ denote a local backbone, which has the same input-output pattern as the global
backbone. For a given data sample x, we can obtain its feature representations extracted by the global
and local backbones, expressed as :

zg = Fθg (x), zl = Fθl(x) , (1)
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By using Eq. (1), the proposed framework dynamically creates a lightweight expert (Ej) consisting of
a simple feature transformation module Fφf

j
: Z ′ → Z and a linear classifier Fφc

j
: Z → Y , aiming

to learn a decision boundary for a specific task. Fφf
j

receives the local representation zl and returns a
feature vector z over the feature space Z , which is concatenate with global representation zg and fed
into the linear classifier Fφc

j
to make the prediction over the space Y . The subscript j denotes the

expert index, and ⊕ denotes the concatenation operation that combines two representations into a
single feature vector. The prediction process of the j-th expert is expressed as :

Fc(Ej ,x) = Fφc
j
(Fθg (x)⊕ Fφf

j
(Fθl(x))) . (2)

By integrating representations derived by global and local backbones, the expert Ej in Eq. (2) can
improve its generalization performance for a given data sample x.

3.3 Mutual Information-Based Prediction Alignment

The global backbone’s objective is to furnish a unified representation across all observed tasks.
Consequently, optimization of the global backbone is susceptible to catastrophic forgetting, impacting
all historical experts. To mitigate this, we introduce a novel Mutual Information-Based Prediction
Alignment (MIBPA) methodology, designed to maintain the consistency of predictions of all historical
experts when changing the parameters of the global backbone during the acquisition of new tasks.
Specifically, we construct a parameter-shared auxiliary model Fθ̂g by replicating and freezing the
global backbone’s final three layers, then connecting them in parallel with intermediate features from
the backbone’s preceding layers. This auxiliary model subsequently guides the global backbone’s
optimization, producing two distinct prediction sets through the i-th expert, formulated as: :

Yi =
{
yc |yc = Fφc

i
(Fθg (xc)⊕ Fφf

i
(Fθl(xc))), c = 1, · · · , b

}
,

Ŷi =
{
yc |yc = Fφc

i
(Fθ̂g (xc)⊕ Fφf

i
(Fθl(xc))), c = 1, · · · , b

}
,

(3)

where b denotes the size of the data batch X = {x1, · · · ,xb} and xc denotes the c-th data sample
of X. Let P (Y i, Ŷ i) denote a joint distribution, where P (Y i) and P (Ŷ i) represent the marginal
distributions of Yi and Ŷi, respectively. Let Y i and Ŷ i denote two random variables over the joint
distribution P (Y i, Ŷ i). The proposed MIBPA approach minimizes the mutual information between
Y i and Ŷ i, expressed as :

I(Y i; Ŷ i) =
∑

ŷi∈Ŷ i

{∑
yi∈Y i

{
P (Y i, Ŷ i)(yi, ŷi) log

P (Y i, Ŷ i)(yi, ŷi)

p(Y i)(yi)p(Ŷ )(ŷi)

}}
, (4)

where P (Y i, Ŷ i)(yi, ŷi) signifies the probability density function of P (Y i, Ŷ i). The mutual infor-
mation term I(Y i; Ŷ i), as defined in Eq. (4), evaluates the distance of the prediction made by the i-th
expert built on the previously and currently learned global backbones. A small mutual information
term I(Y i; Ŷ i) indicates that updating the global backbone can still maintain the prediction pattern
of the i-th expert. Finally, the final MIBPA regularization loss function at the j-th task learning is
defined as :

LMI =
1

j − 1

∑j−1

i=1

{
I(Y i; Ŷ i)

}
. (5)

3.4 Kullback–Leibler (KL) Divergence-Based Feature Alignment

The iterative updating of the pre-trained backbones facilitates the temporal capture of local rep-
resentations, thereby potentially enhancing the acquisition of novel tasks. However, this process
risks inducing adverse knowledge transfer and performance degradation across historical experts.
Regularization methods like EWC [24] and MAS [4], which typically impose constraints on param-
eter updates, are not desirable to capture the complex distributional shifts across domains, while
knowledge distillation methods like LWF [28] and iCaRL [34] require maintaining additional teacher
networks that become computationally prohibitive as the number of tasks grows. To address these
limitations, we propose Kullback-Leibler Divergence-Based Feature Alignment (KLDBFA), designed
to preserve crucial historical parameters during the optimization of the local backbone.
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Our design rationale for selecting KL divergence stems from two key considerations: Firstly, modern
generative evaluation metrics (e.g., FID [18], Kernel MMD [13]) operate on the Gaussian distribution
assumption in high-dimensional feature spaces. This motivates us to model backbone features as
Gaussian distributions. Fig. 1 in Appendix-C from the SM also provides additional empirical valida-
tion for the Gaussian distribution assumption. Secondly, KL divergence offers unique advantages over
alternative distributional metrics: (1) Its directional property enables targeted constraint of current
features toward historical distributions, unlike symmetric metrics (e.g., Jensen-Shannon divergence);
(2) It maintains computational efficiency compared to expensive metrics like MMD or Wasserstein
distance. These characteristics make KL divergence ideally suited for continual learning scenarios
requiring efficient knowledge preservation.

Specifically, upon each task transition, the proposed KLDBFA approach duplicates and immobilizes
the local backbone Fθl as a frozen model Fθ̂l following a similar procedure in MIBPA. Fθ̂l serves to
regulate the optimization dynamics of the local backbone. For a given data batch X = {x1, · · · ,xb},
two distinct sets of feature vectors are derived utilizing Fθl and Fθ̂l , respectively, as follows :

Zl = {zc | zc = Fθl(xc), c = 1, · · · , b} , Ẑl = {zc | zc = Fθ̂l(xc), c = 1, · · · , b} . (6)

Building upon the Gaussian assumption stated above, we model two Gaussian distributions P (Zl) =

N (µ1,Σ1) and P (Ẑl) = N (µ2,Σ2), through calculating the mean vectors µ1, µ2 and covariance
matrix Σ1, Σ2 of Zl and Ẑl, respectively. We propose to employ the KL divergence to evaluate the
discrepancy between P (Zl) and P (Ẑl) as a regularization loss term, expressed as :

DKL(P (Zl)||P (Ẑl)) =
1

2

[
log

(
det(Σ2)

det(Σ1)

)
− d+ tr(Σ−1

2 Σ1) + (µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1)

]
LKLDBFA = DKL(P (Zl) ||P (Ẑl)) ,

(7)
where DKL denotes the KL divergence. det(·), d, and tr(·) represent the determinant, dimension,
and trace of a matrix, respectively.

3.5 HSIC-Based Collaborative Optimization

The global and local backbones are designed to capture distinct feature representations, thereby poten-
tially improving model efficacy. To further facilitate the disentanglement between these backbones,
we introduce a novel Hilbert-Schmidt Independence Criterion (HSIC)-Based Collaborative Optimiza-
tion (HSICBCO) methodology. This approach leverages an independence criterion to maximize the
divergence of knowledge between the global and local backbones. Specifically, we employ the HSIC
measure [12], given its property of ranging from 0 to infinity, with 0 signifying statistical indepen-
dence. Consequently, minimizing the HSIC term allows for enhanced disentanglement between the
global and local backbones, which can be easily added to the primary loss function.

Let Zg and Zl denote two distinct domains, and let PZg,Zl represent a joint distribution from which a
sample pair {zg, zl} is drawn using global and local backbones across Zg×Zl. The primary objective
of HSIC, as delineated in [12], within the framework of Reproducing Kernel Hilbert Space (RKHS),
[42], is to quantify the dependency between the domains of the variables zg and zl by assessing
the norm of the cross-covariance operator over the domain Zg × Zl. Let Q and B be the RKHSs
defined on Zg and Zl, respectively, and let fQ : Zg → Q, and fB : Zl → B denote their respective
feature mappings. The associated reproducing kernels are defined as k(zg, z′g) =

〈
fQ(zg), fQ(z

′
g)
〉

and l(zl, z
′
l) = ⟨fB(zl), fB(z′l)⟩, where zg, z

′
g ∈ Zg and zl, z

′
l ∈ Zl. The cross-covariance operator

between fQ and fB is defined as follows :

Czgzl
=Ezgzl

{(
fQ(zg)− Ezg [fQ(zg)]

)
⊗ (fB(zl)− Ezl

[fB(zl)])
}
, (8)

where ⊗ is the tensor product. HSIC is defined as the square of the Hilbert-Schmidt norm of Czg,zl
:

LHSIC(Q,B,PZg,Zl) =
∥∥Czg,zl

∥∥2
HS

= Ezg,z′
g,zl,z′

l
[k(zg, z

′
g)l(zl, z

′
l)]

+ Ezg,z′
g
[k(zg, z

′
g)]Ezl,z′

l
[l(zl, z

′
l)]− 2Ezg,zl

[Ez′
g
[k(zg, z

′
g)]Ez′

l
[l(zl, z

′
l)]] ,

(9)

where Ezg,z′
g,zl,z′

l
represents the expectation over samples {zg, zl} and {z′g, z′l} drawn from PZg,Zl .
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3.6 Expert Selection Mechanism

In scenarios where analogous data domains are encountered in subsequent tasks, the reuse of pertinent
parameters and information becomes imperative for the efficient learning of such domains, thereby
accelerating the training process of a novel task. To this end, this study introduces a novel Expert
Selection Mechanism (ESM), designed to identify the most relevant expert for a given new task,
facilitating the reuse of existing parameters to initialize a new expert, which, in turn, can engender
positive knowledge transfer effects.

The memory distribution. Specifically, we utilize a frozen pre-trained ViT as a feature extractor,
denoted as Fθf : X → Z ′′, to generate static data representations, where θf represents the fixed
parameters of the ViT backbone. To mitigate parameter redundancy, we duplicate and freeze the
local backbone’s final three layers as in KLDBFA in the first task. Upon the completion of a specific
task learning phase (Tj), a subset of training samples {xk}mk=1 is randomly selected from DS

j and
processed by Fθf to extract the class token representation z′′k = Fθf (xk). These extracted features
are subsequently propagated through the fully connected layer of the current expert Ej , yielding
transformed features :

zk = Fφf
j
(z′′k) . (10)

By using the transformed features, we obtain the empirical mean µj and covariance matrix Σj by :

µj =
1

m

∑m

k=1

{
zk

}
, Σj =

1

m− 1

∑m

k=1

{
(zk − µj)(zk − µj)

⊤} . (11)

Subsequently, a multivariate Gaussian distribution Nj = N (µj ,Σj) is constructed to preserve the
statistical information about the j-th task. We call Nj as the memory distribution for the expert Ej ,
which is always fixed during the subsequent learning.

The expert selection process. When a new task Tj+1 begins, its training samples {xl}m
′

l=1 are first
processed by the frozen backbone Fθf to obtain z′′l = Fθf (xl). For the l-th representation z′′l , we
can employ the feature transformation modules {Fφf

1
, · · · , Fφf

j
} of all existing experts {E1, · · · , Ej}

to generate a set of transformed features zcl = Fφf
j
(z′′l ), ∀c = 1, · · · , j. Based on the transformed

features, the most relevant expert Ec∗ with the minimum average Mahalanobis distance at the new
task learning (Tj+1) is selected by :

c∗ = argmin
c=1,··· ,j

{ 1

m′

∑m′

l=1

√
(zcl − µc)

⊤Σ−1
c (zcl − µc)

}
, (12)

where c∗ denotes the index of the selected expert. Finally, a new expert Ej+1 is initialized using the
parameters of the selected expert Ec∗ , particularly inheriting its feature transformation module Fφf

c∗

and linear classifier Fφc
c∗

. The new expert is then fine-tuned on the subset of incoming task samples
to adapt to the new domain. During inference, test samples are assigned to the most suitable expert for
prediction using the same selection strategy. The reason for choosing the Mahalanobis distance is that
it accounts for the scale and correlation of variables, making it suitable for datasets where features
are correlated or have different units. Other distance measures are analyzed in Appendix-D from SM.
This Mahalanobis distance-based expert selection strategy enables the model to dynamically identify
the most semantically related expert for knowledge transfer, thereby accelerating convergence and
reducing parameter overhead during continual learning.

3.7 Algorithm Implementation

The learning procedure of the proposed LEAR (illustrated in Fig. 1) consists of three stages:

Step 1: Collaborative backbone initialization. We initialize both global and local backbones using
pre-trained ViT models. These networks serve as the feature extractors for all tasks throughout the
Multi-Domain Continual Learning process. For a given input x, we obtain its feature representations
extracted by both backbones using Eq. (1).

Step 2: Dynamic expert creation and selection. During the training of the j-th task (Tj), we
dynamically create a lightweight expert tailored to this domain. To ensure effective knowledge
transfer, we select the most relevant historical expert based on the Mahalanobis distance computed
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Table 1: The classification accuracy (%) of all testing datasets after learning the CDM task sequence.

Methods C10 Disease MNIST RESISC45 EuroSAT TImg C100 ChestX ImgR CUB200 Avg

DER++(Re) 22.78 34.00 11.33 8.24 18.18 7.66 31.79 25.99 54.04 78.23 29.22
CLS-ER 22.58 27.22 12.50 14.32 24.17 14.14 34.23 25.99 52.46 75.78 30.34
RanPAC 87.17 96.76 87.45 84.20 92.53 71.46 51.44 39.63 43.30 56.18 71.01
MoE 92.74 32.44 91.87 54.02 41.85 6.12 78.98 19.60 78.43 77.24 57.33
L2P 20.66 11.15 14.08 4.50 13.65 11.67 31.76 21.52 58.26 81.30 26.85
DAP 8.83 2.78 18.94 3.36 18.19 3.06 11.29 16.34 60.68 80.37 22.38
D-Prompt 25.99 9.08 16.57 4.13 7.30 22.73 38.36 17.33 59.06 82.44 28.30
C-Prompt 13.57 2.33 9.10 1.90 14.18 0.68 3.40 14.35 4.14 60.55 12.42
Ours 95.44 98.46 96.59 92.04 95.00 81.24 85.10 45.95 70.47 85.80 84.61

Table 2: The classification accuracy (%) of all testing datasets after learning the ETI task sequence.

Methods EuroSAT TImg ImgR CUB200 C100 MNIST RESISC45 ChestX C10 Disease Avg

DER++(Re) 51.82 36.25 2.32 6.20 23.08 65.97 40.45 27.41 82.69 97.77 43.40
CLS-ER 45.76 29.33 16.19 33.08 30.74 67.10 46.44 30.26 80.29 97.62 47.68
RanPAC 92.64 70.87 43.75 56.13 51.83 88.08 83.51 40.34 86.74 96.88 71.08
MoE 43.01 0.94 55.48 25.16 74.22 97.67 84.57 33.38 96.88 99.90 61.12
L2P 10.88 1.45 0.97 4.04 14.55 12.17 22.48 9.16 89.69 98.62 26.40
DAP 9.93 1.07 1.84 17.65 15.74 15.44 22.19 16.34 86.20 98.44 28.48
D-Prompt 10.61 1.31 1.44 3.09 17.03 23.83 25.03 14.77 93.42 99.33 28.99
C-Prompt 11.66 0.67 0.62 0.33 1.72 13.04 6.14 16.62 21.74 96.21 16.88
Ours 95.89 81.25 69.57 84.12 85.30 98.56 92.92 45.45 96.60 99.30 84.90

over previous feature distributions through Eq. (12). As a result, the selected expert is employed to
initialize a new expert.

Step 3: Interactive optimization with alignment constraints. Once the new expert Ej is created,
we perform joint optimization incorporating mutual information-based prediction alignment via
Eq. (5) and KL-divergence feature alignment using Eq. (7). Furthermore, we calculate the HSIC
regularization losses to encourage disentanglement between global and local backbones using Eq. (9).
All regularization terms are incorporated into the main objective function for expert optimization :

Lfinal(X) = −
∑b

c=1

∑C

t=1

{
yc[t] log(Fc(Ej ,xc)[t])

}
+ λ1LMI

+ λ2LKLDBFA + λ3LHSIC(Q,B,PZg,Zl) ,
(13)

where Fc(Ej ,xc)[t] denotes the predicted probability of class t for sample xc. λ1, λ2, λ3 are trade-off
hyperparameters balancing different loss components. The model parameters {θg, θl, φf

j , φ
c
j} is

updated using Eq. (13). The detailed algorithm is summarized in Appendix-B from SM.

4 Experiment
4.1 Experimental Setup

Metrics. In the context of the MDCL scenarios, we assess and compare model efficacy at the final
task through two key metrics: the classification accuracy of a single domain (e.g., C10 or CUB200)
and the overall performance across all domains (Avg).

Datasets. The datasets used in our experiment can be logically categorized into three primary
fields according to [21]. Natural Domains include CIFAR-10 [25] (C10), TinyImageNet [26]
(TImg), CUB-200 [39], MNIST [27] and ImageNet-R [17] (ImgR), covering a range of tasks
from basic image classification to fine-grained recognition and robustness testing across various
visual styles. Aerial Domains comprise EuroSAT [16] and RESISC45 [7], focusing on satellite
imagery for land cover classification and environmental monitoring. Medical Domains consist
of CropDiseases [31] (Disease) and ChestX [43], specialized for identifying plant diseases and
diagnosing medical conditions through radiographic images, respectively. Then, we randomly shuffle
these datasets to construct three highly challenging MDCL scenarios (CDM, ETI and TRC which
are derived from the initial letters of the first three domains). Detailed experimental configurations
are provided in Appendix-C from SM.
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Table 3: Comparison of Baselines in terms of parameter and computational efficiency (in CDM).

Methods Train Params↓ Iter/s↑ GPU Avg↓ GPU Max↓ CPU Avg↓ CPU Max↓

DER++(Re) 42.84M 1.04 12919.37MB 12919.37MB 9756.08MB 16805.70MB
CLS-ER 42.84M 2.13 6199.39MB 6199.39MB 9658.21MB 16700.56MB
RanPAC 1.19M 4.27 3065.27MB 3087.97MB 9823.56MB 17465.18MB
MoE 4.03M 1.77 11098.88MB 11098.88MB 14203.61MB 17262.77MB
L2P 0.20M 5.08 3420.06MB 3420.06MB 9654.75MB 16798.61MB
DAP 0.51M 2.76 3686.95MB 3686.95MB 9911.54MB 16958.32MB
D-Prompt 0.41M 3.11 3556.64MB 3556.64MB 9866.40MB 17040.50MB
C-Prompt 3.99M 4.91 4775.65MB 4775.65MB 9869.61MB 16941.20MB
Ours 42.54M 3.06 2926.20MB 2926.20MB 9525.63MB 16681.54MB

Table 4: Impact of individual and combined components on model performance in ETI.

Methods EuroSAT TImg ImgR CUB200 C100 MNIST RESISC45 ChestX C10 Disease Avg

CB 19.59 8.37 11.81 12.29 36.92 49.88 61.14 30.04 92.79 99.00 42.18
SBE 85.38 70.49 55.42 73.45 77.05 90.05 85.93 37.73 93.65 99.13 76.83
CBE 92.38 76.49 62.42 78.45 82.05 95.05 90.93 38.73 94.17 99.04 80.97
CBE+MI 95.08 80.93 68.19 82.49 84.68 97.15 91.29 39.56 96.18 98.28 83.38
CBE+KL 92.18 78.02 66.13 78.97 82.50 92.24 90.54 44.58 95.81 99.13 82.01
CBE+HSIC 93.65 76.97 64.37 78.56 82.35 91.88 91.29 45.53 95.49 99.06 81.92
CBE+MI+KL 95.35 81.61 68.30 83.56 85.54 97.43 92.28 46.44 96.22 99.01 84.57
CBE+MI+HSIC 95.87 80.85 68.74 83.15 85.52 98.03 92.08 42.43 96.33 98.91 84.19
CBE+KL+HSIC 93.24 78.22 66.45 80.49 82.55 92.21 91.39 45.26 95.59 99.08 82.45
LEAR 95.89 81.25 69.57 84.12 85.30 98.56 92.92 45.45 96.60 99.30 84.90
LEAR w/o ESM 3.72 1.25 2.36 83.95 8.24 4.91 14.63 1.05 17.85 99.15 23.71

4.2 Experimental Results
Results in Multi-Domain Continual Learning. Our comprehensive evaluation compares LEAR
against state-of-the-art approaches across three distinct domain sequences (Tables 1 and 2). As
shown in Table 1, LEAR achieves an outstanding average accuracy of 84.61% in the CDM scenario.
Specifically, LEAR outperforms the replay-based DER++ (Refresh) by 55.39%, highlighting its
superior ability to mitigate catastrophic forgetting without requiring memory buffers. When compared
to expansion-based methods, LEAR shows substantial advantages over both RanPAC (71.01%) and
MoE-adapters (57.33%), particularly in challenging domains like TinyImageNet and ChestX, while
maintaining consistent performance across all evaluated domains.

The reshuffled domain sequence in Table 2 further validates LEAR’s adaptability, where it achieves an
even higher average accuracy of 84.90% in the ETI scenario, outperforms dual-branch method CLS-
ER (47.68%) by 37.22%, with especially large gap on ImageNet-R. Moreover, LEAR demonstrates
over 55% higher average accuracy than the domain-incremental method DAP (28.48%) and other
listed prompt-based approaches. These results highlight LEAR’s ability to effectively learn and retain
knowledge regardless of the domain order.

Moreover, as shown in Figure 2 (a), the proposed LEAR achieves the lowest forgetting rate in CDM
scenario compared to alternative methods. As the number of tasks increases, LEAR consistently
maintains stable and superior performance across domains with various fields and different complex-
ities, effectively addressing the catastrophic forgetting prevalent in existing approaches. Detailed
results for the TRC scenario are provided in the Appendix-D from SM.

4.3 Ablation Studies

The impact of components in LEAR. Table 4 provides empirical validation for the theoretical
contributions of each proposed module. Where “CB” denotes using only the collaborative backbone
with a single shared expert network across all data domains; “CBE” extends CB with task-specific
expert network expansion and ESM expert selection; “SBE” denotes the configuration where “CBE”’s
dual backbone architecture is replaced with a single backbone; and “CBE+MI/KL/HSIC" represents
CBE augmented with individual components or combination of components. “LEAR w/o ESM”
denotes randomly selecting experts during the beginning and testing phase of each task. This table
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Figure 2: (a): The comparison of the forgetting curves between LEAR and other baseline methods
after learning the CDM sequence. (b): Visualization of memory distributions from the ETI sequence
after PCA dimensionality reduction, showing mean positions and covariance ellipsoids. (c): Feature
visualization of global backbone and local backbone with HSICBCO regularization.

demonstrates that the collaborative backbone design (“SBE”->“CBE”) and the dynamically expanded
expert network (“CB”->“CBE”) significantly enhance model performance in ETI. In addition, each
regularization term and its combinations contribute to varying degrees of performance improvement
over “CBE” on these two sequences. Furthermore, the model’s performance will significantly drop
when inappropriate experts are chosen (“LEAR”->“LEAR w/o ESM”), thereby demonstrating the
necessity of ESM. These evaluation results align well with our methodological design.

The analysis of parameter and computational efficiency. As shown in Table 3, LEAR achieves the
lowest GPU and CPU utilization among all baseline methods. While baselines including prompt-based
approaches (e.g., DualPrompt) and adapter-based variants (e.g., MoE-Adapters) indeed contain fewer
trainable parameters (0.5%-5% per ViT block), they inevitably require complete backpropagation
through all ViT blocks, necessitating the storage of intermediate activations throughout the entire
backbone due to chain rule dependencies, which maintain extensive computation graphs. Conversely,
LEAR’s innovative design strategically fine-tunes only the last three ViT layers and terminates
backpropagation after the third-last layer, thereby significantly reducing the computation graph and
GPU usage.

Visualization of the Expert Selection Mechanism. Figure 2b shows the first five ESM-preserved
distributions from the ETI scenario, visualized in 3D space after PCA reduction. ESM computes
Mahalanobis distances between these distributions and incoming task samples to select experts for
either network expansion or test evaluation.

Visualization of the HSICBCO approach. Both the global and local backbones are initialized with
identical pretrained weights. Under the guidance of MIBPA and KLDBFA, they learn task-general
and task-specific representations, respectively. However, their feature representations still exhibit
strong correlations. As illustrated in Figure 2c, the proposed HSICBCO module effectively decouples
these representations, demonstrating its capability to promote distinct feature learning. Additional
ablation results are provided in the Appendix-D from SM.

5 Conclusion and Limitation

In this paper, we propose LEAR, a novel framework for Multi-Domain Continual Learning that
simultaneously addresses stability plasticity and efficiency. Specifically, built on a collaborative
backbone structure, we introduce MIBPA and KLDBFA to maintain historical prediction consistency
and task-specific feature alignment during model updates, while HSICBCO ensures disentangled and
complementary representations. Additionally, ESM dynamically selects relevant experts for efficient
network expansion and task-agnostic prediction. The empirical results demonstrate the effectiveness
of the proposed approach. The primary limitation of this paper is that the proposed approach would
contain a considerable number of parameters. To address this issue, we will propose a novel expert
merging technology with self-distillation for effective model compression.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the algorithm implementation in Section 3.7 and Appendix-B
from SM, along with the source code. The detailed experimental setup is documented in
Appendix-C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the algorithm implementation in Section 3.7 and Appendix-B
from SM, along with the source code. The detailed experimental setup is documented in
Appendix-C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the algorithm implementation in Section 3.7 and Appendix-B
from SM, along with the source code. The detailed experimental setup is documented in
Appendix-C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Detailed experimental results are provided in Appendix-D from SM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the detailed experimental setup (include compute resources) in
Appendix-C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide the societal impacts of the work in Appendix-E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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