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ABSTRACT

Most protein language models (PLMs), which produce high-quality protein rep-
resentations, use only protein sequences during training. However, the known
protein structure is crucial in many protein property prediction tasks, so there is
a growing interest in incorporating the knowledge about the protein structure into
a PLM. Currently, structure-aware PLMs are trained from scratch or introduce a
huge parameter overhead for the structure encoder. In this study, we propose MU-
LAN, a MULtimodal PLM for both sequence and ANgle-based structure encod-
ing. MULAN has a pre-trained sequence encoder and an introduced parameter-
efficient Structure Adapter, which are then fused and trained together. According
to the evaluation on 9 downstream tasks, MULAN models of various sizes show
quality improvement compared to both sequence-only ESM2 and structure-aware
SaProt as well as comparable performance to Ankh, ESM3, ProstT5, and other
PLMs considered in the study. Importantly, unlike other models, MULAN offers
a cheap increase in the structural awareness of the protein representations due to
finetuning of existing PLMs instead of training from scratch. We perform a de-
tailed analysis of the proposed model and demonstrate its awareness of the protein
structure.

1 INTRODUCTION

Proteins, as unbranched heteropolymers, play a pivotal role in nearly all biological functions (Finkel-
stein & Ptitsyn, 2016). Comprising 20 distinct amino acids, the specific sequence of these amino
acids determines the complex three-dimensional (3D) structure of the protein (Anfinsen et al., 1961).
Subsequently, this 3D configuration governs the protein’s function (Finkelstein & Ptitsyn, 2016).
Advances in genome sequencing initiated the growth of the number of publicly available protein
data, unveiling a vast resource for understanding the molecular basis of life. The application of
modern machine learning techniques for a better understanding of protein sequences can boost the
development of diverse fields such as drug discovery, protein design, and biotechnology.

The abundance of protein sequences and their text-like nature made it possible to apply top-
performing approaches from natural language processing to proteins. It is tempting to expect that
protein sequence information alone would be sufficient for large protein language models (PLMs)
to infer protein structure and function. Recently, large PLMs, such as ProtTrans (Elnaggar et al.,
2021), ESM2 (Lin et al., 2022), and Ankh (Elnaggar et al., 2023) have made remarkable progress
in protein representation learning, surpassing previous approaches across various downstream tasks.
However, it appears that the representation abilities of sequence-only PLMs are limited and some
kind of structural information should be encoded directly into PLM. This limitation is represented
by a significantly better performance (Lin et al., 2023) of structure-infused Alphafold (Jumper et al.,
2021) compared to sequence-only ESMFold (Lin et al., 2023).

At the same time, structural information about a huge amount of proteins has also become easily
available with the revolutionary method AlphaFold (Jumper et al., 2021). Recently, several struc-
tural protein language models (SPLMs) were proposed. For example, SaProt (Su et al., 2023) and
ESM3 (Hayes et al., 2024) have successfully added some knowledge about the protein structure into
the model, showing a better performance compared to sequence-only PLMs. Additionally, existing
SPLMs require training from scratch (Wang et al., 2023; Heinzinger et al., 2023; Hayes et al., 2024;
Li et al., 2024). Furthermore, hybrid sequence-structure models add a large structure encoder with
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a size similar to the base PLM used, resulting in both parameter and computational overhead during
training and inference (Chen et al., 2024; Wang et al., 2023; Zhang et al., 2023a; Wang et al., 2022;
Li et al., 2024). Such overheads may influence the applicability of such models in high-throughput
pipelines, eg. computational drug discovery and protein design.

Figure 1: Visualization of residue embeddings of MULAN-ESM2 S 9M and ESM2 8M on CASP12
dataset. We use different colors for amino acid residue types (left) and for the 3 states of secondary
structure (right). The details of the experiment are presented in Section 4.3.

In our study we present a simple yet effective structure-aware PLM, that is computationally and
parameter-efficient and does not require training from scratch. Our main contributions are:

• We introduce MULAN, a novel MULtimodal PLM for both sequence and ANgle-based
structure processing. We propose the Structure Adapter, a lightweight MULAN module
that uses residue torsion angles to represent the protein structure. Our model can work on
top of existing PLMs through PLM finetuning, so it offers a cheap increase of structural
awareness due to avoiding training from scratch.

• We evaluate the obtained structure-aware protein representations on a wide range of down-
stream tasks and compare MULAN to relevant baselines. We show that adding MULAN to
both ESM2 and SaProt of various sizes is beneficial for the quality of the downstream tasks.
The main improvements are shown for protein-protein interaction prediction (up to 0.1 in
AUROC for MULAN-ESM2 L), and for the protein GO annotation (0.023 for medium and
0.012 for large MULAN-ESM2 in Fmax for GO CC).

• We perform an extensive ablation study to highlight the effectiveness and demonstrate the
structural awareness of MULAN embeddings (see Section 4.2 and Figure 1).

2 METHOD

2.1 MULAN ARCHITECTURE

Structural information In this study, we propose MULAN, which is a MULtimodal encoder
PLM for both sequence and ANgle-based structure processing. MULAN uses the pre-trained base
PLM and has the Structure Adapter – a module we introduce to incorporate the knowledge about the
3D protein structure (see Fig. 2a). In our experiments, we use ESM2 architecture, initializing the
base PLM from ESM2 or SaProt models. However, MULAN can be based on other PLMs.

2
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We use the information about the protein backbone torsion angles, which are conventionally called
ϕ and ψ and ensure the protein backbone flexibility. We also use all amino acid residue side chain
torsion angles, which are conventionally called χi (up to five χ angles for amino acid arginine)
and provide flexibility of the residues’ side chains. Missing χ angles together with undefined ter-
minal ϕ and ψ angles are filled with the reserved padding value, which results in an angle vector
[ϕ, ψ, χ1, χ2, χ3, χ4, χ5] for each residue. The residue torsion angles are rotation- and translation-
invariant; thus, they are easy to use inside a transformer model.
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Figure 2: The architecture of MULAN. a) MULAN processes sequence inputs with the ESM2 em-
beddings module, while structure inputs are passed to the Structure Adapter. Both sequence and
structure embeddings are summed up and passed to the ESM2 model, which is then finetuned.
Sequence-only ESM2 modules (blue) are initialized from the pre-trained ESM2 checkpoint. Struc-
ture processing modules are shown in pink. b) The architecture of the Structure Adapter.

The Structure Adapter The proposed Structure Adapter is used to support the multimodality of
our model and to fuse structural information with the sequence-only PLM. The Structure Adapter is
a small encoder for the protein structure, which consists of an MLP followed by a Transformer layer.
The MLP projects the residue angle vector to the residue angle embedding with dimension h, while
the Transformer layer processes all protein angle embeddings at once (see Fig. 2b). Similarly to
ESM2, we use rotary positional embeddings (Su et al., 2024) inside the Transformer layer to encode
the order of residue angle vectors. Given a protein of length N , the Structure Adapter returns an
N × h angle embedding, or a structure bias. Finally, angle embeddings are added to initial ESM2
residue embeddings of the same dimension h as a structure bias. The resulting structure-aware
residue embeddings are then passed through the ESM2 model. Due to the small size of the Structure
Adapter, it does not add an overhead to the training or inference time compared to the base PLM.

2.2 TRAINING PROCEDURE AND STRUCTURE MASKING

We initialize the base model with a pre-trained ESM2 checkpoint, so during training, we aim to
finetune ESM2 using additional structure inputs. We utilize the same masked language modeling
objective (MLM) (Devlin et al., 2018) as ESM2 for sequences, randomly masking 15% of tokens in
a batch. In this work, we apply a similar masking strategy to the Structure Adapter. Residue angles
are masked or replaced jointly with the corresponding residue letters. 80% of the time, angles are
masked with a pre-defined mask value, which are then passed to the Structure Adapter. 10% of the
time, the angle vector is replaced by a random angle vector from the same protein, while in the rest
cases, residue angles remain unchanged. Note, that both reserved padding and masking angle values
can have arbitrary values with absolute values higher than π in order not to mix with real angle
values (we take 4 and −4 in our experiments).

For each residue, AlphaFold produces an estimate of its confidence with a 0− 100 scale – predicted
local distance difference test score (pLDDT). This measure corresponds to the AlphaFold predicted
score on the lDDT-Cα metric (Mariani et al., 2013). We found out that only reliable structural
information should be passed to the model. We observed that passing low-confidence predictions

3
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into the model worsens its performance (see Section 4.1). Therefore, residue angle vectors with
pLDDT less than 70 are considered low confidence, and we mask these structural inputs (see Fig. 2).

3 EXPERIMENTS

3.1 TRAINING DETAILS

We use protein structures for Swiss-Prot proteins from AlphaFold Protein Structure Database (Al-
phaFold DB) (Varadi et al., 2022) for the pre-training stage (503, 724 structures). We filter out
proteins with a length of less than 30 amino acids. The final set comprises 501, 348 proteins. Fol-
lowing Rives et al. (2021), we randomly selected the validation set of 5000 proteins.

The small MULAN model (MULAN-ESM2 S 9M) was initialized from the ESM2 8M checkpoint.
For the medium-sized models (MULAN M 37M), we use 35M ESM2 or SaProt, while for large
models (MULAN L 652M) we take 650M ESM2 or SaProt checkpoints.

During the pre-training stage, we randomly crop proteins that are longer than 1022 residues to the
length of 1022. We follow Rives et al. (2021) and use dynamic batch size without the concatenation
of proteins along the sequence dimension during training. Also, to fully utilize GPU and minimize
the amount of padding, we use sorted batching with dynamic batch size as in (Gonzalez et al., 2023):
we keep a fixed number of tokens in the batch and form the batch from proteins with similar lengths.
The extended training details and hyperparameters are detailed in Appendix A.

3.2 DOWNSTREAM TASKS

We tested our model on 10 downstream tasks, of which the first 9 are main tasks and the last one,
Secondary structure prediction, served as a sanity check to verify the MULAN’s structure aware-
ness. We summarize the information about all these datasets in Appendix B.1 and Table 5. For the
prediction of the Localization (both binary and 10-class), Thermostability, Metal Ion Binding, Gene
Ontology (GO), and Human Protein-Protein Interaction (HumanPPI) we follow the setup of Su et al.
(2023). Fluorescence prediction was taken from Ankh (Elnaggar et al., 2023) setup. We used the
Secondary structure prediction task from TAPE (Rao et al., 2019) benchmark.

AlphaFold structures for proteins from the datasets were retrieved from AlphaFold DB by Uniprot
accession number if available. PDB IDs were mapped to UniProt accession numbers and retrieved
from AlphaFold DB. If no protein identifier was available or there was no AlphaFold model for the
UniProt accession number in the database, the protein was modeled by the standalone version of
AlphaFold. For all described datasets we keep the original data splits. For the Secondary structure
prediction, we use original experimental PDB structures for evaluation. The description of datasets
and processing steps is detailed in Appendix B.1.

To evaluate all binary classification tasks we use the area under the ROC curve (AUC); for multi-
class classification we measure accuracy; for multilabel GO annotation task, we follow (Gligorijević
et al., 2021) and use Fmax score; and for the regression tasks we measure Spearman’s correlation
coefficient (SCC).

3.3 DOWNSTREAM TASK EVALUATION

Downstream model To evaluate the performance of SPLMs, we extract protein embeddings from
the last layer of a model. For protein-level tasks, we perform the average pooling of embeddings.
Downstream task prediction is done using the model with the Light Attention architecture (Stärk
et al., 2021), which was designed to work with protein embeddings and shows better results than an
MLP. We detail the architecture of the downstream model in Appendix B.2

Experimental setup We train the downstream model and select optimal hyperparameters for each
downstream task and embedding model independently based on the metric on the validation set. We
set a fixed grid of hyperparameters for all downstream tasks, which includes the dropout rate and
intermediate representation sizes of a downstream model. The grid and all used hyperparameters are
detailed in Appendix B.3. We use AdamW optimizer (β1 = 0.9, β2 = 0.999) with a fixed learning
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Table 1: Performance gains caused by adding MULAN to ESM2 and SaProt models compared to
the initial models used for MULAN (MUL) initialization. The quality is measured on 9 downstream
tasks. Positive gains are in bold

Model name
Localization Thermo- Fluore Metal Human GO
10-cl. / binary stability scence Ion PPI CC / MF / BP

acc ↑ / AUC ↑ SCC ↑ SCC ↑ AUC ↑ AUC ↑ Fmax ↑
MUL-ESM2 S .003/.001 .014 .022 .070 .007 005/.059/.024
MUL-ESM2 M .008/− .002 .001 −.006 −.011 .045 .023/.011/.010
MUL-ESM2 L .008/− .001 .013 .012 −.012 .098 .012/− .005/.0

MUL-SaProt M −.007/.004 .005 .003 .017 .048 .004/− .001/.002
MUL-SaProt L −.003/− .002 −.008 .001 .026 .048 .005/.005/.006

rate (in most setups it is 5 · 10−5). The batch size is equal to 8192 for all experiments. The model is
trained for 200 epochs, and we select the intermediate checkpoint with the best validation metric.

4 RESULTS AND DISCUSSION

4.1 RESULTS

As baseline models for comparison we take sequence-only PLMs (ProteinBert (Brandes et al.,
2022), ESM2 (Lin et al., 2022) and Ankh (Elnaggar et al., 2023)); structure-aware SPLMs
(ProstT5 (Heinzinger et al., 2023), SaProt (Su et al., 2023) and ESM3 (Hayes et al., 2024)); hy-
brid sequence-structure models (S-PLM (Wang et al., 2023) and PST (Chen et al., 2024)), which are
top-performing to the best of our knowledge. We do not compare to ESM-GearNet (Zhang et al.,
2023a), because SaProt has reported to be better (Su et al., 2023), and LM-GVP (Wang et al., 2022)
and GearNet (Zhang et al., 2023b) were surpassed by ESM-GearNet (Zhang et al., 2023a). Another
hybrid model DeProt (Li et al., 2024) does not have implementation available. We train MULAN
on top of two model families: ESM2 and SaProt AF of various sizes. The quality of the protein rep-
resentations on the considered downstream tasks is reported in Table 2. Note that we report results
for models of different sizes in separate parts of the table and highlight the best results in bold also
separately according to the model size. Also, we do not report error bars for the results due to the
computationally expensive process of re-training PLMs. Our main findings are discussed below.

Adding MULAN is beneficial for different PLMs First of all, we aim to highlight the down-
stream performance gains introduced by MULAN when applied to both ESM2 and SaProt models.
These improvements are shown in Table 1: we report gains of MULAN models compared to the
base PLMs used for MULAN initialization. For example, MULAN-ESM2 S refers to the gains
of this MULAN model compared to the small ESM-2 8M model. Positive gains are in bold. The
results demonstrate that MULAN is effective on both small, medium, and large models. We show
that the performance of both considered PLMs was improved in most cases by adding the proposed
Structure Adapter.

MULAN demonstrates the most impressive results when applied to the small ESM2 model, signifi-
cantly increasing the quality of Metal Ion Binding prediction (.070 increase in AUROC) as well as
protein function prediction: GO MF (.059 in SCC) and Fluorescence (.022 in SCC). This fact in-
dicates that both protein property prediction and interaction prediction tasks benefit from the struc-
tural input. Overall, MULAN shows the best results in HumanPPI (for all base models there is a
significant improvement, up to 0.1 in AUROC for MULAN-ESM2 L). Also, MULAN increases
downstream quality in GO CC and GO BP tasks.

Furthermore, we show that MULAN-ESM generally offers higher performance gains compared to
MULAN-SaProt. We suppose that it is because SaProt is already a structure-aware model, while
ESM2 is sequence-only. Moreover, the results show that MULAN is a general-purpose PLM that
can produce high-quality results for protein downstream tasks of different nature. We show that this
simple strategy can enhance PLM performance for all considered models. We expect that MULAN

5
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Table 2: Comparison of the performance of various PLMs and SPLMs on 9 main downstream tasks.
The table is split into sections according to model sizes. We indicate the best results in bold for each
section separately. For large models second best results are underlined

Model name
Localization Thermo- Fluore Metal Human GO
10-cl. / binary stability scence Ion PPI CC / MF / BP

acc ↑ / AUC ↑ SCC ↑ SCC ↑ AUC ↑ AUC ↑ Fmax ↑
Small models
ProteinBert 16M .692/.952 .636 .610 .754 .687 .447/.542/.415
ESM2 8M .729/.948 .666 .579 .731 .698 .490/.529/.400
MULAN-ESM2 S .732/.949 .680 .591 .801 .705 .495/.588/.424
Medium models
ESM2 35M .760/.966 .689 .592 .793 .751 .489/.621/.443
MULAN-ESM2 M .768/.964 .690 .586 .782 .796 .512/.632/.453
Saprot AF 35M .767/.960 .699 .639 .783 .731 .501/.632/.440
MULAN-SaProt M .760/.964 .704 .642 .800 .779 .505/.631/.442

Large models
Ankh base 450M .804/.966 .703 .630 .837 .758 .510/.686/.495
Ankh large 1.2B .806/.954 .668 .638 .787 .738 .517/.692/.501
ProstT5 1.2B .773/.954 .693 .633 .805 .663 .518/.687/.484
PST 1.1B .820/.965 .689 .618 .831 .809 .526/.676/.475
S-PLM 704M .796/.950 .678 .584 .767 .731 .486/.671/.466
ESM3 1.4B .751/.951 .695 .663 .846 .704 .512/.673/.471

ESM2 650M .808/.969 .694 .601 .781 .754 .523/.678/.479
MULAN-ESM2 L .816/.968 .707 .613 .769 .852 .535/.673/.479
SaProt AF 650M .846/.974 .711 .668 .776 .720 .540/.658/.464
MULAN-SaProt L .843/.972 .703 .669 .802 .768 .545/.663/.470

can be applied to any large PLM (for example, Ankh), further improving their performance by a
computationally-efficient fine-tuning.

MULAN further boosts structure-aware SaProt Even though SaProt already uses the protein
structure information, MULAN-SaProt still generally increases the quality of protein representations
for both medium and large models with the highest improvements made for the protein interaction
prediction tasks (HumanPPI and Metal Ion Binding). At the same time, for some downstream tasks,
the performance was kept at the original level of SaProt, hence, MULAN does not degrade the
performance of the original model. These results highlight the fact that the currently used Foldseek
structural data may be not enough to fully encode the protein structure. Still, there is room for
improvement in the use of 3D structure, and the Structure Adapter has shown success in the further
enrichment of protein representations with structural information.

MULAN works on par with other SPLMs Although our main contribution is in the lightweight
improvement of existing PLMs, and MULAN does not aim to achieve the best results among all
existing approaches for protein representation learning, we still compare our model to all relevant
baselines. We report all baseline and MULAN models in Table 2, splitting it according to the model
sizes. MULAN-ESM2 S shows the best results compared to small ESM2 8M and even twice bigger
ProteinBert 16M model. To the best of our knowledge, in the medium-sized models, there are only
already considered ESM2 and Saprot, so we have discussed them earlier.

As for the large models, there is no clear superiority of one model over others among baselines:
there are downstream tasks where each model can show good results. This is another reason why
MULAN does not aim to be better than every existing model. However, MULAN performs strictly
better than S-PLM and is comparable to ProstT5, ESM3, and PST (there are approximately half of
the tasks better in MULAN L).
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Table 3: Ablation study of the training pipeline for ESM2 8M and MULAN-ESM2 S. The first
section corresponds to ESM2 8M results without the Structure Adapter, while the second section –
for MULAN-ESM2 S. The best results are shown in bold, second best are underlined

Model name
Localization Therm. Fluore Metal Human GO
10-cl. / binary stab. scence Ion PPI CC / MF / BP

acc ↑ / AUC ↑ SCC ↑ SCC ↑ AUC ↑ AUC ↑ Fmax ↑
ESM2 8M .729/.948 .666 .579 .731 .698 .490/.529/.400
ESM2 + finetune .715/.946 .679 .576 .743 .728 .476/.545/.410

MULAN-ESM2 S .732/.949 .680 .591 .801 .705 .495/.588/.424
without pLDDT .712/.937 .684 .582 .760 .738 .496/.579/.420
from scratch .668/.922 .663 .550 .709 .765 .461/.514/.373

MULAN offers cheap structural awareness Remarkably, MULAN achieves these quality im-
provements with minimal effort. Firstly, unlike SaProt, ProstT5, and ESM3, it does not require
training from scratch. Instead, we perform a lightweight finetuning of a pre-trained PLM for several
epochs (up to three days on one GPU). In contrast, SaProt reports that the computational cost of
training is similar to ESM-1b (Su et al., 2023), which results in three months of training. Thus,
MULAN is very computationally-friendly in terms of training time and applying it to new models.
Secondly, MULAN adds the minimal parameter overhead. The proposed Structure Adapter uses
only one Transformer layer, which results in 0.3% parameter overhead for MULAN L with 652M
parameters. At the same time, other hybrid models add much more parameters: PST adds 69%
overhead, and S-PLM adds 13.8% more parameters. These additional large structure encoders sig-
nificantly decrease the inference speed and require more powerful GPUs, which is undesirable in
practical scenarios. However, MULAN works strictly better than S-PLM and there is no clear su-
periority of MULAN or PST over one another. Thus, we conclude that even a lightweight approach
can reach the level of much larger models.

4.2 ABLATION STUDY

In the experiments below we perform a detailed analysis of the performance of MULAN-ESM2 S
to reduce the amount of computations. The extended results with all ablation studies and analysis
of the used hyperparameters are shown in Appendix C. We discuss the importance of sequence and
structure modalities, architectural choice, and learning rate strategies there.

The Structure Adapter is the key factor for improvement We aim to evaluate the importance of
the additional Structure Adapter and the influence of the training procedure we use. For this purpose,
we finetune the pure ESM2 8M on our training dataset (ESM2 + finetune experiment) to show that
our training dataset and the finetuning procedure itself do not lead to a significant performance boost
on downstream tasks. The results of the evaluation demonstrate that finetuning of ESM2 on our data
is not enough, do the main contribution to the performance boost is done by the Structure Adapter
(see ESM2 vs ESM2 + finetune vs MULAN-ESM2 experiments in Table 3).

Masking structural inputs with pLDDT for noise reduction We show that it is useful to mask
uncertain residues in AlphaFold structure models (with pLDDT > 70) before passing them to the
Structure Adapter: see MULAN vs MULAN without pLDDT masking experiments in Table 3. Most
of the downstream tasks benefit from this trick, most likely due to the noise reduction in input angles.

Starting from the pre-trained model is necessary We demonstrate the benefits of finetuning
the pre-trained ESM2 model instead of training MULAN from scratch. Despite the addition of
the structure bias to the initial ESM2 embeddings, it is still possible and useful to adjust all model
weights for new inputs and not to lose the base knowledge of a pre-trained model. We applied the
same training procedure to the randomly initialized MULAN (see Table 3: MULAN vs MULAN
from scratch), and the obtained results are much worse compared even to ESM2 8M, which indicates
the need for much more time for training MULAN from scratch.
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Table 4: Comparison of the performance of PLMs on the secondary structure prediction task. The
table is split into sections based on the model size. The best results for each section are in bold

Model name
3-state, accuracy ↑ 8-state, accuracy ↑

CASP12 TS115 CB513 CASP12 TS115 CB513

Small models
ESM2 8M .732 .798 .765 .602 .677 .623
MULAN-ESM2 S .894 .918 .895 .815 .854 .806
Medium models
ESM2 35M .752 .828 .809 .619 .707 .669
MULAN-ESM2 M .886 .901 .877 .789 .814 .769
SaProt AF 35M .900 .924 .910 .805 .848 .817
MULAN-SaProt M .905 .927 .912 .807 .852 .818

Architecture ablation Following Su et al. (2023); Heinzinger et al. (2023), we try to use Foldseek
sequences to represent the structure in the same manner as the Structure Adapter does. Also, we ex-
perimented with structure features prediction heads and additional structure-related loss functions.
As a result, we tried to add an additional Foldseek embedding layer or Contact and Angle prediction
heads. According to our experiments (see Table 7), we did not notice a significant quality improve-
ment compared to the base MULAN induced by these modifications (see Table 7). We explain these
architectural modifications in detail and discuss the obtained results in Appendix C.1.

4.3 SECONDARY STRUCTURE PREDICTION

We aim to show the awareness and proper use of 3D structure by MULAN. For this purpose, we
evaluate our model on the secondary structure prediction downstream task (see Table 4). We report
results on CASP12 (Moult et al., 2018), TS115 (Yang et al., 2018) and CB513 (Cuff & Barton, 1999)
datasets. Initially, MULAN was trained using AlphaFold structures. It masks uncertain residue
predictions based on the AlphaFold pLDDT score. We evaluate the quality of secondary structure
prediction using the initial datasets with experimental structures. For such type of structures, pLDDT
is not applicable, so we pass angle information for all residues into MULAN without masking.

Structural awareness of MULAN According to the results from Table 4, MULAN models
demonstrate the awareness of the protein secondary structure. They surpass similar-sized ESM2
models by a large margin. The same is true for large models, whose results are shown in Table 10 in
Appendix D. We do understand that the correct information about the secondary structure can be de-
rived from angle inputs as well as from the Foldseek tokens used by SaProt. Hence, this experiment
is done only to demonstrate that MULAN actively uses the 3D structure.

Visualization The quality of the separation of the PLM representations according to some physi-
cal or structural property can serve as evidence of the model’s physical and structural awareness. We
perform a comparison of MULAN-ESM2 S and ESM2 8M representations according to the visual
quality of the t-SNE (Van der Maaten & Hinton, 2008) visualization. We plot residue-level embed-
dings from the last layer of both models on the CASP12 dataset (Moult et al., 2018). We highlight in
color different amino acid residue types on the left and different secondary structure types (3 states)
on the right (see Fig. 1). On the one hand, MULAN shows much higher awareness of the secondary
structure compared to ESM2: for most amino acid clusters three secondary structure types are sep-
arated, while for ESM2 they are mostly mixed up. On the other hand, MULAN does not lose the
initial knowledge about the amino acid properties gained from the ESM2 model. All these findings
are in line with the pre-training strategy. ESM2 has sequences as inputs, so it aligns amino acid
representations in separate clusters. MULAN has both sequences and structure inputs; therefore, its
representations are well-aligned in both domains.
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5 RELATED WORK

5.1 SEQUENCE-BASED MODELS

Protein sequences are similar to human language: like letters are assembled into words that, in turn,
form sentences, amino acids are chained into protein sequences that encode protein 3D structure
which determines function. This resemblance makes it promising to apply best practices from the
natural language processing field for solving protein-related tasks. Most PLMs are pre-trained with
a masked language modeling (MLM) objective (Devlin et al., 2018): a part of the input sequence’s
residues is randomly masked or replaced with other residues, and then the model aims to predict
these corrupted tokens using the remaining sequence context. Models from the Transformer fam-
ily Heinzinger et al. (2019); Brandes et al. (2022); Xiao et al. (2021); Rives et al. (2021); Lin et al.
(2023); Elnaggar et al. (2021; 2023) have made huge progress in the protein representation learning,
among which ESM2 (Lin et al., 2023) and Ankh (Elnaggar et al., 2023) are currently showing the
best results. They show high performance in various downstream tasks, for example, the prediction
of protein secondary structure, residue contacts, sub-cellular localization, and the effect of mutation.

5.2 STRUCTURE-INFORMED MODELS

The amino acid sequence solely defines the protein structure (Anfinsen et al., 1961), which, in turn,
defines all protein properties, including its function. However, the sequence alone is not sufficient
enough for PLMs to infer all information about the protein (Lin et al., 2023). Thus, attempts to
infuse PLMs with structural context were made. To improve PLM’s capabilities, Zhang et al. (2024)
proposed to finetune ESM2 on the remote homology detection task, which seems to implicitly in-
corporate protein structure-based features into the model. Indeed, the protein structure is more con-
served than the protein sequence (Chothia & Lesk, 1986), and homology search, which is a more
sensitive task than finding similar protein sequences, gives the model more structural knowledge.

Recently, the idea of using protein 3D structure directly during the model pre-training has been
given a lot of attention from the research community. ProstT5 (Heinzinger et al., 2023), the first
structure-augmented PLM, uses Foldseek, a special structural alphabet (van Kempen et al., 2023)
(3Di) that describes the tertiary structure. As a result, each protein can be represented with either
an amino acid sequence or a string of Foldseek letters of the same length that carries informa-
tion about tertiary interactions. Incorporating that information into PLM was done by finetuning
a sequence-only ProtT5 model to translate between the amino acid sequence and 3Di sequence to
obtain structure-aware protein representations. Another structure-informed PLM, SaProt (Su et al.,
2023), uses the 3Di alphabet to encode the structure similarly to ProstT5. It represents each residue
as a combination of amino acid and 3Di letters and is trained with MLM from scratch. This approach
gives SaProt an improvement over ESM2 on various downstream tasks. Tan et al. (2024) suggest an
adapter-based approach (SES-Adapter) that works with Foldseek sequences and residue secondary
structure annotation. However, it is an approach for structure-aware downstream task tuning rather
than a general-purpose PLM. It needs to be applied and trained for each downstream task separately
and does not provide protein structure-aware embeddings for general use. As a result, SES-Adapter
cannot be compared to MULAN. Recently, ESM3 (Hayes et al., 2024) has incorporated sequence,
structure, and function modalities for the protein representation learning task as well as protein gen-
eration. Similarly to MULAN, they embed and fuse different modalities of the protein, but train a
large PLM from scratch.

5.3 HYBRID MODELS

The graph-like tertiary structure of proteins gives ideas of infusing PLMs with structure information
via Graph Neural Networks. In this setup, pre-training is left as MLM only (Mansoor et al., 2021;
Zheng et al., 2023) or is augmented by Masked Structure Modeling task where not only parts of the
sequence are masked but parts of the structure too (LM-GVP (Wang et al., 2022), GearNet (Zhang
et al., 2023b), MIF (Yang et al., 2023). In ESM-GearNet (Zhang et al., 2023a) it was proposed to
fuse the protein sequence and structure information from state-of-the-art PLMs with graph structure
encoders (GearNet). The authors used various pre-training strategies including diffusion-based,
and reported a performance boost compared to ESM2 and GearNet on several downstream tasks.
DeProt (Li et al., 2024) works similarly to ESM-GearNet. DeProt uses local protein structure around
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the residue to get the residue-level structure encoding. Li et al. (2024) proposed DeProt, another way
of Chen et al. (2024) presented PST, an approach to combine a graph encoder and a PLM and to
jointly train them to obtain structure-aware protein representations. PST modifies the self-attention
mechanism of the underlying PLM and trains the whole model jointly. The graph encoder has as
many parameters as the base PLM used. PST shows better results compared to relevant baselines, eg.
ESM2 and ESM-GearNet. Wang et al. (2023) presents S-PLM, a contrastive learning approach to
jointly train protein sequence and structure encoders. A structure encoder is a Swin-Transformer that
works on residue-residue contact matrices and is trained from scratch. S-PLM does not take protein
structure explicitly during inference, relying only on the learned structure-aware representations.

6 CONCLUSION

In this paper, we propose MULAN, a novel multimodal 3D structure-aware protein language model
for both sequence and structure processing. MULAN works on top of a pre-trained PLM and has
the introduced lightweight Structure Adapter that processes residue dihedral angles. Our model fine-
tunes the pre-trained PLM model offering a cheap incorporation of the knowledge about the protein
structure into the model. Also, unlike other hybrid structure-aware models, the Structure Adapter
of MULAN adds minor parameter overhead to the base PLM: 0.3% for large MULAN. We train
MULAN models of various sizes and evaluate their protein representations on 9 downstream tasks.
For most of the downstream tasks, our model demonstrates an increase in performance compared to
ESM2 and SaProt models, which were used for MULAN initialization. The best results were shown
for the protein-protein interaction and the protein GO annotation prediction. Additionally, MULAN
demonstrates comparable performance to ESM3, ProstT5, and other PLMs considered in the study,
while having a faster training or inference pipeline. Finally, we demonstrate the structural awareness
of our model in multiple experiments.
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A TRAINING DETAILS

We used AdamW optimizer (β1 = 0.9, β2 = 0.999) (Loshchilov & Hutter, 2017) for all MULAN
models. MULAN-ESM2 S was trained with the learning rate 10−4 during 20 epochs and with 12000
tokens per batch. The training process is run on 1 Tesla V100 GPU and lasts approximately 18 hours
(375k steps).

Both medium and large models were trained using 1 Tesla H100 GPU for approximately 360k steps.
For medium models, we used 32000 tokens per batch and the learning rate 10−5, and it resulted in
65 epochs and 1.5 days. For large we took 10000 tokens per batch and the learning rate 5 · 10−6,
and it resulted in 20 epochs and 3 days.

B DOWNSTREAM TASKS

B.1 DOWNSTREAM DATASETS

We follow Su et al. (2023) and use their setup for protein Localization, Thermostability, Metal Ion
Binding, GO, and HumanPPI. Localization prediction from DeepLoc dataset (Almagro Armenteros
et al., 2017) has two tasks: classification of proteins into 2 and 10 categories, which both reported.
For Thermostability prediction, the ”Human-cell” split from FLIP benchmark (Dallago et al., 2021)
is used. It relies on human data from Meltom atlas (Jarzab et al., 2020). Also, one of the con-
sidered downstream tasks is Metal Ion Binding: we predict whether there are metal ion-binding
sites in the protein (Hu et al., 2022). The prediction of protein-protein interaction for human pro-
teins (HumanPPI) (Pan et al., 2010) is taken from PEER benchmark (Xu et al., 2022). We predict
GO terms (Gligorijević et al., 2021) and use all three branches independently: Molecular Function
(MF), Biological Process (BP), and Cellular Component (CC). GO annotation is a multilabel pre-
diction task. For all listed downstream tasks we use data provided by (Su et al., 2023), so all used
AlphaFold protein structures are available in the AlphaFold database.

Fluorescence prediction is done based on the data of the fluorescence intensity of green fluorescent
protein (GFP) mutants (Sarkisyan et al., 2016). We follow the setup of Ankh evaluation and use the
split from TAPE (Rao et al., 2019) benchmark. We built an AlphaFold structure of the wild-type
GFP protein and used Rosetta relaxation protocol (Simons et al., 1999) for the generation of mutant
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Table 5: Downstream tasks summary. We use the following abbreviations: mult. class. – multilabel
or multiclass classification, bin. class. – binary classification

Task name Prediction
level

Task
type

Evaluation
metric

Data split sizes

train / valid / test

Localization (10-cl.) protein mult. class. accuracy 8, 743 / 2, 190 / 2, 745
Localization (binary) protein bin. class. AUROC 5, 477 / 1, 336 / 1, 731
Thermostability protein regression SCC 5, 056 / 639 / 1, 336
Fluorescence protein regression SCC 21, 446 / 5, 362 / 27, 217
Metal Ion Binding protein bin. class. AUC 5, 066 / 662 / 665
HumanPPI prot. pair bin. class. AUC 26, 317 / 234 / 180
GO CC protein mult. class. Fmax 26, 225 / 2, 904 / 3, 350
GO MF protein mult. class. Fmax 26, 225 / 2, 904 / 3, 350
GO BP protein mult. class. Fmax 26, 225 / 2, 904 / 3, 350
Secondary structure residue mult. class. accuracy 8, 678 / 2, 170 / 21; 115; 434

Table 6: Downstream task hyperparameters: learning rate (lr), dropout rate (dropout), intermediate
representation sizes h1 and h2

Task name lr dropout h1 h2

Localization (10-class) 5 · 10−5 {0.1, 0.2} {1536, 1024, 512} {512, 256}
Localization (binary) 5 · 10−5 {0.1, 0.2} {1536, 1024, 512} {512, 256}
Metal Ion Binding 5 · 10−5 {0.1, 0.2} {1536, 1024, 512} {512, 256}
HumanPPI 5 · 10−6 0.2 {1536, 1024, 512} {512, 256}
GO CC / MF / BP 5 · 10−4 0.1 1536 768
Thermostability 5 · 10−5 {0.1, 0.2} {1536, 1024, 512} {512, 256}
Fluorescence 5 · 10−5 {0.1, 0.2} {1536, 1024, 512} {512, 256}
Secondary structure 1 · 10−4 0.1 1024 512

3D structures. GFP wt sequence was taken from the original dataset (Sarkisyan et al., 2016). The
reference GFP structure was provided to Rosetta to build mutant structures. Since these are single
mutants, their structures should not differ a lot from the structure of wild-type GFP, and simple
relaxation is enough. Then, we used pLDDT scores from the initial GFP structure for training on all
mutant proteins.

Moreover, we evaluate our model on the secondary structure prediction task which is taken from
TAPE benchmark (Rao et al., 2019). We report results on three test datasets: CASP12 (Moult
et al., 2018), TS115 (Yang et al., 2018) and CB513 (Cuff & Barton, 1999), both for 3-state and
8-state setups. For this task, only experimental structures are available, so we use them as an input
to MULAN. For all experimental structures, we pass all residue angles without masking into the
MULAN. This is done because of the absence and inapplicability of pLDDT to the experimental
structures.

We summarize the information about all downstream tasks in Table 5.

B.2 DOWNSTREAM MODEL ARCHITECTURE

Downstream task prediction is done using the model with the Light Attention architecture (Stärk
et al., 2021), which was designed to work with protein embeddings and shows better results than
an MLP. The only difference is that we extend it by adding two extra intermediate layers L1 and
L2: Li = Dropout(ReLU(BatchNorm(Linear))) : Rhi−1 → Rhi , where h1 and h2 are the model
hyperparameters, and h0 is the initial embedding dimension. They are added before the output
Linear layer, which projects embeddings of size h2 into the downstream task target dimension.
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B.3 DOWNSTREAM TASK HYPERPARAMETERS

Here we present the grid used to select optimal hyperparameters for all downstream tasks (see 6).
For the GO task, we have selected and fixed hyperparameters that perform well for all PLMs. We
do not perform grid search because of the long time required for a single evaluation. Moreover,
for GO it was optimal to increase the learning rate because of the much bigger output dimension in
this task: up to 1943 classes for GO BP. For the HumanPPI task, the optimal learning rate differs
from the base one due to the different nature of the task: we need to input two concatenated protein
embeddings instead of one to the downstream model. Also, we reduced the grid for HumanPPI (take
0.2 dropout rate) to decrease the number of required computations. The batch size is equal to 8192
for all experiments, and the training time is 200 epochs, but we select the intermediate checkpoint
with the best validation metric. Since we use the secondary structure prediction task only to show
the structural awareness of the model, we fix hyperparameters for the downstream task evaluation
for a faster model evaluation.

C ABLATION STUDIES

In this section, we present all ablation experiments that were performed during the selection of the
architecture and the training procedure of MULAN as well as the hyperparameter tuning.

C.1 WAYS OF INFUSING THE PROTEIN STRUCTURE INTO MULAN

There are many ways of representing the protein structure and infusing the structural information
into the PLM. We have chosen to use the residue torsion angles as a model input. However, we have
tried different approaches discussed below.

Foldseek as another structure input Following Su et al. (2023); Heinzinger et al. (2023), we
try to use Foldseek sequences to represent the structure. We try to do it in the same manner as the
Structure Adapter does. We add the Foldseek embedding layer, which is then finetuned together
with ESM2. Also, we tried to combine both the Structure Adapter and the Foldseek embedding
layer. The extended architecture of MULAN is shown in Figure 3.
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Figure 3: The extended MULAN architecture. There is an extra Foldseek embedding layer and
two output structure features prediction heads: Contact and Angle heads. Both sequence, structure,
and Foldseek embeddings are summed up and passed to the ESM2 model, which is then finetuned.
Sequence-only ESM2 modules are initialized from the pre-trained ESM2 checkpoint and are shown
in blue. Structure processing modules are shown in pink.

Coordinates as another structure input Additionally, we try to use xyz coordinates of Cα

atoms to represent the structure. We treat them with another Structure Adapter that projects a 3-
dimensional coordinate vector into an embedding of size h. Then, the resulting coordinate embed-
ding is summed up with ESM embeddings and angle embeddings.

The objective function MULAN is trained in the same way as ESM2 and most other PLMs: it
uses the masked language modeling objective (MLM). One can use the knowledge about the protein
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Table 7: Ablation study of the training pipeline for ESM2 8M and MULAN-ESM2 S. The first
section corresponds to ESM2 8M results without the Structure Adapter, while the second section
– for MULAN-ESM2 S. The best results for each section are shown in bold, the second best are
underlined

Model name
Localization Therm. Fluore Metal Human GO
10-cl. / binary stab. scence Ion PPI CC / MF / BP

acc ↑ / AUC ↑ SCC ↑ SCC ↑ AUC ↑ AUC ↑ Fmax ↑
ESM2 8M .729/.948 .666 .579 .731 .698 .490/.529/.400
ESM2 + Angle .709/.942 .665 .562 .735 .740 .481/.540/.410
ESM2 + Contact .706/.942 .675 .553 .703 .692 .477/.533/.406

MULAN-ESM2 S .732/.949 .680 .591 .801 .705 .495/.588/.424
MULAN + Angle .728/.943 .655 .589 .751 .727 .480/.561/.404
MULAN + Contact .722/.939 .686 .599 .738 .656 .489/.592/.428
MULAN + Foldseek .730/.942 .633 .571 .801 .736 .479/.584/.430
MULAN + Coordinates .712/.947 .684 .588 .797 .755 .487/.585/.420
ESM2 + Foldseek .735/.947 .664 .564 .801 .733 .498/.593/.431

structure not only as model input but also in the additional loss functions. We have experimented
with two extra heads for the prediction of protein structure features, which were added to MULAN
to increase its structural awareness. Firstly, we tried to restore masked angle inputs similarly to
the original sequence MLM objective. This is done using the Angle Prediction Head, which has
the same architecture as the ESM2 language modeling (LM) head except for the output dimension,
which is 7, the number of residue angles. We use mean squared error (MSE) as a loss function.

Moreover, we use binarized pairwise distances between all residues in the form of a distance matrix
as another source of structural data. For this purpose, we introduce a Contact Prediction Head. We
binarize distances into 5 bins separated by the following distances: {5Å, 8Å, 16Å, 32Å}. Further,
we predict N ×N contact matrix based on the Nheads ∗Nlayers ×N ×N model attention weight
tensor from all Nlayers layers with Nheads attention heads. We use cross entropy (CE) loss and
compute it only for residues with confident AlphaFold predictions to avoid training on noisy data.
To sum up, we use the following objective function L during training:

L = LCE(sequence) + αLMSE(angles) + βLCE(contacts), (1)

where α and β are floating point training hyperparameters. However, in the experiments that use
structure features prediction heads, we utilize α = 5 and β = 0.5 as they have shown the best
performance on downstream tasks.

Similarly to the structural inputs, we compute both contact and angle prediction losses only on
residues with the reliable AlphaFold structure with pLDDT not less than 70.

Architecture ablation study results We have conducted an ablation study to identify the most
important modules among those we have discussed earlier. We consider the Structure Adapter and
Foldseek embedding layer as input modules that encode structure for MULAN. Also, we experiment
with the Angle and Contact prediction heads as output modules that add structural knowledge to
MULAN embeddings via the structure-related loss functions. In all experiments, we follow the
same training procedure as with MULAN.

Firstly, we conduct loss-only experiments without structure inputs. For this purpose, we finetune
ESM2 8M with additional structure features prediction heads (ESM2 + Angle / ESM2 + Contact).
The results of the evaluation are presented in Table 7 in the first section with ESM2. According to
the results, using the structure information in the loss function is not sufficient for improvement on
downstream tasks: only metrics for HumanPPI increased significantly.

Secondly, we evaluate MULAN with the extra structure features prediction heads (MULAN + Angle
/ MULAN + Contact). Moreover, we experiment with the Foldseek embedding layer as another
source of structure inputs that can be passed to our model. We try both a combination of the Structure
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Table 8: Contribution of different modalities in MULAN-ESM2 S performance

Model name
Localization Therm. Fluore Metal Human GO
10-cl. / binary stab. scence Ion PPI CC / MF / BP

acc ↑ / AUC ↑ SCC ↑ SCC ↑ AUC ↑ AUC ↑ Fmax ↑
MULAN-ESM2 S .732/.949 .680 .591 .801 .705 .495/.588/.424
sequence-only .698/.945 .628 .564 .700 .777 .430/.363/.329
structure-only .332/.546 .397 .100 .487 .569 .334/.177/.261

Table 9: Comparison of the performance of MULAN-ESM2 S with different learning rate (lr) strate-
gies. If two learning rates are reported, the lowest corresponds to ESM2 modules, while the highest
– for the Structure Adapter. For each section of the table best results are shown in bold

Model name
Localization Thermo- Fluore Metal Human GO
10-cl. / binary stability scence Ion PPI CC / MF / BP

acc ↑ / AUC ↑ SCC ↑ SCC ↑ AUC ↑ AUC ↑ Fmax ↑
lr 5 · 10−4/5 · 10−5 .716/.936 .674 .581 .743 .732 .493/.555/.407
lr 1 · 10−3/1 · 10−4 .727/.944 .675 .575 .785 .680 .496/.578/.423
lr 1 · 10−4 for all .732/.949 .680 .591 .801 .705 .495/.588/.424

Adapter with a Foldseek embedding (MULAN + Foldseek) and the Foldseek embedding layer alone
(ESM2 + Foldseek). The results are shown in the second part of Table 7. According to them, there
is no clear evidence of superiority of one approach over another, we did not notice a consistent
improvement. Thus, we decided to keep MULAN architecture as simple as possible and not to use
additional heads. Also, we keep only the Structure Adapter as an input structure processing module.
We do it because the use of the Foldseek embedding layer reduces the quality of Thermostability
and Fluorescence prediction.

C.2 CONTRIBUTION OF SEQUENCE AND STRUCTURE MODALITIES

Since MULAN has access to both sequence and structure angle data, we aim to analyze the con-
tribution of both modalities. We show MULAN results with completely masked structural infor-
mation (MULAN sequence-only experiment) and with the completely masked sequences (MULAN
structure-only experiment) in Table 8. The results show that input protein structure angles highly
influence the quality of MULAN embeddings, resulting in even lower quality for a sequence-only
MULAN compared to the initial ESM2 8M model. The same is true for the structure-only sce-
nario: the structure alone is not enough for good protein representations. This experiment shows the
importance of both modalities and the use of the structural information by our model.

C.3 LEARNING RATE STRATEGIES

We used the same learning rate for all parameters of MULAN during training. However, we initial-
ize the whole protein encoder from the ESM2 pre-trained checkpoint, while the Structure Adapter
is newly initialized. This fact suggests the possibility of using a smaller learning rate for ESM2
modules compared to the Structure Adapter in order not to harm the pre-trained weights a lot. This
idea was suggested and shown its effectiveness in Zhang et al. (2023a), where they have a similar
combination of randomly initialized and pre-trained modules. We follow the suggested setup and
decrease the learning rate for ESM2 modules by a factor of 10. According to the results, for MU-
LAN there is no clear benefit of using the reduced learning rate for ESM2 modules (see Table 9), so
we decided to keep the learning rate constant for all MULAN modules to reduce the number of used
hyperparameters.
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Table 10: Comparison of the performance of PLMs on the secondary structure prediction task. The
table is split into sections based on the model size. The best results for each section are in bold. For
large models second best results are underlined

Model name
3-state, accuracy ↑ 8-state, accuracy ↑

CASP12 TS115 CB513 CASP12 TS115 CB513

Small models
ESM2 8M .732 .798 .765 .602 .677 .623
MULAN-ESM2 S .894 .918 .895 .815 .854 .806
Medium models
ESM2 35M .752 .828 .809 .619 .707 .669
MULAN-ESM2 M .886 .901 .877 .789 .814 .769
SaProt AF 35M .900 .924 .910 .805 .848 .817
MULAN-SaProt M .905 .927 .912 .807 .852 .818
Large models
ProstT5 1.2B .858 .887 .891 .747 .800 .797
PST 1.1B .853 .893 .880 .749 .802 .773
ESM3 1.4B .949 .969 .955 .921 .948 .923
ESM2 650M .821 .871 .867 .706 .772 .751
MULAN-ESM2 L .867 .908 .890 .778 .833 .792
SaProt AF 650M .926 .948 .945 .844 .897 .869
MULAN-SaProt L .922 .949 .935 .841 .860 .870

C.4 ADDITIONAL EXPERIMENTS

Addition vs concatenation of embeddings MULAN uses the structure bias from the Structure
Adapter in a manner of positional embeddings: these structural embeddings are added to the main
amino acid embeddings from the ESM2 model. However, one may concatenate these embeddings
instead of summing up. This approach leads to different objectives used for amino acid embeddings
(MLM) and structure embeddings (MLM for angle restoration). Also, concatenation leads to an
increase in the length of the content passed to the Transformer model, causing significant memory
and time overheads. The results of the experiment with the concatenation of embeddings did not
show any benefit compared to the base setup.

Importance of angle masking In our pre-training strategy, both amino acids and corresponding
angle vectors are masked together. However, there are two other options that we have tested: inde-
pendent masking of angles and residue letters and no angle masking at all. These experiments have
shown worse results than the base approach. We explain it with the fact that residue letters and their
angle vectors are connected. For example, if the letter is masked, and the angle vector has no side
chain torsion angles defined, then the range of possible outcomes decreases from all 20 amino acids
to only two: Glycine and Alanine. The opposite also holds: the known residue letter helps to restore
the corresponding residue angle vector or at least the number of residue angles. Thus, we keep the
joint masking strategy to force MULAN to learn as much information as possible.

D STRUCTURAL AWARENESS OF MULAN

According to the results from Table 10, all MULAN models demonstrate the awareness of the protein
secondary structure. They surpass similar-sized ESM2 models by a large margin. Moreover, even a
small MULAN utilizes the knowledge about the protein structure better than structure-aware ProstT5
and PST with more than a billion parameters. We do understand that the correct information about
the secondary structure can be derived from angle inputs as well as from the Foldseek tokens used
by SaProt or direct secondary structure types used by ESM3. Hence, this experiment is done only
to demonstrate that MULAN actively uses the 3D structure.
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Table 11: Comparison of the computational resources required for various large PLMs and SPLMs
Model name # of params Inference time, ms VRAM, MiB No training

from scratch

ESM2 650M 132 3274 -
SaProt AF 650M 126 3274
MULAN-ESM2 L 652M 134 3368
S-PLM 704M 103 3288
PST 1.1B 283 6922
Ankh large 1.2B 236 5292 -
ProstT5 (half) 1.2B 107 2974
ProstT5 (full) 1.2B 217 5258
ESM3 1.4B 355 13948

E COMPUTATIONAL REQUIREMENTS COMPARISON

We perform an analysis of the time and memory requirements for different large PLMs and SPLMs.
We measure the inference time required for one forward pass as well as the amount of required
VRAM on the Nvidia Tesla V100 GPU with 16Gb of VRAM. We take approximately the longest
possible protein that can be handled on this GPU by ESM3: UniProt protein Q07009 with 702
residues, which is present in the test set of the GO annotation downstream task. We run 10 model
inference runs and measure the average inference time for the protein.

The results are shown in Table 11. According to the results, MULAN offers the best combination of
quality and efficiency.

• Having the same computational costs as S-PLM, MULAN gives significantly better down-
stream results.

• MULAN requires 2 times less time and memory compared to PST, having similar down-
stream quality.

• MULAN requires only finetuning without training from scratch as in SaProt, ProstT5, and
ESM3, having similar downstream quality.

19


	Introduction
	Method
	MULAN architecture
	Training procedure and structure masking

	Experiments
	Training details
	Downstream tasks
	Downstream task evaluation

	Results and discussion
	Results
	Ablation study
	Secondary structure prediction

	Related work
	Sequence-based models
	Structure-informed models
	Hybrid models

	Conclusion
	Training details
	Downstream tasks
	Downstream datasets
	Downstream model architecture
	Downstream task hyperparameters

	Ablation studies
	Ways of infusing the protein structure into MULAN
	Contribution of sequence and structure modalities
	Learning rate strategies
	Additional experiments

	Structural awareness of MULAN
	Computational requirements comparison

