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ABSTRACT

Multimodal joint representation, which aligns multiple modalities in a shared la-
tent space, has emerged as the foundation of recent multimodal understanding
models. To scale beyond two modalities, existing models typically treat a spe-
cific modality (e.g., text) as the anchor to bind other modalities via pairwise con-
trastive losses. However, the learned joint representation space tends to be sub-
optimal and imbalanced, as the modality-specific anchor may inherit the modality
bias and insufficiently capture the modality-agnostic semantics and holistic geo-
metric structures within multimodal data. In this work, we are motivated by the
intuition that multimodal representations arise from different shifts from an un-
derlying modality-agnostic representation space. Based on this, we present Bary-
Bind, a multimodal framework that aligns modalities in the multimodal Wasser-
stein barycenter (WB) space, which inherently models a modality-agnostic dis-
tribution by minimizing the average of Wasserstein distances to all modalities.
We further construct a barycenter polytope, whose volume serves as a geomet-
ric metric for quantifying n-modality alignment. This metric is integrated as a
barycenter-anchored volumetric contrastive loss that contrasts the volumes of the
n-dimensional polytopes, encouraging global alignment of non-anchor modali-
ties to the barycenter while reducing inter-modality gaps. Extensive experiments
show that BaryBind delivers more balanced zero-shot generalization performance
in downstream tasks, e.g., cross-modal text/video retrieval and classification.

Figure 1: BaryBind binds multiple modalities to the Wasserstein barycenter (WB), which en-
codes modality-agnostic semantics by minimizing the average of Wasserstein distances to all modal-
ities. By contrasting the barycenter polytope’s volume, BaryBind achieves n-modality alignment to
the WB space while preserving inter-modal interactions. Notably, it delivers more balanced retrieval
results, reducing the T2V/V2T gap to 2.5% (vs. 5.6% for our baseline VAST Chen et al. (2023)).

1 INTRODUCTION

Multimodal learning (Baltrušaitis et al., 2018) seeks to integrate and process heterogeneous signals
from multiple modalities (e.g., vision, language, audio, depth, etc.) to build a coherent perception
of the surrounding world. Since multimodal data arise from heterogeneous observations of a shared
underlying reality, recent multimodal learning methods (Radford et al., 2021; Jia et al., 2021) learn
a shared representation space for representations from different modalities. In this field, the success
of CLIP (Radford et al., 2021) in aligning unified vision–language representations via contrastive
learning has sparked the adoption of contrastive losses as an appealing solution for multimodal
representation learning. However, traditional contrastive losses, such as InfoNCE (Oord et al., 2018)
and BYOL (Grill et al., 2020), are formulated in a pairwise fashion for n = 2 representation spaces
typically arising from two modalities such as image–text (Radford et al., 2021; Jia et al., 2021) or
audio–text (Guzhov et al., 2022; Elizalde et al., 2023) scenarios.
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Figure 2: The t-SNE comparison of embeddings on the zero-shot VGGSound dataset (Chen
et al., 2020). Compared to VAST (Chen et al., 2023), BaryBind induces a latent space where class
clusters are clearly separated and multimodal embeddings are grouped around the WB embeddings.

While scaling to n modalities (n ≥ 3) poses unique challenges, a series of recent works (Chen
et al., 2023; Zhu et al., 2024; Wang et al., 2025) originating from ImageBind (Girdhar et al., 2023)
leverage the binding property of an modality-specific anchor (e.g., image or language) to align other
modalities to the chosen anchor via pairwise losses. However, treating a specific modality as the
alignment center can lead to sub-optimal shared space, as it inherits modality-specific biases while
overlooking modality-agnostic semantics shared across all modalities. Consequently, the learned
representations tend to be imbalanced, with a certain modality dominating the joint representation
space (see the video/text retrieval results in Fig. 1). Moreover, although the pairwise losses align
each modality to the anchor, they omit the correlations/interactions among non-anchor modalities,
which may undermine the n-modality global alignment consistency.

To address these challenges, this work is motivated by the notion that multimodal data are col-
lected from heterogeneous sensors observing a shared underlying reality, thus the multimodal rep-
resentations arise from different shifts from an underlying modality-agnostic representation space.
With this insight, we propose BaryBind that aligns multimodal representations in the multimodal
Wassersiten Barycenter (WB) space, which inherently models a modality-agnostic distribution that
minimizes the average of optimal transport (OT) distances to all modalities while capturing the OT-
grounded geometry. This property inherently filters out modality-specific redundancy and results
in a modality-agnostic barycenter space that reduces the divergence caused by multimodal domain
shifts. Furthermore, we suggest a barycenter-anchored volumetric contrastive loss defined on the
volume of a barycenter polytope, which quantifies the global alignment of n-dimensional multi-
modal data. The barycenter polytopes are spanned by the barycenter and non-anchor modality-to-
barycenter gap vectors (see Fig. 1 (a)). By contrasting the polytope’s volume, BaryBind binds the
modalities to the modality-agnostic barycenter and reduces inter-modality gaps across modalities.

Specifically, we first propose a multimodal Wasserstein barycenter loss, which is optimized to seek
the WB space for multimodal joint representation. This is achieved by training a lightweight map
to filter out modality-specific biases, transforming the original modality-specific anchor to the WB
that better approximates a modality-agnostic alignment anchor. (Fig. 1(a)) The barycenter is then
leveraged to construct the n-dimensional barycenter polytope, whose volume serves as a measure of
omni-modality alignment. Accordingly, we design a volumetric contrastive loss that encourages a
smaller barycenter polytope volume for matched samples and a larger one for unmatched samples,
thereby shaping a joint representation space that maintains the holistic geometry and inter-modal
interactions within the multimodal data (Fig. 1 (a)). Our experiments show that BaryBind delivers
competitive generalization performance in downstream tasks such as text/video retrieval and au-
dio/video classification. Notably, BaryBind substantially alleviates the imbalance across modalities,
reducing the T2V/V2T retrieval gap by 3.1% compared to VAST (Chen et al., 2023) (Fig. 1 (b)),
and induces an embedding space where modalities of each class are consistently clustered around
the WB embeddings, as presented in Fig. 2.

The main contributions of this paper are highlighted as follows:

• We propose BaryBind, a novel framework that aligns multimodal representations to the WB space.
The WB space models a modality-agnostic distribution that captures the OT-grounded holistic
geometry of multimodal data and inherently filters out modality-specific bias across modalities.

• We build a barycenter polytope with the barycenter and modality gap vectors. Its volume, serving
as a global alignment metric, extends the insights of measuring n-modality alignment.
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• Based on the polytope volume, we introduce a barycenter-anchored volumetric contrastive loss,
which encourages global alignment to the barycenter while retaining inter-modal interactions.

• Extensive experiments show that BaryBind achieves more balanced representations and improves
zero-shot generalization in downstream tasks such as text/video retrieval and audio/video classifi-
cation. Particularly, BaryBind delivers decent scalability with increasing modality number.

2 RELATED WORKS

Multimodal representation learning. Multimodal representation learning seeks to align heteroge-
neous modalities into a shared semantic space. CLIP (Radford et al., 2021) initiates this paradigm
with image–text contrastive learning, followed by audio extensions such as AudioCLIP (Guzhov
et al., 2022), CLAP (Elizalde et al., 2023), and LAION-CLAP (Wu et al., 2023). WavCaps (Mei
et al., 2024) constructs a large-scale audio captioning dataset to support audio–language retrieval.
To scale beyond two modalities, ImageBind (Girdhar et al., 2023) introduces a pivot-based strat-
egy, aligning each modality to the vision anchor. LanguageBind (Zhu et al., 2024), UniBind (Lyu
et al., 2024), GRAM (Cicchetti et al., 2025b), and Triangle (Cicchetti et al., 2025a) extend align-
ment to language anchors, adopting unique volume-based contrastive losses. MiCo (Zhang et al.,
2024) effectively expands modalities, data, and model size to learn unified representations. ViT-
Lens (Lei et al., 2024) innovatively adapts a pretrained ViT via modality-specific “lenses” to estab-
lish a shared space. OmniBind (Wang et al., 2025) aligns pre-trained unimodal experts via pairwise
losses. VAST (Chen et al., 2023) fuses modalities into a shared space but still relies on text-centered
supervision. Despite their scalability, these approaches bind each modality to a specific modality
(e.g., text) rather than modeling a modality-agnostic joint space. Consequently, they may suffer
from modality-specific biases, which prevent them from learning a balanced joint space that cap-
tures the shared modality-agnostic semantics within multimodal data. Differently, BaryBind binds
the modalities to the barycenter that encodes modality-agnostic semantics and adopts a barycenter-
anchored volumetric contrastive loss to encourage the global alignment across n modalities.

Wasserstein barycenter. The Wasserstein barycenter (Agueh & Carlier, 2011) defines an averaging
distribution that minimizes the weighted sum of Wasserstein distances to input measures, preserving
mass structure and OT-grounded geometry. This formulation has shown effectiveness on heteroge-
neous supports and has been applied in generative modeling (Cuturi & Doucet, 2014) and domain
adaptation (Bonneel et al., 2015). Recent works estimate high-dimensional barycenters via deep
dual formulations, including ICNN-based cycle-consistent models (Korotin et al., 2021), neural OT
maps (Kolesov et al., 2024a; Tang et al., 2025), and energy-guided potentials (Kolesov et al., 2024b).
We extend this perspective to construct a modality-agnostic joint space for multimodal alignment,
bridging optimal transport theory with multimodal representation learning.

3 BARYBIND: BINDING VIA THE WASSERSTEIN BARYCENTER SPACE

In this section, we present BaryBind, a multimodal learning framework that aligns different modal-
ities in the Wasserstein barycenter (WB) space. Our key insight is leveraging the inherent modality-
agnostic nature of WB to build a joint space that mitigates divergence caused by modality-specific
shifts. By aligning modalities to this space that encodes intrinsic modality-agnostic invariance,
BaryBind potentially captures more balanced multimodal representations for downstream tasks.

Specifically, as shown in Fig. 3, BaryBind first constructs the multimodal WB space that aligns
features from multimodal latent space via the multimodal WB loss (§3.2), in which an MLP is
learned to transport the anchor features to the WB space as WB embeddings. We then construct a
barycenter polytope defined by the WB embeddings and modality-to-barycenter gap vectors, whose
volume quantifies the degree of n-modality alignment (§3.3). Based on the polytope, we intro-
duce a barycenter-anchored volumetric contrastive loss, which encourages high-order multimodal
alignment to the WB space while reducing inter-modality gaps (§3.4).

3.1 PRELIMINARIES

Notation. Let K̄ = {0, 1, . . . ,K} for some K ∈ N. For a sequence e0, . . . , eK , we denote by e0:K
the tuple (e0, . . . , eK). Let X ⊂ Rd, Y ⊂ Rd′

, and Xk ⊂ Rdk be compact subsets of Euclidean
space. Denote by C(X ) the space of continuous real-valued functions on X , and by P(X ) the set of
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Figure 3: The pipeline of BaryBind. Given the multimodal embeddings, BaryBind constructs the
WB space via the MWB loss, in which an MLP is learned to transform the anchor m0 into the WB
embedding b. The WB embedding acts as the new anchor and induces a barycenter polytope, whose
volume is contrasted in the BVC loss to align other modalities. WB and non-anchor embeddings are
then integrated in the multimodal encoder to predict whether the anchor and data are matched.

probability measures supported on X . Given P ∈ P(X ) and Q ∈ P(Y), we write Π(P,Q) for the
set of transport plans between them, i.e., all joint distributions on X ×Y whose marginals are P and
Q. The notation ⟨·, ·⟩ denotes the cosine similarity that involves the normalization over features.

Optimal transport. Given two distributions P ∈ P(X ) and Q ∈ P(Y), along with a cost function
c : X × Y → R+, the classic optimal transport (OT) problem (Kantorovich, 1942) aims to find a
joint distribution π ∈ Π(P,Q) that minimizes the expected transport cost:

OTc(P,Q) ≜ inf
π∈Π(P,Q)

E(x,y)∼π [c(x, y)] . (1)

The specific choice of c(x, y) = ∥x−y∥ yields W (P,Q) = infπ∈Π(P,Q) E(x,y)∼π∥x−y∥, known as
the Earth-Mover or Wasserstein-1 distance. In this paper, we refer to it as the Wasserstein distance.

Wasserstein barycenter (WB). Given distributions Pk ∈ P(Xk) for k ∈ K̄ and a vector λ ∈ RK+1

of non-negative weights λk summing to 1, the WB problem seeks the distribution Q that minimizes
the weighted sum of Wasserstein distances to the fixed marginals P0:K :

inf
Q∈P(Y)

K∑
k=0

λkW (Pk,Q). (2)

We apply the WB formulation to the multimodal latent space M, where the encoded features of the
k-th modality lie in a subspace Mk and follow a distribution Pk. The barycenter inherently encodes
modality-agnostic semantics as it models the “closest” distribution to all multimodal distributions.

3.2 MULTIMODAL WASSERSTEIN BARYCENTER SPACE

Let Pk be the distribution of encoded features mk ∈ Mk ⊂ M for modality k ∈ K̄, defined in
the multimodal latent space M ⊂ RD. In particular, m0 denote the anchor modality features. The
WB space is defined as MB := supp(Q) where Q denotes the WB distribution and MB contains
the barycenter features b. Given the distributions P0:K , our goal is to establish the barycenter space
(MB ,Q) and use it as the joint representation space for multimodal alignment. Based on the WB
formulation (2) over multimodal latent space, the multimodal WB problem can be written as

L∗
MWB = inf

Q∈P(M)

K∑
k=0

λkW (Pk,Q). (3)

However, directly optimizing (3) is highly intractable. To overcome this challenge, we deduce a new
dual reformulation (see Appendix A.1), which leads to the following sup-inf objective:
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Proposition 1 (Dual form of the multimodal WB problem). The infimum value L∗
MWB of the

multimodal WB problem (3) can be expressed as

L∗
MWB = sup∑

kλkfk=0

inf
Q∈P(MB)

K∑
k=0

λk E
mk∼Pk
b∼Q

[
∥mk − b∥ − fk(b)

]
, (4)

where the supremum is taken over all the dual potentials fk : MB → R. We aim to learn the
distribution Q by sampling the WB embeddings b = T (m0) via a trainable projection map Tθ(·) :
M0 → MB . Here, m0 represents the feature of anchor modality, typically selected as text, as it
retains the broad semantics of multimodal data. We also perform an ablation study on the anchor
selection, which is included in Appendix B. In practice, we simply parameterize Tθ using an MLP.
To ensure the congruent constraint

∑
kλkfk = 0 (Li et al., 2020), we parameterize the family of

potentials fωk
as gωk

−
∑K

i=0 λigωi
with MLPs gωk

: RD → R, which is a common trick used in
(Li et al., 2020; Kolesov et al., 2024a;b).

Multimodal Wasserstein Barycenter (MWB) loss. With this parameterization, we rewrite (4) as a
max-min objective of the MWB loss LMWB, which can be optimized to compute the map Tθ

L∗
MWB(ω0:K , θ) ≜ max

ω0:K

min
θ

K∑
k=0

λk E
mk∼Pk

[
∥mk − Tθ(m0)∥ − fωk

(Tθ(m0))
]
. (5)

To solve the problem (5), we train the networks Tθ and fω0:K
by alternately maximizing over ω0:K

and minimizing over θ in the MWB loss, in which we estimate the expectation using mini-batch data
at each training step. Given the anchor modality feature m0, the WB embedding is then computed
as b = Tθ(m0), which will serve as the new anchor and other modalities are then aligned to it.

We establish the error bounds for the map T with the following simplified notations:

F(f0:K , T ) := LMWB(f1:K , T ), L(f0:K) := inf
T :M→MB

F(f0:K , T ) and L∗ := L∗
MWB. (6)

Theorem 3.1 (Error analysis via duality gaps for the barycenter distribution). Let Ck be any trans-
port costs. Assume that the maps b 7→ Ck(mk, b) − f̂k(b) are β-strongly convex for mk ∈ Mk,
k ∈ {0, . . . ,K}. Consider the duality gaps for an approximate solution (f̂0:K , T̂ ):

E1(f̂0:K , T̂ ) ≜ F(f̂0:K , T̂ )− L(f̂0:K), E2(f̂0:K) ≜ L∗ − L(f̂0:K),

Then the following inequality holds:

W 2
(
T̂#P0,Q∗

)
≤ 4

β

(
E1 + E2

)
. (7)

The proof is provided in the Appendix A.2. This theorem ensures that the Wasserstein distance
between the estimated distribution T̂#P0 and the true barycenter Q∗ is upper-bounded by the sum of
these two errors. This establishes that, as both approximation and estimation errors decrease during
training, the learned distribution converges toward the true WB in a distributional sense.

3.3 MEASURING n-MODALITY ALIGNMENT WITH BARYCENTER POLYTOPE VOLUME

To bind modalities to the WB space while preserving the global structures of n-dimensional (where
n = K + 1 is the number of modalities) multimodal data, we introduce a geometric structure
called the barycenter polytope. As illustrated in Fig. 3, the polytope takes the WB embedding b
as the apex and is spanned by the vectors from the origin to b and the modality-to-barycenter gap
vectors rk = b−mk for all non-anchor modalities mk (k ≥ 1). Owing to its unique composition,
the polytope volume quantifies two aspects of multimodal features: (1) how closely non-anchor
modalities align with the barycenter, and (2) the inter-modality discrepancy across modalities.

We use the volume of this barycenter polytope to measure n-modality alignment. Intuitively, a
smaller volume indicates that the modalities are more tightly clustered around the WB embedding
and more consistent with one another, suggesting stronger alignment. Conversely, a larger volume
reflects greater distances from the barycenter and increased inter-modality discrepancy.
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Given the WB embedding vector b (i.e., the vector from the origin to the barycenter) and gap vectors
{rk}Kk=1 (i.e., the vectors from each non-anchor modality to the barycenter), we define the matrix
R = (b, r1, · · · , rK), representing the set of vectors spanning the barycenter polytope. Then the
square of the polytope’s volume can be computed according to Gantmacher (1959) as:

V2(b, r0:K) := V2(b, r1, · · · , rK) = det(RTR) =

∣∣∣∣∣∣∣∣
⟨b, b⟩ ⟨b, r1⟩ · · · ⟨b, rK⟩
⟨r1, b⟩ ⟨r1, r1⟩ · · · ⟨r1, rK⟩

...
...

. . .
...

⟨rK , b⟩ ⟨rK , r1⟩ · · · ⟨rK , rK⟩

∣∣∣∣∣∣∣∣ . (8)

Remark. The volume offers a metric for measuring global alignment to the barycenter while retain-
ing inter-modal interactions among non-anchor modalities, going beyond simple pairwise compar-
isons. The volume is computed as the determinant of a n×n matrix, where the number of modalities
n is typically small (e.g., 3 or 4) and much less than the embedding dimension D, introducing neg-
ligible computational overhead, which is further validated in our experiments.

3.4 BARYCENTER-BASED LOSS FUNCTIONS

To enforce tight and balanced multimodal binding in the Wasserstein barycenter space, we propose a
barycenter-anchored volumetric contrastive (BVC) loss that leverages the volume of the barycenter
polytope defined by the barycenter and modality-to-barycenter gap vectors.

Given multimodal inputs {m(i)
0 ,m

(i)
1 , . . . ,m

(i)
K }Bi=1, where B is the batch size and m

(i)
0 is the an-

chor modality. The barycenter is computed by b(i) = Tθ(m
(i)
0 ), and the modality-to-barycenter gap

vectors are defined as r(i)k = b(i) −m
(i)
k for k = 1, . . . ,K, aggregated as r(i)0:K = {r(i)1 , . . . , r

(i)
K }.

We treat each (b(i), r
(i)
0:K) as a positive pair, and construct two sets of negative pairs: (i) by fixing

b(i) and pairing it with r
(j)
0:K for j ̸= i, and (ii) by fixing r

(i)
0:K and pairing it with bj for j ̸= i.

Barycenter-anchored volumetric contrastive (BVC) loss. The BVC loss contrasts small volumes
for positive pairs against large volumes for negative ones, and is formulated as

LBVC = −1

2
E
i

log exp
(
−V(b(i), r

(i)
0:K)/τ

)
∑

j exp
(
−V(b(i), r

(j)
0:K)/τ

)
− 1

2
E
i

log exp
(
−V(b(i), r

(i)
0:K)/τ

)
∑

j exp
(
−V(b(j), r

(i)
0:K)/τ

)
 , (9)

where V(b, r0:K) denotes the volume of the polytope formed by the barycenter and its modality gap
vectors, whose square is computed as (8) and τ is the temperature parameter.

The BVC loss encourages non-anchor modalities to move closer to the common barycenter, en-
suring tight binding around a shared modality-agnostic representation. Simultaneously, it provides
a geometric guarantee that the inter-modality gap vectors converge, reducing discrepancies among
modalities. To prevent trivial collapse of the polytope volume caused by shrinking vector mag-
nitudes, we normalize each gap vector rk to unit length. This normalization ensures that volume
minimization effectively promotes alignment of vector directions rather than their norms, leading to
a stable and balanced multimodal binding in the Wasserstein barycenter space.

Data-anchor matching (DAM) loss. We also introduce an auxiliary data-anchor matching (DAM)
loss, which encourages the model to infer whether a pair of data and anchor is matched or not.
This loss is commonly used in multimodal retrieval (Li et al., 2021b; Chen et al., 2023) to enforce
fine-grained semantic alignment distinguishing matched and mismatched data pairs. To enable such
matching, we can reuse the anchor-modality encoder as the multimodal encoder and integrate it
with cross-attention layers, which take the WB embedding b as input and are conditioned on the
unpooled concatenated embeddings m1:K from non-anchor modalities. The output feature from
the multimodal encoder is then passed through an two-layer MLP to produce binary predictions
pm. To construct informative in-batch negative pairs, we adopt a hard negative mining strategy
following (Li et al., 2021a; Chen et al., 2023). The DAM loss is formulated as follows, where y = 1
if the barycenter anchor and non-anchor modalities are matched, and y = 0 otherwise:

LDAM = E(b,m1:K)∼(Q,P1:K)[y log pm(b,m1:K) + (1− y) log(1− pm(b,m1:K))] (10)
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The overall pre-training loss. The overall pre-training objective L combines the three proposed
losses, LMWB, LBVC, and LDAM, as follows:

L := LMWB + LBVC + αLDAM, (11)

Particularly, the potentials fω0:K
in LMWB are optimized via maximization, and are trained in an

alternating manner against the minimization of the remaining network parameters.

4 EXPERIMENTS

4.1 SETUP

We adopt VAST framework (Chen et al., 2023) as backbone, with BERT-B for text, BEATs for
audio, and EVA-CLIP-ViT-G (Sun et al., 2023) for visual encoding. In total, the model comprises
approximately 1B parameters. Unlike the VAST framework, we discard its modality fusion layers
and introduce lightweight MLPs for barycenter optimization. We continue pretraining for one epoch
based on VAST using our proposed loss functions on the VAST150k dataset (Chen et al., 2023), a
subset of the VAST27M comprising 150k samples. The temperature factor τ is 0.07 and the trade-
off parameter in (11) is set as α = 0.1, following (Chen et al., 2023). The barycenter weights λk

(k ∈ K̄) are uniformly set as 1/n, where n is the number of modalities.

We use benchmarks spanning diverse modalities to evaluate the BaryBind’s capability in multimodal
understanding across retrieval and classification tasks. These benchmarks include: (i) three-modality
datasets such as DiDeMo (Anne Hendricks et al., 2017) and ActivityNet (Caba Heilbron et al., 2015),
where video serves as the primary modality while audio and text provide auxiliary cues; (ii) four-
modality datasets like MSR-VTT (Xu et al., 2016) and VATEX (Wang et al., 2019), covering video
(V), audio (A), text (T), and subtitles (S); and (iii) audio-centered dataset VGGSound (Chen et al.,
2020), where audio plays the dominant role and complementary information is also available in
visual and textual forms. T-VAS denotes that the WB embedding is derived from the text modality,
while the concatenated VAS embeddings serve as the condition for the multimodal encoder.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1: Zero-shot video/audio classification re-
sults on VGGSound5K. Results from our baseline
VAST and BaryBind are highlighted accordingly.

Method Modality Acc@1 Acc@5

ImageBind (Girdhar et al., 2023) A 31.6 58.7
ImageBind (Girdhar et al., 2023) V 37.9 65.9
LanguageBind (Zhu et al., 2024) A 34.1 62.8
LanguageBind (Zhu et al., 2024) V 39.6 64.5
GRAM (Cicchetti et al., 2025b) V 43.1 71.8
GRAM (Cicchetti et al., 2025b) A+V 42.3 74.5
Triangle (Cicchetti et al., 2025a) A+V 44.8 80.0
OmniBind (Wang et al., 2025) A 41.7 70.8
OmniBind (Wang et al., 2025) V 45.4 73.2
OmniBind (Wang et al., 2025) A+V 46.2 76.2

VAST (Chen et al., 2023) A 40.3 71.7
VAST (Chen et al., 2023) V 46.3 72.7
VAST (Chen et al., 2023) A+V 48.1 79.6

BaryBind (Ours) A 45.7 75.2
BaryBind (Ours) V 48.3 76.4
BaryBind (Ours) A+V 55.6 83.4

Zero-shot video/audio classification. We first
evaluate BaryBind on VGGSound5K to as-
sess its multimodal understanding ability in
the zero-shot setting, particularly when jointly
modeling video and audio signals. As shown
in Tab. 1, BaryBind achieves the best top-1
and top-5 accuracy across all modality con-
figurations, reaching 55.6% Acc@1 and 83.4
% Acc@5 under the A+V setting. It signifi-
cantly outperforms the VAST baseline (48.1%
/ 79.6%) and other strong competitors such as
OmniBind (45.4% / 73.2%). This demonstrates
its strong generalization ability across modali-
ties. The substantial gains with A+V highlight
the enhanced performance of cross-modal un-
derstanding, enabled by the BVC loss design
which inherently reduces inter-modality gaps
and preserves the global geometry of multi-
modal data by aligning multimodal representation based on the barycenter polytope volume.

On the other hand, BaryBind improves the performance of the weaker audio-only modality clas-
sification (A) from 40.3% (VAST) to 45.7% for Acc@1, indicating its ability to alleviate under-
optimization of weaker modalities. These results confirm that BaryBind learns more balanced mul-
timodal representations by aligning modalities via our barycenter-based binding strategy.

Cross-modal retrieval. We evaluate BaryBind on zero-shot text-to-video (T2V) and video-to-text
(V2T) retrieval across four benchmarks. As shown in Tab. 2, BaryBind consistently achieves state-
of-the-art results under all modality configurations. For instance, under the T-VA setting, it achieves
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Table 2: Zero-shot text-to-video (T2V) and video-to-text (V2T) retrieval results in terms of Recall
at 1 score (R@1). Results from our baseline VAST and BaryBind are highlighted accordingly.

Methods Modality MSR-VTT DiDeMo ActivityNet VATEX

T2V V2T T2V V2T T2V V2T T2V V2T

VideoCoCa (Yan et al., 2022) T-V 34.3 64.7 - - 34.5 33.0 53.2 73.6
X-CLIP (Ma et al., 2022) T-V 46.1 46.8 45.2 42.3 44.3 42.6 - -
ImageBind (Girdhar et al., 2023) T-V 36.8 - - - - - - -
ViCLIP (Wang et al., 2024c) T-V 42.4 41.3 18.4 27.9 15.1 24.0 - -
VideoPrism-b (Zhao et al., 2024) T-V 51.4 50.2 - - 49.6 47.9 62.5 77.1
LanguageBind (Zhu et al., 2024) T-V 44.8 40.9 39.9 39.8 41.0 39.1 - -
InternVL (Chen et al., 2024) T-V 46.3 42.4 43.7 42.2 45.1 42.4 66.8 69.3
OmniBind (Wang et al., 2025) T-V 47.4 45.2 43.5 42.6 44.3 40.8 - -
NarVid (Hur et al., 2025) T-V 51.8 50.3 52.4 50.5 51.8 46.6 73.8 76.3
Video-ColBERT (Reddy et al., 2025) T-V 51.9 48.8 51.7 50.1 52.7 47.8 72.4 73.7
GRAM (Cicchetti et al., 2025b) T-VAS 54.2 51.6 - - - - 83.2 81.9

VAST (Chen et al., 2023) T-VA 49.3 43.7 49.5 48.2 51.4 46.8 80.0 77.3
VAST (Chen et al., 2023) T-VAS 50.9 47.9 - - - - 82.1 78.7

BaryBind (Ours) T-V 53.4 51.3 54.3 52.7 59.3 51.6 82.3 79.8
BaryBind (Ours) T-VA 54.5 52.0 55.3 52.8 59.6 53.9 84.2 81.3
BaryBind (Ours) T-VAS 56.3 53.6 - - - - 84.6 83.5
InternVideo2-6B (Wang et al., 2024d) T-VA 54.9 49.1 55.7 51.6 61.2 52.8 82.7 76.4

Table 3: Finetuning text-to-video (T2V) and video-to-text (V2T) retrieval results in terms of Recall
at 1 score (R@1). Results from our baseline VAST and BaryBind are highlighted accordingly.

Methods Modality MSR-VTT DiDeMo ActivityNet VATEX

T2V V2T T2V V2T T2V V2T T2V V2T

CLIP4Clip (Luo et al., 2021) T-V 45.6 45.9 43.0 43.6 40.3 41.6 63.0 78.3
InternVideo-L (Wang et al., 2022) T-V 53.1 54.4 57.9 59.1 62.2 62.8 69.8 80.6
HiTeA (Ye et al., 2022) T-V 46.8 - 56.5 - - - - -
mPLUG-2 (Xu et al., 2023) T-V 53.1 - 56.4 - - - - -
TEFAL (Ibrahimi et al., 2023) T-VA 52.0 - - - - - 61.0 -
ViCLIP (Wang et al., 2024c) T-V 52.5 51.8 49.4 50.2 49.8 48.1 - -
T-MASS (Wang et al., 2024a) T-VA 52.7 - 53.3 - - - 65.6 -
VALOR-L (Liu et al., 2024) T-VAS 54.4 - 57.6 - 63.4 - 76.9 -
VideoCLIP-XL (Wang et al., 2024b) T-V 54.6 54.0 62.3 62.7 58.4 59.2 - -
TempMe (Shen et al., 2025) T-V 49.0 47.6 48.0 48.4 44.9 45.3 69.6 71.8

VAST (Chen et al., 2023) T-VA 55.8 57.6 65.6 62.0 68.8 66.7 86.9 84.1
VAST (Chen et al., 2023) T-VAS 56.6 57.6 - - - - 87.5 84.0

BaryBind (Ours) T-V 57.4 57.8 67.2 64.6 67.3 65.2 85.0 82.4
BaryBind (Ours) T-VA 60.3 60.8 68.5 64.4 72.1 69.4 87.4 84.8
BaryBind (Ours) T-VAS 64.6 65.2 - - - - 88.4 84.6

55.3 and 52.8 R@1 on DiDeMo (T2V/V2T), outperforming all prior methods. With T-VAS, Bary-
Bind further sets new records on MSR-VTT (56.3/53.6) and VATEX (84.6/83.5), demonstrating
strong retrieval performance across both directions. In addition to these overall gains, BaryBind
significantly reduces the T2V/V2T performance gap (e.g., 5.7 on ActivityNet vs. 9.6 for the VAST
baseline), indicating improved bidirectional alignment. This suggests that BaryBind learns more
generalizable and balanced cross-modal representations, which can be attributed to the WB binding
mechanism that geometrically unifies diverse modalities into a modality-agnostic latent space.

We present the fine-tuning results in Tab. 3, which shows BaryBind maintains its advantage, out-
performing prior models such as InternVideo, VideoCLIP-XL, and VAST. For instance, our T-VA
setting achieves 60.3 R@1 on MSR-VTT and 72.1 on ActivityNet for T2V, surpassing VAST by
+4.5 and +2.3 points, respectively. The performance further improves under T-VAS, where Bary-
Bind reaches 64.6 R@1 on MSR-VTT, a +7.4 point gain over VAST, indicating that our binding
strategy generalizes well with additional modalities and scales effectively with fine-tuning.
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Figure 4: Training dynamics comparison with cosine-based VAST: (a) Total training loss show-
ing faster convergence for BaryBind. (b) Recall@1 (R@1) evolution on MSR-VTT under T2V and
V2T retrieval tasks. BaryBind achieves higher retrieval accuracy and better modal balance (smaller
R@1 gap). (c) V2T/T2V retrieval gaps throughout training.

4.3 ABLATION STUDIES

Training dynamics comparison. We compare the training (from scratch) behaviors of BaryBind
and the baseline VAST to assess the impact of our binding strategy and loss design. As shown in
Fig. 4, BaryBind exhibits consistently superior training dynamics. In (a), the total loss drops faster
and stabilizes earlier, suggesting that our MWB and BVC losses facilitate more efficient optimiza-
tion. In (b), BaryBind consistently achieves higher R@1 accuracy for both T2V and V2T retrieval,
while maintaining a smaller performance gap between the two directions, suggesting more symmet-
ric multimodal representations. (c) demonstrates that BaryBind rapidly reduces the gap between
V2T and T2V performance, converging toward a balanced retrieval behavior. This improvement
stems from the joint effect of MWB and the BVC loss, which together promote consistent alignment
of modality embeddings toward a unified barycenter. Such training behavior reflects the effective-
ness of our barycentric modeling in encouraging modality-agnostic representation learning.

Table 4: Ablation study on loss functions. We report top-1 classification accuracy (Acc@1) on
VGGSound5K and top-1 retrieval recall at 1 score (R@1) on MSR-VTT. Key improvements from
MWB, BVC, and their combination are highlighted correspondingly.

Loss function components Classification Retrieval

VGGSound MSR-VTT

TV+TA CL MWB BVC DAM A V V+A T2V V2T

✓ ✗ ✗ ✗ 38.1 44.5 46.8 46.8 40.1
✓ ✗ ✗ ✓ 40.3 46.3 48.1 49.3 43.7

✓ ✓ ✗ ✗ 43.6 45.6 47.6 48.8 46.2
✓ ✓ ✗ ✓ 44.3 46.8 49.8 49.7 48.3

✗ ✗ ✓ ✗ 42.9 46.3 50.3 50.6 46.4
✗ ✗ ✓ ✓ 43.4 47.2 52.6 51.5 46.8

✗ ✓ ✓ ✗ 45.2 47.8 54.2 53.2 50.6
✗ ✓ ✓ ✓ 45.7 48.3 55.6 54.5 52.0

Comparison of loss functions. To evaluate the contribution of each loss component, we conduct an
ablation study on VGGSound (Chen et al., 2020) for audio classification and MSR-VTT (Xu et al.,
2016) for text–video retrieval under a tri-modal setting (text, video, audio). The baseline adopts
pairwise cosine contrastive losses (TV+TA CL), while VAST (Chen et al., 2023) additionally in-
cludes the data-anchor matching (DAM) loss. As summarized in Tab. 4, introducing the multimodal
Wasserstein barycenter (MWB) loss consistently improves performance across tasks—for example,
boosting audio-only classification from 40.3% to 44.3% and V2T retrieval from 43.7% to 48.3%.
MWB constructs a barycentric semantic anchor to filter out modality-specific biases from the orig-
inal anchor (e.g., text), leading to a more balanced and modality-agnostic anchor. The barycenter
volume contrastive (BVC) loss further enhances global geometric consistency by preserving the
relative structures among modalities, enabling full-modality gains such as 55.6% Acc@1 in audio
classification and 54.5/52.0 R@1 for T2V/V2T retrieval. Complementarily, the DAM loss leverages
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Figure 5: Visualization of multimodal before and after alignment. Embeddings before (left) and
after (right) applying the proposed BVC loss. The BVC loss promotes convergence of modality-
specific embeddings toward the Wasserstein barycenter, reducing inter-modality gaps and forming
compact, modality-agnostic clusters, which highlights improved multimodal alignment.

instance-level supervision to distinguish matched and mismatched cross-modal pairs. Overall, the
combination of MWB, BVC, and DAM facilitates a collaborative effect by aligning all modalities
toward a shared semantic barycenter, yielding more balanced and generalizable multimodal repre-
sentations.

Visualization of multimodal embeddings before and after alignment. To intuitively illustrate the
effect of our barycenter-based alignment, we visualize the embeddings of three categories (cat me-
owing, sea waves, tapping guitar) across audio, text, and vision modalities from VGGSound (Chen
et al., 2020), as shown in Figure 5. Without alignment (left), embeddings of different modalities
are scattered, exhibiting large inter-modality gaps even within the same class. Incorporating pair-
wise alignment (middle) improves class clustering but still reveals modality-specific separations. In
contrast, with our proposed BVC loss (right), embeddings of all modalities converge tightly around
their class-wise Wasserstein barycenters, leading to compact intra-class structures and reduced inter-
modality discrepancies. This clearly demonstrates that the volumetric constraint effectively pro-
motes modality-agnostic alignment around a unified barycenter space.

5 CONCLUSION

We introduced BaryBind, a novel multimodal learning framework that aligns multiple modalities
to a shared multimodal Wasserstein barycenter space. Unlike traditional anchor-based alignment
strategies, BaryBind leverages the barycenter to model a modality-agnostic semantic distribution,
providing a principled and geometry-aware alignment target. By constructing a barycenter polytope
and leveraging its volume as a global alignment metric, BaryBind captures higher-order interactions
among modalities and quantifies alignment quality beyond pairwise similarities. The proposed vol-
umetric contrastive loss further encourages all modalities to converge toward the barycenter while
preserving inter-modal structure. Extensive experiments on retrieval and classification tasks demon-
strate that BaryBind learns more balanced and generalizable multimodal representations, outper-
forming state-of-the-art approaches across diverse benchmarks. We hope this work opens new di-
rections for scalable multimodal learning and inspires the development of more interpretable and
geometry-grounded multimodal methods.
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Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2):
423–443, 2018.
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A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

Proof. Beyond the WB problem, we deduce based on the duality of with general costs Ck(x, y). In
this sense, we write the dual reformulation of the multimodal OT barycenter problem (3):

L∗ = inf
Q∈P(MB)

sup
f0,...,fk∈C(MB)

K∑
k=1

λk

{∫
Mk

fCk

k (mk)dPk(mk) +

∫
MB

fk(b)dQ(b)

}
︸ ︷︷ ︸

≜F̃(Q,f0:K)︸ ︷︷ ︸
≜L(f0:K)

. (12)

where

fCk

k (mk) = inf
b∈MB

[Ck(mk, b)− fk(b)]. (13)

We denote the expression under the inf and inf sup in (12) as functionals L : C(MB)
K and F̃ :

P(MB)× C(MB)
K , respectively. For simplicity, we also introduce the following notation

f̄ ≜
K∑

k=1

λkfk and M ≜ inf
b∈MB

f̄(b) = inf
Q∈P(MB)

∫
MB

f̄(b)dQ(b), (14)

where the equality follows from two fundamental observations: (a) M ≤
∫
f̄(b) dQ(b) for any Q ∈

P(MB), and (b) f̄(b) =
∫
f̄(b′) dδb(b

′) where δb represents the Dirac mass at b ∈ MB .

Firstly, due to the compactness of MB , the space P(MB) is compact with respect to the weak
topology. For fixed potentials f0:K ∈ P(MB)

K we have that F̃(·, f0:K) is linear, convex and
continuous. Secondly, for a fixed Q, the functional F̃(Q, ·) is a concave due to the concavity of
C-transform. These properties enable the application of Sion’s minimax theorem (Sion (1958),
Theorem 3.4), which allows the interchange of the sup and inf in (12). Thus with (14) we obtain

L∗ = sup
f0,...,fK∈C(MB)

inf
Q∈P(MB)

K∑
k=1

λk

{∫
Mk

fCk

k (mk)dPk(mk) +

∫
MB

fk(b)dQ(b)

}

= sup
f0,...,fK∈C(MB)

{
K∑

k=1

λk

∫
Mk

fCk

k (mk)dPk(mk) + inf
Q∈P(MB)

∫
MB

f̄(b)dQ(b)

}

= sup
f0,...,fK∈C(MB)

{
K∑

k=1

λk

∫
Mk

fCk

k (mk)dPk(mk) + inf
b∈MB

f̄(b)

}
︸ ︷︷ ︸

≜L̃(f0:K)

. (15)

Now we show that the sup in (15) can be restricted to potentials f̃0:K which satisfy the congruence
condition

∑K
k=1 λkf̃k = 0. It is enough to show that for every tuple f0:K there exists a congruent

tuple f̃0:K ∈ C(MB)
K such that L̃(f̃0:K) ≥ L̃(f0:K).

For this, we consider the congruent potentials given any tuple f0:K

(f̃0, · · · , f̃K) =

(
f0, · · · , fK−1, fK − f̄

λK

)
. (16)
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Since M̃ ≜ infb∈MB

∑K
k=1 λkf̃k = 0, we obtain

L̃(f̃0:K)− L̃(f0:K) = λK

∫
Mk

(
f̃CK

K (mK)− fCK

K (mK)
)
dPK(mK)−M

= λK

∫
Mk

[(
fK − f̄

λK

)CK

(mK)− fCK

K (mK)

]
dPK(mK)−M

≥ λK

∫
Mk

[(
fK − M

λK

)CK

(mK)− fCK

K (mK)

]
dPK(mK)−M

= λK

∫
Mk

M

λK
dPK(mK)−M = 0, (17)

where the first inequality arises from the monotonicity of the C-transform, along with the fact f̄K =

fK − f̄
λK

≤ fK − M
λk

. The last equality follows from the definition of C-transform.

Finally, since L̃(f0:K) = L(f0:K) for congruent potentials f0:K , with (13) we obtain

L∗ = sup∑
kλkfk=0

L(f0:K) = sup∑
kλkfk=0

K∑
k=1

λk

∫
Mk

fCk

k (mk)dPk(mk),

= sup∑
kλkfk=0

K∑
k=1

λk inf
b∈MB

∫
Mk

[
Ck(mk − b)− fk(b)

]
dPk(mk). (18)

In practice, we replace each integral with an empirical expectation over the distribution Pk, and adopt
Ck(mk − b) = ∥mk − b∥, which corresponds to the Wasserstein distance between the modality
feature and the barycenter. We exchange the summation and the infimum since b is shared across all
terms and the objective is linear. We then sample the barycenter b from a distribution Q ∈ P(MB),
and express the integral as an expectation over both mk ∼ Pk and b ∼ Q:

L∗ = sup∑
kλkfk=0

inf
Q∈P(MB)

K∑
k=0

λk E
mk∼Pk
b∼Q

[
∥mk − b∥ − fk(b)

]
, (19)

which completes the proof.

A.2 PROOF OF THEOREM 3.1

Proof. Let P0:K denote the joint distribution over the multimodal tuples (m0, . . . ,mK) =: m0:K ,
where mk ∈ Mk. The barycenter map is a function T : M0 → MB that acts on the anchor
modality. For a set of potential functions f0:K and a map T , we rewrite the total cost functional F
and its corresponding minimal cost functional L as follows:

F(f0:K , T ) ≜ Em0:K∼P0:K

[
K∑

k=0

λk (Ck(mk, T (m0))− fk(T (m0)))

]
, (20)

L(f0:K) ≜ inf
T :M0→MB

F(f0:K , T ). (21)

The minimizer of functional F is denoted as:

T f ∈ arg inf
T :M→MB

F(f̂0:K , T ). (22)

Given T f : M0 → MB , the functional L in (21) can be written as:

L(f̂0:K) = F(f̂0:k, T
f ). (23)

We can observe that the first gap E1 is the difference between (20) and (23):

E1(f̂0:K , T̂ ) = F(f̂0:K , T̂ )− L(f̂0:K) = F(f̂0:K , T̂ )−F(f̂0:K , T f ). (24)
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Before looking into the second gap E2, we recall the optimal value L∗ of the OT barycenter problem
and express the OT cost with Monge’s formulation:

L∗ ≜
K∑

k=0

λkOTCk
(Pk,Q∗). (25)

where Q∗ is the true barycenter distribution. By introducing the Monge’s OT formulation with the
true OT map T ∗ that satisfies T ∗

#P0 = Q∗, the expression can be rewritten as:

L∗ =

K∑
k=0

λk

∫
Mk

Ck(mk, T
∗(m0))dPk(mk). (26)

Due to the congruence condition on the potentials f̂0:K and the property T ∗
#P0 = Q∗ for all k, we

have:
K∑

k=0

λkEmk∼Pk
[f̂k(T

∗(m0))] = Eb∼Q∗

[
K∑

k=0

λkf̂k(b)

]
= 0. (27)

This allows us to reformulate the optimal value L∗. Using the definition of F in (20), we find:

L∗ =

K∑
k=0

λkEmk∼Pk
[Ck(m0, T

∗(mk))]− Em0:K∼P0:K

[
K∑

k=0

λkf̂k(T
∗(m0))

]
︸ ︷︷ ︸

=0 from (27)

= Em0:K∼P0:K

[
K∑

k=0

λk

(
Ck(mk, T

∗(m0))− f̂k(T
∗(m0))

)]
= F(f̂0:K , T ∗).

With (23) we derive the second gap E2 can be written as

E2 = L∗ − L(f̂0:K) = F(f̂0:K , T ∗)−F(f̂0:K , T f ). (28)

We introduce the function gk(mk, b) ≜ Ck(mk, b) − f̂k(b), which is assumed to be β-strongly
convex with respect to b. Using this, we can rewrite our total cost functional F from (20) as:

F(f0:K , T ) = Em0:K∼P0:K

[
K∑

k=0

λkgk(mk, T (m0))

]
. (29)

As a result of convexity, it follows that a necessary condition for T f to minimize F(f0:K , T ) is the
vanishing of its first variation, yielding

Em0:K∼P0:K

[
K∑

k=0

λk∇bgk(mk, T
f (m0))

]
= 0. (30)

Now, we analyze the gap E1 by applying the β-strong convexity of gk(mk, ·):

E1 = F(f̂0:K , T̂ )−F(f̂0:K , T f )

= Em0:K∼P0:K

[
K∑

k=0

λk

(
gk(mk, T̂ (m0))− gk(mk, T

f (m0))
)]

≥ Em0:K∼P0:K

[
K∑

k=0

λk

(
⟨∇bgk(mk, T

f (m0)), T̂ (m0)− T f (m0)⟩+
β

2
∥T̂ (m0)− T f (m0)∥2

)]

= Em0:K∼P0:K

[〈
K∑

k=0

λk∇bgk(mk, T
f (m0)), T̂ (m0)− T f (m0)

〉]
+

β

2
Em0∼P0

[
∥T̂ (m0)− T f (m0)∥2

]
(30)
= 0 +

β

2
Em0∼P0

[
∥T̂ (m0)− T f (m0)∥2

]
. (31)
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For the second gap E2, we conduct the same analysis and obtain

E2 ≥ β

2
Em0∼P0

[
∥T f (m0)− T ∗(m0)∥2

]
. (32)

Now we sum the inequalities for E1 (31) and E2 (32):

E1 + E2 ≥ β

2
Em0∼P0

[
∥T̂ (m0)− T f (m0)∥2

]
+

β

2
Em0∼P0

[
∥T f (m0)− T ∗(m0)∥2

]
=

β

2
Em0∼P0

[
∥T̂ (m0)− T f (m0)∥2 + ∥T f (m0)− T ∗(m0)∥2

]
≥ β

4
Em0∼P0

[
∥T̂ (m0)− T ∗(m0)∥2

]
=

β

4
W 2

2 (T̂#P0, T
∗
#P0) =

β

4
W 2

2 (T̂#P0,Q∗).

(33)

A.3 ANALYSIS ON BARYCENTER POLYTOPE VOLUME

Given the matrix containing vectors spanning the barycenter polytope

R = (b, r1, · · · , rK),

we discuss the geometric meaning of barycenter polytope volumes for n = 2 and n = 3 modalities.
⟨·, ·⟩ denotes the cosine similarity between two normalized vectors, so that

⟨b, b⟩ = ⟨r1, r1⟩ = ⟨r2, r2⟩ = 1. (34)

We define the cosine of the angles between these vectors as

cos θ := ⟨b, r1⟩, cosβ := ⟨b, r2⟩, cos γ := ⟨r1, r2⟩. (35)

For the special case n = 2, the squared volume can be expressed as the determinant

Vol2n=2 = det(R⊤R) =

∣∣∣∣ ⟨b, b⟩ ⟨r1, b⟩
⟨b, r1⟩ ⟨r1, r1⟩

∣∣∣∣ = 1− cos2 θ

Therefore, the polytope volume in the bimodal case reduces to:

Voln=2 =
√
1− cos2 θ =

√
sin2 θ = sin θ,

which quantifies the spatial deviation between the WB embedding vector b and the vector b−m1,
reflecting how well the modality aligns with the overall barycenter direction. A smaller volume
indicates stronger alignment, while a larger value implies greater directional discrepancy.

For the special case n = 3, the squared volume can be expressed as the determinant

Vol2n=3 = det(R⊤R) =

∣∣∣∣∣ ⟨b, b⟩ ⟨r1, b⟩ ⟨r2, b⟩
⟨b, r1⟩ ⟨r1, r1⟩ ⟨r2, r1⟩
⟨b, r2⟩ ⟨r1, r2⟩ ⟨r2, r2⟩

∣∣∣∣∣ .
Substituting (34) and (35) into the determinant, the expression simplifies to

Vol2n=3 = 1− cos2 θ − cos2 β − cos2 γ + 2 cos θ cosβ cos γ,

= sin2 θ + sin2 β + sin2 γ + 2 cos θ cosβ cos γ − 2.

This form reveals the geometric interpretation more clearly: 1) The sin2 terms quantify the angular
deviation of each vector pair. The 2 cos θ cosβ cos γ term reflects the angular coupling between all
three direction. 2) γ is the angel between the two modality gap vectors r1 and r2, and thus directly
reflects the structural inter-modality gaps between non-anchor modalities.
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Figure 6: The polytope’s volume is
correlated (ρ = −0.9844) with the
downstream performance.

The volume becomes small when each modality vector
closely follows the barycenter direction (small angles α and
β). In addition, if the gap vectors between modalities, r1
and r2, are nearly aligned (small inter-modality angle γ), the
volume is further reduced. In this case, all three angles are
small, their sines are close to 0, and their cosines are close
to 1. Conversely, the volume increases when the directions
are mutually orthogonal, which maximizes the total disper-
sion among them. Fig. 6 plots the R@1 values of zero-shot
retrieval on MSR-VTT with respect to the volume, showing a
clear negative correlation between volume and performance.

Unlike pairwise cosine similarity, which only captures align-
ment between two modalities, the barycenter polytope vol-
ume offers a rich higher-order understanding of multimodal
structure. It not only measures the holistic geometric align-
ment of each modality toward the barycenter, but also pre-
serves inter-modal interactions, yielding a more compact multimodal joint representation space. In
this sense, the volume serves as a non-trival metric for measuring n-modality alignment.

B EXPERIMENTAL DETAILS AND MORE RESULTS

B.1 EXPERIMENTAL DETAILS

Table 5: Overview of multimodal benchmarks used for downstream evaluation.

Benchmark Modalities Train Val Test # Frames (train) # Frames (test)

DiDeMo Video + Text + Audio 8,394 1,065 1,003 8 32
ActivityNet Video + Text + Audio 10,009 — 4,917 8 32
MSR-VTT Video + Text + Audio + Subtitle 9,000 — 1,000 8 8
VATEX Video + Text + Audio + Subtitle 14,060 — 431 8 16
VGGSound Audio + Video + Text — — 5000 - 8

Tab. 5 summarizes the modality configuration, data statistics, and frame settings across benchmarks.

MSR-VTT (Xu et al., 2016) is a widely used benchmark for video-text retrieval. It contains 10,000
video clips, each paired with approximately 20 textual captions, totaling around 200,000 captions.
We use 9,000 videos for training and 1,000 for testing, with 8 frames sampled per video.

DiDeMo (Anne Hendricks et al., 2017) consists of 10,000 long-form videos, each annotated with
4 temporally ordered paragraph descriptions. It is mainly used for moment localization retrieval.
The official split includes 8,394/1,065/1,003 videos for training/validation/testing, and 12 frames
are sampled per video.

ActivityNet (Caba Heilbron et al., 2015) contains about 20,000 YouTube videos with a total duration
of approximately 180 hours, annotated with multiple temporal sentence descriptions. We use the
official training set (10,009 videos) for training and the validation set (4,917 videos) for downstream
testing. The number of sampled frames per video is 8.

VATEX (Wang et al., 2019) includes around 25,000 English videos, each annotated with 10 English
captions. It is commonly used for four-modality text retrieval tasks. We adopt 14,060 videos for
training and 431 for testing, with 8 frames sampled per video.

VGGSound5K (Chen et al., 2020) is a 5,000-video subset of VGGSound, containing diverse audio
event categories (typically 310 classes) along with corresponding video frames and subtitles. Each
video clip in the dataset has a duration of 10 seconds and is annotated with a single label correspond-
ing to the predominant sound event occurring within the clip. The dataset covers a wide spectrum
of audio events, including human actions, animal vocalizations, natural phenomena, and mechanical
sounds.It is commonly used for audio-video multimodal classification tasks.
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B.2 DISCUSSIONS ON THE ANCHOR SELECTION

To explore the impact of different anchor modalities to BaryBind, we conduct experiments using
text and video as the original anchor sand evaluate on the VGGSound dataset (Chen et al., 2020)
for video classification, and on MSR-VTT for V-T/T-V retrieval tasks. Note that the DAM loss is
excluded in these settings, as it is inherently designed for text-based supervision.

Table 6: Ablation on the anchor selection.

Anchor Modality
VGGSound MSR-VTT

Video Audio T2V V2T

Acc@1 Acc@5 Acc@1 Acc@5 R@1 R@5 R@1 R@5

Text Anchor 47.8 74.2 45.2 72.4 53.2 77.0 50.6 73.8
Video Anchor 46.7 69.2 43.5 66.1 50.8 75.5 51.2 76.4

As shown in Tab. 6, the performance exhibits a slight decline when using the video modality as the
anchor compared to the text modality. The result is consistent with the fact that text is often the most
informative anchor in many multimodal tasks, as it retains the broad semantics of multimodal data.

B.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We study the sensitivity of the loss weights in the total objective on the MSR-VTT validation set:
L = LMWB + α1LBVC + α2LDAM. (36)

As reported in Tab. 7, adjusting α1 on MSR-VTT shows that increasing the weight of the BVC loss
gradually improves retrieval performance, and the best results are achieved when α1 = 1. A further
increase leads to a performance decline, indicating that over-restricting barycentric geometry may
weaken instance-level discrimination.

Table 7: Sensitivity analysis of α1 on MSR-
VTT validation set.

α1 0.1 0.5 1 2 3

T2V (R@1) 54.2 54.9 56.5 55.3 54.5
V2T (R@1) 55.9 56.7 58.3 56.5 55.6

Table 8: Sensitivity analysis of α2 on
MSR-VTT validation set.

α2 0.02 0.05 0.1 0.15 0.2

T2V (R@1) 54.6 55.2 56.5 55.1 54.8
V2T (R@1) 55.2 55.8 58.3 56.2 55.1

Tab. 8 further reveals that α2 also has an optimal operating range, with α2 = 0.1 yielding the
strongest retrieval performance. Excessively small or large weights cause suboptimal alignment due
to either under-constrained or modality-biased instance matching.

Overall, α1 = 1 and α2 = 0.1 deliver the most stable and balanced multimodal alignment on the
MSR-VTT validation set, demonstrating the complementary strengths of BVC and DAM.

B.4 NORMALIZATION STRATEGIES FOR POLYTOPE VOLUME METRIC

Table 9: Zero-shot generalization on MSR-
VTT under different normalization strategies
for the barycenter polytope volume.

Normalization Setting T2V V2T

V 1/2 T-V 52.8 51.0
V 1/3 T-VA 53.6 52.2
V 1/4 T-VAS 55.4 52.7
V T-V 53.4 51.3
V T-VA 54.5 52.0
V T-VAS 56.3 53.6

While the raw barycenter polytope volume V serves
as a global alignment metric, it depends on the num-
ber of modalities and embedding dimensionality,
which limits interpretability and cross-setting com-
parability. To address this, we consider normaliza-
tion strategies such as V 1/n, which scale the volume
to better reflect per-modality contributions and make
the metric more comparable across different modal-
ity configurations.

Table 9 reports zero-shot retrieval results on MSR-
VTT under different normalization strategies. We
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observe that applying normalization slightly reduces
the absolute retrieval scores compared to the raw
volume V , likely because normalization reduces the
magnitude of the gradient signal from the volume metric, slightly weakening the alignment supervi-
sion. Nonetheless, the overall performance remains stable, indicating that V 1/n provides a reliable
and interpretable metric without significantly sacrificing retrieval accuracy.

B.5 ROBUSTNESS TO MISSING MODALITIES

BaryBind effectively captures modality-agnostic semantics from arbitrary subsets of multimodal in-
puts, enabling the aligned representations of available modalities to serve as proxy features when
others are missing. We evaluate two settings: (1) training-time missing-audio for cross-modal re-
trieval (T2A/A2T) on AudioCaps (Kim et al., 2019), and (2) missing-video inference for multimodal
event classification on VGGSound 5K, where the model is trained with videos and audios. In both
cases, the barycenter is optimized using only the accessible modalities. Results show that Bary-
Bind preserves robust and graceful degradation under missing-modality conditions, which can be
attributed to the barycenter modeling of modality-agnostic semantics.

Table 10: Text-to-audio retrieval on AudioCaps
w/ and w/o audio during training.

Training Setting T2A R@1 T2A R@10

VAST (w/ audio) 32.1 65.4
GRAM (w/ audio) 33.2 75.3
BaryBind (w/ audio) 35.5 81.2

VAST (w/o audio) 10.4 32.8
GRAM (w/o audio) 12.8 35.1
BaryBind (w/o audio) 21.1 56.2

Table 11: Multimodal event classification on
VGGSound5K w/o video during inference.

Input modality Acc@1 Acc@5

VAST A+V 48.1 79.6
GRAM A+V 42.3 74.5
BaryBind A+V 55.6 83.4
VAST A 40.8 71.6
GRAM A 38.5 70.1
BaryBind A 49.4 78.3

B.6 SYSTEM EFFICIENCY COMPARISON DURING TRAINING

We provide a comparison of system efficiency among VAST, GRAM, and BaryBind. All experi-
ments are conducted on 2×NVIDIA A100 80GB GPUs with mixed-precision (FP16/AMP).

Table 12: System efficiency comparison during training.

Model Params Batch size Forward+Backward Steps/Epoch Time/Epoch
VAST 1.28B 64 ∼8.8s 2344 ∼5.7h
GRAM 1.30B 64 ∼9.4s 2344 ∼6.1h
BaryBind 1.34B 64 ∼9.7s 2344 ∼6.3h

The additional computation in BaryBind mainly comes from the Wasserstein barycenter optimiza-
tion and auxiliary alignment losses. The increase in per-step time remains moderate while providing
improved multimodal alignment performance.

B.7 MORE QUANTITATIVE RESULTS ON SCALING TO MORE MODALITIES

To systematically evaluate the scalability of multimodal models with respect to the number of input
modalities, we conduct experiments under four configurations, progressively increasing from two
modalities (text and video) to five (text, video, audio, subtitle, and depth). This stepwise setup
enables a controlled analysis of how each additional modality affects performance and alignment
quality. For consistency and interpretability, text is used as the anchor modality throughout.

As shown in Table 13, both VAST and BaryBind benefit from the inclusion of additional modalities,
demonstrating improved performance on MSR-VTT and VATEX in terms of both T2V and V2T
retrieval. Notably, BaryBind consistently outperforms VAST across all modality configurations and
datasets, highlighting its stronger scalability and generalization capacity.
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Table 13: Downstream performance with increasing number of modalities.

Modalities
MSR-VTT VATEX

VAST BaryBind VAST BaryBind

Text Video Audio Sub. Depth T2V V2T T2V V2T T2V V2T T2V V2T

✓ ✓ ✗ ✗ ✗ 48.7 43.2 53.4 51.3 78.8 77.0 82.3 79.8
✓ ✓ ✓ ✗ ✗ 49.3 43.7 54.5 52.0 80.0 77.3 84.2 81.3
✓ ✓ ✓ ✓ ✗ 50.9 47.9 56.3 53.6 82.1 78.7 84.6 83.5
✓ ✓ ✓ ✓ ✓ 51.2 49.3 57.0 54.4 82.4 79.2 84.9 83.8

B.8 VISUALIZATION OF TOP-1 RETRIEVAL RESULTS

To qualitatively assess the retrieval performance of BaryBind, we visualize top-1 text-to-video re-
sults compared with two strong baselines in Fig. 8. BaryBind integrates text, audio, video, and
subtitle modalities during both training and inference. Each row shows five frames from the top-
retrieved video along with the query subtitle. In the first example, BaryBind retrieves a beach party
scene aligned with the query’s semantic and acoustic mood, while baselines return less relevant re-
sults. In the second case, BaryBind accurately matches a gameplay scene described by both visual
and subtitle cues, whereas baselines retrieve unrelated content. The third example features a sim-
ple emotional phrase, “I’m scared.”, where BaryBind selects an animated video of a fearful cat-dog
chase, while others fail to reflect the emotional context or core entities. These results demonstrate
BaryBind’s ability to leverage complementary multimodal cues for precise and context-aware re-
trieval, effectively grounding both semantics and affect across diverse scenarios.

B.9 SCALABILITY OF BARYBIND WITH INCREASING MODALITY NUMBER

Table 14: Computation time (in seconds) of similarity metrics vs. number of modalities, measured
on an NVIDIA A100 GPU with batch size B = 64 and embedding dimension D = 512.

Number of modality n 2 3 4 5 10 20

Pairwise cosine similarity 3.0× 10−7 7.0× 10−7 1.0× 10−6 1.3× 10−6 2.9× 10−6 4.9× 10−6

Barycenter polytope volume 4.9× 10−6 6.8× 10−6 5.9× 10−6 9.8× 10−6 3.6× 10−5 8.8× 10−5

Figure 7: Zero-shot text-to-video
retrieval results as scaling from 2
(T-V) to 5 (T-VASD) modalities.

We evaluate the computation efficiency of different similar-
ity metrics with varying modality counts n. For each metric,
we randomly sample B = 64 sets of n vectors in RD with
D = 512, simulating multimodal embeddings. As shown in
Tab. 14, the barycenter polytope volume remains computation-
ally efficient and scales reasonably as the number of modalities
increases. The negligible overhead incurred when extending
to more modalities highlights the polytope volume as a non-
trivial and scalable metric for assessing n-modality alignment.

To evaluate how BaryBind scales from bimodal (e.g., text-
vision) setups to richer multimodal settings, we progressively
expand the input from a basic text-video (T-V) pair to more
complex configurations on the MSR-VTT dataset: text-video-
audio (T-VA), text-video-audio-subtitle (T-VAS), and finally
text-video-audio-subtitle-depth (T-VASD). The depth modality is derived using ChronoDepth (Shao
et al., 2025) and integrated via an additional lightweight head attached to the vision encoder. As
shown in Fig. 7, BaryBind consistently improves Recall@1 as the number of modalities increases,
significantly outperforming the VAST baseline on MSR-VTT across all configurations. This high-
lights the scalability of BaryBind in practical multimodal understanding as it effectively integrates
more modalities to shape a richer semantic space.
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USE OF LARGE LANGUAGE MODELS

We acknowledge that Large Language Models (LLMs) were used after the completion of the draft,
solely to correct grammar and improve sentence fluency.

Figure 8: Visual results of text-to-video retrieval. We display 5 frames from the top-1 video.

23


	Introduction
	Related Works
	BaryBind: Binding via the Wasserstein Barycenter Space
	Preliminaries
	Multimodal Wasserstein Barycenter Space
	Measuring n-modality Alignment with Barycenter Polytope Volume
	Barycenter-based Loss Functions

	Experiments
	Setup
	Comparison with state-of-the-art methods
	Ablation studies

	Conclusion
	Theoretical Results
	Proof of theorem 1
	Proof of Theorem 3.1
	Analysis on barycenter polytope volume

	Experimental Details and More Results
	Experimental details
	Discussions on the anchor selection
	Hyperparameter Sensitivity Analysis
	Normalization Strategies for Polytope Volume Metric
	Robustness to Missing Modalities
	System Efficiency Comparison During Training
	More quantitative results on scaling to more modalities
	Visualization of Top-1 Retrieval Results
	Scalability of BaryBind with increasing modality number


