

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BARYBIND: BINDING ALL MODALITIES VIA MULTIMODAL WASSERSTEIN BARYCENTER SPACE

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal joint representation, which aligns multiple modalities in a shared latent space, has emerged as the foundation of recent multimodal understanding models. To scale beyond two modalities, existing models typically **treat a specific modality (e.g., text) as the anchor** to bind other modalities via pairwise contrastive losses. However, the learned joint representation space tends to be sub-optimal and imbalanced, **as the modality-specific anchor may inherit the modality bias and insufficiently capture the modality-agnostic semantics and holistic geometric structures within multimodal data**. In this work, we are motivated by the intuition that multimodal representations arise from different shifts from an underlying modality-agnostic representation space. Based on this, we present **BaryBind**, a multimodal framework that aligns modalities in the multimodal Wasserstein barycenter (WB) space, which inherently models a modality-agnostic distribution by minimizing the average of Wasserstein distances to all modalities. We further construct a barycenter polytope, whose volume serves as a geometric metric for quantifying n -modality alignment. This metric is integrated as a barycenter-anchored volumetric contrastive loss that contrasts the volumes of the n -dimensional polytopes, encouraging global alignment of non-anchor modalities to the barycenter while reducing inter-modality gaps. Extensive experiments show that BaryBind delivers more balanced zero-shot generalization performance in downstream tasks, e.g., cross-modal text/video retrieval and classification.

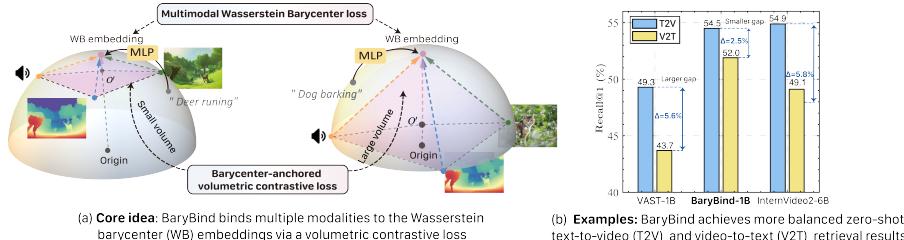


Figure 1: **BaryBind binds multiple modalities to the Wasserstein barycenter (WB)**, which encodes modality-agnostic semantics by minimizing the average of Wasserstein distances to all modalities. By contrasting the barycenter polytope’s volume, BaryBind achieves n -modality alignment to the WB space while preserving inter-modal interactions. Notably, it delivers more balanced retrieval results, reducing the T2V/V2T gap to 2.5% (vs. 5.6% for our baseline VAST [Chen et al. \(2023\)](#)).

1 INTRODUCTION

Multimodal learning ([Baltrušaitis et al., 2018](#)) seeks to integrate and process heterogeneous signals from multiple modalities (e.g., vision, language, audio, depth, *etc.*) to build a coherent perception of the surrounding world. Since multimodal data arise from heterogeneous observations of a shared underlying reality, recent multimodal learning methods ([Radford et al., 2021](#); [Jia et al., 2021](#)) learn a shared representation space for representations from different modalities. In this field, the success of CLIP ([Radford et al., 2021](#)) in aligning unified vision–language representations via contrastive learning has sparked the adoption of contrastive losses as an appealing solution for multimodal representation learning. However, traditional contrastive losses, such as InfoNCE ([Oord et al., 2018](#)) and BYOL ([Grill et al., 2020](#)), are formulated in a pairwise fashion for $n = 2$ representation spaces typically arising from two modalities such as image–text ([Radford et al., 2021](#); [Jia et al., 2021](#)) or audio–text ([Guzhov et al., 2022](#); [Elizalde et al., 2023](#)) scenarios.

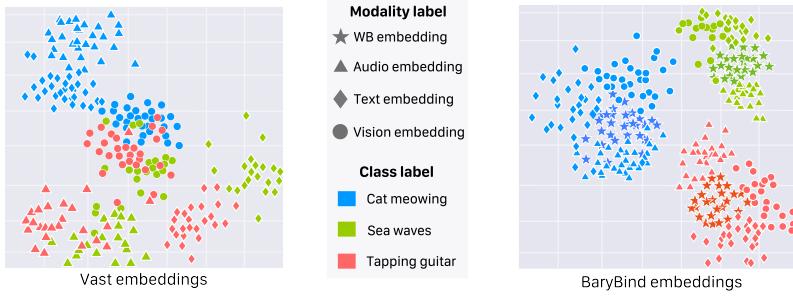


Figure 2: **The t-SNE comparison of embeddings on the zero-shot VGGSound dataset** (Chen et al., 2020). Compared to VAST (Chen et al., 2023), BaryBind induces a latent space where class clusters are clearly separated and multimodal embeddings are grouped around the WB embeddings.

While scaling to n modalities ($n \geq 3$) poses unique challenges, a series of recent works (Chen et al., 2023; Zhu et al., 2024; Wang et al., 2025) originating from ImageBind (Girdhar et al., 2023) leverage the binding property of an modality-specific anchor (e.g., image or language) to align other modalities to the chosen anchor via pairwise losses. However, treating a specific modality as the alignment center can lead to sub-optimal shared space, as it inherits modality-specific biases while overlooking modality-agnostic semantics shared across all modalities. Consequently, the learned representations tend to be imbalanced, with a certain modality dominating the joint representation space (see the video/text retrieval results in Fig. 1). Moreover, although the pairwise losses align each modality to the anchor, they omit the correlations/interactions among non-anchor modalities, which may undermine the n -modality global alignment consistency.

To address these challenges, this work is motivated by the notion that *multimodal data are collected from heterogeneous sensors observing a shared underlying reality, thus the multimodal representations arise from different shifts from an underlying modality-agnostic representation space*. With this insight, we propose **BaryBind** that aligns multimodal representations in the multimodal Wasserstein Barycenter (WB) space, which inherently models a modality-agnostic distribution that minimizes the average of optimal transport (OT) distances to all modalities while capturing the OT-grounded geometry. This property inherently filters out modality-specific redundancy and results in a modality-agnostic barycenter space that reduces the divergence caused by multimodal domain shifts. Furthermore, we suggest a barycenter-anchored volumetric contrastive loss defined on the volume of a barycenter polytope, which quantifies the global alignment of n -dimensional multimodal data. The barycenter polytopes are spanned by the barycenter and non-anchor modality-to-barycenter gap vectors (see Fig. 1 (a)). By contrasting the polytope’s volume, BaryBind binds the modalities to the modality-agnostic barycenter and reduces inter-modality gaps across modalities.

Specifically, we first propose a multimodal Wasserstein barycenter loss, which is optimized to seek the WB space for multimodal joint representation. **This is achieved by training a lightweight map to filter out modality-specific biases, transforming the original modality-specific anchor to the WB that better approximates a modality-agnostic alignment anchor.** (Fig. 1(a)) The barycenter is then leveraged to construct the n -dimensional barycenter polytope, whose volume serves as a measure of omni-modality alignment. Accordingly, we design a volumetric contrastive loss that encourages a smaller barycenter polytope volume for matched samples and a larger one for unmatched samples, thereby shaping a joint representation space that maintains the holistic geometry and inter-modal interactions within the multimodal data (Fig. 1 (a)). Our experiments show that BaryBind delivers competitive generalization performance in downstream tasks such as text/video retrieval and audio/video classification. Notably, BaryBind substantially alleviates the imbalance across modalities, reducing the T2V/V2T retrieval gap by 3.1% compared to VAST (Chen et al., 2023) (Fig. 1 (b)), and induces an embedding space where modalities of each class are consistently clustered around the WB embeddings, as presented in Fig. 2.

The main contributions of this paper are highlighted as follows:

- We propose BaryBind, a novel framework that aligns multimodal representations to the WB space. The WB space models a modality-agnostic distribution that captures the OT-grounded holistic geometry of multimodal data and inherently filters out modality-specific bias across modalities.
- We build a barycenter polytope with the barycenter and modality gap vectors. Its volume, serving as a global alignment metric, extends the insights of measuring n -modality alignment.

- 108 • Based on the polytope volume, we introduce a barycenter-anchored volumetric contrastive loss,
109 which encourages global alignment to the barycenter while retaining inter-modal interactions.
- 110 • Extensive experiments show that BaryBind achieves more balanced representations and improves
111 zero-shot generalization in downstream tasks such as text/video retrieval and audio/video classifi-
112 cation. Particularly, BaryBind delivers decent scalability with increasing modality number.

114 2 RELATED WORKS

116 **Multimodal representation learning.** Multimodal representation learning seeks to align heterogeneous
117 modalities into a shared semantic space. CLIP (Radford et al., 2021) initiates this paradigm
118 with image–text contrastive learning, followed by audio extensions such as AudioCLIP (Guzhov
119 et al., 2022), CLAP (Elizalde et al., 2023), and LAION-CLAP (Wu et al., 2023). WavCaps (Mei
120 et al., 2024) constructs a large-scale audio captioning dataset to support audio–language retrieval.
121 To scale beyond two modalities, ImageBind (Girdhar et al., 2023) introduces a pivot-based strat-
122 egy, aligning each modality to the vision anchor. LanguageBind (Zhu et al., 2024), UniBind (Lyu
123 et al., 2024), GRAM (Cicchetti et al., 2025b), and Triangle (Cicchetti et al., 2025a) extend align-
124 ment to language anchors, adopting unique volume-based contrastive losses. MiCo (Zhang et al.,
125 2024) effectively expands modalities, data, and model size to learn unified representations. ViT-
126 Lens (Lei et al., 2024) innovatively adapts a pretrained ViT via modality-specific “lenses” to estab-
127 lish a shared space. OmniBind (Wang et al., 2025) aligns pre-trained unimodal experts via pairwise
128 losses. VAST (Chen et al., 2023) fuses modalities into a shared space but still relies on text-centered
129 supervision. Despite their scalability, these approaches bind each modality to a specific modality
130 (e.g., text) rather than modeling a modality-agnostic joint space. Consequently, they may suffer
131 from modality-specific biases, which prevent them from learning a balanced joint space that cap-
132 tures the shared modality-agnostic semantics within multimodal data. Differently, BaryBind binds
133 the modalities to the barycenter that encodes modality-agnostic semantics and adopts a barycenter-
134 anchored volumetric contrastive loss to encourage the global alignment across n modalities.

135 **Wasserstein barycenter.** The Wasserstein barycenter (Aguech & Carlier, 2011) defines an averaging
136 distribution that minimizes the weighted sum of Wasserstein distances to input measures, preserving
137 mass structure and OT-grounded geometry. This formulation has shown effectiveness on heteroge-
138 neous supports and has been applied in generative modeling (Cuturi & Doucet, 2014) and domain
139 adaptation (Bonneel et al., 2015). Recent works estimate high-dimensional barycenters via deep
140 dual formulations, including ICNN-based cycle-consistent models (Korotin et al., 2021), neural OT
141 maps (Kolesov et al., 2024a; Tang et al., 2025), and energy-guided potentials (Kolesov et al., 2024b).
142 We extend this perspective to construct a modality-agnostic joint space for multimodal alignment,
143 bridging optimal transport theory with multimodal representation learning.

144 3 BARYBIND: BINDING VIA THE WASSERSTEIN BARYCENTER SPACE

145 In this section, we present BaryBind, a multimodal learning framework that aligns different modal-
146 ities in the Wasserstein barycenter (WB) space. Our key insight is leveraging the inherent modality-
147 agnostic nature of WB to build a joint space that mitigates divergence caused by modality-specific
148 shifts. By aligning modalities to this space that encodes intrinsic modality-agnostic invariance,
149 BaryBind potentially captures more balanced multimodal representations for downstream tasks.

150 Specifically, as shown in Fig. 3, BaryBind first constructs the multimodal WB space that aligns
151 features from multimodal latent space via the multimodal WB loss (§3.2), in which an MLP is
152 learned to transport the anchor features to the WB space as WB embeddings. We then construct a
153 barycenter polytope defined by the WB embeddings and modality-to-barycenter gap vectors, whose
154 volume quantifies the degree of n -modality alignment (§3.3). Based on the polytope, we intro-
155 duce a barycenter-anchored volumetric contrastive loss, which encourages high-order multimodal
156 alignment to the WB space while reducing inter-modality gaps (§3.4).

157 3.1 PRELIMINARIES

158 **Notation.** Let $\bar{K} = \{0, 1, \dots, K\}$ for some $K \in \mathbb{N}$. For a sequence e_0, \dots, e_K , we denote by $e_{0:K}$
159 the tuple (e_0, \dots, e_K) . Let $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{Y} \subset \mathbb{R}^{d'}$, and $\mathcal{X}_k \subset \mathbb{R}^{d_k}$ be compact subsets of Euclidean
160 space. Denote by $\mathcal{C}(\mathcal{X})$ the space of continuous real-valued functions on \mathcal{X} , and by $\mathcal{P}(\mathcal{X})$ the set of

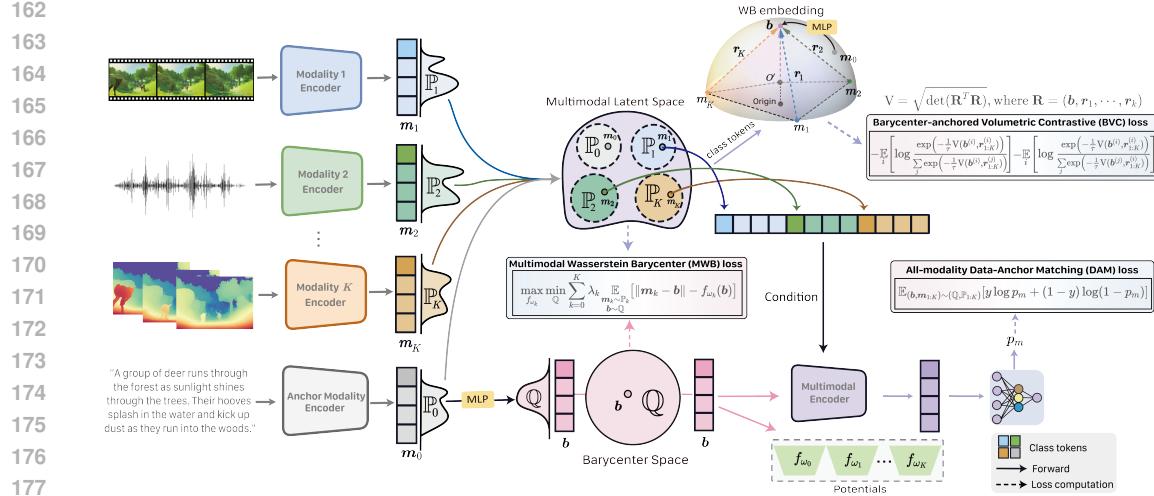


Figure 3: **The pipeline of BaryBind.** Given the multimodal embeddings, BaryBind constructs the WB space via the MWB loss, in which an MLP is learned to transform the anchor \mathbf{m}_0 into the WB embedding \mathbf{b} . The WB embedding acts as the new anchor and induces a barycenter polytope, whose volume is contrasted in the BVC loss to align other modalities. WB and non-anchor embeddings are then integrated in the multimodal encoder to predict whether the anchor and data are matched.

probability measures supported on \mathcal{X} . Given $\mathbb{P} \in \mathcal{P}(\mathcal{X})$ and $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$, we write $\Pi(\mathbb{P}, \mathbb{Q})$ for the set of transport plans between them, i.e., all joint distributions on $\mathcal{X} \times \mathcal{Y}$ whose marginals are \mathbb{P} and \mathbb{Q} . The notation $\langle \cdot, \cdot \rangle$ denotes the cosine similarity that involves the normalization over features.

Optimal transport. Given two distributions $\mathbb{P} \in \mathcal{P}(\mathcal{X})$ and $\mathbb{Q} \in \mathcal{P}(\mathcal{Y})$, along with a cost function $c : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_+$, the classic optimal transport (OT) problem (Kantorovich, 1942) aims to find a joint distribution $\pi \in \Pi(\mathbb{P}, \mathbb{Q})$ that minimizes the expected transport cost:

$$\text{OT}_c(\mathbb{P}, \mathbb{Q}) \triangleq \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(x, y) \sim \pi} [c(x, y)]. \quad (1)$$

The specific choice of $c(x, y) = \|x - y\|$ yields $W(\mathbb{P}, \mathbb{Q}) = \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \mathbb{E}_{(x, y) \sim \pi} \|x - y\|$, known as the Earth-Mover or Wasserstein-1 distance. In this paper, we refer to it as the Wasserstein distance.

Wasserstein barycenter (WB). Given distributions $\mathbb{P}_k \in \mathcal{P}(\mathcal{X}_k)$ for $k \in \bar{K}$ and a vector $\lambda \in \mathbb{R}^{K+1}$ of non-negative weights λ_k summing to 1, the WB problem seeks the distribution \mathbb{Q} that minimizes the weighted sum of Wasserstein distances to the fixed marginals $\mathbb{P}_{0:K}$:

$$\inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{Y})} \sum_{k=0}^K \lambda_k W(\mathbb{P}_k, \mathbb{Q}). \quad (2)$$

We apply the WB formulation to the multimodal latent space \mathcal{M} , where the encoded features of the k -th modality lie in a subspace \mathcal{M}_k and follow a distribution \mathbb{P}_k . The barycenter inherently encodes modality-agnostic semantics as it models the ‘‘closest’’ distribution to all multimodal distributions.

3.2 MULTIMODAL WASSERSTEIN BARYCENTER SPACE

Let \mathbb{P}_k be the distribution of encoded features $\mathbf{m}_k \in \mathcal{M}_k \subset \mathcal{M}$ for modality $k \in \bar{K}$, defined in the multimodal latent space $\mathcal{M} \subset \mathbb{R}^D$. In particular, \mathbf{m}_0 denote the anchor modality features. The WB space is defined as $\mathcal{M}_B := \text{supp}(\mathbb{Q})$ where \mathbb{Q} denotes the WB distribution and \mathcal{M}_B contains the barycenter features \mathbf{b} . Given the distributions $\mathbb{P}_{0:K}$, our goal is to establish the barycenter space $(\mathcal{M}_B, \mathbb{Q})$ and use it as the joint representation space for multimodal alignment. Based on the WB formulation (2) over multimodal latent space, the multimodal WB problem can be written as

$$\mathcal{L}_{\text{MWB}}^* = \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M})} \sum_{k=0}^K \lambda_k W(\mathbb{P}_k, \mathbb{Q}). \quad (3)$$

However, directly optimizing (3) is highly intractable. To overcome this challenge, we deduce a new dual reformulation (see Appendix A.1), which leads to the following sup-inf objective:

216 **Proposition 1 (Dual form of the multimodal WB problem).** *The infimum value $\mathcal{L}_{\text{MWB}}^*$ of the*
 217 *multimodal WB problem (3) can be expressed as*

$$219 \quad \mathcal{L}_{\text{MWB}}^* = \sup_{\sum_k \lambda_k f_k = 0} \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)} \sum_{k=0}^K \lambda_k \mathbb{E}_{\substack{\mathbf{m}_k \sim \mathbb{P}_k \\ \mathbf{b} \sim \mathbb{Q}}} [\|\mathbf{m}_k - \mathbf{b}\| - f_k(\mathbf{b})], \quad (4)$$

222 where the supremum is taken over all the dual potentials $f_k : \mathcal{M}_B \rightarrow \mathbb{R}$. We aim to learn the
 223 distribution \mathbb{Q} by sampling the WB embeddings $\mathbf{b} = T(\mathbf{m}_0)$ via a trainable projection map $T_\theta(\cdot) : \mathcal{M}_0 \rightarrow \mathcal{M}_B$. Here, \mathbf{m}_0 represents the feature of anchor modality, typically selected as text, as it
 224 retains the broad semantics of multimodal data. We also perform an ablation study on the anchor
 225 selection, which is included in Appendix B. In practice, we simply parameterize T_θ using an MLP.
 226 To ensure the congruent constraint $\sum_k \lambda_k f_k = 0$ (Li et al., 2020), we parameterize the family of
 227 potentials f_{ω_k} as $g_{\omega_k} - \sum_{i=0}^K \lambda_i g_{\omega_i}$ with MLPs $g_{\omega_k} : \mathbb{R}^D \rightarrow \mathbb{R}$, which is a common trick used in
 228 (Li et al., 2020; Kolesov et al., 2024a;b).
 229

230 **Multimodal Wasserstein Barycenter (MWB) loss.** With this parameterization, we rewrite (4) as a
 231 max-min objective of the MWB loss \mathcal{L}_{MWB} , which can be optimized to compute the map T_θ

$$233 \quad \mathcal{L}_{\text{MWB}}^*(\omega_{0:K}, \theta) \triangleq \max_{\omega_{0:K}} \min_{\theta} \sum_{k=0}^K \lambda_k \mathbb{E}_{\substack{\mathbf{m}_k \sim \mathbb{P}_k \\ \mathbf{b} \sim \mathbb{Q}}} [\|\mathbf{m}_k - T_\theta(\mathbf{m}_0)\| - f_{\omega_k}(T_\theta(\mathbf{m}_0))]. \quad (5)$$

236 To solve the problem (5), we train the networks T_θ and $f_{\omega_{0:K}}$ by alternately maximizing over $\omega_{0:K}$
 237 and minimizing over θ in the MWB loss, in which we estimate the expectation using mini-batch data
 238 at each training step. Given the anchor modality feature \mathbf{m}_0 , the WB embedding is then computed
 239 as $\mathbf{b} = T_\theta(\mathbf{m}_0)$, which will serve as the new anchor and other modalities are then aligned to it.

240 We establish the error bounds for the map T with the following simplified notations:

$$242 \quad \mathcal{F}(f_{0:K}, T) := \mathcal{L}_{\text{MWB}}(f_{1:K}, T), \quad \mathcal{L}(f_{0:K}) := \inf_{T: \mathcal{M} \rightarrow \mathcal{M}_B} \mathcal{F}(f_{0:K}, T) \quad \text{and} \quad \mathcal{L}^* := \mathcal{L}_{\text{MWB}}^*. \quad (6)$$

244 **Theorem 3.1** (Error analysis via duality gaps for the barycenter distribution). *Let C_k be any trans-*
 245 *port costs. Assume that the maps $\mathbf{b} \mapsto C_k(\mathbf{m}_k, \mathbf{b}) - \hat{f}_k(\mathbf{b})$ are β -strongly convex for $\mathbf{m}_k \in \mathcal{M}_k$,*
 246 *$k \in \{0, \dots, K\}$. Consider the duality gaps for an approximate solution $(\hat{f}_{0:K}, \hat{T})$:*

$$247 \quad \mathcal{E}_1(\hat{f}_{0:K}, \hat{T}) \triangleq \mathcal{F}(\hat{f}_{0:K}, \hat{T}) - \mathcal{L}(\hat{f}_{0:K}), \quad \mathcal{E}_2(\hat{f}_{0:K}) \triangleq \mathcal{L}^* - \mathcal{L}(\hat{f}_{0:K}),$$

249 Then the following inequality holds:

$$251 \quad W^2(\hat{T}_\# \mathbb{P}_0, \mathbb{Q}^*) \leq \frac{4}{\beta} (\mathcal{E}_1 + \mathcal{E}_2). \quad (7)$$

253 The proof is provided in the Appendix A.2. This theorem ensures that the Wasserstein distance
 254 between the estimated distribution $\hat{T}_\# \mathbb{P}_0$ and the true barycenter \mathbb{Q}^* is upper-bounded by the sum of
 255 these two errors. This establishes that, as both approximation and estimation errors decrease during
 256 training, the learned distribution converges toward the true WB in a distributional sense.

258 3.3 MEASURING n -MODALITY ALIGNMENT WITH BARYCENTER POLYTOPE VOLUME

260 To bind modalities to the WB space while preserving the global structures of n -dimensional (where
 261 $n = K + 1$ is the number of modalities) multimodal data, we introduce a geometric structure
 262 called the *barycenter polytope*. As illustrated in Fig. 3, the polytope takes the WB embedding \mathbf{b}
 263 as the apex and is spanned by the vectors from the origin to \mathbf{b} and the modality-to-barycenter gap
 264 vectors $\mathbf{r}_k = \mathbf{b} - \mathbf{m}_k$ for all non-anchor modalities \mathbf{m}_k ($k \geq 1$). Owing to its unique composition,
 265 the polytope volume quantifies two aspects of multimodal features: (1) how closely non-anchor
 266 modalities align with the barycenter, and (2) the inter-modality discrepancy across modalities.

267 We use the volume of this barycenter polytope to measure n -modality alignment. Intuitively, a
 268 smaller volume indicates that the modalities are more tightly clustered around the WB embedding
 269 and more consistent with one another, suggesting stronger alignment. Conversely, a larger volume
 reflects greater distances from the barycenter and increased inter-modality discrepancy.

Given the WB embedding vector \mathbf{b} (i.e., the vector from the origin to the barycenter) and gap vectors $\{\mathbf{r}_k\}_{k=1}^K$ (i.e., the vectors from each non-anchor modality to the barycenter), we define the matrix $\mathbf{R} = (\mathbf{b}, \mathbf{r}_1, \dots, \mathbf{r}_K)$, representing the set of vectors spanning the barycenter polytope. Then the square of the polytope's volume can be computed according to [Gantmacher \(1959\)](#) as:

$$V^2(\mathbf{b}, \mathbf{r}_{0:K}) := V^2(\mathbf{b}, \mathbf{r}_1, \dots, \mathbf{r}_K) = \det(\mathbf{R}^T \mathbf{R}) = \begin{vmatrix} \langle \mathbf{b}, \mathbf{b} \rangle & \langle \mathbf{b}, \mathbf{r}_1 \rangle & \dots & \langle \mathbf{b}, \mathbf{r}_K \rangle \\ \langle \mathbf{r}_1, \mathbf{b} \rangle & \langle \mathbf{r}_1, \mathbf{r}_1 \rangle & \dots & \langle \mathbf{r}_1, \mathbf{r}_K \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{r}_K, \mathbf{b} \rangle & \langle \mathbf{r}_K, \mathbf{r}_1 \rangle & \dots & \langle \mathbf{r}_K, \mathbf{r}_K \rangle \end{vmatrix}. \quad (8)$$

Remark. The volume offers a metric for measuring global alignment to the barycenter while retaining inter-modal interactions among non-anchor modalities, going beyond simple pairwise comparisons. The volume is computed as the determinant of a $n \times n$ matrix, where the number of modalities n is typically small (e.g., 3 or 4) and much less than the embedding dimension D , introducing negligible computational overhead, which is further validated in our experiments.

3.4 BARYCENTER-BASED LOSS FUNCTIONS

To enforce tight and balanced multimodal binding in the Wasserstein barycenter space, we propose a barycenter-anchored volumetric contrastive (BVC) loss that leverages the volume of the barycenter polytope defined by the barycenter and modality-to-barycenter gap vectors.

Given multimodal inputs $\{\mathbf{m}_0^{(i)}, \mathbf{m}_1^{(i)}, \dots, \mathbf{m}_K^{(i)}\}_{i=1}^B$, where B is the batch size and $\mathbf{m}_0^{(i)}$ is the anchor modality. The barycenter is computed by $\mathbf{b}^{(i)} = T_\theta(\mathbf{m}_0^{(i)})$, and the modality-to-barycenter gap vectors are defined as $\mathbf{r}_k^{(i)} = \mathbf{b}^{(i)} - \mathbf{m}_k^{(i)}$ for $k = 1, \dots, K$, aggregated as $\mathbf{r}_{0:K}^{(i)} = \{\mathbf{r}_1^{(i)}, \dots, \mathbf{r}_K^{(i)}\}$. We treat each $(\mathbf{b}^{(i)}, \mathbf{r}_{0:K}^{(i)})$ as a *positive pair*, and construct two sets of *negative pairs*: (i) by fixing $\mathbf{b}^{(i)}$ and pairing it with $\mathbf{r}_{0:K}^{(j)}$ for $j \neq i$, and (ii) by fixing $\mathbf{r}_{0:K}^{(i)}$ and pairing it with \mathbf{b}_j for $j \neq i$.

Barycenter-anchored volumetric contrastive (BVC) loss. The BVC loss contrasts small volumes for positive pairs against large volumes for negative ones, and is formulated as

$$\mathcal{L}_{\text{BVC}} = -\frac{1}{2} \mathbb{E}_i \left[\log \frac{\exp(-V(\mathbf{b}^{(i)}, \mathbf{r}_{0:K}^{(i)})/\tau)}{\sum_j \exp(-V(\mathbf{b}^{(i)}, \mathbf{r}_{0:K}^{(j)})/\tau)} \right] - \frac{1}{2} \mathbb{E}_i \left[\log \frac{\exp(-V(\mathbf{b}^{(i)}, \mathbf{r}_{0:K}^{(i)})/\tau)}{\sum_j \exp(-V(\mathbf{b}^{(j)}, \mathbf{r}_{0:K}^{(i)})/\tau)} \right], \quad (9)$$

where $V(\mathbf{b}, \mathbf{r}_{0:K})$ denotes the volume of the polytope formed by the barycenter and its modality gap vectors, whose square is computed as (8) and τ is the temperature parameter.

The BVC loss encourages non-anchor modalities to move closer to the common barycenter, ensuring tight binding around a shared modality-agnostic representation. Simultaneously, it provides a geometric guarantee that the inter-modality gap vectors converge, reducing discrepancies among modalities. To prevent trivial collapse of the polytope volume caused by shrinking vector magnitudes, we normalize each gap vector \mathbf{r}_k to unit length. This normalization ensures that volume minimization effectively promotes alignment of vector directions rather than their norms, leading to a stable and balanced multimodal binding in the Wasserstein barycenter space.

Data-anchor matching (DAM) loss. We also introduce an auxiliary data-anchor matching (DAM) loss, which encourages the model to infer whether a pair of data and anchor is matched or not. This loss is commonly used in multimodal retrieval ([Li et al., 2021b; Chen et al., 2023](#)) to enforce fine-grained semantic alignment distinguishing matched and mismatched data pairs. To enable such matching, we can reuse the anchor-modality encoder as the multimodal encoder and integrate it with cross-attention layers, which take the WB embedding \mathbf{b} as input and are conditioned on the unpooled concatenated embeddings $\mathbf{m}_{1:K}$ from non-anchor modalities. The output feature from the multimodal encoder is then passed through a two-layer MLP to produce binary predictions p_m . To construct informative in-batch negative pairs, we adopt a hard negative mining strategy following ([Li et al., 2021a; Chen et al., 2023](#)). The DAM loss is formulated as follows, where $y = 1$ if the barycenter anchor and non-anchor modalities are matched, and $y = 0$ otherwise:

$$\mathcal{L}_{\text{DAM}} = \mathbb{E}_{(\mathbf{b}, \mathbf{m}_{1:K}) \sim (\mathbb{Q}, \mathbb{P}_{1:K})} [y \log p_m(\mathbf{b}, \mathbf{m}_{1:K}) + (1 - y) \log(1 - p_m(\mathbf{b}, \mathbf{m}_{1:K}))] \quad (10)$$

324 **The overall pre-training loss.** The overall pre-training objective \mathcal{L} combines the three proposed
 325 losses, \mathcal{L}_{MWB} , \mathcal{L}_{BVC} , and \mathcal{L}_{DAM} , as follows:
 326

$$\mathcal{L} := \mathcal{L}_{\text{MWB}} + \mathcal{L}_{\text{BVC}} + \alpha \mathcal{L}_{\text{DAM}}, \quad (11)$$

328 Particularly, the potentials $f_{\omega_{0:K}}$ in \mathcal{L}_{MWB} are optimized via maximization, and are trained in an
 329 alternating manner against the minimization of the remaining network parameters.
 330

331 4 EXPERIMENTS

332 4.1 SETUP

333 We adopt VAST framework (Chen et al., 2023) as backbone, with BERT-B for text, BEATs for
 334 audio, and EVA-CLIP-ViT-G (Sun et al., 2023) for visual encoding. In total, the model comprises
 335 approximately 1B parameters. Unlike the VAST framework, we discard its modality fusion layers
 336 and introduce lightweight MLPs for barycenter optimization. **We continue pretraining for one epoch**
 337 **based on VAST using our proposed loss functions on the VAST150k dataset (Chen et al., 2023), a**
 338 **subset of the VAST27M comprising 150k samples.** The temperature factor τ is 0.07 and the trade-
 339 off parameter in (11) is set as $\alpha = 0.1$, following (Chen et al., 2023). The barycenter weights λ_k
 340 ($k \in \bar{K}$) are uniformly set as $1/n$, where n is the number of modalities.
 341

342 We use benchmarks spanning diverse modalities to evaluate the BaryBind’s capability in multimodal
 343 understanding across retrieval and classification tasks. These benchmarks include: (i) three-modality
 344 datasets such as DiDeMo (Anne Hendricks et al., 2017) and ActivityNet (Caba Heilbron et al., 2015),
 345 where video serves as the primary modality while audio and text provide auxiliary cues; (ii) four-
 346 modality datasets like MSR-VTT (Xu et al., 2016) and VATEX (Wang et al., 2019), covering video
 347 (V), audio (A), text (T), and subtitles (S); and (iii) audio-centered dataset VGGSound (Chen et al.,
 348 2020), where audio plays the dominant role and complementary information is also available in
 349 visual and textual forms. T-VAS denotes that the WB embedding is derived from the text modality,
 350 while the concatenated VAS embeddings serve as the condition for the multimodal encoder.
 351

352 4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

353 **Zero-shot video/audio classification.** We first
 354 evaluate BaryBind on VGGSound5K to as-
 355 sess its multimodal understanding ability in
 356 the zero-shot setting, particularly when jointly
 357 modeling video and audio signals. As shown
 358 in Tab. 1, BaryBind achieves the best top-1
 359 and top-5 accuracy across all modality con-
 360 figurations, reaching 55.6% Acc@1 and 83.4
 361 % Acc@5 under the A+V setting. It signifi-
 362 cantly outperforms the VAST baseline (48.1%
 363 / 79.6%) and other strong competitors such as
 364 OmniBind (45.4% / 73.2%). This demon-
 365 strates its strong generalization ability across modal-
 366 ities. The substantial gains with A+V highlight
 367 the enhanced performance of cross-modal un-
 368 derstanding, enabled by the BVC loss design
 369 which inherently reduces inter-modality gaps
 370 and preserves the global geometry of multi-
 371 modal data by aligning multimodal representation based on the barycenter polytope volume.
 372

Table 1: **Zero-shot video/audio classification** re-
 373 sults on VGGSound5K. Results from our baseline
 374 VAST and BaryBind are highlighted accordingly.

Method	Modality	Acc@1	Acc@5
ImageBind (Girdhar et al., 2023)	A	31.6	58.7
ImageBind (Girdhar et al., 2023)	V	37.9	65.9
LanguageBind (Zhu et al., 2024)	A	34.1	62.8
LanguageBind (Zhu et al., 2024)	V	39.6	64.5
GRAM (Cicchetti et al., 2025b)	V	43.1	71.8
GRAM (Cicchetti et al., 2025b)	A+V	42.3	74.5
Triangle (Cicchetti et al., 2025a)	A+V	44.8	80.0
OmniBind (Wang et al., 2025)	A	41.7	70.8
OmniBind (Wang et al., 2025)	V	45.4	73.2
OmniBind (Wang et al., 2025)	A+V	46.2	76.2
VAST (Chen et al., 2023)	A	40.3	71.7
VAST (Chen et al., 2023)	V	46.3	72.7
VAST (Chen et al., 2023)	A+V	48.1	79.6
BaryBind (Ours)	A	45.7	75.2
BaryBind (Ours)	V	48.3	76.4
BaryBind (Ours)	A+V	55.6	83.4

375 On the other hand, BaryBind improves the performance of the weaker audio-only modality clas-
 376 sification (A) from 40.3% (VAST) to 45.7% for Acc@1, indicating its ability to alleviate under-
 377 optimization of weaker modalities. These results confirm that BaryBind learns more balanced mul-
 378 timodal representations by aligning modalities via our barycenter-based binding strategy.
 379

380 **Cross-modal retrieval.** We evaluate BaryBind on zero-shot text-to-video (T2V) and video-to-text
 381 (V2T) retrieval across four benchmarks. As shown in Tab. 2, BaryBind consistently achieves state-
 382 of-the-art results under all modality configurations. For instance, under the T-VA setting, it achieves
 383

378
379
380
381 Table 2: **Zero-shot** text-to-video (T2V) and video-to-text (V2T) retrieval results in terms of Recall
382 at 1 score (R@1). Results from our baseline VAST and BaryBind are highlighted accordingly.
383
384
385
386
387
388
389
390
391

Methods	Modality	MSR-VTT		DiDeMo		ActivityNet		VATEX	
		T2V	V2T	T2V	V2T	T2V	V2T	T2V	V2T
VideoCoCa (Yan et al., 2022)	T-V	34.3	64.7	-	-	34.5	33.0	53.2	73.6
X-CLIP (Ma et al., 2022)	T-V	46.1	46.8	45.2	42.3	44.3	42.6	-	-
ImageBind (Girdhar et al., 2023)	T-V	36.8	-	-	-	-	-	-	-
ViCLIP (Wang et al., 2024c)	T-V	42.4	41.3	18.4	27.9	15.1	24.0	-	-
VideoPrism-b (Zhao et al., 2024)	T-V	51.4	50.2	-	-	49.6	47.9	62.5	77.1
LanguageBind (Zhu et al., 2024)	T-V	44.8	40.9	39.9	39.8	41.0	39.1	-	-
InternVL (Chen et al., 2024)	T-V	46.3	42.4	43.7	42.2	45.1	42.4	66.8	69.3
OmniBind (Wang et al., 2025)	T-V	47.4	45.2	43.5	42.6	44.3	40.8	-	-
NarVid (Hur et al., 2025)	T-V	51.8	50.3	52.4	50.5	51.8	46.6	73.8	76.3
Video-ColBERT (Reddy et al., 2025)	T-V	51.9	48.8	51.7	50.1	52.7	47.8	72.4	73.7
GRAM (Cicchetti et al., 2025b)	T-VAS	54.2	51.6	-	-	-	-	83.2	81.9
VAST (Chen et al., 2023)	T-VA	49.3	43.7	49.5	48.2	51.4	46.8	80.0	77.3
VAST (Chen et al., 2023)	T-VAS	50.9	47.9	-	-	-	-	82.1	78.7
BaryBind (Ours)	T-V	53.4	51.3	54.3	52.7	59.3	51.6	82.3	79.8
BaryBind (Ours)	T-VA	54.5	52.0	55.3	52.8	59.6	53.9	84.2	81.3
BaryBind (Ours)	T-VAS	56.3	53.6	-	-	-	-	84.6	83.5
InternVideo2-6B (Wang et al., 2024d)	T-VA	54.9	49.1	55.7	51.6	61.2	52.8	82.7	76.4

392
393
394
395
396
397
398
399
400 Table 3: **Finetuning** text-to-video (T2V) and video-to-text (V2T) retrieval results in terms of Recall
401 at 1 score (R@1). Results from our baseline VAST and BaryBind are highlighted accordingly.
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

Methods	Modality	MSR-VTT		DiDeMo		ActivityNet		VATEX	
		T2V	V2T	T2V	V2T	T2V	V2T	T2V	V2T
CLIP4Clip (Luo et al., 2021)	T-V	45.6	45.9	43.0	43.6	40.3	41.6	63.0	78.3
InternVideo-L (Wang et al., 2022)	T-V	53.1	54.4	57.9	59.1	62.2	62.8	69.8	80.6
HiTeA (Ye et al., 2022)	T-V	46.8	-	56.5	-	-	-	-	-
mPLUG-2 (Xu et al., 2023)	T-V	53.1	-	56.4	-	-	-	-	-
TEFAL (Ibrahim et al., 2023)	T-VA	52.0	-	-	-	-	-	61.0	-
ViCLIP (Wang et al., 2024c)	T-V	52.5	51.8	49.4	50.2	49.8	48.1	-	-
T-MASS (Wang et al., 2024a)	T-VA	52.7	-	53.3	-	-	-	65.6	-
VALOR-L (Liu et al., 2024)	T-VAS	54.4	-	57.6	-	63.4	-	76.9	-
VideoCLIP-XL (Wang et al., 2024b)	T-V	54.6	54.0	62.3	62.7	58.4	59.2	-	-
TempMe (Shen et al., 2025)	T-V	49.0	47.6	48.0	48.4	44.9	45.3	69.6	71.8
VAST (Chen et al., 2023)	T-VA	55.8	57.6	65.6	62.0	68.8	66.7	86.9	84.1
VAST (Chen et al., 2023)	T-VAS	56.6	57.6	-	-	-	-	87.5	84.0
BaryBind (Ours)	T-V	57.4	57.8	67.2	64.6	67.3	65.2	85.0	82.4
BaryBind (Ours)	T-VA	60.3	60.8	68.5	64.4	72.1	69.4	87.4	84.8
BaryBind (Ours)	T-VAS	64.6	65.2	-	-	-	-	88.4	84.6

420
421
422
423
424
425
426
427
428
429
430
431
55.3 and 52.8 R@1 on DiDeMo (T2V/V2T), outperforming all prior methods. With T-VAS, BaryBind
432 further sets new records on MSR-VTT (56.3/53.6) and VATEX (84.6/83.5), demonstrating
433 strong retrieval performance across both directions. In addition to these overall gains, BaryBind
434 significantly reduces the T2V/V2T performance gap (e.g., 5.7 on ActivityNet vs. 9.6 for the VAST
435 baseline), indicating improved bidirectional alignment. This suggests that BaryBind learns more
436 generalizable and balanced cross-modal representations, which can be attributed to the WB binding
437 mechanism that geometrically unifies diverse modalities into a modality-agnostic latent space.

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

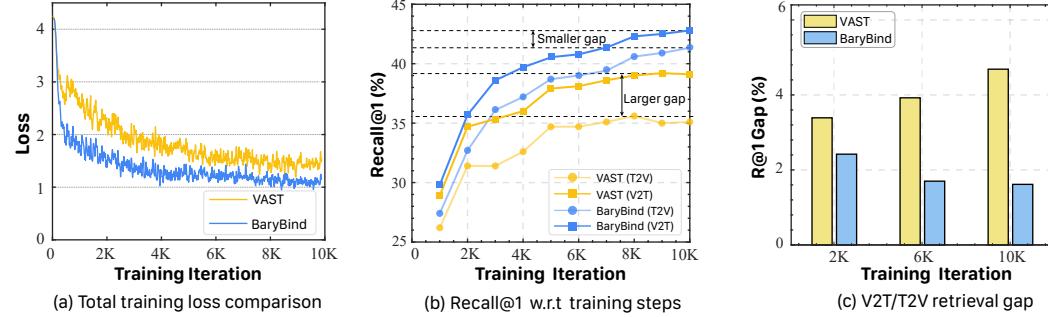


Figure 4: **Training dynamics comparison with cosine-based VAST:** (a) Total training loss showing faster convergence for BaryBind. (b) Recall@1 (R@1) evolution on MSR-VTT under T2V and V2T retrieval tasks. BaryBind achieves higher retrieval accuracy and better modal balance (smaller R@1 gap). (c) V2T/T2V retrieval gaps throughout training.

4.3 ABLATION STUDIES

Training dynamics comparison. We compare the training (from scratch) behaviors of BaryBind and the baseline VAST to assess the impact of our binding strategy and loss design. As shown in Fig. 4, BaryBind exhibits consistently superior training dynamics. In (a), the total loss drops faster and stabilizes earlier, suggesting that our MWB and BVC losses facilitate more efficient optimization. In (b), BaryBind consistently achieves higher R@1 accuracy for both T2V and V2T retrieval, while maintaining a smaller performance gap between the two directions, suggesting more symmetric multimodal representations. (c) demonstrates that BaryBind rapidly reduces the gap between V2T and T2V performance, converging toward a balanced retrieval behavior. This improvement stems from the joint effect of MWB and the BVC loss, which together promote consistent alignment of modality embeddings toward a unified barycenter. Such training behavior reflects the effectiveness of our barycentric modeling in encouraging modality-agnostic representation learning.

Table 4: **Ablation study on loss functions.** We report top-1 classification accuracy (Acc@1) on VGGSound5K and top-1 retrieval recall at 1 score (R@1) on MSR-VTT. Key improvements from MWB, BVC, and their combination are highlighted correspondingly.

TV+TA CL	MWB	BVC	DAM	Classification			Retrieval	
				VGGSound			MSR-VTT	
				A	V	V+A	T2V	V2T
✓	✗	✗	✗	38.1	44.5	46.8	46.8	40.1
✓	✗	✗	✓	40.3	46.3	48.1	49.3	43.7
✓	✓	✗	✗	43.6	45.6	47.6	48.8	46.2
✓	✓	✗	✓	44.3	46.8	49.8	49.7	48.3
✗	✗	✓	✗	42.9	46.3	50.3	50.6	46.4
✗	✗	✓	✓	43.4	47.2	52.6	51.5	46.8
✗	✓	✓	✗	45.2	47.8	54.2	53.2	50.6
✗	✓	✓	✓	45.7	48.3	55.6	54.5	52.0

Comparison of loss functions. To evaluate the contribution of each loss component, we conduct an ablation study on VGGSound (Chen et al., 2020) for audio classification and MSR-VTT (Xu et al., 2016) for text-video retrieval under a tri-modal setting (text, video, audio). The baseline adopts pairwise cosine contrastive losses (TV+TA CL), while VAST (Chen et al., 2023) additionally includes the data-anchor matching (DAM) loss. As summarized in Tab. 4, introducing the multimodal Wasserstein barycenter (MWB) loss consistently improves performance across tasks—for example, boosting audio-only classification from 40.3% to 44.3% and V2T retrieval from 43.7% to 48.3%. MWB constructs a barycentric semantic anchor to filter out modality-specific biases from the original anchor (e.g., text), leading to a more balanced and modality-agnostic anchor. The barycenter volume contrastive (BVC) loss further enhances global geometric consistency by preserving the relative structures among modalities, enabling full-modality gains such as 55.6% Acc@1 in audio classification and 54.5/52.0 R@1 for T2V/V2T retrieval. Complementarily, the DAM loss leverages

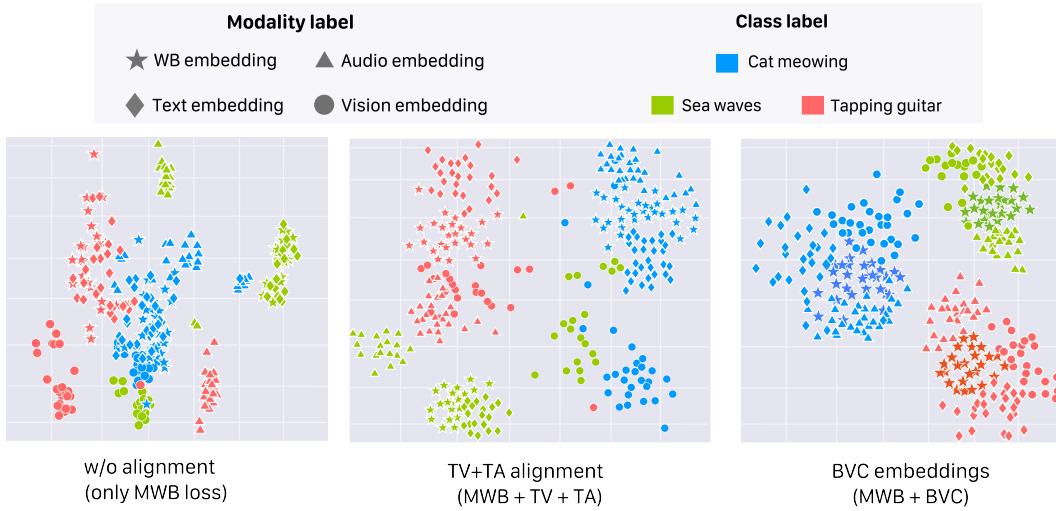


Figure 5: **Visualization of multimodal before and after alignment.** Embeddings before (left) and after (right) applying the proposed BVC loss. The BVC loss promotes convergence of modality-specific embeddings toward the Wasserstein barycenter, reducing inter-modality gaps and forming compact, modality-agnostic clusters, which highlights improved multimodal alignment.

instance-level supervision to distinguish matched and mismatched cross-modal pairs. Overall, the combination of MWB, BVC, and DAM facilitates a collaborative effect by aligning all modalities toward a shared semantic barycenter, yielding more balanced and generalizable multimodal representations.

Visualization of multimodal embeddings before and after alignment. To intuitively illustrate the effect of our barycenter-based alignment, we visualize the embeddings of three categories (cat meowing, sea waves, tapping guitar) across audio, text, and vision modalities from VGGSound (Chen et al., 2020), as shown in Figure 5. Without alignment (left), embeddings of different modalities are scattered, exhibiting large inter-modality gaps even within the same class. Incorporating pairwise alignment (middle) improves class clustering but still reveals modality-specific separations. In contrast, with our proposed BVC loss (right), embeddings of all modalities converge tightly around their class-wise Wasserstein barycenters, leading to compact intra-class structures and reduced inter-modality discrepancies. This clearly demonstrates that the volumetric constraint effectively promotes modality-agnostic alignment around a unified barycenter space.

5 CONCLUSION

We introduced BaryBind, a novel multimodal learning framework that aligns multiple modalities to a shared multimodal Wasserstein barycenter space. Unlike traditional anchor-based alignment strategies, BaryBind leverages the barycenter to model a modality-agnostic semantic distribution, providing a principled and geometry-aware alignment target. By constructing a barycenter polytope and leveraging its volume as a global alignment metric, BaryBind captures higher-order interactions among modalities and quantifies alignment quality beyond pairwise similarities. The proposed volumetric contrastive loss further encourages all modalities to converge toward the barycenter while preserving inter-modal structure. Extensive experiments on retrieval and classification tasks demonstrate that BaryBind learns more balanced and generalizable multimodal representations, outperforming state-of-the-art approaches across diverse benchmarks. We hope this work opens new directions for scalable multimodal learning and inspires the development of more interpretable and geometry-grounded multimodal methods.

REFERENCES

Martial Aguech and Guillaume Carlier. Barycenters in the wasserstein space. *SIAM Journal on Mathematical Analysis*, 43(2):904–924, 2011.

540 Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
 541 Localizing moments in video with natural language. In *IEEE/CVF International Conference on*
 542 *Computer Vision*, pp. 5803–5812, 2017.

543

544 Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
 545 A survey and taxonomy. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(2):
 546 423–443, 2018.

547

548 Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
 549 barycenters of measures. *Journal of Mathematical Imaging and Vision*, 51:22–45, 2015.

550

551 Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
 552 A large-scale video benchmark for human activity understanding. In *IEEE/CVF Conference on*
 553 *Computer Vision and Pattern Recognition*, pp. 961–970, 2015.

554

555 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
 556 visual dataset. In *IEEE International Conference on Acoustics, Speech and Signal Processing*,
 557 pp. 721–725. IEEE, 2020.

558

559 Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Ming-Ting Sun, Xinxin Zhu, and J. Liu. VAST:
 560 A vision-audio-subtitle-text omni-modality foundation model and dataset. In *Advances in Neural*
 561 *Information Processing Systems*, 2023.

562

563 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 564 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 565 for generic visual-linguistic tasks. In *IEEE/CVF Conference on Computer Vision and Pattern*
 566 *Recognition*, pp. 24185–24198, 2024.

567

568 Giordano Cicchetti, Eleonora Grassucci, and Danilo Comminiello. A triangle enables multimodal
 569 alignment beyond cosine similarity. *arXiv preprint arXiv:2509.24734*, 2025a.

570

571 Giordano Cicchetti, Eleonora Grassucci, Luigi Sigillo, and Danilo Comminiello. Gramian multi-
 572 modal representation learning and alignment. In *International Conference on Learning Repre-*
 573 *sentations*, 2025b.

574

575 Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In *International*
 576 *Conference on Machine Learning*, pp. 685–693. PMLR, 2014.

577

578 Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning au-
 579 dio concepts from natural language supervision. In *IEEE International Conference on Acoustics,*
 580 *Speech and Signal Processing*, pp. 1–5, 2023.

581

582 Felix R Gantmacher. Matrix theory. *Chelsea, New York*, 21:6, 1959.

583

584 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 585 Joulin, and Ishan Misra. ImageBind one embedding space to bind them all. In *IEEE/CVF Con-*
 586 *ference on Computer Vision and Pattern Recognition*, pp. 15180–15190, 2023.

587

588 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 589 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 590 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in Neural*
 591 *Information Processing Systems*, 33:21271–21284, 2020.

592

593 Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Audioclip: Extending clip to
 594 image, text and audio. In *IEEE International Conference on Acoustics, Speech and Signal Pro-*
 595 *cessing*, pp. 976–980. IEEE, 2022.

596

597 Chan Hur, Jeong hun Hong, Dong hun Lee, Dabin Kang, Semin Myeong, Sang hyo Park, and
 598 Hyeyoung Park. Narrating the video: Boosting text-video retrieval via comprehensive utilization
 599 of frame-level captions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 600 2025.

594 Sarah Ibrahimi, Xiaohang Sun, Pichao Wang, Amanmeet Garg, Ashutosh Sanan, and Mo-
 595 hamed Omar. Audio-enhanced text-to-video retrieval using text-conditioned feature alignment.
 596 *IEEE/CVF International Conference on Computer Vision*, pp. 12020–12030, 2023.

597

598 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 599 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 600 with noisy text supervision. In *International Conference on Machine Learning*, pp. 4904–4916.
 601 PMLR, 2021.

602 Leonid V Kantorovich. On the translocation of masses. In *Dokl. Akad. Nauk. USSR (NS)*, volume 37,
 603 pp. 199–201, 1942.

604

605 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generat-
 606 ing captions for audios in the wild. In *Annual Meeting of the Association for Computational
 607 Linguistics*, pp. 119–132, 2019.

608

609 Alexander Kolesov, Petr Mokrov, Igor Udovichenko, Milena Gazdieva, Gudmund Pammer, Evgeny
 610 Burnaev, and Alexander Korotin. Estimating barycenters of distributions with neural optimal
 611 transport. *arXiv preprint arXiv:2402.03828*, 2024a.

612 Alexander Kolesov, Petr Mokrov, Igor Udovichenko, Milena Gazdieva, Gudmund Pammer, Anas-
 613 tasis Kratsios, Evgeny Burnaev, and Aleksandr Korotin. Energy-guided continuous entropic
 614 barycenter estimation for general costs. *Advances in Neural Information Processing Systems*,
 615 37:107513–107546, 2024b.

616

617 Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous wasserstein-2
 618 barycenter estimation without minimax optimization. In *International Conference on Learning
 619 Representations*, 2021.

620

621 Weixian Lei, Yixiao Ge, Kun Yi, Jianfeng Zhang, Difei Gao, Dylan Sun, Yuying Ge, Ying Shan,
 622 and Mike Zheng Shou. Vit-lens: Towards omni-modal representations. In *Proceedings of the
 623 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26647–26657, 2024.

624

625 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
 626 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
 627 distillation. *Advances in Neural Information Processing Systems*, 34:9694–9705, 2021a.

628

629 Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq R. Joty, Caiming Xiong,
 630 and Steven C. H. Hoi. Align before fuse: Vision and language representation learning with
 631 momentum distillation. In *Advances in Neural Information Processing Systems*, 2021b.

632

633 Lingxiao Li, Aude Genevay, Mikhail Yurochkin, and Justin M Solomon. Continuous regularized
 634 wasserstein barycenters. In *Advances in Neural Information Processing Systems*, volume 33, pp.
 17755–17765, 2020.

635

636 Jing Liu, Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, and Jinhui Tang.
 637 Valor: Vision-audio-language omni-perception pretraining model and dataset. *IEEE Transactions
 638 on Pattern Analysis and Machine Intelligence*, 2024.

639

640 Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. CLIP4Clip:
 641 An empirical study of clip for end to end video clip retrieval. *Neurocomputing*, 508:293–304,
 642 2021.

643

644 Yuanhuiyi Lyu, Xu Zheng, Jiazhou Zhou, and Lin Wang. Unibind: Llm-augmented unified and
 645 balanced representation space to bind them all. In *IEEE/CVF Conference on Computer Vision
 646 and Pattern Recognition*, pp. 26752–26762, 2024.

647

648 Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-end
 649 multi-grained contrastive learning for video-text retrieval. In *ACM International Conference on
 650 Multimedia*, pp. 638–647, 2022.

648 Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D Plumb-
 649 ley, Yuexian Zou, and Wenwu Wang. Wavcaps: A chatgpt-assisted weakly-labelled audio caption-
 650 ing dataset for audio-language multimodal research. *IEEE/ACM Transactions on Audio, Speech,*
 651 *and Language Processing*, 2024.

652 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 653 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

654 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 655 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 656 Sutskever. Learning transferable visual models from natural language supervision. In *Interna-
 657 tional Conference on Machine Learning*, 2021.

658 Arun Reddy, Alexander Martin, Eugene Yang, Andrew Yates, Kate Sanders, Kenton Murray, Reno
 659 Kriz, Celso M. de Melo, Benjamin Van Durme, and Rama Chellappa. Video-colbert: Contextu-
 660 alized late interaction for text-to-video retrieval. In *IEEE/CVF Conference on Computer Vision*
 661 *and Pattern Recognition*, 2025.

662 Jiahao Shao, Yuanbo Yang, Hongyu Zhou, Youmin Zhang, Yujun Shen, Vitor Guizilini, Yue Wang,
 663 Matteo Poggi, and Yiyi Liao. Learning temporally consistent video depth from video diffusion
 664 priors. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 22841–
 665 22852, 2025.

666 Legi Shen, Tianxiang Hao, Tao He, Sicheng Zhao, Yifeng Zhang, Pengzhang Liu, Yongjun Bao,
 667 and Guiguang Ding. Tempme: Video temporal token merging for efficient text-video retrieval. In
 668 *International Conference on Learning Representations*, 2025.

669 Maurice Sion. On general minimax theorems. 1958.

670 Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
 671 techniques for clip at scale. *arXiv preprint arXiv:2303.15389*, 2023.

672 Xiaole Tang, Xiaoyi He, Xiang Gu, and Jian Sun. Baryir: Learning multi-source unified representa-
 673 tion in continuous barycenter space for generalizable all-in-one image restoration. *arXiv preprint*
 674 *arXiv:2505.21637*, 2025.

675 Jiamian Wang, Guohao Sun, Pichao Wang, Dongfang Liu, Sohail A. Dianat, Majid Rabbani, Raghu-
 676 veer M. Rao, and Zhiqiang Tao. Text Is MASS: Modeling as stochastic embedding for text-video
 677 retrieval. *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16551–16560,
 678 2024a.

679 Jiapeng Wang, Chengyu Wang, Kunzhe Huang, Jun Huang, and Lianwen Jin. Videoclip-xl: Advanc-
 680 ing long description understanding for video clip models. In *Conference on Empirical Methods*
 681 *in Natural Language Processing*, pp. 16061–16075, 2024b.

682 Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang Wang. Vatex:
 683 A large-scale, high-quality multilingual dataset for video-and-language research. In *IEEE/CVF*
 684 *International Conference on Computer Vision*, pp. 4581–4591, 2019.

685 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 686 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 687 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

688 Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
 689 Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal under-
 690 standing and generation. In *International Conference on Learning Representations*, 2024c.

691 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
 692 Jilan Xu, Zun Wang, Yansong Shi, Tianxiang Jiang, Songze Li, Hongjie Zhang, Yifei Huang,
 693 Yu Qiao, Yali Wang, and Limin Wang. InternVideo2: Scaling video foundation models for mul-
 694 timodal video understanding. *ArXiv preprint: arXiv:2403.15377*, 2024d.

702 Zehan Wang, Ziang Zhang, Hang Zhang, Luping Liu, Rongjie Huang, Xize Cheng, Hengshuang
 703 Zhao, and Zhou Zhao. Omnidbind: Large-scale omni multimodal representation via binding
 704 spaces. In *International Conference on Learning Representations*, 2025.

705

706 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 707 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 708 augmentation. In *IEEE International Conference on Acoustics, Speech and Signal Processing*,
 709 2023.

710 Haiyang Xu, Qinghao Ye, Mingshi Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi,
 711 Qiuchen Qian, Wei Wang, Guohai Xu, Ji Zhang, Songfang Huang, Feiran Huang, and Jingren
 712 Zhou. mPLUG-2: A modularized multi-modal foundation model across text, image and video. In
 713 *International Conference on Machine Learning*, 2023.

714 Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
 715 video and language. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 716 5288–5296, 2016.

717

718 Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui
 719 Yu. VideoCoCa: Video-text modeling with zero-shot transfer from contrastive captioners. *ArXiv*
 720 preprint: *arXiv:2212.04979*, 2022.

721 Qinghao Ye, Guohai Xu, Ming Yan, Haiyang Xu, Qi Qian, Ji Zhang, and Fei Huang. HiTeA:
 722 Hierarchical temporal-aware video-language pre-training. *IEEE/CVF International Conference*
 723 *on Computer Vision*, pp. 15359–15370, 2022.

724

725 Yiyuan Zhang, Handong Li, Jing Liu, and Xiangyu Yue. Explore the limits of omni-modal pretrain-
 726 ing at scale. *arXiv preprint arXiv:2406.09412*, 2024.

727 Long Zhao, Nitesh Bharadwaj Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J. Sun,
 728 Luke Friedman, Rui Qian, Tobias Weyand, Yue Zhao, Rachel Hornung, Florian Schroff, Ming
 729 Yang, David A. Ross, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko, Ting Liu, and Boqing
 730 Gong. Videoprism: A foundational visual encoder for video understanding. In *International*
 731 *Conference on Machine Learning*, 2024.

732 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa Wang, Yatian Pang, Wenhao Jiang,
 733 Junwu Zhang, Zongwei Li, Wancai Zhang, Zhifeng Li, Wei Liu, and Liejie Yuan. LanguageBind:
 734 Extending video-language pretraining to n-modality by language-based semantic alignment. In
 735 *International Conference on Learning Representations*, 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A THEORETICAL RESULTS**
 757

758 **A.1 PROOF OF THEOREM 1**
 759

760 *Proof.* Beyond the WB problem, we deduce based on the duality of with general costs $C_k(x, y)$. In
 761 this sense, we write the dual reformulation of the multimodal OT barycenter problem (3):
 762

$$763 \mathcal{L}^* = \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)} \sup_{f_0, \dots, f_K \in \mathcal{C}(\mathcal{M}_B)} \underbrace{\sum_{k=1}^K \lambda_k \left\{ \int_{\mathcal{M}_k} f_k^{C_k}(\mathbf{m}_k) d\mathbb{P}_k(\mathbf{m}_k) + \int_{\mathcal{M}_B} f_k(\mathbf{b}) d\mathbb{Q}(\mathbf{b}) \right\}}_{\triangleq \tilde{\mathcal{F}}(\mathbb{Q}, f_{0:K})}. \quad (12)$$

764
 765
 766
 767
 768
 769

770 where
 771

$$772 f_k^{C_k}(\mathbf{m}_k) = \inf_{\mathbf{b} \in \mathcal{M}_B} [C_k(\mathbf{m}_k, \mathbf{b}) - f_k(\mathbf{b})]. \quad (13)$$

773
 774

775 We denote the expression under the inf and inf sup in (12) as functionals $\mathcal{L} : \mathcal{C}(\mathcal{M}_B)^K$ and $\tilde{\mathcal{F}} : \mathcal{P}(\mathcal{M}_B) \times \mathcal{C}(\mathcal{M}_B)^K$, respectively. For simplicity, we also introduce the following notation
 776

$$777 \bar{f} \triangleq \sum_{k=1}^K \lambda_k f_k \quad \text{and} \quad M \triangleq \inf_{\mathbf{b} \in \mathcal{M}_B} \bar{f}(\mathbf{b}) = \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)} \int_{\mathcal{M}_B} \bar{f}(\mathbf{b}) d\mathbb{Q}(\mathbf{b}), \quad (14)$$

778
 779
 780

781 where the equality follows from two fundamental observations: (a) $M \leq \int \bar{f}(\mathbf{b}) d\mathbb{Q}(\mathbf{b})$ for any $\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)$, and (b) $\bar{f}(\mathbf{b}) = \int \bar{f}(\mathbf{b}') d\delta_{\mathbf{b}}(\mathbf{b}')$ where $\delta_{\mathbf{b}}$ represents the Dirac mass at $\mathbf{b} \in \mathcal{M}_B$.
 782

783 Firstly, due to the compactness of \mathcal{M}_B , the space $\mathcal{P}(\mathcal{M}_B)$ is compact with respect to the weak
 784 topology. For fixed potentials $f_{0:K} \in \mathcal{P}(\mathcal{M}_B)^K$ we have that $\tilde{\mathcal{F}}(\cdot, f_{0:K})$ is linear, convex and
 785 continuous. Secondly, for a fixed \mathbb{Q} , the functional $\tilde{\mathcal{F}}(\mathbb{Q}, \cdot)$ is a concave due to the concavity of
 786 C -transform. These properties enable the application of Sion's minimax theorem (Sion (1958),
 787 Theorem 3.4), which allows the interchange of the sup and inf in (12). Thus with (14) we obtain
 788

$$789 \mathcal{L}^* = \sup_{f_0, \dots, f_K \in \mathcal{C}(\mathcal{M}_B)} \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)} \sum_{k=1}^K \lambda_k \left\{ \int_{\mathcal{M}_k} f_k^{C_k}(\mathbf{m}_k) d\mathbb{P}_k(\mathbf{m}_k) + \int_{\mathcal{M}_B} f_k(\mathbf{b}) d\mathbb{Q}(\mathbf{b}) \right\}$$

790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801

$$= \sup_{f_0, \dots, f_K \in \mathcal{C}(\mathcal{M}_B)} \left\{ \sum_{k=1}^K \lambda_k \int_{\mathcal{M}_k} f_k^{C_k}(\mathbf{m}_k) d\mathbb{P}_k(\mathbf{m}_k) + \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)} \int_{\mathcal{M}_B} \bar{f}(\mathbf{b}) d\mathbb{Q}(\mathbf{b}) \right\}$$

$$= \sup_{f_0, \dots, f_K \in \mathcal{C}(\mathcal{M}_B)} \underbrace{\left\{ \sum_{k=1}^K \lambda_k \int_{\mathcal{M}_k} f_k^{C_k}(\mathbf{m}_k) d\mathbb{P}_k(\mathbf{m}_k) + \inf_{\mathbf{b} \in \mathcal{M}_B} \bar{f}(\mathbf{b}) \right\}}_{\triangleq \tilde{\mathcal{L}}(f_{0:K})}. \quad (15)$$

802 Now we show that the sup in (15) can be restricted to potentials $\tilde{f}_{0:K}$ which satisfy the congruence
 803 condition $\sum_{k=1}^K \lambda_k \tilde{f}_k = 0$. It is enough to show that for every tuple $f_{0:K}$ there exists a congruent
 804 tuple $\tilde{f}_{0:K} \in \mathcal{C}(\mathcal{M}_B)^K$ such that $\tilde{\mathcal{L}}(\tilde{f}_{0:K}) \geq \tilde{\mathcal{L}}(f_{0:K})$.
 805

806 For this, we consider the congruent potentials given any tuple $f_{0:K}$
 807

$$808 (\tilde{f}_0, \dots, \tilde{f}_K) = \left(f_0, \dots, f_{K-1}, f_K - \frac{\bar{f}}{\lambda_K} \right). \quad (16)$$

809

Since $\tilde{M} \triangleq \inf_{\mathbf{b} \in \mathcal{M}_B} \sum_{k=1}^K \lambda_k \tilde{f}_k = 0$, we obtain

$$\begin{aligned}
\tilde{\mathcal{L}}(\tilde{f}_{0:K}) - \tilde{\mathcal{L}}(f_{0:K}) &= \lambda_K \int_{\mathcal{M}_k} \left(\tilde{f}_K^{C_K}(\mathbf{m}_K) - f_K^{C_K}(\mathbf{m}_K) \right) d\mathbb{P}_K(\mathbf{m}_K) - M \\
&= \lambda_K \int_{\mathcal{M}_k} \left[\left(f_K - \frac{\bar{f}}{\lambda_K} \right)^{C_K}(\mathbf{m}_K) - f_K^{C_K}(\mathbf{m}_K) \right] d\mathbb{P}_K(\mathbf{m}_K) - M \\
&\geq \lambda_K \int_{\mathcal{M}_k} \left[\left(f_K - \frac{M}{\lambda_K} \right)^{C_K}(\mathbf{m}_K) - f_K^{C_K}(\mathbf{m}_K) \right] d\mathbb{P}_K(\mathbf{m}_K) - M \\
&= \lambda_K \int_{\mathcal{M}_k} \frac{M}{\lambda_K} d\mathbb{P}_K(\mathbf{m}_K) - M = 0,
\end{aligned} \tag{17}$$

where the first inequality arises from the monotonicity of the C -transform, along with the fact $\tilde{f}_K = f_K - \frac{\tilde{f}}{\lambda_K} \leq f_K - \frac{M}{\lambda_k}$. The last equality follows from the definition of C -transform.

Finally, since $\tilde{\mathcal{L}}(f_{0:K}) = \mathcal{L}(f_{0:K})$ for congruent potentials $f_{0:K}$, with (13) we obtain

$$\begin{aligned} \mathcal{L}^* &= \sup_{\sum_k \lambda_k f_k = 0} \mathcal{L}(f_{0:K}) = \sup_{\sum_k \lambda_k f_k = 0} \sum_{k=1}^K \lambda_k \int_{\mathcal{M}_k} f_k^{C_k}(\mathbf{m}_k) d\mathbb{P}_k(\mathbf{m}_k), \\ &= \sup_{\sum_k \lambda_k f_k = 0} \sum_{k=1}^K \lambda_k \inf_{\mathbf{b} \in \mathcal{M}_B} \int_{\mathcal{M}_k} [C_k(\mathbf{m}_k - \mathbf{b}) - f_k(\mathbf{b})] d\mathbb{P}_k(\mathbf{m}_k). \quad (18) \end{aligned}$$

In practice, we replace each integral with an empirical expectation over the distribution \mathbb{P}_k , and adopt $C_k(\mathbf{m}_k - \mathbf{b}) = \|\mathbf{m}_k - \mathbf{b}\|$, which corresponds to the Wasserstein distance between the modality feature and the barycenter. We exchange the summation and the infimum since \mathbf{b} is shared across all terms and the objective is linear. We then sample the barycenter \mathbf{b} from a distribution $\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)$, and express the integral as an expectation over both $\mathbf{m}_k \sim \mathbb{P}_k$ and $\mathbf{b} \sim \mathbb{Q}$:

$$\mathcal{L}^* = \sup_{\sum_k \lambda_k f_k = 0} \inf_{\mathbb{Q} \in \mathcal{P}(\mathcal{M}_B)} \sum_{k=0}^K \lambda_k \mathbb{E}_{\substack{\mathbf{m}_k \sim \mathbb{P}_k \\ \mathbf{b} \sim \mathbb{Q}}} [\|\mathbf{m}_k - \mathbf{b}\| - f_k(\mathbf{b})], \quad (19)$$

which completes the proof. \square

A.2 PROOF OF THEOREM 3.1

Proof. Let $\mathbb{P}_{0:K}$ denote the joint distribution over the multimodal tuples $(\mathbf{m}_0, \dots, \mathbf{m}_K) =: \mathbf{m}_{0:K}$, where $\mathbf{m}_k \in \mathcal{M}_k$. The barycenter map is a function $T : \mathcal{M}_0 \rightarrow \mathcal{M}_B$ that acts on the anchor modality. For a set of potential functions $f_{0:K}$ and a map T , we rewrite the total cost functional \mathcal{F} and its corresponding minimal cost functional \mathcal{L} as follows:

$$\mathcal{F}(f_{0:K}, T) \triangleq \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k (C_k(\mathbf{m}_k, T(\mathbf{m}_0)) - f_k(T(\mathbf{m}_0))) \right], \quad (20)$$

$$\mathcal{L}(f_{0:K}) \triangleq \inf_{T: \mathcal{M}_0 \rightarrow \mathcal{M}_B} \mathcal{F}(f_{0:K}, T). \quad (21)$$

The minimizer of functional \mathcal{E} is denoted as:

$$T^f \in \arg \inf_{T: \mathcal{M} \rightarrow \mathcal{M}_D} \mathcal{F}(\widehat{f}_{0:K}, T). \quad (22)$$

Given $T^f : \mathcal{M}_0 \rightarrow \mathcal{M}_B$, the functional \mathcal{L} in (21) can be written as

$$f(\hat{f}_{0;K}) \equiv \mathcal{F}(\hat{f}_{0;h}, T^f). \quad (23)$$

We can observe that the first gap \mathcal{E}_1 is the difference between (20) and (23):

$$S(\hat{f} - \hat{T}) = T(\hat{f} - \hat{T}) - C(\hat{f} - \hat{T}) - T(\hat{f} - \hat{T}) - T(\hat{f} - T^f) \quad (24)$$

864 Before looking into the second gap \mathcal{E}_2 , we recall the optimal value \mathcal{L}^* of the OT barycenter problem
 865 and express the OT cost with Monge's formulation:
 866

$$867 \quad \mathcal{L}^* \triangleq \sum_{k=0}^K \lambda_k \text{OT}_{C_k}(\mathbb{P}_k, \mathbb{Q}^*). \quad (25)$$

870 where \mathbb{Q}^* is the true barycenter distribution. By introducing the Monge's OT formulation with the
 871 true OT map T^* that satisfies $T_\#^* \mathbb{P}_0 = \mathbb{Q}^*$, the expression can be rewritten as:
 872

$$873 \quad \mathcal{L}^* = \sum_{k=0}^K \lambda_k \int_{\mathcal{M}_k} C_k(\mathbf{m}_k, T^*(\mathbf{m}_0)) d\mathbb{P}_k(\mathbf{m}_k). \quad (26)$$

875 Due to the congruence condition on the potentials $\hat{f}_{0:K}$ and the property $T_\#^* \mathbb{P}_0 = \mathbb{Q}^*$ for all k , we
 876 have:
 877

$$878 \quad \sum_{k=0}^K \lambda_k \mathbb{E}_{\mathbf{m}_k \sim \mathbb{P}_k} [\hat{f}_k(T^*(\mathbf{m}_0))] = \mathbb{E}_{\mathbf{b} \sim \mathbb{Q}^*} \left[\sum_{k=0}^K \lambda_k \hat{f}_k(\mathbf{b}) \right] = 0. \quad (27)$$

881 This allows us to reformulate the optimal value \mathcal{L}^* . Using the definition of \mathcal{F} in (20), we find:
 882

$$883 \quad \mathcal{L}^* = \sum_{k=0}^K \lambda_k \mathbb{E}_{\mathbf{m}_k \sim \mathbb{P}_k} [C_k(\mathbf{m}_0, T^*(\mathbf{m}_k))] - \underbrace{\mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k \hat{f}_k(T^*(\mathbf{m}_0)) \right]}_{=0 \text{ from (27)}} \\ 887 \quad = \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k (C_k(\mathbf{m}_k, T^*(\mathbf{m}_0)) - \hat{f}_k(T^*(\mathbf{m}_0))) \right] = \mathcal{F}(\hat{f}_{0:K}, T^*).$$

889 With (23) we derive the second gap \mathcal{E}_2 can be written as
 890

$$891 \quad \mathcal{E}_2 = \mathcal{L}^* - \mathcal{L}(\hat{f}_{0:K}) = \mathcal{F}(\hat{f}_{0:K}, T^*) - \mathcal{F}(\hat{f}_{0:K}, T^f). \quad (28)$$

893 We introduce the function $g_k(\mathbf{m}_k, \mathbf{b}) \triangleq C_k(\mathbf{m}_k, \mathbf{b}) - \hat{f}_k(\mathbf{b})$, which is assumed to be β -strongly
 894 convex with respect to \mathbf{b} . Using this, we can rewrite our total cost functional \mathcal{F} from (20) as:
 895

$$896 \quad \mathcal{F}(f_{0:K}, T) = \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k g_k(\mathbf{m}_k, T(\mathbf{m}_0)) \right]. \quad (29)$$

898 As a result of convexity, it follows that a necessary condition for T^f to minimize $\mathcal{F}(f_{0:K}, T)$ is the
 899 vanishing of its first variation, yielding
 900

$$902 \quad \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k \nabla_{\mathbf{b}} g_k(\mathbf{m}_k, T^f(\mathbf{m}_0)) \right] = 0. \quad (30)$$

905 Now, we analyze the gap \mathcal{E}_1 by applying the β -strong convexity of $g_k(\mathbf{m}_k, \cdot)$:
 906

$$907 \quad \begin{aligned} \mathcal{E}_1 &= \mathcal{F}(\hat{f}_{0:K}, \hat{T}) - \mathcal{F}(\hat{f}_{0:K}, T^f) \\ &= \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k (g_k(\mathbf{m}_k, \hat{T}(\mathbf{m}_0)) - g_k(\mathbf{m}_k, T^f(\mathbf{m}_0))) \right] \\ &\geq \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\sum_{k=0}^K \lambda_k \left(\langle \nabla_{\mathbf{b}} g_k(\mathbf{m}_k, T^f(\mathbf{m}_0)), \hat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0) \rangle + \frac{\beta}{2} \|\hat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0)\|^2 \right) \right] \\ &= \mathbb{E}_{\mathbf{m}_{0:K} \sim \mathbb{P}_{0:K}} \left[\left\langle \sum_{k=0}^K \lambda_k \nabla_{\mathbf{b}} g_k(\mathbf{m}_k, T^f(\mathbf{m}_0)), \hat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0) \right\rangle \right] + \frac{\beta}{2} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|\hat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0)\|^2] \\ &\stackrel{(30)}{=} 0 + \frac{\beta}{2} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|\hat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0)\|^2]. \end{aligned} \quad (31)$$

918 For the second gap \mathcal{E}_2 , we conduct the same analysis and obtain
 919

$$920 \quad 921 \quad \mathcal{E}_2 \geq \frac{\beta}{2} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|T^f(\mathbf{m}_0) - T^*(\mathbf{m}_0)\|^2]. \quad (32)$$

922 Now we sum the inequalities for \mathcal{E}_1 (31) and \mathcal{E}_2 (32):
 923

$$924 \quad 925 \quad \mathcal{E}_1 + \mathcal{E}_2 \geq \frac{\beta}{2} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|\widehat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0)\|^2] + \frac{\beta}{2} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|T^f(\mathbf{m}_0) - T^*(\mathbf{m}_0)\|^2] \\ 926 \quad 927 \quad = \frac{\beta}{2} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|\widehat{T}(\mathbf{m}_0) - T^f(\mathbf{m}_0)\|^2 + \|T^f(\mathbf{m}_0) - T^*(\mathbf{m}_0)\|^2] \\ 928 \quad 929 \quad \geq \frac{\beta}{4} \mathbb{E}_{\mathbf{m}_0 \sim \mathbb{P}_0} [\|\widehat{T}(\mathbf{m}_0) - T^*(\mathbf{m}_0)\|^2] = \frac{\beta}{4} W_2^2(\widehat{T}_\# \mathbb{P}_0, T^*_\# \mathbb{P}_0) = \frac{\beta}{4} W_2^2(\widehat{T}_\# \mathbb{P}_0, \mathbb{Q}^*). \quad (33)$$

□

934 A.3 ANALYSIS ON BARYCENTER POLYTOPE VOLUME

935 Given the matrix containing vectors spanning the barycenter polytope
 936

$$937 \quad \mathbf{R} = (\mathbf{b}, \mathbf{r}_1, \dots, \mathbf{r}_K),$$

938 we discuss the geometric meaning of barycenter polytope volumes for $n = 2$ and $n = 3$ modalities.
 939 $\langle \cdot, \cdot \rangle$ denotes the cosine similarity between two normalized vectors, so that
 940

$$941 \quad \langle \mathbf{b}, \mathbf{b} \rangle = \langle \mathbf{r}_1, \mathbf{r}_1 \rangle = \langle \mathbf{r}_2, \mathbf{r}_2 \rangle = 1. \quad (34)$$

942 We define the cosine of the angles between these vectors as
 943

$$944 \quad \cos \theta := \langle \mathbf{b}, \mathbf{r}_1 \rangle, \quad \cos \beta := \langle \mathbf{b}, \mathbf{r}_2 \rangle, \quad \cos \gamma := \langle \mathbf{r}_1, \mathbf{r}_2 \rangle. \quad (35)$$

945 For the special case $n = 2$, the squared volume can be expressed as the determinant
 946

$$947 \quad 948 \quad \text{Vol}_{n=2}^2 = \det(\mathbf{R}^\top \mathbf{R}) = \begin{vmatrix} \langle \mathbf{b}, \mathbf{b} \rangle & \langle \mathbf{r}_1, \mathbf{b} \rangle \\ \langle \mathbf{b}, \mathbf{r}_1 \rangle & \langle \mathbf{r}_1, \mathbf{r}_1 \rangle \end{vmatrix} = 1 - \cos^2 \theta$$

949 Therefore, the polytope volume in the bimodal case reduces to:
 950

$$951 \quad 952 \quad \text{Vol}_{n=2} = \sqrt{1 - \cos^2 \theta} = \sqrt{\sin^2 \theta} = \sin \theta,$$

953 which quantifies the spatial deviation between the WB embedding vector \mathbf{b} and the vector $\mathbf{b} - \mathbf{m}_1$,
 954 reflecting how well the modality aligns with the overall barycenter direction. A smaller volume
 955 indicates stronger alignment, while a larger value implies greater directional discrepancy.
 956

957 For the special case $n = 3$, the squared volume can be expressed as the determinant
 958

$$959 \quad 960 \quad \text{Vol}_{n=3}^2 = \det(\mathbf{R}^\top \mathbf{R}) = \begin{vmatrix} \langle \mathbf{b}, \mathbf{b} \rangle & \langle \mathbf{r}_1, \mathbf{b} \rangle & \langle \mathbf{r}_2, \mathbf{b} \rangle \\ \langle \mathbf{b}, \mathbf{r}_1 \rangle & \langle \mathbf{r}_1, \mathbf{r}_1 \rangle & \langle \mathbf{r}_2, \mathbf{r}_1 \rangle \\ \langle \mathbf{b}, \mathbf{r}_2 \rangle & \langle \mathbf{r}_1, \mathbf{r}_2 \rangle & \langle \mathbf{r}_2, \mathbf{r}_2 \rangle \end{vmatrix}.$$

961 Substituting (34) and (35) into the determinant, the expression simplifies to
 962

$$963 \quad 964 \quad \text{Vol}_{n=3}^2 = 1 - \cos^2 \theta - \cos^2 \beta - \cos^2 \gamma + 2 \cos \theta \cos \beta \cos \gamma, \\ 965 \quad 966 \quad = \sin^2 \theta + \sin^2 \beta + \sin^2 \gamma + 2 \cos \theta \cos \beta \cos \gamma - 2.$$

967 This form reveals the geometric interpretation more clearly: 1) The \sin^2 terms quantify the angular
 968 deviation of each vector pair. The $2 \cos \theta \cos \beta \cos \gamma$ term reflects the angular coupling between all
 969 three direction. 2) γ is the angel between the two modality gap vectors \mathbf{r}_1 and \mathbf{r}_2 , and thus directly
 970 reflects the structural inter-modality gaps between non-anchor modalities.
 971

The volume becomes small when each modality vector closely follows the barycenter direction (small angles α and β). In addition, if the gap vectors between modalities, r_1 and r_2 , are nearly aligned (small inter-modality angle γ), the volume is further reduced. In this case, all three angles are small, their sines are close to 0, and their cosines are close to 1. Conversely, the volume increases when the directions are mutually orthogonal, which maximizes the total dispersion among them. Fig. 6 plots the R@1 values of zero-shot retrieval on MSR-VTT with respect to the volume, showing a clear negative correlation between volume and performance.

Unlike pairwise cosine similarity, which only captures alignment between two modalities, the barycenter polytope volume offers a rich higher-order understanding of multimodal structure. It not only measures the holistic geometric alignment of each modality toward the barycenter, but also preserves inter-modal interactions, yielding a more compact multimodal joint representation space. In this sense, the volume serves as a non-trivial metric for measuring n -modality alignment.

B EXPERIMENTAL DETAILS AND MORE RESULTS

B.1 EXPERIMENTAL DETAILS

Table 5: Overview of multimodal benchmarks used for downstream evaluation.

Benchmark	Modalities	Train	Val	Test	# Frames (train)	# Frames (test)
DiDeMo	Video + Text + Audio	8,394	1,065	1,003	8	32
ActivityNet	Video + Text + Audio	10,009	—	4,917	8	32
MSR-VTT	Video + Text + Audio + Subtitle	9,000	—	1,000	8	8
VATEX	Video + Text + Audio + Subtitle	14,060	—	431	8	16
VGGSound	Audio + Video + Text	—	—	5000	-	8

Tab. 5 summarizes the modality configuration, data statistics, and frame settings across benchmarks.

MSR-VTT (Xu et al., 2016) is a widely used benchmark for video-text retrieval. It contains 10,000 video clips, each paired with approximately 20 textual captions, totaling around 200,000 captions. We use 9,000 videos for training and 1,000 for testing, with 8 frames sampled per video.

DiDeMo (Anne Hendricks et al., 2017) consists of 10,000 long-form videos, each annotated with 4 temporally ordered paragraph descriptions. It is mainly used for moment localization retrieval. The official split includes 8,394/1,065/1,003 videos for training/validation/testing, and 12 frames are sampled per video.

ActivityNet (Caba Heilbron et al., 2015) contains about 20,000 YouTube videos with a total duration of approximately 180 hours, annotated with multiple temporal sentence descriptions. We use the official training set (10,009 videos) for training and the validation set (4,917 videos) for downstream testing. The number of sampled frames per video is 8.

VATEX (Wang et al., 2019) includes around 25,000 English videos, each annotated with 10 English captions. It is commonly used for four-modality text retrieval tasks. We adopt 14,060 videos for training and 431 for testing, with 8 frames sampled per video.

VGGSound5K (Chen et al., 2020) is a 5,000-video subset of VGGSound, containing diverse audio event categories (typically 310 classes) along with corresponding video frames and subtitles. Each video clip in the dataset has a duration of 10 seconds and is annotated with a single label corresponding to the predominant sound event occurring within the clip. The dataset covers a wide spectrum of audio events, including human actions, animal vocalizations, natural phenomena, and mechanical sounds. It is commonly used for audio-video multimodal classification tasks.

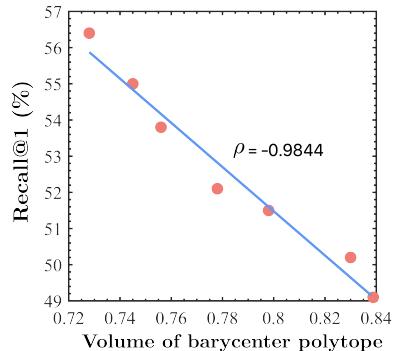


Figure 6: The polytope's volume is correlated ($\rho = -0.9844$) with the downstream performance.

1026 B.2 DISCUSSIONS ON THE ANCHOR SELECTION
1027

1028 To explore the impact of different anchor modalities to BaryBind, we conduct experiments using
1029 text and video as the original anchor and evaluate on the VGGSound dataset (Chen et al., 2020)
1030 for video classification, and on MSR-VTT for V-T/T-V retrieval tasks. Note that the DAM loss is
1031 excluded in these settings, as it is inherently designed for text-based supervision.

1032 Table 6: **Ablation on the anchor selection.**
1033

Anchor Modality	VGGSound				MSR-VTT			
	Video		Audio		T2V		V2T	
	Acc@1	Acc@5	Acc@1	Acc@5	R@1	R@5	R@1	R@5
Text Anchor	47.8	74.2	45.2	72.4	53.2	77.0	50.6	73.8
Video Anchor	46.7	69.2	43.5	66.1	50.8	75.5	51.2	76.4

1041 As shown in Tab. 6, the performance exhibits a slight decline when using the video modality as the
1042 anchor compared to the text modality. The result is consistent with the fact that text is often the most
1043 informative anchor in many multimodal tasks, as it retains the broad semantics of multimodal data.
1044

1045 B.3 HYPERPARAMETER SENSITIVITY ANALYSIS
1046

1047 We study the sensitivity of the loss weights in the total objective on the MSR-VTT validation set:

$$\mathcal{L} = \mathcal{L}_{\text{MWB}} + \alpha_1 \mathcal{L}_{\text{BVC}} + \alpha_2 \mathcal{L}_{\text{DAM}}. \quad (36)$$

1050 As reported in Tab. 7, adjusting α_1 on MSR-VTT shows that increasing the weight of the BVC loss
1051 gradually improves retrieval performance, and the best results are achieved when $\alpha_1 = 1$. A further
1052 increase leads to a performance decline, indicating that over-restricting barycentric geometry may
1053 weaken instance-level discrimination.

1054 Table 7: Sensitivity analysis of α_1 on MSR-
1055 VTT validation set.
1056

α_1	0.1	0.5	1	2	3
T2V (R@1)	54.2	54.9	56.5	55.3	54.5
V2T (R@1)	55.9	56.7	58.3	56.5	55.6

1057 Table 8: Sensitivity analysis of α_2 on
1058 MSR-VTT validation set.
1059

α_2	0.02	0.05	0.1	0.15	0.2
T2V (R@1)	54.6	55.2	56.5	55.1	54.8
V2T (R@1)	55.2	55.8	58.3	56.2	55.1

1062 Tab. 8 further reveals that α_2 also has an optimal operating range, with $\alpha_2 = 0.1$ yielding the
1063 strongest retrieval performance. Excessively small or large weights cause suboptimal alignment due
1064 to either under-constrained or modality-biased instance matching.

1065 Overall, $\alpha_1 = 1$ and $\alpha_2 = 0.1$ deliver the most stable and balanced multimodal alignment on the
1066 MSR-VTT validation set, demonstrating the complementary strengths of BVC and DAM.
1067

1068 B.4 NORMALIZATION STRATEGIES FOR POLYTOPE VOLUME METRIC
1069

1070 While the raw barycenter polytope volume V serves
1071 as a global alignment metric, it depends on the num-
1072 ber of modalities and embedding dimensionality,
1073 which limits interpretability and cross-setting com-
1074 parability. To address this, we consider normaliza-
1075 tion strategies such as $V^{1/n}$, which scale the volume
1076 to better reflect per-modality contributions and make
1077 the metric more comparable across different modal-
1078 ity configurations.

1079 Table 9 reports zero-shot retrieval results on MSR-
VTT under different normalization strategies. We

1079 Table 9: Zero-shot generalization on MSR-
VTT under different normalization strategies
for the barycenter polytope volume.

Normalization	Setting	T2V	V2T
$V^{1/2}$	T-V	52.8	51.0
$V^{1/3}$	T-VA	53.6	52.2
$V^{1/4}$	T-VAS	55.4	52.7
V	T-V	53.4	51.3
V	T-VA	54.5	52.0
V	T-VAS	56.3	53.6

1080 observe that applying normalization slightly reduces
 1081 the absolute retrieval scores compared to the raw
 1082 volume V , likely because normalization reduces the
 1083 magnitude of the gradient signal from the volume metric, slightly weakening the alignment supervi-
 1084 sion. Nonetheless, the overall performance remains stable, indicating that $V^{1/n}$ provides a reliable
 1085 and interpretable metric without significantly sacrificing retrieval accuracy.
 1086

1087 B.5 ROBUSTNESS TO MISSING MODALITIES

1088 BaryBind effectively captures modality-agnostic semantics from arbitrary subsets of multimodal in-
 1089 puts, enabling the aligned representations of available modalities to serve as proxy features when
 1090 others are missing. We evaluate two settings: (1) training-time missing-audio for cross-modal re-
 1091 trieval (T2A/A2T) on AudioCaps (Kim et al., 2019), and (2) missing-video inference for multimodal
 1092 event classification on VGGSound 5K, where the model is trained with videos and audios. In both
 1093 cases, the barycenter is optimized using only the accessible modalities. Results show that Bary-
 1094 Bind preserves robust and graceful degradation under missing-modality conditions, which can be
 1095 attributed to the barycenter modeling of modality-agnostic semantics.
 1096

1097 Table 10: Text-to-audio retrieval on AudioCaps
 1098 w/ and w/o audio during training.

Training Setting	T2A R@1	T2A R@10
VAST (w/ audio)	32.1	65.4
GRAM (w/ audio)	33.2	75.3
BaryBind (w/ audio)	35.5	81.2
VAST (w/o audio)	10.4	32.8
GRAM (w/o audio)	12.8	35.1
BaryBind (w/o audio)	21.1	56.2

1099 Table 11: Multimodal event classification on
 1100 VGGSound5K w/o video during inference.

	Input modality	Acc@1	Acc@5
VAST	A+V	48.1	79.6
GRAM	A+V	42.3	74.5
BaryBind	A+V	55.6	83.4
VAST	A	40.8	71.6
GRAM	A	38.5	70.1
BaryBind	A	49.4	78.3

1108 B.6 SYSTEM EFFICIENCY COMPARISON DURING TRAINING

1109 We provide a comparison of system efficiency among VAST, GRAM, and BaryBind. All experi-
 1110 ments are conducted on 2×NVIDIA A100 80GB GPUs with mixed-precision (FP16/AMP).

1111 Table 12: System efficiency comparison during training.

Model	Params	Batch size	Forward+Backward	Steps/Epoch	Time/Epoch
VAST	1.28B	64	~8.8s	2344	~5.7h
GRAM	1.30B	64	~9.4s	2344	~6.1h
BaryBind	1.34B	64	~9.7s	2344	~6.3h

1112 The additional computation in BaryBind mainly comes from the Wasserstein barycenter optimiza-
 1113 tion and auxiliary alignment losses. The increase in per-step time remains moderate while providing
 1114 improved multimodal alignment performance.

1115 B.7 MORE QUANTITATIVE RESULTS ON SCALING TO MORE MODALITIES

1116 To systematically evaluate the scalability of multimodal models with respect to the number of input
 1117 modalities, we conduct experiments under four configurations, progressively increasing from two
 1118 modalities (text and video) to five (text, video, audio, subtitle, and depth). This stepwise setup
 1119 enables a controlled analysis of how each additional modality affects performance and alignment
 1120 quality. For consistency and interpretability, text is used as the anchor modality throughout.

1121 As shown in Table 13, both VAST and BaryBind benefit from the inclusion of additional modalities,
 1122 demonstrating improved performance on MSR-VTT and VATEX in terms of both T2V and V2T
 1123 retrieval. Notably, BaryBind consistently outperforms VAST across all modality configurations and
 1124 datasets, highlighting its stronger scalability and generalization capacity.

Table 13: Downstream performance with increasing number of modalities.

1134	1135					1136				1137			
	1138					1139				1140			
	1141					1142				1143			
Text	Video	Audio	Sub.	Depth		VAST	BaryBind		VAST	BaryBind		VATEX	
					T2V	V2T	T2V	V2T	T2V	V2T	T2V	V2T	
✓	✓	✗	✗	✗	48.7	43.2	53.4	51.3	78.8	77.0	82.3	79.8	
✓	✓	✓	✗	✗	49.3	43.7	54.5	52.0	80.0	77.3	84.2	81.3	
✓	✓	✓	✓	✗	50.9	47.9	56.3	53.6	82.1	78.7	84.6	83.5	
✓	✓	✓	✓	✓	51.2	49.3	57.0	54.4	82.4	79.2	84.9	83.8	

B.8 VISUALIZATION OF TOP-1 RETRIEVAL RESULTS

To qualitatively assess the retrieval performance of BaryBind, we visualize top-1 text-to-video results compared with two strong baselines in Fig. 8. BaryBind integrates text, audio, video, and subtitle modalities during both training and inference. Each row shows five frames from the top-retrieved video along with the query subtitle. In the first example, BaryBind retrieves a beach party scene aligned with the query’s semantic and acoustic mood, while baselines return less relevant results. In the second case, BaryBind accurately matches a gameplay scene described by both visual and subtitle cues, whereas baselines retrieve unrelated content. The third example features a simple emotional phrase, “I’m scared.”, where BaryBind selects an animated video of a fearful cat-dog chase, while others fail to reflect the emotional context or core entities. These results demonstrate BaryBind’s ability to leverage complementary multimodal cues for precise and context-aware retrieval, effectively grounding both semantics and affect across diverse scenarios.

B.9 SCALABILITY OF BARYBIND WITH INCREASING MODALITY NUMBER

Table 14: Computation time (in seconds) of similarity metrics vs. number of modalities, measured on an NVIDIA A100 GPU with batch size $B = 64$ and embedding dimension $D = 512$.

1165	Number of modality n	2	3	4	5	10	20
1166	Pairwise cosine similarity	3.0×10^{-7}	7.0×10^{-7}	1.0×10^{-6}	1.3×10^{-6}	2.9×10^{-6}	4.9×10^{-6}
1167	Barycenter polytope volume	4.9×10^{-6}	6.8×10^{-6}	5.9×10^{-6}	9.8×10^{-6}	3.6×10^{-5}	8.8×10^{-5}

We evaluate the computation efficiency of different similarity metrics with varying modality counts n . For each metric, we randomly sample $B = 64$ sets of n vectors in \mathbb{R}^D with $D = 512$, simulating multimodal embeddings. As shown in Tab. 14, the barycenter polytope volume remains computationally efficient and scales reasonably as the number of modalities increases. The negligible overhead incurred when extending to more modalities highlights the polytope volume as a non-trivial and scalable metric for assessing n -modality alignment.

To evaluate how BaryBind scales from bimodal (e.g., text-vision) setups to richer multimodal settings, we progressively expand the input from a basic text-video (T-V) pair to more complex configurations on the MSR-VTT dataset: text-video-audio (T-VA), text-video-audio-subtitle (T-VAS), and finally text-video-audio-subtitle-depth (T-VASD). The depth modality is derived using ChronoDepth (Shao et al., 2025) and integrated via an additional lightweight head attached to the vision encoder. As shown in Fig. 7, BaryBind consistently improves Recall@1 as the number of modalities increases, significantly outperforming the VAST baseline on MSR-VTT across all configurations. This highlights the scalability of BaryBind in practical multimodal understanding as it effectively integrates more modalities to shape a richer semantic space.

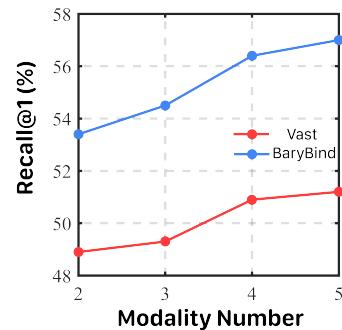


Figure 7: Zero-shot text-to-video retrieval results as scaling from 2 (T-V) to 5 (T-VASD) modalities.

USE OF LARGE LANGUAGE MODELS

We acknowledge that Large Language Models (LLMs) were used after the completion of the draft, solely to correct grammar and improve sentence fluency.

Figure 8: Visual results of text-to-video retrieval. We display 5 frames from the top-1 video.