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Abstract

Recent advancements in large language models (LLMs) have shown impres-
sive progress in mathematical reasoning tasks. However, current evaluation
benchmarks predominantly focus on the accuracy of final answers, often
overlooking the logical rigor crucial for mathematical problem-solving. The
claim that state-of-the-art LLMs can solve Math Olympiad-level problems
requires closer examination. To explore this, we conducted both qualitative
and quantitative human evaluations of proofs generated by LLMs, and
developed a schema for automatically assessing their reasoning capabili-
ties. Our study reveals that current LLMs fall significantly short of solving
challenging Olympiad-level problems and frequently fail to distinguish cor-
rect mathematical reasoning from clearly flawed solutions. We also found
that occasional correct final answers provided by LLMs often result from
pattern recognition or heuristic shortcuts rather than genuine mathematical
reasoning. These findings underscore the substantial gap between LLM
performance and human expertise in advanced mathematical reasoning
and highlight the importance of developing benchmarks that prioritize the
rigor and coherence of mathematical arguments rather than merely the
correctness of final answers.
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1 Introduction

The release of OpenAl’s 01 model (OpenAl et al., 2024) marks a significant breakthrough
in artificial intelligence research, particularly in the domains of reasoning and problem
solving. Building on this achievement, several state-of-the-art models have been introduced
(DeepSeek-Al et al., 2024; Qwen et al., 2025; Google, 2025), which incorporate post-training
on chain-of-thought data. These models demonstrate enhanced capabilities in reasoning and
solving mathematical problems. Although the exact methodologies and best practices for
developing reasoning models remain an active area of research, the use of post-training tech-
niques has proven pivotal in improving performance on tasks requiring planning, iterative
thinking, and trial-and-error strategies. By generating reasoning tokens before producing
a final answer, these models offer more deliberate and reliable solutions, particularly for
complex reasoning tasks such as mathematical problem-solving.

A range of different benchmarks, such as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021), have been developed to evaluate the capability of large language models
(LLMs) to address mathematical challenges. As these models advance in performance—e.g.,
Qwen2.5-72B achieving 91.5% accuracy on GSM8K and 62.1% on MATH, while OpenAl’s
O1 attains 94.8% on the MATH dataset—more challenging benchmarks have been intro-
duced. These include OlympiadBench (He et al., 2024), OlympicArena (Huang et al., 2024b),
CHAMP (Mao et al., 2024), AlphaGeometry (Trinh et al., 2024), MathOdyssey (Fang et al.,
2024), and Omni-MATH (Gao et al., 2024), which contain contest-level mathematical prob-
lems designed to push the boundaries of LLM capabilities.

Except for CHAMP, which includes “concepts, general math facts, and hints” (Mao et al.,
2024) as additional annotations, and AlphaGeometry, which is distinct as it contains prob-
lems and solutions in their formal translation form, all other benchmarks rely on final
answer correctness, either symbolic or numerical, as the evaluation metric to assess the
reasoning capabilities of various language models.

This approach presents a clear issue: Models may exploit
heuristics or flawed reasoning yet still arrive at the correct
final answer, rather than relying on logically sound meth-
ods. This limitation is less evident in widely-used reason-
ing benchmarks like GSM8K and MATH, which mainly in-
clude simpler problems where finding the correct solution
is often equivalent to solving the problem correctly. In con-
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trast, benchmarks featuring contest-level problems—such as
CHAMP, OlympiadBench, Omni-MATH, MathOdyssey, and
OlympicArena—require greater emphasis on the validity and
soundness of the solution’s reasoning, not just the accuracy
of the final answer. This distinction becomes particularly
crucial when addressing open-ended questions.

LLM-as-a-Judge is a recent method to automatically assess
the quality of LLM-generated responses (Li et al., 2025; 2024;
Cohen et al., 2023; Adlakha et al., 2024; Liu et al., 2023; Man-
akul et al., 2023). Directly evaluating LLM-generated solu-
tions, as in Dubois et al. (2023), can be inherently complex for
challenging math problems, as verifying the correctness of a
solution may itself require significant effort. Applying con-
sistent rubrics for automatic grading of generated solutions
is also nontrivial because the relative importance of different

Let's test simple forms.\g
Clearly, f(x)=kx |
satisfies the given
functional equation.€
Thus, a suitable

I'm not convinced.
Can you provide
a rigorous proof?

Figure 1: LLMs often fail to
generate logically sound so-
lutions for challenging prob-
lems.

facts may vary across solutions and problems. In the context of math Olympiad problems,
some mistakes are fundamental and reflect deeper misunderstandings, while others are
more superficial and could be fixed with minor adjustments. There is no clear, objective
method to define which mistakes are critical and which are less significant. Sawada et al.
(2023) proposes a rubric-based approach where a reference solution and evaluation criteria
are used to assess the quality of a generated solution. However, this approach faces an
obvious limitation: the existence of multiple valid solutions that may not align with the ref-
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erence solutions. Furthermore, the challenges inherent in directly assessing LLM-generated
solutions also persist with this approach.

Given these limitations, our goal in this work is twofold: first, to evaluate the quality of
LLM-generated solutions to mathematics Olympiad problems, including identifying their
common failure modes and error types; and second, to investigate whether LLMs can verify
the correctness of their own solutions. This study is significant for two main reasons. First,
evaluating the correctness of the proofs generated by LLMs can reveal whether training
strategies that rely solely on the correctness of the final answer are sufficient for guiding
LLMs toward producing valid and logically sound proofs. Second, assessing the ability of
LLMs to verify their own generated solutions can provide insights into the feasibility of
bootstrapping verification processes, potentially enabling LLMs to improve the quality of
their proofs.

To achieve our goal, we assembled a group of evaluators to assess the quality of LLM-
generated solutions for problems from the International Mathematics Olympiad (IMO)
shortlist. After carefully analyzing solutions generated by the frontier models such as o1, o1-
mini, 03-mini, Gemini 2.0 (Flash Thinking mode), and DeepSeek R1!, we observed that only
a negligible percentage of these solutions were correct or provided meaningful, non-trivial
insights into the problems. We found that LLM-generated solutions frequently contained
common types of fallacies, which made their reasoning blatantly incorrect. To address
this, we defined and categorized these fallacies, then systematically evaluated solutions
generated by frontier models, analyzing their correctness and labeling each incorrect solution
by fallacy type. We assessed the ability of frontier models to verify solutions. Our findings
revealed that, in nearly all cases, the models failed to distinguish between correct solutions
and incorrect ones containing obvious fallacious arguments. Importantly, identifying such
naive fallacies is a simpler task than full solution verification, yet the models still struggled
to perform reliably. In summary, our contributions are as follows:

* We conducted an extensive evaluation of solutions generated by frontier models
on 455 IMO shortlist problems, emphasizing proof correctness rather than merely
checking final answers.

¢ To gain deeper insight into recurring mistakes made by LLMs, we systematically
identified and categorized common logical fallacies present in their solutions, estab-
lishing a comprehensive framework for classifying typical errors.

¢ Leveraging these findings, we created a labeled dataset by annotating each solution
according to correctness and the type of fallacy exhibited. This dataset supports
tasks related to solution verification and offers valuable insights into the current
capabilities and limitations of the frontier LLMs.

¢ Our analysis reveals that even advanced models frequently struggle to distinguish
between valid solutions and those containing evident logical fallacies.

2 Related Work

Benchmarks: Various datasets evaluate mathematical reasoning in large language models
(LLMs) (Ahn et al., 2024). Some focus purely on arithmetic problems (Yuan et al., 2023),
while math word problem (MWP) datasets, like GSM8K (Cobbe et al., 2021) and MathQA
(Amini et al., 2019), present natural language scenarios requiring logical reasoning (Wei
etal., 2023).

Recently, the limitations of LLMs on seemingly simple problems have motivated bench-
marks designed to probe robustness and compositionality. GSM1K (Zhang et al., 2024)
carefully examines model performance on adversarial arithmetic, revealing surprising
fragility even on variations closely related to GSM8K. Building on this, Compositional
GSM (Hosseini et al., 2024) introduces multi-step arithmetic tasks requiring compositional

1When we started this project, models like Claude 3.7, 03-mini, Gemini 2.5, and Grok 3 hadn’t been
released yet, so we could only include 03-mini in our evaluations. After the submission process, we
conducted evaluations of Gemini 2.5 Pro and have added them to the appendix.
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reasoning, further highlighting challenges in generalization. Functional MATH (Srivastava
et al., 2024) expands the landscape by evaluating systematic generalization and reasoning
robustness via functionally diverse tasks, pushing LLMs beyond pattern matching and
toward flexible abstraction.

Automated theorem proving (ATP) datasets evaluate models’ capabilities in logical theorem
proving (Zheng et al., 2022; Yu et al., 2024; Jiang et al., 2024). Recent benchmarks focus
on advanced or Olympiad-level mathematics, such as CONIC10K for conic sections (Wu
et al., 2023), GHOSTS and miniGHOSTS for graduate-level mathematics (Frieder et al.,,
2023), and CHAMP (Mao et al., 2024), OlympiadBench (He et al., 2024), MathOdyssey (Fang
et al., 2024), and Omni-MATH (Gao et al., 2024), specifically focusing on competition-level
problems. HARP (Yue et al., 2024) provides human-annotated US competition problems,
and NuminaMath offers a large-scale collection of math problems and solutions (LI et al.,
2024).

LLM-as-a-judge: Utilizing large language models as evaluative judges has gained popular-
ity, reducing reliance on human annotations (Stephan et al., 2024; Li et al., 2024; Nasrabadi,
2024; Ning et al., 2024). This paradigm offers adaptable evaluations based on task-specific
contexts (Tan et al., 2024; Dhurandhar et al., 2024), and its effectiveness is typically measured
against human judgments (Kim et al., 2024; Ye et al., 2024; Liu et al., 2025). Benchmarks like
UltraFeedback (Cui et al., 2024), AlpacaEval (Dubois et al., 2024), Chatbot Arena (Chiang
et al., 2024), and MT-Bench (Zheng et al., 2023) evaluate different LLM judging domains.
Specifically for mathematical reasoning, REASONEVAL (Xia et al., 2025) assesses answer
correctness and reasoning validity, while MATHCHECK (Zhou et al., 2024) uses LLMs for
robust evaluation across diverse mathematical tasks. The SMART-840 dataset (Cherian
et al., 2024) benchmarks zero-shot mathematical reasoning based on human performance
statistics.

Mathematical Reasoning in LLMs: Large language models (LLMs) have shown success
in various reasoning tasks, especially when employing prompting techniques like Chain-
of-Thought (CoT), which encourages them to generate correct intermediate steps toward
a solution (Chen et al., 2024; Wei et al., 2023; Kojima et al., 2023). These methods can sig-
nificantly boost performance on challenging problems (Havrilla et al., 2024). Furthermore,
inference-time techniques like CoT with Self-Consistency (CoT-SC) have been developed to
enhance reasoning by generating multiple reasoning paths and selecting the most consistent
one (Wang et al., 2023; Wang & Zhou, 2024). Benchmarks like MATH (Hendrycks et al.,
2021), GSM-Symbolic and GSM-NoOp (Mirzadeh et al., 2024) have been introduced to
provide more controllable evaluations and reveal limitations such as sensitivity to numerical
variations and irrelevant information, suggesting a potential lack of deep understand-
ing of mathematical concepts. These benchmarks show that current LLMs rely more on
probabilistic pattern-matching than genuine formal logical reasoning. To further refine
LLMs’ reasoning, approaches like reward modeling to evaluate solution correctness and
self-refinement techniques (Huang et al., 2024a) and decomposing problems into smaller,
algorithmic steps (Zelikman et al., 2023) are being explored.

3 General Workflow

In this section, we outline the data collection process. In the first phase, we selected a set
of challenging problems to evaluate the quality of solutions generated by the LLMs. We
gathered a group of seven evaluators, each either a former national-level Olympiad medalist
or holding or doing a relevant PhD in fields like mathematics or computer science, and
asked them to analyze the correctness of the LLM-generated solutions.

3.1 Problem Selection Rationale

Through this project, we used IMO shortlist problems. The process of selecting problems
for the IMO Shortlist is rigorous and carefully coordinated. Each participating country
submits a set of candidate problems, which typically span the main four mathematical fields:
algebra, geometry, combinatorics, and number theory. These submissions are reviewed
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by a problem selection committee to ensure they meet key criteria, including originality,
mathematical depth, and suitability for the competition. The committee carefully evaluates
the problems for their difficulty level, ensuring a balance between accessibility for less
experienced participants and sufficient challenge for the most advanced contestants. From
this review process, a shortlist is created, containing a diverse collection of high-quality
problems. This shortlist forms the basis for the final selection of problems used in the IMO.

The shortlist problems have some distinct features that make them suitable for testing the
mathematical reasoning capabilities of the frontier models:

¢ Shortlist problems are highly original, even within the context of contest-level prob-
lems. The selection committee ensures that the solution ideas for these problems
are as novel and unique as possible. As a result, while attempting to generate solu-
tions, an LLM cannot simply combine standard building blocks from well-known
problems to arrive at the correct answer.

¢ It is almost always verified whether the problem can be reduced to a well-
established result in advanced mathematics, such as undergraduate or graduate-
level topics or research-level findings. Consequently, an LLM cannot leverage its
extensive knowledge to apply an advanced mathematical result for an easy solution.

¢ All problems are designed to be solvable using high-school level mathematics, with
the challenge lying in the intricacy of the ideas rather than requiring a background
in advanced mathematics.

¢ The solutions typically involve multiple steps, each requiring nuanced arguments.
Solving these problems demands careful planning, systematic thinking, and rigor-
ous verification of each step, in contrast to simpler mathematical problems that can
be tackled through straightforward algebraic manipulations or trial and error.

On the other hand, since IMO and IMO Shortlist problems are highly reputable, there is a
significant likelihood of data leakage, as frontier models may have been trained on publicly
available high-quality mathematical datasets. In this paper, we demonstrate that even if
such data leakage has occurred, it does not substantially affect the ability of the LLM to
solve IMO Shortlist-level problems.

3.2 C(lassifying the Failure Modes of LLM Solutions

We asked evaluators to present several IMO shortlist and shortlist-level problems to frontier
models, including OpenAl o1, ol-mini, 03-mini, DeepSeek R1, and Gemini 2, and qual-
itatively analyze the details of the LLM-generated arguments. We found out that when
these frontier models generate incorrect solutions, the errors consistently follow common
patterns. Specifically, incorrect solutions typically involve blatantly inaccurate mathematical
arguments or statements.

After thorough analysis, we identified the following fallacies commonly occurring in incor-
rect LLM-generated solutions. To illustrate each error type, demonstrative as well as real
examples are provided in the appendix.

Proof by Example. Drawing a general conclusion based on a limited number of specific
instances without rigorous justification for all cases. This error occurs when a statement
appears valid in a few examples, misleadingly suggesting universal validity.

Proposal Without Verification. Introducing a method or strategy without properly justifying
its correctness. The model proposes an idea but provides no rigorous argument or proof
supporting its validity.

Inventing Wrong Facts. Citing or inventing non-existent theorems, definitions, or facts to
justify a claim. Instead of relying on established mathematical facts, the argument relies on
fabricated statements.

Begging the Question (Circular Reasoning). Assuming the conclusion’s truth within the
argument itself, thereby creating inherently flawed logical reasoning.
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Solution by Trial-and-Error. Offering solutions derived solely from guesswork or testing a
few random examples without providing reasoning for why selected solutions work or why
alternatives are not considered.

Calculation Mistakes. Committing substantial arithmetic or algebraic mistakes that criti-
cally undermine the overall correctness of the solution. We specifically considered calcula-
tion errors severe enough to compromise the validity of the conclusion.

3.3 Data Annotation Processs

After defining the fallacy categories, we provided a list of IMO shortlist problems and
corresponding model-generated solutions to the evaluators, instructing them to classify
these solutions based on their correctness. We employed the following checklist to annotate
our data:

1. First, the evaluator read the solution and determined whether it was correct, par-
tially correct, or incorrect.

¢ A solution was considered correct if it fully addressed all aspects of the problem
and contained no significant errors in statements or conclusions.

* A solution was deemed partially correct if it included some essential steps
of a correct solution but omitted other crucial steps or contained significant
inaccuracies.

¢ A solution was classified as incorrect if it lacked any non-trivial useful informa-
tion relevant to solving the problem.

2. If the solution was not correct, the evaluator identified the categories of fallacies
present. In some cases, multiple fallacies could be identified.

3. If the problem required a final answer, the evaluator recorded both the correct final
answer and the model-generated final answer.

To ensure consistency, the evaluators’ team lead conducted a thorough review of the evalua-
tors” outputs in parallel, verifying that the definitions of fallacies were applied correctly and
consistently across all evaluators. Borderline cases were identified and discussed separately.

4 Human Evaluation Results

We evaluated the models using IMO shortlist problem sets from the years 2009 to 2023,
comprising a total of 455 problems. These included 108 algebra, 117 combinatorics, 116
geometry, and 114 number theory problems. The number of problems per annual shortlist
varied slightly, typically ranging from 26 to 35. Each set was carefully curated to maintain
a balanced distribution of difficulty across the four primary mathematical topics. The
performance of each model on the IMO shortlist problems is summarized in Table 1. As
evident from the results, none of these models achieve performance levels comparable to
those obtained through calculating final answers” accuracy, as reported in Gao et al. (2024)
and Fang et al. (2024).

Model Correct (%)  Partially Correct (%) Incorrect (%)
DeepSeek 3.8 6.7 89.4
Gemini 2.0 0.0 1.1 98.9
ol 19 3.9 94.2
ol-mini 0.0 0.0 100.0
03-mini 3.3 4.4 922

Table 1: Performance of different models on IMO shortlist problems (%)

The observed gap between the outcomes of our evaluation and other methods that focus
exclusively on the correctness of final answers arises because models may produce incorrect
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intermediate steps yet still obtain the correct final result. To investigate this issue, we
specifically examined problems with concrete final answers within our evaluation set. Table
2 illustrates both the proportion of correct final answers and the conditional probability of
having a correct solution, given that the final answer is correct. Interestingly, we found that
the frontier models still predominantly generated wrong solutions despite arriving at the
correct final answer.

Model Final Answer Accuracy (%)  Correct|Correct Final Answer (%)
DeepSeek 63.2% 0%

Gemini 2.0 43.8% 0%

ol 30.8% 12.5%

ol-mini 35.0% 0%

03-mini 48.3% 14.3%

Table 2: Comparison of evaluated LLMs highlighting the gap between final answer correct-
ness and overall solution quality. Final Answer Accuracy denotes the percentage of correct
final answers, whereas Correct|Correct Final Answer represents the percentage of fully
correct solutions among instances where the final answer is correct.

These results suggest that the models rely on heuristics, shortcuts, and educated guesses
rather than constructing logically sound solutions. Such strategies are particularly applicable
for Olympiad-level problems, where the final answers often exhibit predictable patterns or
can be inferred without deriving a complete solution. As a result, we argue that evaluating
model performance based solely on final answer accuracy is fundamentally flawed, as it
ignores the critical problem of solution validity and the systematic exploitation of answer
predictability.
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Figure 2: Relative frequencies of each fallacy among the LLM-generated solutions for each
model.

It is also helpful to examine how common fallacies are distributed among different models.
Figure 2 shows the relative frequency of each fallacy found in the LLM-generated solutions
from each model. Relative frequencies are used because multiple fallacies may occur within
a single solution. Among these fallacies, Inventing Wrong Facts is the most frequent in four
models and the second-most frequent in another. This observation might be explained
by the training methods used for these models, which generally involve reinforcement
learning algorithms with rewards based on the correctness of the final answers (e.g., see the
DeepSeek report; (DeepSeek-Al et al., 2024)).
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Proposal Without Verification is the other common fallacy. Although the internal reasoning
tokens are not visible for OpenAl models, an examination of the thinking traces from
DeepSeek and Gemini suggests that this fallacy often arises because the model struggles to
determine which calculations and statements should be included in the final response. As a
result, instead of presenting concrete reasoning or useful intermediate steps, the model may
produce vague mathematical claims, often beginning with phrases like "It is easy to show
that...” or “One can show that...” without providing a proper supporting argument.

We also observed that models tend to exhibit different types of fallacious reasoning depend-
ing on the problem type. Figure 3 illustrates the relative frequencies of various fallacies in
questions with and without final answers. Notably, Proof by Example and Solution by Trial and
Error occur more frequently in questions where a final answer is provided. This suggests
that models often arrive at final answers either through heuristic trial and error or by gener-
alizing from a small number of test cases, leading to a higher prevalence of these two types
of fallacies in their generated solutions. In contrast, we observe that Inventing Wrong Facts
and Proposal Without Verification occur more frequently in generated solutions to problems
lacking explicit final answers. Since these problems are purely proof-based, it is natural
to observe these particular fallacies more often. To produce valid proofs, models must
logically connect the problem’s initial assumptions and constraints to the required conclu-
sion. However, we find that models frequently circumvent this rigorous reasoning process
either by introducing incorrect statements or by omitting essential steps in their arguments.

Similar patterns of difference can T

be observed in relative frequen- 5 Proposal Without Verification
cies of fallacies among different Sotcon by Tt and Eren
problem topics. Figure 4 demon- Beadna the Qusation
strates the relative frequencies of

fallacies among geometry, algebra, ||
combinatorics, and number the-
ory problems. As more geometry 2 [
questions can be solved only us-
ing logical statements rather than 10 I [ | — I
algebraic manipulations, Inventing

Wrong Facts, Proposal Without Veri- 0 - [
ﬁcation, and Begglng the Questiof’l With Final Answer Without Final Answer
are more common in geometry
problems. A significant propor-
tion of algebra problems fall into
categories such as functional equa-
tions, polynomial equations, or op-
timization tasks. We observed that
all frontier models tend to avoid generating rigorous analytic solutions, instead relying on
trial and error to determine the final answer. This behavior results in a higher frequency
of the Solution by Trial and Error fallacy in LLM-generated solutions for algebra problems.
Similarly, number theory problems involving Diophantine equations or integer-valued
functional equations exhibit the same issue. Additionally, we found that the Proof by Example
fallacy occurs more frequently in algebra, combinatorics, and number theory problems
compared to geometry. This trend arises because many problems in these three areas can
be framed as proving statements of the form Q(x), where x belongs to a specific domain
defined by the problem. In such cases, LLMs frequently attempt to verify the proposition Q
by evaluating selected examples from its domain rather than constructing a general proof,
thus resulting in the Proof by Example fallacy.
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Figure 3: Relative frequencies of each fallacy in LLM-
generated solutions, comparing questions with and
without a final answer.

5 Automatic Evaluation Results with Gemini 2.5 Pro

Verification of a candidate solution to a problem is generally considered an easier task than
solving the problem itself. Consequently, a common strategy for training reasoning-oriented
LLMs is the generator-verifier schema. Within this framework, a generator produces
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Figure 4: Relative frequencies of each fallacy in LLM-generated solutions among different
topics

Model Real Solutions Correct (%) Wrong Solutions Correct (%)
DeepSeek 48 43
Gemini 2.0 52 50
ol 31 39
ol-mini 36 45
03-mini 26 31

Table 3: Percentage of correct and incorrect solutions identified as correct by different LLMs
during verification. The results illustrate the LLMs’ difficulty in accurately distinguishing
genuinely correct solutions from clearly incorrect ones containing explicit fallacies.

candidate solutions, and a reward model evaluates these candidates. The reward model can
either be hard-coded (e.g., checking only the correctness of final answers), a learned reward
model trained specifically for evaluation, or another powerful LLM serving as a judge (Plaat
et al., 2024). A pertinent question in this context is whether state-of-the-art models can
reliably distinguish fallacious generated solutions from correct, authentic solutions. We
approach this question through two complementary analyses:

1. Do LLMs identify correct, authentic solutions as valid more frequently than falla-
cious generated solutions?

2. When presented with pairs consisting of a correct solution and an incorrect, falla-
cious one for each problem, are LLMs capable of accurately choosing the correct
solution?

To investigate the first question, we gathered all problems from our evaluation dataset
that had incorrect solutions generated by LLMs. Corresponding correct solutions for
these problems were obtained from the Art of Problem Solving (AoPS) website?. We then
prompted the LLMs to analyze each solution and explicitly request a final judgment of either
correct or wrong. While this verification task can generally be nuanced due to solutions that
partially satisfy correctness criteria, our selected examples distinctly represent either clearly
incorrect solutions with obvious fallacies or entirely correct solutions. The description of all
prompts we used in this section can be found in the appendix.

2https://artofproblemsolvi ng.com/community/c3223_imo_shortlist
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As shown in Table 3, DeepSeek and Gemini 2.0 produce responses of correct and wrong with
nearly equal frequency for both genuinely correct solutions and incorrect LLM-generated
solutions. Interestingly, the likelihood of identifying a genuinely correct solution as correct
is even lower for the ol, ol-mini, and 03-mini models. These results demonstrate that
the models are not suitable for use as judges, as they cannot reliably distinguish genuine
solutions from obviously incorrect ones.

To investigate the second question, we applied a similar methodology. For each problem,
we presented the models with pairs consisting of a correct solution and an incorrect, LLM-
generated solution. We then prompted the models to identify the correct solution after
careful analysis, explicitly informing them that exactly one solution was correct and the
other was incorrect.

Model Accuracy (%)
DeepSeek 57
Gemini 2.0 49
ol 50
ol-mini 46
03-mini 52

Table 4: Accuracy of various LLMs in identifying the correct solution when presented with
pairs consisting of one correct solution and one incorrect solution generated by an LLM.

As presented in Table 4, models 01, o1-mini, and Gemini 2.0 perform at or below random
in distinguishing correct from incorrect solutions. Only DeepSeek and 03-mini perform
modestly better than chance, outperforming random selection by 7% and 2%, respectively.
These results indicate that the evaluated models currently have limited effectiveness as
verifiers for challenging tasks such as IMO Shortlist-level problems.

6 General Insights into Gemini 2.5 Pro Solutions

Our evaluation of frontier LLMs on Olympiad-level mathematics revealed significant short-
comings in their ability to produce logically rigorous proofs and engage in genuine mathe-
matical reasoning. Models such as OpenAl’s 01, o1-mini, 03-mini, DeepSeek R1, indicate
a reliance on heuristic shortcuts rather than authentic reasoning processes. Additionally,
these LLMs demonstrated limited capability in effectively verifying solutions, performing
at or near random levels when distinguishing correct proofs from clearly incorrect ones.

These findings emphasize two critical areas for improvement. First, there is a clear need
for developing more sophisticated benchmarking methods that evaluate logical rigor and
reasoning quality rather than merely assessing final answers. Second, relying solely on final
answer correctness or utilizing more powerful LLMs as judges is insufficient; improved
training schemas specifically designed to address the logical rigor of the proofs are essential
for advancing future models toward human-level mathematical proficiency.
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A Human Evaluation Results with Gemini 2.5 Pro

We repeated the same process for 31 problems from the IMO shortlist 2014 problems
with Gemini 2.5 Pro (preview-03-25). As shown in Table 5, Gemini 2.5 Pro significantly
outperforms all other models. Qualitatively, Gemini 2.5 Pro solutions are noticeably more
coherent and contain fewer basic errors. Additionally, Gemini 2.5 Pro generated a higher
percentage of partially correct solutions. Even when solutions were incomplete, they often
contained useful derivations and relevant proofs. In contrast, solutions from other models
typically lacked useful information or meaningful insights.

LLM Solution Model Correct Partially Correct Incorrect

DeepSeek 3.8% 6.7% 89.4%
Gemini 2.0 0.0% 1.1% 98.9%
Gemini 2.5 Pro 25.8% 25.8% 48.4%
ol 1.9% 3.9% 94.2%
ol-mini 0.0% 0.0% 100.0%
03-mini 3.3% 4.4% 92.2%

Table 5: Performance of different models on IMO shortlist problems (%)

Table 6 indicates that Gemini 2.5 Pro is more likely to provide a correct overall solution
when its final answer is correct.

Model Final Answer Accuracy (%)  Correct|Correct Final Answer (%)
DeepSeek 63.2% 0%

Gemini 2.0 43.8% 0%

Gemini 2.5 55.6% 16.7%

ol 30.8% 12.5%

ol-mini 35.0% 0%

03-mini 48.3% 14.3%

Table 6: Comparison of evaluated LLMs highlighting the gap between final answer correct-
ness and overall solution quality. Final Answer Accuracy denotes the percentage of correct
final answers, whereas Correct|Correct Final Answer represents the percentage of fully
correct solutions among instances where the final answer is correct.

Figure 5 shows the relative frequencies of various fallacies for each model, including
Gemini 2.5 Pro. Gemini 2.5 notably makes fewer basic errors such as "Proposal Without
Verification” and “Proof by Example,” which typically have predictable patterns. Even
when employing ”“Solution by Trial and Error,” Gemini 2.5 generally attempts to check the
other possible solutions and rule out alternatives. Interestingly, Gemini 2.5 introduces a
unique pattern when it does “Inventing Wrong Facts”. This occurs when the model initially
attempts legitimate ideas and derivations but resorts to citing a non-existent theorem or
result equivalent to the problem statement after failing. This behavior was common in
nearly all challenging problems. We suspect that the root cause of this error is agent-based
training. Since the model didn’t have internet access during the evaluation, it hallucinated
non-existent papers, blog posts, and theorems.
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Figure 5: Relative frequencies of each fallacy for Gemini 2.5

Figures 6 and 7 illustrate the relative frequencies of fallacies categorized by problems with
or without a final answer, and by topic, respectively. The previously mentioned patterns
continue to hold for Gemini 2.5.
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Figure 6: Relative frequencies of each fallacy in Gemini 2.5 solutions, comparing questions
with and without a final answer.

B Automatic Evaluation Results

Table 7 shows each model’s ability to classify genuine correct solutions versus LLM-
generated incorrect solutions. Ideally, models should classify nearly 100% of correct so-
lutions as correct and close to 0% of incorrect solutions as correct. Gemini 2.5 achieves
39% accuracy on correct solutions and 4% on incorrect solutions, resulting in the greatest
distinction among all models. Other models perform near random chance.

Table 8 summarizes model accuracy in distinguishing correct solutions from incorrect
solutions when presented together. Gemini 2.5 significantly outperforms other models with
83% accuracy, while others show near-random performance.

Notably, when Gemini 2.5 evaluated solutions generated by itself, its accuracy dropped to
60% from 83%.
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Figure 7: Relative frequencies of each fallacy in Gemini 2.5 solutions among different topics

Model Real Solutions Correct (%) Wrong Solutions Correct (%)
DeepSeek 48 43
Gemini 2.0 52 50
Gemini 2.5 39 4
ol 31 39
ol-mini 36 45
03-mini 26 31

Table 7: Percentage of correct and incorrect solutions identified as correct by different LLMs
during verification. The results illustrate the LLMs’ difficulty in accurately distinguishing
genuinely correct solutions from clearly incorrect ones containing explicit fallacies.

C Conclusion

We consistently observed better solutions from Gemini 2.5 compared to other reasoning
models. Gemini 2.5 shows a clearer understanding of what a mathematical proof is, while
other models mainly focus on finding equations or final answers without properly proving
them. Because of this, other models often produce incoherent or unclear statements. This
is why fallacies like “Proposal Without Verification” and ”"Proof by Example” happen less
often with Gemini 2.5. Even when Gemini 2.5 uses ”"Solution by Trial and Error,” it generally
tries to rule out other possible solutions, although sometimes it doesn’t fully check all
possibilities.

Model Accuracy (%)
DeepSeek 57
Gemini 2.0 49
Gemini 2.5 83
ol 50
ol-mini 46
03-mini 52

Table 8: Accuracy of various LLMs in identifying the correct solution when presented with
pairs consisting of one correct solution and one incorrect solution generated by an LLM.
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Geometry problems remain challenging for Gemini 2.5. The model either attempts to
use complex coordinates, resulting in lengthy and unclear derivations, or uses geometric
reasoning that still contains basic errors, similar to earlier models. Particularly, Gemini
2.5’s geometry solutions often include trivially wrong claims or tautological facts. Despite
these weaknesses, Gemini 2.5 significantly improves upon other reasoning models currently
available.

D Concrete Examples for Common LLM Fallacies

D.1 Illustrative Examples for Common LLM Fallacies

In this section, we present illustrative examples and comprehensive explanations for each
fallacy, facilitating clearer interpretation and deeper conceptual understanding.

Example: Proof by Example

Problem: Prove that 32" — 1 is divisible by 8 for all integers n > 1.

Fallacious Solution: To “prove” this statement, we can test the initial cases:
Forn =1,
32 -1=28, which is divisible by 8.

Forn =2,
3*—-1=81-1=280, which is divisible by 8.

Forn =3,
3 —1=729 —1=728, whichis divisible by 8.

Hence, we “proved” that 32" — 1 is divisible by 8 for all integers n > 1.

This argument is not a valid proof by induction, as it lacks the necessary inductive step.
Without this inductive step, verifying a few initial cases does not guarantee the statement is
true for all n. While the statement itself happens to be true in this example, the method of
proof is fallacious.

Example: Proposal Without Verification:

Problem: Two players, Alice and Bob, take turns choosing a number from the set
{1,2,...,n}, such that the sum of the chosen numbers never exceeds 2n. The player
unable to make a valid move loses. Prove that for all n > 1, there exists a winning
strategy for one of the players.

Fallacious Solution: Alice always has a winning strategy. She should begin by
picking the largest available number, and on each subsequent turn, she should pick
numbers that ensure Bob cannot reach the limit of 2n. By doing this, she can control
the game and guarantee her victory. This approach is clearly optimal because by
keeping Bob under pressure, Alice can always force him into a losing position.”

. J

While this strategy seems intuitive, the proposer does not provide any proof that it guaran-
tees a win for Alice in all cases. For example, there is no justification that Alice’s strategy
prevents Bob from achieving the same goal or that Bob has no counter-strategy. Furthermore,
no rigorous argument is provided to show that this method works for all values of n. A
proper solution would involve analyzing the game mathematically, determining conditions
under which Alice or Bob has a winning strategy, and proving these results using tools like
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invariants or backward induction. Without this reasoning, the proposal remains incomplete
and exemplifies the fallacy.

Example: Inventing Wrong Facts

Problem: Prove that the harmonic series

(o)
)
n=1

S|

diverges.

Fallacious Solution: By the Harmonic Square Root Theorem, the partial sum of the
harmonic series up to 7 terms is given by:

1
H, =2+v/n ol —),
n=2vn+7y+ ( \/ﬁ)
where 7 is the Euler-Mascheroni constant. As n — oo, the dominant term 2,/ grows

without bound, while the constant 7y and error term O (\/Lﬁ) become negligible. Thus,
limy, 0 H; = oo, proving divergence of the harmonic series.

-
N

The Harmonic Square Root Theorem is non-existent. While H,, ~ In(n) + v is a valid asymp-
totic approximation, claiming H, o /7 is blatantly false.

Example: Begging the Question

Problem: Prove that the number /2 is irrational.

Fallacious Solution: Assume /2 is irrational. By definition, an irrational number
cannot be expressed as a fraction 3, where a and b are integers with b # 0. Since V2

cannot be written as %, it follows that v/2 is irrational.
. J

The argument begins by assuming the conclusion ”Assume /2 is irrational”. It then uses the
definition of irrationality to “prove” the same claim, creating a logical loop. The conclusion

(”\/2 is irrational”) is restated verbatim as the premise, offering no actual proof.

Example: Solution by Trial and Error

Problem: Find all functions f : R — R such that
f( —y?) = xf(x) = yf(v), YxyeER

Fallacious Solution:
Let us try some simple forms of f(x): Suppose f(x) = 0. Substituting into the
functional equation:

f(*=y*)=0 and xf(x)—yf(y) =0.

This satisfies the equation, so f(x) = 0 is a solution.
Now suppose f(x) = x. Substituting f(x) = x into the equation:

f*—y*)=x*—y* and xf(x)—yf(y) =x>—y*

-
g
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This also satisfies the equation, so f(x) = x is another solution.
Finally, consider f(x) = kx for some constant k. Substituting:

f(x? = y?) =k(x* —y?) and xf(x) —yf(y) = k(x* — ).
This works for any k. So the solutions are f(x) = 0 and f(x) = kx for any constant k.

This solution seems to rely on educated guesses to reach the correct answer but doesn’t
explain why other functions fail to satisfy the given functional equation.

Example: Calculation Mistakes

Problem: Let x,y,z > 0 satisfy x + y + z = 6. Find the maximum value of xyz.

Fallacious Solution:
Using the AM-GM inequality, we know:

% Z 3/xyz‘

Substituting x + y + z = 6, we get:

> Ixyz.

[SS ) o)

Simplifying: .y
> Jxyz.

Now, squaring both sides (instead of cubing):
4 > xyz.
Thus, we conclude that xyz < 4.

The critical error lies in Step 4, where the inequality was squared instead of being cubed.
Since the inequality involves a cube root 3/xyz, the proper operation should have been

cubing both sides: (2)3 = 8.This mistake leads to the incorrect conclusion xyz < 4, whereas
the correct bound is xyz < 27. The solution becomes invalid because squaring distorts the
inequality, making the result overly restrictive.

D.2 Real Examples for Common LLM Fallacies

Example: Proof by Example

Problem: On a flat plane in Camelot, King Arthur builds a labyrinth £ consisting of
n walls, each of which is an infinite straight line. No two walls are parallel, and no
three walls have a common point. Merlin then paints one side of each wall entirely
red and the other side entirely blue. At the intersection of two walls there are four
corners: two diagonally opposite corners where a red side and a blue side meet,
one corner where two red sides meet, and one corner where two blue sides meet.
At each such intersection, there is a two-way door connecting the two diagonally
opposite corners at which sides of different colours meet. After Merlin paints the
walls, Morgana then places some knights in the labyrinth. The knights can walk
through doors, but cannot walk through walls.

Let k(£) be the largest number k such that, no matter how Merlin paints the labyrinth
£, Morgana can always place at least k knights such that no two of them can ever
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meet. For each 1, what are all possible values for k(£), where £ is a labyrinth with n
walls?

Fallacious Solution:
For each integer n > 1, the labyrinth £ constructed by King Arthur consists of n
non-parallel, infinitely extending walls with no three walls intersecting at a single
point. Merlin paints each wall with one side red and the other blue. The intersections
of these walls create doors that connect specific regions within the labyrinth.
Understanding k(£):
The value k(£) represents the largest number k such that, regardless of how Merlin
paints the labyrinth, Morgana can always place at least k knights in the labyrinth
where no two knights can meet through the doors.
Analyzing Small Cases:
1. Forn =1:

e There is only one wall, dividing the plane into two regions.

e Since there are no intersections, there are no doors.

* Morgana can place one knight in each region, so k(£) = 2.
2. Forn = 2:

¢ Two intersecting walls create four regions.
® There is one door connecting two diagonally opposite regions.

* Morgana can place three knights such that no two are connected by the door,
sok(£) = 3.
3. Forn = 3:

® Three walls intersecting pairwise create seven regions.
® There are three doors, each connecting two regions.

* Morgana can ensure that four knights are placed without any two being
connected by a door, so k(£) = 4.

Generalizing the Pattern:
Observing the pattern from the small cases, we see that:

e Foreachn, k(L) =n+1.

This means that no matter how Merlin paints the labyrinth, Morgana can always

place n + 1 knights such that no two knights can meet through the doors. This result

stems from the combinatorial structure of the labyrinth and the way doors are created

at intersections.

Conclusion:

For any number of walls 1, the largest guaranteed number of knights k(£) that

Morgana can place without any two being able to meet is always n + 1.

Answer:

For every number n of walls, the maximal k is n + 1. Thus, each k(£) equals n + 1.
. J

The proof claims that k(£) = n + 1 by testing it for small ns and then it generalizes this
claim for all natural ns without justification.

Example: Proposal Without Verification

Problem: A social network has 2019 users, some pairs of whom are friends. Whenever

user A is friends with user B, user B is also friends with user A. Events of the
following kind may happen repeatedly, one at a time: Three users A, B, and C
such that A is friends with both B and C, but B and C are not friends, change their
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friendship statuses such that B and C are now friends, but A is no longer friends
with B, and no longer friends with C. All other friendship statuses are unchanged.
Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each.
Prove that there exists a sequence of such events after which each user is friends with
at most one other user.

Fallacious Solution:
To solve this problem, we need to demonstrate that it’s possible to transform the
given social network into a state where each user is friends with at most one other
user using the specified operations.
Initial Setup

¢ Number of Users: 2019

¢ Friendship Structure:

— 1010 users have 1009 friends each.
— 1009 users have 1010 friends each.

¢ Total Friendships Initially:
1010 x 1009 + 1009 x 1010 = 2 x 1010 x 1009

This counts each friendship twice (once for each user in the pair), so the
actual number of unique friendships is:

Total Edges = 1010 x 1009

Objective

Transform the network so that each user has at most one friend. In graph theory
terms, we aim to reach a state where the graph is a matching, meaning it consists of
disjoint edges with no overlaps.

Operation Details

The operation allows us to:

e Select Three Users: A, B, C such that:

— A is friends with both B and C.
— B and C are not friends.

¢ Modify Friendships:
- Add: Friendship between B and C.

— Remove: Friendships between A and B, and between A and C.
Effect of Each Operation
* Total Friendships Decrease: Each operation removes two friendships and
adds one, resulting in a net decrease of one friendship.
* Degree Changes:

— A’s degree decreases by 2.
— B and C’s degrees remain unchanged since one friendship is removed

and another is added.
Strategy to Achieve the Objective
¢ Reducing Degrees:

— Repeatedly apply the operation to reduce the degrees of users with more
than one friend.

— Each operation ensures that a user’s degree decreases, moving towards
the desired state.
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¢ Termination Condition:

— The process continues until no user has more than one friend.

— If a user still has more than one friend, the operation can still be applied
because there will always be at least two friends who aren’t connected
(given the initial high degree and the specific structure of operations).

¢ Final State:

— The network will consist of disjoint pairs of friends (a matching) and
possibly some users with no friends.
— This ensures that no user has more than one friend.

Conclusion
Through systematic application of the specified operation, we can decrementally
reduce the degrees of all users with more than one friend. Given the initial conditions
and the nature of the operation, it’s guaranteed that we can reach a state where each
user has at most one friend.
Final Answer: After performing suitable operations, the network can be transformed
so no user has more than one friend. Thus, such a sequence exists.

. J

As we can see, the model has proposed a sequence but doesn’t do any mathematical
verification of its correctness.

Example: Inventing Wrong Facts

Problem: You are given a set of n blocks, each weighing at least 1; their total weight
is 2n. Prove that for every real number r with 0 < r < 21 — 2 you can choose a subset
of the blocks whose total weight is at least r but at most r + 2

Fallacious Solution:
To prove that for any real number » with 0 < r < 2n — 2, there exists a subset of
blocks whose total weight is at least » but at most r + 2, we can proceed as follows:

Key Observations:
1. Block Weights and Total Weight:

¢ Each block has a weight of at least 1.
¢ The total weight of all n blocks is 2.

2. Subset Sums:

* The possible subset sums range from 0 (empty set) to 27 (all blocks).
e Since each block has a weight of at least 1, any two distinct subset sums
differ by at least 1.

3. Covering the Interval [0,2n — 2]:
e We need to ensure that for any r in [0, 2n — 2], there exists a subset sum

ssuch thatr <s <r+42.

Proof Strategy:
Sequential Coverage

¢ List all possible subset sums in increasing order: sg = 0, 1,52, ...,5, = 2n.
e Each subsequent sum satisfies s;; 1 —s; > 1 because each block has a weight
of at least 1.
Interval Overlap
* Consider intervals of the form [s;, s; + 2] for each subset sum s;.
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* Sinces; 1 > s; + 1, the next interval [s;, 1,5, 1 + 2] starts no more than 1 unit
after the start of the previous interval.

e Therefore, the union of these intervals [s;, s; + 2] covers the entire range
[0,2n] without gaps larger than 2.

Ensuring Coverage for Any r

¢ For any r in [O, 2n — 2], there exists some subset sum s; such thats; < r <
s; + 2.

e This guarantees that r lies within the interval [s;, s; 4 2], meaning there exists
a subset with a sum in [r, 7 + 2].

Conclusion By sequentially covering the range [0,2n] with overlapping intervals of
length 2 derived from the subset sums, we ensure that for any r within the specified
range, there exists a suitable subset whose total weight satisfies r < sum(S) < r + 2.
Answer By ordering all subset sums and noting that each differs by at least 1, the
intervals [s, s + 2| cover [0, 2n — 2]. Thus, for any r between 0 and 21 — 2, some subset
has total weight at least ¥ and at most r 4- 2.

- J

The model invents a wrong fact/observation and builds its argument around it. The main
fact that is used for the proof is obviously not true. Consider {1,1.5,2,3.5}.

Example: Begging the Question

Problem: A polynomial P(x, y,z) in three variables with real coefficients satisfies the
identities

P(x,y,z) = P(x,y,xy —z) = P(x,zx —y,z) = P(yz — x,y,2).
Prove that there exists a polynomial F(t) in one variable such that

P(x,y,z) = F(x* + y* + 2> — xyz).

Fallacious Solution:
To prove that there exists a polynomial F(t) in one variable such that

P(x,y,z) = F(x* + y* + 22 — xyz),

we analyze the given conditions and the structure of the polynomial P(x,y,z).
Step 1: Define the Invariant Let’s define the invariant:

t:x2+y2+zz—xyz.

Our goal is to show that t remains unchanged under the transformations provided in
the problem statement.
Step 2: Verify Invariance Under Given Transformations We need to verify that f is
invariant under the following transformations:
1. First Transformation

P(x,y,z) = P(x,y,xy — z).
Compute t(x,y, xy — z):

t=x"+y* + (xy —2)* — xy(xy — z).
Expanding this:
t =x2+y? 4+ 22y — 2xyz + 22 — xX*y? +xyz = ¥ +y? + 2% — xyz.

Thus, ¢t remains unchanged.
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2. Second Transformation
P(x,y,z) = P(x,zx — y,2).
Compute t(x, zx — y, z):
H I (R ) SRR A (e )
Expanding this:
b= a2 4220 —2xyz -y + 22— P2 gz = 2P+ 2 —xyz.

Again, t remains unchanged.
3. Third Transformation

P(x,y,z) = P(yz — x,¥,z).
Compute t(yz — x,y,2):
t=(yz—x)?+y*+22 - (yz— x)yz.
Expanding this:
= 0 Ul R P L b e G P
Once more, t remains unchanged.

Step 3: Conclude the Existence of F(t) Since t = x* + y? + z?> — xyz is in-
variant under all the given transformations, and P(x, y, z) remains unchanged under
these transformations, it follows that P depends only on ¢.

Therefore, there exists a polynomial F(t) such that:

P(x,y,z) = F(t) = F(x* + y* + 2> — xyz).

Conclusion Any polynomial P(x,y, z) satisfying the given identities must be a poly-
nomial in the single variable t = x? + y? + 2% — xyz.

Answer Because x% + y? + z — xyz is unchanged by the given equalities, P depends
only on it. Thus, there is an F with:

P(x,y,z) = 1—’(x2 +y2 +22— xXyz).

- J

The generated solution begs the question. The fact P(x,y,z) = F(x? + y* + z2 — xyz). is the
problem statement itself, and it needs to be proven.

Example: Solution by Trial and Error

Problem: Let Z be the set of integers. Determine all functions f : Z — Z such that,

for all integers a and b,
f(2a) +2f(b) = f(f(a +Db)).
Proposed by Liam Baker, South Africa

Fallacious Solution:
To determine all functions f : Z — Z that satisfy the functional equation

f(2a)+2f(b) = f(f(a+1b)) forallintegersaand b,

let’s explore possible forms of f.
Step 1: Assume a Linear Function

First, consider that f might be a linear function of the form:
f(n) =kn+c,
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g

where k and c are constants in Z.
Substituting into the functional equation:

f(2a) +2f(b) = k(2a) + ¢+ 2(kb + ¢) = 2ka + ¢ + 2kb + 2¢ = 2k(a + b) + 3c.
On the other hand:
f(f(a+b)) = f(k(a+b)+c)=k(k(a+b)+c)+c=k(a+Db)+ke+c.
Setting the two expressions equal gives:
2k(a+b) +3c=k*(a+b) +ke+ec.
For this to hold for all integers a and b, the coefficients must match:
2%k =k and 3c=kc+ec.

Solving the first equation:

K —2k=0 = k(k—2)=0 = k=0ork=2.

Casel: k=0
3c=c = 2c=0 = ¢c=0.

So, f(n) = 01is a solution.

Case2: k=2
3¢ =3c (always true).

Here, ¢ can be any integer. Thus, f(n) = 2n + c is a solution for any integer c.

Step 2: Verify Non-Linear Solutions Assuming f is not linear leads to more complex
conditions that are difficult to satisfy uniformly across all integers. Hence, no non-
linear solutions appear to exist beyond the linear forms already identified.
Conclusion All solutions to the functional equation are either the constant zero
function or affine linear functions of the form f(n) = 2n + ¢, where c is an integer
constant.

Final Answer: All integer functions equal to twice n plus a fixed constant. In other
words, every f with f(n) = 2n + ¢ for some integer c.

J

The generated proof only tests the problem’s equation for a special class and concludes the
result. This is an example of a solution by trial and error fallacy.

Example: Calculation Mistakes

Problem: Determine all integers n > 2 having the following property: for any
integers a1, ay, . .., 2, whose sum is not divisible by #, there exists anindex 1 <i <n
such that none of the numbers

a,0; +ai11,---,8; + a1+ ...+ a1n1
is divisible by n. Here, we let a; = a;_,, wheni > n.

Fallacious Solution:

We will show that among the integers n > 2, the property
“For any integers a1, ay, . . ., a4, whose sum is not divisible by n, there is
some index 1 < i < n so that none of the numbers

@i, @i+ iy, ooy Gt i1+t B
is divisible by n”
holds if and only if n = 2.

In other words, if n > 3 then one may construct a counterexample sequence, while
for n = 2 the property always holds.
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In what follows, we describe a method to translate the condition into one involving
a cyclic sequence of residues and then show that counterexamples exist for every
n > 3, but not forn = 2.

Reformulating the Problem

For a given sequence 4y, ..., a,, define the cumulative sums

Sy=m+ay+---+a, fork=1,...,n, So =0.

All congruences below are modulo 7.
Note that for any index i (with indices taken cyclically modulo 7, i.e., a jan =4 ]-), the
partial sums
i, Aj +Ajy1, ooy G+ 0ig1 + 0 T i1
can be written as

Si—Si1, Six1—Si~1, -+, Sign—1— Si-1-
Thus, none of these numbers is divisible by 7 if and only if
Sifl ;7é Si71+j fOI‘j =12,...,n

In other words, in the list Sg, 1, . . ., S, (indices modulo n + 1), we seek an index ¢
(with t = i — 1) such that the residue S; is isolated—that is, no other Sy is congruent
to Sy modulo n.

Since Z /nZ has n elements, but we are choosing n + 1 values S, . . ., Sy, the pigeon-
hole principle guarantees that at least one residue is repeated. However, for the
property to hold, we only need that at least one S; be unique among the Sy.

Thus, the problem reduces to the following:

For which integers n > 2 is it true that for every choice of integers
ai, ..., ay with S, # 0 there exists t € {0,1,...,n} such that

St =85 forallk #t?

If such a t always exists, then setting i = t + 1 ensures that all partial sums starting at
a; are nonzero modulo #n.

Counterexamples forn > 3

We now describe how to construct counterexamples when n > 3.

e Itis possible to construct a sequence Sy, S1, ..., Sy in Z/nZ, with So = 0 and
Sy # 0, such that every residue appears at least twice.

¢ In such a configuration, no S; is unique, so the desired property fails.

One simple way to construct such a sequence is to alternate between two values (e.g.,
0 and x), for example:

SQZO, 31:0, SQZX, 53:0, 54:X, 0o0p Sn:x
where x # 0 mod n. Then define
ak:Sk—Sk,l, fork=1,...,n.

This ensures thata; + - - - +a, = S, # 0, and because every residue among Sy, . .., Sy
appears at least twice, the property fails.

Thus, for every n > 3, one can construct a sequence where no index i satisfies the
given condition.

The Casen =2

Now consider n = 2. In Z /27, there are only two residues: 0 and 1.

* The sequence Sy, 51, Sz has 3 elements in a 2-element set.
¢ By the pigeonhole principle, at least one residue appears twice.

¢ Therefore, the third must appear only once. So there exists a unique S;.
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Hence, the property must hold for n = 2.
A concrete check:

e If a1 isodd and a; iseven, thena; = 1,41 +a, = 1.

e If gy is even and a; is odd, then takingi =2,a, =1,and a, + a1 = 1.

So in both cases, the two partial sums are nonzero modulo 2, confirming the property.
Conclusion

¢ Forall n > 3, one may construct a sequence a1, ..., a, such that for every i,
at least one of the cyclic partial sums is divisible by #.

e For n = 2, such a counterexample is impossible, and the property always
holds.

Therefore, the only integer n > 2 for which the property holds is:

2]

Final Answer: The property holds if and only if n = 2.

- J

If n is odd, then S, will be 0, which means the sum of a; + a3 + - - - 4+ a, is divisible by #,
and this contradicts the problem statement. The model has made a calculation mistake in
this case and failed to realize that S,, # x for odd ns
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D.3 Evaluation Prompts

Prompt: Solution Evaluation Prompt

You are an expert mathematician tasked with rigorously evaluating the correctness
of a proposed solution to a mathematical problem, specifically in the style of the
International Mathematical Olympiad (IMO).

Below, you will receive:
1. The Problem Statement: A description of the problem to be solved.

2. The Candidate Solution: A step-by-step explanation of a proposed solution
to the problem.
Your evaluation should include:

* Logical Analysis: Carefully check each step for logical consistency, correct-
ness of mathematical reasoning, and appropriateness of methods used.

¢ Identification of Errors: Clearly pinpoint and describe any mathematical
errors, flawed logic, unjustified assumptions, or missing steps.

¢ Clarification: Briefly explain why each identified issue is problematic, refer-
ring explicitly to mathematical principles or concepts involved.

Provide your evaluation strictly adhering to the following structured response format:

Analysis:

{Provide a thorough, step-by-step analysis of the candidate solution. Clearly indicate
if and where logical fallacies, incorrect assumptions, or mathematical inaccuracies
occur. If the solution is fully correct, justify your reasoning thoroughly. }

Final Answer:
Clearly indicate the result of your analysis using exactly one of the following formats:

(Coreeet] o [Wiong]

Prompt: Solution Comparison Prompt

I will present a problem along with two candidate solutions. Your task is to evaluate
the solutions and determine which one is correct. Note that one solution is always
correct and one solution is always wrong.

The primary criterion for your judgment is the correctness of the arguments provided
in each solution.

Please respond using the following template:

Analysis:
{Provide your analysis of the solutions here, discussing the strengths and weaknesses
of their arguments. }

Final Answer:

{ ‘ Solution 1 ‘ or ‘ Solution 2 ‘ }
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D.4 Additional Notes

To mitigate recency bias, the solutions provided by the LLM and the real solutions were
randomly permuted during the comparative analysis experiment. Consistent outcomes
were observed across various prompts, indicating robustness in the experimental setup.
Furthermore, our investigation revealed that automated rating rubrics, such as the LLM-
as-a-judge approach, yielded similar comparative results. Notably, frontier LLMs did not
assign significantly higher ratings to correct solutions compared to incorrect ones. Due to
constraints in space, the present discussion is intentionally restricted to the binary evaluation
scenario.
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