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Abstract
Quantifying the elemental composition of a ma-
terial is a general scientific challenge with broad
relevance to environmental sustainability. Exist-
ing techniques for the measurement of atomic
abundances generally require laboratory condi-
tions and expensive equipment. As a result, they
cannot be deployed in situ without significant cap-
ital investment, limiting their proliferation. Mea-
surement techniques based on nuclear magnetic
resonance (NMR) hold promise in this setting
due to their applicability across the periodic ta-
ble, their non-destructive manipulation of sam-
ples, and their amenability to in silico optimiza-
tion. In this work, we learn policies to mod-
ulate NMR pulses for rapid atomic abundance
quantification. Our approach involves three inter-
operating agents which (1) rapidly align nuclear
spins for measurement, (2) quickly force relax-
ation to equilibrium, and (3) toggle control be-
tween agents (1) and (2) to minimize overall mea-
surement time. To demonstrate this technique, we
consider a specific use case of low-magnetic-field
carbon-13 quantification for low-cost, portable
analysis of foodstuffs and soils. We find signifi-
cant performance improvements relative to tradi-
tional NMR pulse sequencing, and discuss limita-
tions on the applicability of this approach.

1. Introduction
Developing scientific solutions to mitigate climate change
can, in certain cases, be reduced to the task of budgeting
or counting atoms of specific elements. These interpreta-
tions are commonly leveraged in multiple areas related to
sustainability, including soil health measurement, material
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impurities management, and emissions monitoring (Norris
et al., 2020). With such a simplification, this accounting
process can be applied as an objective function for control-
related tasks, which prevent those atoms from achieving
wasteful or pollutant fates in industrial processes. The car-
bon credit marketplace is a macroscopic example, as it seeks
to commodify carbon atoms by assigning a cost to their re-
lease (as greenhouse gases, or GHGs) and a reward to their
sequestration (as e.g. carbonates, organic compounds, or
pressurized gases) (Probst et al., 2024). However, such de-
carbonization strategies face a major challenge: accurately
and verifiably monitoring these elemental transactions in a
globally-scalable fashion (Coleman et al., 2023; Macfarlane
et al., 2024). Many techniques are commonly employed
to effectively count atoms (measure atomic abundances)
through chemical reactions and other destructive processes
under controlled conditions, but these techniques share fun-
damental limitations that hinder their effectiveness for cli-
mate objectives broadly.

These limitations motivate the development of a measure-
ment alternative which can meet the needs of climate change
solutions. In this work, we propose a scalable data-driven
method for rapid atomic abundance measurement in chal-
lenging measurement environments. Our contribution is
threefold. First, we train policies by reinforcement which
shape and sequence magnetic field pulses for use in a sim-
plified (low-field) nuclear magnetic resonance (NMR) spec-
troscope. Unlike incumbent procedures, this method is non-
destructive, uses inexpensive and small-scale hardware, and
generalizes to nuclear isotopes of many different elements.
Secondly, we present a fast, robust simulator for generating
large quantities of NMR spectroscopy data which is capable
of reproducing the nuclear spin dynamics of many differ-
ent samples in parallel when they are manipulated by an
arbitrary magnetic field. Lastly, we present a novel method
to manipulate these spins for atomic abundance measure-
ment, by training three inter-operating agents to orchestrate
an NMR pulse sequence. We demonstrate its performance
on the task of carbon-13 (13C) abundance measurement in
caffeinated water, using a simulated dataset derived from
laboratory NMR spectra, and find a significant performance
improvement relative to incumbent techniques.
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2. Preliminaries
Nuclear Magnetic Resonance (NMR) is a physical phe-
nomenon wherein the spins of atomic nuclei contained in
a magnetic field are pulsed with electromagnetic radiation,
causing them to precess before returning back in line with
the magnetic field (Nishimura, 1996). This phenomenon
is analogous to gently knocking a spinning top: it gyrates
before eventually returning to stable rotation around the
vertical axis. NMR spectroscopy is a measurement tech-
nique based on this phenomenon, in which a substance is
placed in a strong background magnetic field and is exposed
to a sequence of radio-frequency electromagnetic pulses
which cause the atomic nuclei to radiate radio-frequency
response signals at different frequencies according to their
nuclear spin characteristics. The electromagnetic emission
is measured at an axis perpendicular to the direction of the
background magnetic field, giving a signal known as the
free induction decay (FID). The Fourier transform of this
signal is the NMR spectrum appropriate to the sample, and
regression-based techniques are used to compare this spec-
trum to a library of reference spectra for identification and
analysis. To evaluate the relative abundance of the charac-
terized material in different sample, one generally compares
the integrals of their spectra in a fixed window of frequen-
cies. Many different pulse sequences have been designed to
target various properties of atoms and molecular bonds. The
most basic such pulses simply rotate spins of a given nuclear
isotope by a fixed polar angle relative to the background
magnetic field, with the extent normally denoted in radians
as e.g. a π

2 or a π pulse (Nishimura, 1996). NMR may be
applied to solid-phase samples, but is typically and more
readily applied to liquids (Reif et al., 2021).

Magnetic Resonance Imaging (MRI). NMR spectroscopy
is commonly applied in medicine as part of a more sophis-
ticated procedure known as MRI, which produces high-
resolution anatomical imagery by associating FIDs to points
in space, targeting the 1H nuclei in water (Nishimura, 1996).
NMR and MRI both have many prevalent applications in
food science, environmental monitoring, and various engi-
neering fields (Marcone et al., 2013; Dais & Hatzakis, 2013;
Soong et al., 2015; van der Klink & Brom, 2000).

Machine Learning for Low-Resource MRI. A current area
of emerging NMR and MRI research is centered around de-
veloping and applying benchtop low-voltage or zero-field
systems which use small permanent magnets or remove
the background magnetic field entirely (Tayler et al., 2017;
Zhao et al., 2024). These systems are of interest because of
their reduced cost, as well as their ability to measure in situ.
The approach thus represents a strong candidate for atomic
abundance measurement, since it addresses many of the
scalability concerns of laboratory-grade atomic abundance
analyzers. Machine learning has been applied sparingly to

NMR in this context, but data-driven methods are commonly
applied to MRI to reduce the time and resources required
for medical imaging and diagnostics. Magnetic resonance
fingerprinting is one such technique: it uses a pattern recog-
nition algorithm on labeled data to derive a pulse sequence
which can lead to direct imaging or segmentation of tissue
properties (e.g. whether it is cancerous). The authors of (Ma
et al., 2013) first introduced this method and demonstrated
it on samples of brain tissue, finding a significant reduction
in the required measurement time relative to standard ap-
proaches for the segmentation of grey matter from white
matter (12.3 seconds versus nearly 10 minutes). More re-
cently, deep learning was found to be highly effective at
correcting electromagnetic interference in a low-field MRI
setup (using a 0.05 T magnetic field) without any loss in
performance to a typical MRI (usually ∼ 2 T) (Zhao et al.,
2024). The authors showed that imaging of human subjects
used less power and generated less noise with this approach,
while requiring a comparable amount of measurement time.

Reinforcement Learning (RL) for NMR. Some recent
work has applied reinforcement learning techniques to gen-
eral molecular structure prediction with 80% accuracy (Srid-
haran et al., 2022), and to the classification of the geographic
origins of wine with 94% accuracy (Korenika et al., 2024).
However, neither of these works tuned the underlying NMR
pulse sequence. Our proposed method is most similar to
the earlier work in (Khaneja et al., 2005), which introduced
gradient ascent pulse engineering (GRAPE). GRAPE is a
form of model-predictive control (Schwenzer et al., 2021)
which demonstrated that optimal NMR pulse sequences for
coupled nuclear spin systems could be designed by gradient
descent on simulated data to minimize distance to a gen-
eral target state. However, the authors did not explicitly
construct such a target state appropriate to abundance mea-
surement.1 In addition, GRAPE develops pulse sequences
only in silico, and is only optimal given complete informa-
tion about the intermediate states of the spins. It can become
prohibitively computationally expensive for complex com-
pounds containing large numbers of effective spins, which
is an obstacle even in contexts where highly pure NMR
spin systems are used, such as quantum computation (Jones,
2024). The output of GRAPE also requires an accurate

1Note for domain experts: To see why this is nontrivial, con-
sider a spin- 1

2
quantum system in the case of a 2D readout. Achiev-

ing a pulse which is agnostic to the direction of the target state in
the transverse plane requires studying multiple pulses with differ-
ent such targets. A reward which averages across such target states
does not work, because it gives the direction of the background
field B0 as a target, i.e. |C⟩ = 1

2π

∫ 2π

0

(
|1⟩ + eiθ |0⟩

)
= |1⟩.

In this scenario, an optimal pulse which maximizes ⟨S2
x + S2

y⟩ is
just B1 = 0. Controlled experimental configurations to perform
pulse-free measurement are challenging to engineer, as they require
rapidly and repeatedly switching between measuring the sample
and measuring pure noise, similar to optical chopper setups.
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underlying physical model (Hamiltonian) for the spins in
the sample, which is not generally possible for complex,
long-chain molecules such as proteins (Hu et al., 2021).

Our Contribution. This work is the first to apply modern
reinforcement learning approaches to NMR pulse sequenc-
ing for rapid atomic abundance measurement. Relative to
methods such as GRAPE, we train policies by reinforcement
on observables which are actually accessible in real NMR
systems, so that our approach can exploit but does not rely
on a complete underlying description. In addition, while we
demonstrate the approach on simulated low-cost hardware,
our method does not require an accurate pre-determined
physical model of the underlying sample, and can be trained
directly on real samples. We do not encounter computational
barriers in our simulation-based results because we use the
macroscopic Bloch equations to model the system, which
are appropriate for a large sample of material (Nishimura,
1996). These are straightforward to simulate, and simplify
the design of objectives.

2.1. Simulator Design

To train policies, we emulate nuclear spin dynamics for a
general NMR spectrometer. Our NMR simulator is struc-
tured around an NMR environment that mimics a real-world
spectrometer by restricting the agent’s view to only high-
level information that would be measured experimentally.
Underneath this environment lies a spin simulator, which
applies a first-order differential equation solver to the Bloch
equations (see Appendix A), which model the time evolu-
tion of the individual nuclear spin vectors that compose a
specified sample. Given an applied magnetic pulse, a set
of nuclear spin parameters, and the chosen time resolution,
the spin simulator computes the response of the sample and
produces the net Mx and My magnetization components
of the sample. Before this output vector is passed back to
the NMR environment, Johnson-Nyquist instrument noise is
introduced. The profile of this noise is roughly constant in
frequency space (which we model as Gaussian in the time
domain), and has an amplitude determined by the tempera-
ture of the readout, as well as its associated bandwidth and
resistance (Perepelitsa, 2006).

The NMR environment receives the net calculated magneti-
zations and uses them to construct the state space presented
to the agents. To demonstrate the approach, we assume the
use of a two-axis magnetometer for signal readout, and a
single-axis Faraday coil to generate the magnetic field for
the pulse, though we emphasize that these are not require-
ments for the proposed method and can be easily changed
based on available hardware. Each state is represented as a
four-element tuple in two dimensions, comprising:

1. The observed transverse magnetization (Mx,My)

2. The newly applied pulse, [B1, 0, 0]
3. The constant background B0 field, [0, 0, B0]
4. Instrument parameters: runtime T and temperature τ .
5. The maximum observed magnetization observed

(maxt
√

M2
xt

+M2
yt

) thus far.

The temperature (which controls the instrument noise level)
evolves as τt+1 = τt ∗ C, where C ∼ N(1, στ ), and C
is redrawn at each timestep. While normally temperatures
are held constant during runs, this choice of state space
mimics the reduced capabilities of a low-cost in situ NMR
spectrometer, and provides sufficiently realistic conditions
for the agent to learn effective pulse modulation strategies.

We vectorize this environment using the SubprocVecEnv
class in OpenAI Gymnasium, which runs multiple indepen-
dent instances of the NMR in parallel. This considerably
accelerates the training process by enabling effective train-
ing over modern multi-core hardware or on a distributed
cluster. Furthermore, the agent is able to explore a diverse
set of samples concurrently, mitigating overfitting to a single
sample or specific simulator configurations. This setup also
facilitates running multiple instances of the same sample
in parallel, meaning that the that the noise inherent to each
simulation instance is averaged over many environments,
leading to more robust training and policies.

2.2. Laboratory Data and Spin Set Generation

Each atomic spin in our simulation is defined by a tuple
(γ, T1, T2), where γ is the gyromagnetic ratio, T1 is the
longitudinal (spin-lattice) relaxation time, and T2 is the
transverse (spin-spin) relaxation time.2 The gyromagnetic
ratio γ governs the rate at which a spin precesses around the
static magnetic field B0. The longitudinal relaxation time
T1 describes how quickly the the spin’s precession speed
decays after excitation, while the transverse relaxation time
T2 characterizes how rapidly spins lose phase coherence in
the transverse plane, causing the observable signal to decay.

To build a realistic spin set, we begin with the FID signal
produced by actual NMR measurements. We first dissolved
pure caffeine powder (Millipore Sigma, 99% purity) in wa-
ter at a concentration of 0.057 mol/L. We then performed a
serial dilution of this sample and collected 6 FIDs at progres-
sively lower caffeine concentrations. We used the default
1D NMR pulse (Single π

2 , 8000 scans, 2s acquisition time
per scan) in a JEOL502 two-channel ECZ spectrometer op-
erating at 500.44 MHz. We apply a Fourier transform to
these FIDs to obtain NMR spectra, which exhibits sharp
peaks corresponding to different atomic spins (γ, T1, T2)

2Note for domain experts: As this paper is primarily ad-
dressed to a machine learning audience, for simplicity we did not
introduce the concept of a chemical shift δ and instead label spins
by individually-defined effective gyromagnetic ratios γ.
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present in the sample. From the peak frequencies (also
known as chemical shifts), we infer the gyromagnetic ratios
γ of constituent spins. We use the exponential decay of the
FIDs to derive the average T2 for the spins, and sample T1s
from a Gaussian distribution as a source of training data
variability.

Next, we simulate a standard baseline one-dimensional
NMR experiment using the identified gyromagnetic ratios.
At this stage, the frequencies of the peaks in the simulated
spectrum match those of the real samples. However, the in-
tensities (peak heights) typically do not. We therefore adjust
the weights associated with each spin so that the simulated
peak heights align with those in the empirical spectrum.
These weights roughly represent the relative numbers of
each class of spin in the overall sample. By iterating this
process of matching the simulated spectrum to the measured
spectrum, we arrive at a spin set whose composition closely
aligns with the true samples’.

3. Experiments
In pursuit of a framework for counting atoms with NMR, we
explored and evaluated three reinforcement learning strate-
gies which build on one another. The guiding idea behind
our approach is to devise policies capable of manipulating
nuclear spins to squeeze the largest response possible out
of a given sample, under realistic environmental conditions.
The “loudness” or intensity of this signal is expected to be
directly proportional to the abundance of nuclear spins in a
sample (Nishimura, 1996). First, we ask whether an agent
trained to maximize this signal can perform better than a
baseline NMR pulse. Second, we test whether a policy to
quickly reset the system to its initial undisturbed state can
permit this maximum response to be quickly reproduced.
Lastly, we demonstrate that the decision to reset the system
can also be delegated to an agent.

For all policy trainings in these experiments, we employed
the Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017) provided in Stable-Baselines3 (Raffin et al.,
2021). Additional details regarding this approach are pro-
vided in Appendix B.

3.1. Model 1: Making Samples Chirp by Maximizing
Transverse Magnetization

In the first experiment, we aim to design a pulse which ac-
curately and quickly determines the maximum achievable
magnetization response for a compound of interest. For-
mally, we imagine placing a sample of material in a mild
background magnetic field along the z axis, and we reward
an agent for achieving large values of M2

x,t +M2
y,t, where

Mx,t and My,t are the net observed magnetizations in the x
and y directions (the directions of the magnetic field sensors

in the NMR), at timestep t. Intuitively, this phenomenon
should occur when roughly all spins in the system have been
coherently driven into the transverse plane, pointing in the
same direction for a short period of time. This alignment
causes a sharp and high-frequency jump in the observed
magnetization, which we refer to as a chirp.

To formalize our approach, we define a Markov Decision
Process (MDP), (S,A,Πsa,Γ, r), as follows:

• The state space, S, is defined above.
• The action space, A, is the continuous interval cor-

responding to B1 ∈ [−0.2, 0.2] Tesla, with B0 = 1
Tesla. This magnetic field configuration is inexpen-
sive to implement relative to those typically used
in laboratory-grade NMR setups (generally ranging
from 2 to 45 Tesla for B0 and up to ∼ 0.1 Tesla for
Helmholtz coil-pulsed B1) (Moser et al., 2017; Con-
radi, 2024). Importantly, unlike setups with stronger
B0, this choice of parameters can be achieved inexpen-
sively using a Faraday coil3 for B1 and a neodymium-
based permanent magnet for B0 (Barón et al., 2023).

• The policy Πsa denotes the learned distribution of ac-
tions conditioned on the observed state.

• The discount factor Γ is set to 0.99.
• The reward function at any timestep T is given by:

rT = max
0≤t≤T

(
M2

x,t +M2
y,t

)
. (1)

To evaluate the efficacy of this approach, we train the PPO
model (as described above) for 5M timesteps of length
0.2 ms across 50 distinct environments with στ = 0.01.
Each environment is initialized with a unique set of atomic
spins determined by the procedure outlined in Section 2.1.
We repeat model training on 5 fixed random seeds.

Figure 1 plots the maximum magnetization observed for a
collection of samples versus the concentration of caffeine
in those samples, comparing the learned pulse against the
standard 1D NMR pulse. The depicted relationship for
the learned policy is steeper and more monotone than that
of the 1D NMR pulse, indicating that a more precise and
direct relationship with concentration is achieved. The time
required for these maximum concentrations to be reached
was roughly 16% of the time required for a 1D NMR pulse
sequence to complete, representing a significant reduction.
However, because the policy drives the sample to a state
of higher magnetization, it may require significantly more

3The field strength of a solenoid made of wound copper wire
is µNI/L, with µ the magnetic permeability of air, I the cur-
rent flowing through the wire, and N the number of coil turns in
length L. For a 43-gauge enamel-wound copper wire of diameter
∼0.006 cm, the required current for a singly-wound coil to achieve
a B1 of 0.2 Tesla is 9.7 Amperes, comparable to the current drawn
by a home microwave.
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time to relax to its initial state. This is a problem if the
experiment is to be repeated many times in order to suppress
measurement noise, suggesting the need for a second policy
which can accelerate the sample’s return to equilibrium. We
address this concern in Experiment 3.2.

3.1.1. TRAINING WITH INCREASING NOISE

To understand the impact of increased noise on model ef-
ficacy, we modify the training procedure by progressively
increasing the instrument noise profile applied to the ob-
served magnetizations. The training begins with an insub-
stantial noise profile, allowing the model to initially focus
on learning how its actions affect the spins without being
hindered by noise. Every 500k timesteps, the noise level is
multiplied by a factor of 10. This gradual increase in noise
continues until the final 500k timesteps, at which point the
noise profile is identical to that under which the model in
the baseline Experiment 3.1 is trained. This staged approach
introduces the agent to increasingly challenging conditions
over time, while also preventing it from being overwhelmed
by noise in the early stages. We find that this increased
noise did not meaningfully change the capabilities of the
learned policy at achieving a high magnetization, compared
to the standard procedure used in Experiment 3.1. This
indicates that the model is either inherently robust to noise
variations or that the later stages of training, where noise
levels match those in Experiment 3.1, dominate the learned
policy. Consequently, our findings suggest that while pro-
gressive noise increases may prevent early instability, it does
not meaningfully improve final performance.

3.1.2. DIRECT OPTIMIZATION OF STANDARD 1D NMR
PULSE SEQUENCE

In this experiment, we initialize the agent with a pre-trained
policy derived from from the standard 1D NMR pulse se-
quence. This approach leverages the structure and known
efficacy of the standard pulse sequence as a prior, rather than
starting from scratch. By doing so, we seek to understand
whether features of existing approaches can be exploited to
design effective pulse sequences by reinforcement. The pro-
cess we apply here is analogous to the design of so-called
“soft” NMR pulses, which are slight deformations of the
standard or “hard” pulses (Brüschweiler et al., 1988).

To pre-train the model, we employ behavior cloning using
the imitation learning framework from the Stable-Baselines3
library (Raffin et al., 2021). Observation-action sequences
are generated by choosing the actions determined by apply-
ing the 1D NMR pulse sequence to the NMR environment,
where the observations are determined by the state of the
system, and the actions are the pulse values dictated by
the standard pulse sequence. The model is trained for 50K
epochs, with each epoch consisting of 2,048 timesteps in the

environment. During this phase, the agent learns to replicate
the time-dependent behavior of the standard pulse sequence.

Once pre-training is complete, the neural network weights
are transferred to the underlying network of the PPO agent.
The agent is then trained for 5M timesteps in the environ-
ment, following the same procedure used in the baseline
experiment detailed in Section 3.1. This approach allows
the agent to refine the standard 1D NMR pulse using our
reinforcement learning framework. Interestingly, the policy
converged rapidly, within the first 300K timesteps, which
suggests that the 1D NMR pulse may be a local minimum
for the loss function.

This model proved to be the most effective among our three
chirping models. As shown in Figure 1, it achieves a sub-
stantial increase in achieved magnetization, particularly in
higher concentration samples. This suggests that leveraging
the structured prior of the 1D NMR pulse sequence provides
a strong initialization, allowing the model to refine its policy
more efficiently and exploit domain-specific patterns that
improve performance.

3.2. Model 2: Accelerated Spoiling

The standard 1D NMR pulse sequence alternates between
applying a sinusoidal pulse and allowing the system to re-
set (i.e. not pulsing at all) during a fixed period. This
ensures that the system resets to the equilibrium state, so
that repeated pulses (or scans) can generate statistically-
independent samples of the same signal. The effect of
repeated measurement is to suppress noise at a rate pro-
portional to 1√

n
, where n is the number of scans. While this

conservative approach ensures accuracy, it is time-intensive.
An approach known as spoiling can be employed to more
quickly nullify residual transverse magnetization (Jehenson
& Bloch, 1991).

In this experiment, we learn an accelerated spoiling policy.
The MDP is the same as in Experiment 3.1, but the reward
at any timestep t is modified to

rt = −(M2
x,t + M2

y,t)− 1[t = T ](M2
x,T +M2

y,T ). (2)

This reward penalizes the model for the current transverse
magnetization at any step t, as well as the final transverse
magnetization at the end of the episode.

We find that the learned spoiling policy is highly effective
at rapidly reducing transverse magnetization by actively dis-
persing the spins from the transverse plane, which is how
the agent receives the system state after the chirp. Com-
pared to the standard method of simply applying no pulse,
our approach achieves an up to 28% reduction in average
magnetization over the evaluation period. This effect can be
visualized in Figure 2, where the policy outperforms passive
relaxation in driving the system to lower magnetization.
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Importantly, this accelerated relaxation occurs within a
timescale that is just a fraction of the system’s T2 relax-
ation time, whereas in the standard protocol, the system is
allowed to relax for multiple T2 periods. While the system is
not reset to equilibrium within this shortened relaxation pe-
riod, the suppression of magnetization is significant enough
that we can simply terminate the pulse after a short spoil-
ing time tS and achieve equilibrium more rapidly than the
incumbent approach.

3.3. Model 3: Toggled Chirping and Spoiling

In standard NMR spectroscopy, the spoiling period must
reset the transverse magnetization to below a threshold, so
that the sample is returned to its initial state before repeating
the pulse. In this experiment, we consider the possibility of
instead permitting a partial reset, by training a third policy
to choose which of the chirping or spoiling models has
control of the environment. After chirping with the model
trained in Section 3.1.2, the spoiling model from Section
3.2 can take over and push the spins toward equilibrium,
before the next chirp re-establishes high magnetization. The
MDP appropriate to this process has the same state space,
but with an additional binary flag indicating which of the
chirp or spoiling policies can control B1, as well as the time
tC since the chirping policy last had control and the time
tS since the spoiling model last had control. The action
space is a change to that binary flag, although this action
is only available 200 timesteps after the most recent toggle.
The reward function at any given timestep T is taken as the
change in maximum magnetization, with a penalty for long
chirp-spoil sequences:

rT = tS ×∆
[
max ||M⃗t||2

]∣∣∣∣t<T

t<T−tC

− tC × ||M⃗t||2 (3)

In Figure 4, we demonstrate that our toggle model outper-
forms the chirp-only model due to the repeated partial reset
facilitated by the spoiling stage. This result highlights the
importance of the interplay between the chirp and spoil-
ing models, which together enable us to maximize mag-
netization, quickly diminish transverse magnetization, and
subsequently restore high magnetization in a cyclic manner.

To further validate the necessity of the spoiling model within
this approach, we compare our toggle models performance
against a modified chirp procedure where the maximum
magnetization is artificially reset at the same points as the
toggling transitions. This experiment reveals that simply
setting the maximum magnetization to zero while the chirp
is running is insufficient for maximizing magnetization over
many runs. This limitation indicates that our MDP structure
effectively learns to associate states with their maximum
magnetization history, meaning that the learned policy par-
tially depends on knowledge of prior magnetizations. Thus,

we demonstrate that the benefit of the spoiling model within
this procedure arises solely from its ability to rapidly reduce
the transverse magnetization.

To better understand the behavior of the chirp and spoil-
ing models within the toggle framework, we visualize the
models’ actions as a function of the observed magnetiza-
tions as well as the corresponding state densities in Figure 3.
Across different environments and samples, we observe that
the chirping model consistently reaches the maximum mag-
netization in the same direction, validating the structured
control it asserts in the system. Additionally, we find that
the spoiling model applies a large RF pulse in a consistent
manner until the magnetization is significantly reduced, at
which point it will occasionally stop pulsing. The effect
of this RF pulse is evident in the state density shift in the
bottom two plots, where the distribution of magnetization
states rapidly transitions in the direction of the RF pulse ap-
plied by the spoiling model (the x direction). These findings
highlight the complementary roles of the chirping and spoil-
ing models within our toggling framework. Crucially, we
demonstrate that toggle between these models provides a su-
perior strategy relative to simple relaxation for maintaining
high magnetization and improving scan speed.

4. Limitations and Future Work
In this work, we introduced a novel technique to measure
atomic abundances using NMR pulse sequences which are
learned by reinforcement. While we demonstrate the suc-
cess of our approach on simulated samples of caffeine dis-
solved in water, it has fundamental limitations which con-
strain its applicability and require discussion. Most crucially,
the use of this method makes the implicit assumption that
the samples being measured with a given pre-trained chirp-
ing policy have same relative distributions of nuclei as the
samples used for training the pulse. As a result, any such
application of this measurement approach in the field will
require periodic cross-checks against traditional NMR to
ensure that distribution shift from the training data has not
occurred. Moreover, in this work we treated NMR pulses as
targeting individual atomic spins, but inter-nuclear interac-
tions within a sample such as proton coupling (Nishimura,
1996) can cause other elements to be activated by the applied
magnetic field, leading to radio-frequency responses which
interfere with our proposed procedure. Characterizing the
performance of this proposed method as applied on real sam-
ples of analytes of practical interest, in low-cost hardware,
is the clearest and most intriguing avenue of future research.
We note in addition that the results in Figure 3 (top left,
black dots) suggest the existence of a preferred direction for
abundance measurement in the transverse plane. It would
be of interest to compare our method against a variant of
GRAPE which uses this vector as a target state.
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Figure 1. The maximum magnetization achieved by our three chirping models, with a baseline of the 1D NMR pulse sequence. The
mean and standard error is across the five different fixed training seeds, as well as five environments (which can be interpreted as five
independent scans). We see a clear one-to-one relationship between molarity (concentration) and maximum magnetization for our trained
chirping policy. This was not the case for the incumbent 1D NMR approach (black line).
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Figure 2. Demonstration of the performance of our spoiling model in reducing the average magnetization in one environment compared to
the standard approach of applying no pulse.
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Figure 3. Heatmaps of the state-action relationship averaged over 50 independent scans of a sample. Lines represent the observed state of
the system, components of the transverse magnetization. Lines are weighted by (Top) the action of the model, and (Bottom) time. Plots on
the left visualize the chirping model’s behavior, while those on the right show the spoiling model’s behavior. In the top left, we include
black dots to indicate where the max magnetization was achieved in each environment.
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control.
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Impact Statement
This work presents a novel reinforcement learning-based
approach to optimize nuclear magnetic resonance (NMR)
spectroscopy for the purpose of atomic abundance measure-
ment. We demonstrate that utilizing reinforcement learning
to optimize the pulse sequence of these NMR systems can
provide accurate measurements while reducing acquisition
time. This approach has applications in environmental mon-
itoring, materials science, and chemical analysis by making
NMR-based sample property measurements more rapid, and
allowing measurement to occur in-situ (Vyalikh et al., 2024;
Simpson et al., 2018).

There are several potential implications of this work. First,
the configuration of our simulator as a low-field NMR spec-
troscope means that these techniques can be applied to sys-
tems costing several hundred times less than a traditional
NMR spectroscope (Michal, 2020). Second, the demon-
strated efficacy of our methods within the broader NMR
framework may build interest in machine learning-based
pulse sequencing, revisiting and advancing prior discover-
ies in the field which relied on model-predictive control
(Khaneja et al., 2005). Nontrivial applications of interest
for our setup include rapidly quantifying the water-soluble
carbon content of soils, which could have significant im-
plications for nature-based carbon crediting systems, and
enable more accurate and scalable verification of soil car-
bon sequestration. Due to its modularity, in agricultural
settings this approach can additionally support data-driven
optimization of fertilizer application and other precision
farming techniques, improving food system sustainability
and reducing its resource consumption.

While this work demonstrates promising results, several
limitations must be considered. First, all experiments were
conducted in simulation using a simplified dataset, mean-
ing that real-world implementation will likely present addi-
tional challenges. Deploying this approach in a production
NMR system would require significant computational re-
sources and energy consumption to train and deploy, i.e.
it has an environmental footprint which should be trans-
parently documented. Additionally, the accuracy of this
method depends on training the policy over a sufficiently
diverse distribution of samples. If the model encounters
out-of-distribution samples, its measurements could become

unreliable, posing potential risks in applications such as
carbon crediting and precision farming. Inaccurate carbon
sequestration estimates could lead to financial misallocation
in carbon markets, while errors in soil composition analysis
might result in improper fertilizer application, negatively
impacting both crop yields and environmental sustainability.
Ensuring robustness across a broad range of sample varia-
tions will therefore be critical for the practical deployment
of this method.
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A. Bloch equations
The Bloch equations describe the time evolution of magnetization observed in an NMR system. The relevant variables are:

• Mx,My,Mz , the components of the magnetization vector M⃗ .

• Bx, By, Bz , the components of the external magnetic field B⃗.

• γ, the nuclear spin’s gyromagnetic ratio.

• T1, the longitudinal (spin-lattice) relaxation time.

• T2, the transverse (spin-spin) relaxation time.

• M0, the equilibrium magnetization.

The corresponding system of coupled differential equations is:

dMx

dt
= γ(MyBz −MzBy)−

Mx

T2
, (4)

dMy

dt
= γ(MzBx −MxBz)−

My

T2
, (5)

dMz

dt
= γ(MxBy −MyBx)−

Mz −M0

T1
. (6)

B. Policy architecture and supporting information
Here, we outline the structuring of the Markov Decision Process (MDP) and the architecture of the Proximal Policy
Optimization (PPO) agent as implemented in Stable-Baselines3 (Raffin et al., 2021). The parameters of the policy network
and the training pipeline are contained in Algorithms 1 and 2.

In this work, we structured our problem statement to employ a Markov Decision Process (MDP), a standard formalism for
decisionmaking under uncertainty which is frequently applied in the context of reinforcement learning. An MDP is defined
by the tuple (S,A,Πsa, r,Γ), with:

• S: the set of possible states the system can occupy.
• A: the set of possible actions the agent can take. The system (S,A) is termed the environment, and it evolves with

transition probabilities P(s|s′, a), which define the probability of that the environment evolves to state s after action
a is taken in state s′. In this paper, the transition probabilities effectively reduce to delta functions when we disable
Johnson-Nyquist noise, because the Bloch equations are deterministic.

• Πsa: the policy which determines the agent’s behavior to manipulate its environment. While deterministic policies are
possible, in our case the policy is randomly distributed and modeled with parameters θ as Πsa = P(a|s) ∼ πθ(a|s). 4

• r(s, a): the reward function which maps each state-action pair to a scalar signal indicating the desirability of the state
with respect to a specified metric. The agent’s policy is trained to maximize this reward. Note that the reward functions
used in this work implicitly depend on a but are specified only as functions of the state, r(s).

• Γ ∈ [0, 1): the discount factor which is responsible for balancing immediate rewards against future rewards. It
multiplies contributions to the cumulative reward in each timestep, controlling the divergence of cumulative rewards
over time and enabling the agent to drive the environment toward optimal outcomes on a long time horizon.

In many real-world settings the agent may not observe the full environment, but instead a state st which is a subset of all
available observables. This was the case for our setup, and we explain which values are masked in the details to follow.

4We avoided the more standard notation Πsa = π in the main body of the paper so as to avoid confusion with the angular shifts
induced by 1D NMR pulses, e.g. “pulsing with π” versus “pulsing by π.”
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At each timestep, the agent observes the current state st, chooses an action at ∼ πθ(·|st) according to its policy, receives a
reward rt = r(st, at), and transitions to a new state st+1 ∼ P(·|st, at). The goal of the agent is to learn parameter values
that maximize the expected return, defined as the discounted sum of rewards:

Eπ

[ ∞∑
t=0

Γtrt

]
. (7)

The structure provided by an MDP allows for the development of gradient-based policy optimization methods such as
the Proximal Policy Optimization (PPO) agent developed in this work. The agent’s behavior is iteratively improved by
updating a control policy which samples its actions probabilistically. The policy is learned in a data-driven fashion through
interactions with the environment (of which it observes a fraction, the state-space S) and estimating updates. As reward
function will generally be noisy or sparse, it can be difficult to estimate the payoff attributable to a given state. In the PPO
agent we use in this analysis, we model it by a value function Vϕ, which has learnable parameters ϕ. To guide learning, it
estimates the expected future return R starting from state s. Formally,

Vϕ(s) ≈ Eπ

[ ∞∑
t=0

Γtrt

∣∣∣∣∣ s0 = s

]
. (8)

The parameters ϕ are learned by minimizing the squared difference between the predicted value and the observed return:

Lvalue =
1

M

∑
t

(
Vϕ(st)− R̂t

)2

, (9)

where the estimated return R̂t is defined as the value of the state at time t plus some estimate of advantage Ât:

R̂t = Vϕ(st) + Ât. (10)

In our PPO implementation, the advantage Ât is estimated from temporal differences δt using Generalized Advantage
Estimation (GAE) (Schulman et al., 2018). This means that after collecting experience, we compute the following recursively,
using knowledge of future states:

δt = rt + ΓVϕ(st+1)− Vϕ(st) (11)

Ât = δt + ΓλÂt+1 (12)

where λ is a tunable parameter. These definitions enable the basic training pipeline we outline in Algorithm 2, which learns
ϕ and θ as defined in Algorithm 1.

We list below the major similarities of the Stable-Baselines3 PPO implementation with respect to the original work
in (Schulman et al., 2017).

• On-policy. Policy is updated based on the behavior of the very policy being trained, not on the behaviors of other
policies. Samples are not reused as in off-policy approaches.

• Clipping to constrain updates. Gradient clipping for actor by default, optional gradient clipping for value function
(disabled by default). No trust region, no use of second-order derivatives or constraints to tune or stabilize.

• Advantage estimation. By default, uses Generalized Advantage Estimation (GAE) (Schulman et al., 2018).

• Actor-critic. Policy network πθ is distinct and separate from value network Vϕ.

• Environment handling. Adapts to vectorized environments and allows for both continuous and discrete action spaces.

We emphasize that our policy network is a simple dense network, see Algorithm 1. We did not consider timeseries variants
of this architecture which apply LSTMs or similar recurrent approaches to condition model actions on the history of the
state. We also note that the Bloch equations (written in Appendix A) are local in time t, so that complete information about
the state at any given time is sufficient to infer the next timestep (i.e. the dynamics are Hamiltonian). Within those equations,
we effectively mask the Mz,M0, T1, T2, and γ values from the agent, so a non-recurrent architecture is not guaranteed
to perfectly reconstruct or manipulate these dynamics. Nevertheless, it is interesting that our approach is performant
as-is without such architectural considerations. Future work will investigate whether recurrent approaches improve the
performance above this baseline.
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Algorithm 1 Default PPO MlpPolicy Architecture in Stable-Baselines3
1: Input: Observation s ∈ R7 (R10 in the case of the toggle policy, to account for tC , tS , and the binary flag)

2: Actor network for magnetic field:
µθ(s)← MLPactor(7 or 10, [64, 64], 1) ▷ MLP with 2 hidden layers of size 64 and tanh activations
log σθ is a trainable scalar, shared across actions
πθ(a|s) = N (µθ(s), σ

2
θ)

3: Actor network for binary toggle flag:
fθ(s)← MLPactor(10, [64, 64], 1) ▷ MLP with 2 hidden layers of size 64 and tanh activations
πθ(a|s) = Bernoulli (fθ(s))
Equivalently, πθ(a = 1|s) = sigmoid(fθ(s))

4: Critic Network:
Vϕ(s)← MLPcritic(7 or 10, [64, 64], 1) ▷ MLP with 2 hidden layers of size 64 and tanh activations

5: Initialization: Orthogonal
• Gain

√
2 for all hidden layers

• Gain 0.01 for actor output
• Gain 1.0 for critic output

6: Stochastic action sampling: a ∼ πθ(a|s), a ∈ R1
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Algorithm 2 PPO training pipeline in Stable-Baselines3, including hyperparameters used to produce the final results.
Require: Initialized policy πθ and value function Vϕ.

1: for each update iteration do
2: for each timestep t = 0, . . . , T do ▷ Collect experience over T = nsteps × nenvs transitions
3: Observe state st, take action at ∼ πθ(·|st)
4: Record (st, at, rt, log πθ(at|st), Vϕ(st))
5: end for

6: ÂT ← 0
7: for each timestep t = T − 1, . . . , 0 do ▷ Estimate advantages Ât using GAE (Schulman et al., 2018)
8: δt ← rt + ΓVϕ(st+1)− Vϕ(st), (Γ = 0.99)

9: Ât ← δt + ΓλÂt+1 (λ = 0.95)
10: R̂t ← Ât + Vϕ(st) ▷ Compute returns
11: end for

12: if advantage normalization enabled (True) then Ât ← Ât−mean(Ât)

std(Ât)+10−8

13: end if

14: for K epochs do
15: for each minibatch of size M = 64 do
16: r̃t(θ)← πθ(at|st)

πθold (at|st) ▷ Compute importance sampling ratio

17: LCLIP
t (θ)← min

(
r̃t(θ)Ât, clip(r̃t(θ), 1− ϵ, 1 + ϵ)Ât

)
, (ϵ = 0.2) ▷ Clip batch loss

18: Lpolicy = − 1
M

∑
t L

CLIP
t ▷ Compute policy loss

19: if value clipping enabled (False) then Vpred ← Vold + clip(Vϕ(st)− Vold,−ϵvf, ϵvf)
20: else Vpred ← Vϕ(st)
21: end if

22: Lvalue =
1
M

∑
t

(
Vpred − R̂t

)2

▷ Compute value loss

23: Lentropy ← − 1
M

∑
tH[πθ](st) ▷ Compute entropy loss

24: L← Lpolicy + c1Lvalue + c2Lentropy (c1 = 0.5, c2 = 0.01) ▷ Total loss

25: ∇θL← ∇θL
∥∇θL∥ ×min (∥∇θL∥,max grad norm = 0.5) ▷ Clip gradient norm

26: θ ← θ − α∇θL (α = 0.003) ▷ Gradient step

27: K̂L← Et [r̃t(θ)− 1− log r̃t(θ)] ▷ Estimate KL divergence
28: if K̂L > 1.5× (target KL =∞) then break ▷ KL early stopping (disabled)
29: end if
30: end for
31: end for
32: end for
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