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Abstract

Current visual question answering (VQA) tasks mainly consider answering human-
annotated questions for natural images. However, aside from natural images,
abstract diagrams with semantic richness are still understudied in visual under-
standing and reasoning research. In this work, we introduce a new challenge of Icon
Question Answering (IconQA) with the goal of answering a question in an icon
image context. We release IconQA, a large-scale dataset that consists of 107,439
questions and three sub-tasks: multi-image-choice, multi-text-choice, and filling-in-

the-blank. The IconQA dataset is inspired by real-world diagram word problems
that highlight the importance of abstract diagram understanding and comprehensive
cognitive reasoning. Thus, IconQA requires not only perception skills like object
recognition and text understanding, but also diverse cognitive reasoning skills,
such as geometric reasoning, commonsense reasoning, and arithmetic reasoning.
To facilitate potential IconQA models to learn semantic representations for icon
images, we further release an icon dataset Icon645 which contains 645,687 colored
icons on 377 classes. We conduct extensive user studies and blind experiments and
reproduce a wide range of advanced VQA methods to benchmark the IconQA task.
Also, we develop a strong IconQA baseline Patch-TRM that applies a pyramid
cross-modal Transformer with input diagram embeddings pre-trained on the icon
dataset. IconQA and Icon645 are available at https://iconqa.github.io.

1 Introduction

We are witnessing an exciting development of visual question answering (VQA) research in recent
years. The long-standing goal of the VQA task is to exploit systems that can answer natural questions
that correspond to visual information. Several datasets have been released to evaluate the systems’
visual and textual content understanding abilities [3, 57, 14, 21, 18, 52]. One of the underlying
limitations of current VQA datasets is that they are focusing on answering visual questions for natural
images. However, aside from natural pictures, abstract diagrams with visual and semantic richness
account for a large proportion of the visual world. For instance, it is shown that emojis can express
rich human sentiments [26, 10], and diagrams like icons can map the physical worlds into symbolic
and aesthetic representations [31, 40, 24].

Some pioneering works attempt to propose datasets that are capable of answering questions for ab-
stract diagrams. However, these datasets either address domain-specific charts, plots, and illustrations
[26, 22], or are generated from limited templates [55, 48, 21]. These limitations impede their practical
applications in real-world scenarios. For example, in elementary school, abstract diagrams in math
world problems are involved with diverse objects and various reasoning skills [25].

To address these shortcomings, we introduce Icon Question Answering (IconQA), a new challenge
for abstract diagram visual reasoning and question answering. The task, stemming from math word
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Q: What is the man doing?
A: riding a motorcycle

Q: Which object is next to the one 
shaped like a cube?
C:

Q: How many sticks are there?
A: 80

Q: Which picture shows the pizza inside 
the oven?
C: (A) left one (B) right one

CLEVR

IconQA

Q: How many tomatoes are there?
A: 5

Q: How many objects are metal things?
A: 4

VQA 2.0VQA

Figure 1: Top: Examples in three popular VQA datasets: VQA [3], VQA 2.0 [14], and CLEVR [21].
Bottom: Examples of three sub-tasks in our IconQA dataset. For answering these icon questions, it
requires diagram recognition and text understanding, as well as diverse cognitive reasoning skills.

problems for children [41], exhibits a promising potential to develop education assistants. We name
the proposed task as IconQA because the images depict icons, which simplify recognition and allow
us to focus on reasoning skills for further research. We release IconQA, a large-scale dataset that
contains 107,439 QA pairs and covers three different sub-tasks: multiple-image-choice, multiple-

text-choice and filling-in-the-blank. A typical IconQA problem is provided with an icon image and a
question, and the answer is in the form of either a short piece of text or a choice from multiple visual
or textual choices. Correctly answering IconQA questions needs diverse human intelligence skills.
As the examples in Figure 1 show, IconQA poses new challenges for abstract diagram understanding
like recognizing objects and identifying attributes. Besides, it is critical to develop diverse cognitive
reasoning skills, including counting objects, comparing attributes, performing arithmetic operations,
making logical inferences, completing spatial reasoning, or leveraging external commonsense to
answer IconQA questions. More examples from the dataset are shown in Appendix A.1.

We use the IconQA dataset to benchmark various VQA approaches in the IconQA task, including
four attention-based multimodal pooling methods [2, 28, 54, 11] and four Transformer-based pre-
trained methods [33, 6, 53, 29], as illustrated in Figure 6. Also, we conduct extensive user studies to
evaluate the performance differences between the algorithms and human beings. Three blind studies
show that the IconQA dataset is robust against biased shortcuts when answering icon questions.
We further develop a strong baseline called pyramid patch cross-modal Transformer (Patch-TRM),
which effectively learns implicit visual and linguistic relationships in IconQA. Patch-TRM parses the
diagrams into patch sequences in a spatial pyramid structure and learns a joint embeddings within
a multimodal Transformer. Along with the IconQA dataset, we collect an auxiliary icon dataset,
Icon645, that features 645,687 colored icons on 377 object classes. The icon dataset is used to
pre-train the diagram embedding module in Patch-TRM to enhance abstract diagram understanding.

Our contributions can be summarized as 1) we propose a new challenge, IconQA, that requires
abstract diagram understanding of icon images and diverse visual reasoning skills; 2) we establish
two large-scale datasets: IconQA, a question answering dataset in the icon domain, and Icon645, an
icon dataset for model pre-training; 3) we benchmark the IconQA dataset extensively via experiments
on eight existing methods and develop a strong multimodal Transformer-based baseline.

2 Related Works

VQA Datasets. There have been efforts to develop datasets for the visual question answering (VQA)
task since the first large-scale benchmark was introduced in [3]. Early released datasets [14, 30, 47, 52]
contain natural images and related questions, where understanding the visual and textual contents is
essential for question answering. Some recent datasets introduce questions that involve more diverse
visual scenes or require external knowledge to answer, which leads to more complex visual and
semantic reasoning for question answering. For example, CLEVR [21] is a synthetic dataset that
serves as a diagnostic test for a range of visual reasoning abilities over combinations of three object
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shapes. However, these datasets are limited to the natural image domain and pay little attention to
abstract diagrams, which also have informative semantics and wide applications.

Diagram QA Datasets. To address the need for vision-and-language reasoning for diagrams, several
abstract diagram QA datasets have been developed. For example, abstract VQA [3, 55] considers
the task of answering questions on abstract scenes. Similarly, NLVR [48], FigureQA [23], and
DVQA [22] feature diagrams of scientific plots that are generated with several figure types and
question templates. However, questions and diagrams in these datasets are generated from limited
templates, leading to the existence of unintended linguistic shortcuts for question answering. Some
more works have proposed datasets of middle school math or science problems in more practical and
complex scenarios [46, 27, 43, 44, 37]. A central limitation of the subject QA datasets is that they
require complex domain-specific knowledge, which makes disentangling visual reasoning and domain
knowledge difficult. Herein, we address these limitations by introducing the IconQA dataset, where
only elementary commonsense is required. Through IconQA, we aim to provide a new benchmark
for abstract scene understanding and learning different visual reasoning skills in real-world scenarios.

VQA Methods. Early VQA approaches usually combine multi-modal inputs by applying attention
mechanisms over image regions or question words [28, 39, 38, 12, 54, 11]. Inspired by the semantic
nature of VQA images, a line of approaches adopt object proposals from pre-trained object detectors
and learn their semantic relationships [28, 54, 11]. As Transformers achieve excellent performance on
vision tasks, pioneering works have attempted to use pre-trained models to learn visual representations
for natural images in the VQA task [36, 33, 6, 29] and achieve significant improvements. However,
current VQA models are not capable of extracting meaningful visual representations from abstract
diagrams, as they require image embeddings or object proposals learned from natural images. Instead,
we develop a strong baseline that feeds spatial patch sequences into a Transformer encoder that is
powered by the embedding module pre-trained on our Icon645 dataset.

3 The IconQA Dataset

The IconQA dataset provides diverse questions that require abstract diagram recognition, compre-
hensive visual reasoning skills, and basic commonsense knowledge. IconQA consists of 107,439
questions split across three different sub-tasks. To the best of our knowledge, IconQA is the largest
VQA dataset that focuses on real-world problems with icon images while involving multiple human
intelligence reasoning abilities (see Table 4).

3.1 Data Collection

We aim to collect icon-based question answering pairs that involve multiple reasoning skills, such as
visual reasoning and commonsense reasoning. To construct the IconQA dataset, which stems from
real-world math word problems, we search for open-source math textbooks with rich icon images and
diverse topics. Of those, we choose IXL Math Learning which compiles popular textbooks aligned to
California Common Core Content Standards1. We ask well-trained crowd workers to collect problems
that cover content from pre-K to third grade, as these problems usually contain abstract images and
involve little to none complex domain knowledge. With the driven interest of visual reasoning over
abstract images, we filter out the questions that do not accompany icon images or only have images
in black and white. Redundant or repetitive data instances are also removed. Question choices are
randomly shuffled to ensure a balanced answer distribution. See Appendix A for full details of the
dataset collection and usage.

3.2 Data Analysis

Finally, we collect 107,439 IconQA data instances, where each data point contains a colored icon
image, a natural language question, optional image or text choices, as well as a correct answer. The
IconQA dataset consists of 107,439 questions and is divided into train, validation, and test splits with
a ratio of 6:2:2, as shown in Table 1. The dataset consists of three sub-tasks: multi-image-choice,
multi-text-choice, and filling-in-the-blank. The multi-image-choice sub-task is defined as choosing
the correct image from a list of image candidates based on a given diagram and its corresponding
question. Similarly, the multi-text-choice sub-task is defined as a multiple choice question with 2-5
1https://www.ixl.com/standards/california/math
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Table 1: Statistics for the IconQA dataset.
Tasks All Train Val Test

Multi-image-choice 57,672 34,603 11,535 11,535
Multi-text-choice 31,578 18,946 6,316 6,316
Filling-in-the-blank 18,189 10,913 3,638 3,638

All 107,439 64,462 21,489 21,489

Table 2: Skill numbers for questions in IconQA.
Task Avg. 1 skill 2 skills 3 skills

Multi-image-choice 1.51 55.78% 37.44% 6.77%
Multi-text-choice 1.73 33.21% 60.14% 6.65%
Filling-in-the-blank 1.81 28.30% 62.43% 9.25%

All 1.63 44.50% 48.34% 7.16%
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Figure 2: (a) Question statistics based on number of words. (b) Top 40 icons mentioned in the IconQA
question texts and their appearance percentage. These icons cover various types of real-world objects.

text choices and an abstract diagram. The filling-in-the-blank sub-task is similar to the common VQA
task, requiring a brief text answer for each question, except in IconQA, the images are icon images
instead of natural images.

Questions. Figure 2 (a) illustrates the distribution of question lengths of each sub-task in the IconQA
dataset. For simplicity, all questions longer than 35 words are counted as having 35 words. Questions
in the multi-text-choice sub-task distribute more evenly, while for multi-img-choice, there is a long-tail
distribution due to the complexity of textual scenarios. We find that some icon objects are frequently
mentioned in the questions. In Figure 2 (b), the frequencies of the 40 most frequently mentioned icons
are shown. These icon entities cover different daily-life objects such as animals, plants, shapes, food,
etc. We cluster question sentences into different types based on frequent trigram prefixes starting
the sentences. The distribution of questions is visualized in Figure 3. Importantly, the diversity in
the question distribution implies the requirement of high-level understanding of textual and visual
contents in IconQA. Figure 4 shows the word cloud of the question text in IconQA after eliminating
the stop words. The most frequent words: shape, many, and object indicate that answering IconQA
questions requires the model to identify a variety of geometric shapes and icon objects. Inspired by
this, learning informative representations for icon images plays an important role in visual reasoning
for the IconQA task.

Figure 3: Question types in IconQA. Figure 4: Word cloud of the question text in IconQA.

Skill Categories. Our IconQA dataset contains questions of multiple different cognitive reasoning
and arithmetic reasoning types that can be grouped into 13 categories, shown in Table 3. We annotate
each question in IconQA with its corresponding skill types based on the tags provided by the original
problem sources. Figure 5 shows the distributions of questions related to each skill. For instance,
to answer 13.8% of the questions in IconQA, the model has to be capable of comparing object
attributes. Additionally, each question can be related to up to three skills out of these 13 categories,
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and on average, a question requires 1.63 skills. The detailed statistics are demonstrated in Table 2. In
general, the filling-in-the-blank sub-task consists of questions that require the most number of skills,
averaging 1.81 skills per question. 9.25% of the filling-in-the-blank questions require 3 skills. As the
examples from IconQA shown in Figure 1, the first and second questions require the skills of scene

understanding and spatial reasoning. The third example asks how many sticks exist in the diagram,
requiring the basic ability of counting and basic algebra operations. As stated before, the IconQA
dataset requires a wide range of skills for a model to perform well on IconQA.

Skill types Description

Geometry Identify shapes, symmetry, transformations
Counting Count objects, shapes
Comparing Compare object attributes
Spatial Identify spatial positions and relations
Scene Understand abstract scenes
Pattern Identify next and different patterns
Time Identify time of clocks, events
Fraction Perform fraction operations
Estimation Estimate lengths, large numbers
Algebra Perform algebraic operations
Measurement Measure widths, lengths, heights
Commonsense Apply external knowledge
Probability Perform probability and statistics operations

Table 3: Definition of reasoning skill types.
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Figure 5: Skill distribution in IconQA questions.

Comparisons to Other Datasets. We compare our IconQA dataset with two datasets on natural
images and five datasets on abstract diagrams in Table 4. To summarize, IconQA is different from
these datasets in various aspects. Unlike natural images (VQA [3], CLEVR [21]) or abstract diagrams
like scenes, charts, plots, and illustrations (VQA-Abstract [3], DVQA [22], NLVR [48], AI2D [26],
Geometry3K [37]), IconQA features icon images and covers the largest object set of 388 classes. As
questions in IconQA stem from real-world math problems and they may describe complex problem
scenarios, IconQA has the longest question length among all related datasets. Furthermore, IconQA
requires both commonsense and arithmetic reasoning due to its origin from real-world problems.
Lastly, IconQA contains more QA task types including answering questions with image choices.

Table 4: Statistics for the IconQA dataset and comparisons with existing datasets.

#QA #Image AvgQ MaxQ Image Type QSource #Object #Task VisualAns CommonSen Arithmetic

VQA [3] 614,163 204,721 6.1 23 Natural Annotated - 2 X
CLEVR [21] 999,968 100,000 18.4 43 Natural Generated 3 1
VQA-Abstract [3] 150,000 50,000 6.0 21 Scene Annotated 131 2
DVQA [22] 2,325,316 300,000 10.3 23 Bar chart Generated - 1 X
NLVR [48] 92,244 92,244 11.2 25 Scatter plot Generated 3 1
Geometry3K [37] 3,002 2,342 10.1 46 Diagram Real-world 4 1 X
AI2D [26] 4,563 4,903 9.8 64 Illustration Real-world - 1 X
IconQA (Ours) 107,439 96,817 8.4 73 Icon image Real-world 388 3 X X X

3.3 Impact and Ethics

Impact & Usage. IconQA is useful for not only follow-up research projects but also real-world
applications (e.g. K-6 education applications like tutoring assistants). Moreover, visual recognition in
the abstract domain is essential to general AI agents, but rarely investigated in the community, posing
new challenges in abstract and symbolic visual reasoning – a natural ability of human.

Social Ethics. Unlike VQA datasets in the natural image domain, IconQA is completely built upon
abstract icon images. Therefore, it is less likely to be used in surveillance systems that might infringe
on people’s privacy. Moreover, due to the abstract nature of the dataset, IconQA does not contain any
sensitive personal information such as gender and race, nor does it contain data that might exacerbate
biases against under-represented communities. Therefore, after careful examinations of our dataset,
we think the dataset is unlikely to be used to harm people directly.

4 The Icon645 Dataset

As discussed in Section 3.2, IconQA questions are accompanied by abstract diagrams that cover a
wide range of icon objects. Using existing backbone networks to extract image representations for
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Table 5: Collected icon examples in the Icon645 dataset.
Icons Examples Icons Examples

Bed Bucket

Cake Car

Castle Dog

Giraffe Kite

Soda Tree

these icon images is inadequate, as most of these networks are pre-trained on natural images. To
overcome the limitation, we develop a new large-scale icon dataset for pre-training existing vision
backbone networks. We use the collected icon data to pre-train the current backbone networks, which
can be applied to extract diagram representations in IconQA.

We retrieve the 388 icon classes mentioned in the question texts from Flaticon2, the largest database
of free vector icons. After removing 11 classes that can’t be retrieved, we construct an icon dataset
containing 377 classes, called Icon645. As summarized in Table 10 (Appendix), the Icon645 dataset
includes 645,687 colored icons with a minimum size of 64 by 64 and a maximum size of 256 by 256.
Examples in Table 5 show that our collected icons include a wide variety of colors, formats and styles.
On top of pre-training encoders, the large-scale icon data could also contribute to future research on
abstract aesthetics and symbolic visual understanding. In this work, we use the icon data to pre-train
backbone networks on the icon classification task in order to extract semantic representations from
abstract diagrams in IconQA. See Appendix B for the details of data collection and analysis.

5 Benchmarks

In this section, we first develop a patch cross-modal Transformer model (Patch-TRM) as a strong
baseline for the IconQA task. To benchmark the IconQA dataset, we consider multi-modal pooling
methods with attention mechanisms [2, 28, 11, 54], Transformer-based VQA approaches [36, 6, 53,
29], and three blind study methods as benchmark models, as summarized in Figure 6. Additionally, a
user study is conducted to explore the performances of human beings in different age groups. In the
sections below, we discuss the main principles of the core networks in the benchmarks we performed.

Human

Fusion

DFAF

Joint Feature

GRU Feature

Dynamic co-attention flow

R-CNN Features

Fusion

MCAN

Joint Feature

LSTM Feature

Modular co-attention

R-CNN Features

Blind Study

Attention

Transformer
BERT Encoder

Fusion

Fusion

BAN

Joint Feature

GRU Feature

Bilinear co-attention

R-CNN Object

Classifier

Top-down visual attention

Fusion

Top-Down

Joint Feature

LSTM Feature

ResNet Features

BERT Encoder

VisualBERT
Question Tokens Image Proposals

Pre-trained on image caption data

BERT Encoder

UNITER
Image Proposals Question Tokens

Pre-trained on four image-text datasets

BERT Encoder

ViT
Question Tokens Image Patches

Pre-trained on recognition datasets

BERT Encoder

ViLT
Question Tokens Image Patches

Pre-trained on multiple datasets

Figure 6: An overview of benchmark baselines on the IconQA task.

5.1 Our Baseline Model

Inspired by recent advances Transformer has achieved in vision-language tasks [33, 36], we develop
a cross-modal Transformer model Patch-TRM for icon question answering. Taking the multi-image

choice sub-task as an example, the overall architecture is shown in Figure 7. The diagram is first
parsed into ordered patches in a hierarchical pyramid layout. These patches are then encoded by
a pre-trained ResNet and passed through a vision Transformer. Question text is encoded by a
language Transformer and fused with patch embeddings via the attention mechanism. The encoded
image choices are concatenated with the joint diagram-question representation and then fed to a
2Flaticon: https://www.flaticon.com/
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Figure 7: Our IconQA baseline Patch-TRM. Patch-TRM takes patches parsed from a hierarchical
pyramid layout and embeds them through ResNet pre-trained on our Icon645 dataset. The joint
diagram-question feature is learned via cross-modal Transformers followed by the attention module.

classifier for question answering. The other two sub-tasks utilize similar network architectures, except
that in the multi-text-choice sub-task, we use an LSTM encoder [17] for choice embedding, while
filling-in-the-blank does not need a choice encoder.

Current dominant VQA methods either rely heavily on the ResNet backbone network to extract
image features or depend on the Transformer encoders to learn image embeddings. However, these
networks are pre-trained on natural images and are likely to fail to extract meaningful representations
or reasonable object proposals when processing the diagrams in IconQA. Instead, we pre-train
the ResNet network on the icon classification task with the icon dataset we compiled (Section 4).
Patch-TRM hierarchically parses the diagram into patches that retain complete objects to a large
extent, and the parsed patches are embedded by the pre-trained ResNet network before being fed
into the vision Transformer. The hierarchical parsing structure, along with the ResNet pre-trained on
icon data facilitate our Patch-TRM to learn informative diagram representations for the IconQA task.
More details of the pre-training task are discussed in Section 6.4.

5.2 Benchmark Methods

Attention models. We construct four attention models for benchmarking. The first model implements
Top-Down attention [2] for VQA, which is a strong attention method that applies free-form based
attention on image representations from a pre-trained ResNet-101 network. The remaining three
models utilize the bottom-up attention mechanism with the help of object detection proposals
from Faster-RCNN [42]. Specifically, BAN [28] proposes a method that utilizes bilinear attention
distributions to learn joint vision-language information. DFAF [11] is an advanced model that applies
self-attention and cross-modal attention and introduces the information flow to help the model focus
on target question words and image regions. The last approach, MCAN [54], learns the self-attention
on the questions and images and the question-guided-attention of images jointly.

Transformer models. Four Transformer-based models are also implemented as benchmarks. ViL-
BERT [36] and UNITER [6] are two Transformer-based approaches that take image object proposals
from Faster-RCNN [42] and question tokens as inputs. Specifically, ViLBERT learns the joint
representation of the image content and the natural language content from image proposal regions
and question tokens, while UNITER processes multimodal inputs simultaneously for joint visual
and textual understanding. The last two benchmarks ViL [53] and ViLT [29] are more recently
proposed Transformer models that take image patch tokens instead of object proposals as inputs when
representing the image.

Blind study models. We develop three models to check for possible data biases in the IconQA
dataset. A random baseline picks up one from the given choice candidates for the multiple-choice

sub-tasks while predicts the answer by randomly selecting one from all possible answers in the train
data for the filling-in-the-blank sub-task. Q-Only is set up similar to the Top-Down [2] model, but it
only considers textual inputs. This baseline learns the question bias in the training set. I-Only also
has a Top-Down architecture, but it only takes abstract diagrams as inputs, and tests the distribution
biases in the images and answers in IconQA.

User study. To assess human performances in the IconQA task, we post the test set of IconQA on
Amazon Mechanical Turk (AMT) and ask people to provide answers to the questions in the test set.
We also ask the participants to provide us with their age group anonymously. We strongly encourage
parents who have young children to let their children complete the questionnaires, as their answers
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Figure 8: Performance of humans in different age groups for the IconQA task. Left: Accuracy over
three sub-tasks; Right: Accuracy over thirteen reasoning skills.

Table 6: Results on the IconQA dataset.

Sub-tasks (3) Reasoning skills (13)

Method Img. Txt. Blank Geo. Cou. Com. Spa. Sce. Pat. Tim. Fra. Est. Alg. Mea. Sen. Pro.

Human 95.69 93.91 93.56 94.63 97.63 94.41 93.31 92.73 95.66 97.94 97.45 87.51 96.29 86.55 97.06 85.67

Random 41.70 36.87 0.29 30.30 18.38 41.20 36.49 34.25 34.81 35.82 34.84 3.62 11.12 0.36 45.16 38.81
Q-Only 41.64 36.86 28.45 38.03 33.63 48.19 37.14 35.37 33.66 48.09 33.06 40.46 28.02 38.07 45.25 40.76
I-Only 41.56 36.02 46.65 38.71 37.64 45.26 37.52 35.47 36.29 47.37 32.48 62.29 31.73 64.02 45.25 37.51

Top-Down [2] 75.92 68.51 73.03 80.07 65.01 80.65 45.78 58.22 55.01 68.28 72.43 99.54 50.00 99.46 84.54 83.75
BAN [28] 76.33 70.82 75.54 79.99 67.56 82.12 53.20 66.92 55.67 66.50 73.77 97.06 47.46 96.50 82.12 82.45
ViLBERT [33] 76.66 70.47 77.08 80.05 71.05 75.60 49.46 58.52 62.78 66.72 74.09 99.22 50.62 99.07 81.78 70.94
MCAN [54] 77.36 71.25 74.52 79.86 68.94 82.73 49.70 62.49 54.79 68.00 76.20 99.08 47.32 98.99 83.25 84.87
DFAF [11] 77.72 72.17 78.28 81.80 70.68 81.69 51.42 67.01 56.60 67.72 77.60 99.02 50.27 98.83 84.11 85.70
UNITER [6] 78.71 72.39 78.53 81.31 71.01 83.67 48.34 61.25 60.81 69.77 78.37 99.41 49.18 99.38 86.10 87.84
ViT [53] 79.15 72.34 78.92 82.60 70.84 82.12 54.64 68.80 58.46 68.66 77.41 98.95 51.10 98.76 84.72 86.07
ViLT [29] 79.67 72.69 79.27 82.61 71.13 84.95 53.38 66.72 59.22 69.99 75.81 99.02 50.55 98.91 86.10 87.65

Patch-TRM (Ours) 82.66 75.19 83.62 81.87 77.81 87.00 55.62 62.39 68.75 77.98 82.13 98.24 56.73 97.98 92.49 95.73

give us insights to how the designed audience of these questions perform. Further details about the
user study are included in Appendix D.

6 Experiments

6.1 Training Details

Following prior work [3], all the baselines are trained on the IconQA training set, tuned on the
validation set, and finally evaluated on the test set. Similar to [3], we choose accuracy as the
evaluation metric. For the two multi-choice sub-tasks, the answer is regarded as correct only if it
matches the ground truth. On the other hand, as the collected answers for filling-in-blank are short
numbers, correct answers are expanded to include both the digital number and its corresponding
words. More details of the benchmark setups and implementations can be found in Appendix E.1.

Our benchmarks and baselines are implemented using PyTorch. All experiments are run on one
Nvidia RTX 3090 GPU. We use the Adamax optimizer with optimal learning rates of 7 ⇥ 10�4,
8⇥ 10�4, and 2⇥ 10�3 on the three sub-tasks respectively. We apply a binary cross-entropy loss to
train the multi-class classifier with a batch size of 64 and a maximum epoch of 50. The early stopping
strategy is used when the validation accuracy stops improving for five consecutive epochs. It takes
about 50, 30, and 10 minutes to train our baseline Patch-TRM on three sub-tasks respectively.

6.2 Experimental Results

Table 6 demonstrates the results of the benchmark methods and our baseline on the IconQA test set.
The first three columns of the results represent the three sub-tasks: multi-image-choice, multi-text-

choice, and filling-in-the-blank respectively. The remaining 13 columns illustrate the results of these
approaches over problems that require different reasoning skills, as defined in Table 3.

Human performance. Out of the 54,896 collected answers, 9,620 are made by young children
from age 3 to 8, 19,040 are made by adolescents from age 9 to 18, and 26,236 are made by adults.
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Q: Which object is next to the one shaped like a cube?

Figure 9: Text-to-image attention visualization.

Method Img. Txt. Blank

Patch-TRM w/o pre 82.01 72.72 81.67
Patch-TRM w/o att 80.63 68.00 80.29
Patch-TRM w/o pos 81.27 64.98 80.68
Patch-TRM V-CLS 80.15 63.90 70.27
Pyramid 1+4+9+16 82.45 68.76 82.19
Pyramid 1+4+9 80.61 67.42 81.36

Full model 82.96 75.21 83.10

Table 7: Ablation study in IconQA.

The human performance over the three sub-tasks and thirteen skills is illustrated in Figure 8. As
expected, young children do not answer the questions as well as adolescents or adults, suggesting that
most participants answer their ages correctly. Moreover, the result shows that humans perform more
consistently on all sub-tasks compared to machine algorithms. Interestingly, humans are outperformed
by models quite significantly in questions that require numerical reasoning skills like probability,
measurement, and estimation.

Analysis by Task Types. Humans outperform all benchmarks consistently over there sub-tasks
and most reasoning skills. There is still a large gap to fill for future research of abstract diagram
understanding and visual reasoning on the icon domain. The results achieved in blind studies of
Q-only and I-only are close to random, showing that the IconQA dataset is robust and reliable in
distribution. Our proposed Patch-TRM baseline outperforms current state-of-the-art VQA models in
all three sub-tasks. These improvements mainly come from two insights: pre-training ResNet on icon
images and taking a hierarchical approach with attention mechanism.

Analysis by Reasoning Types. Similarly, the Patch-TRM baseline obtains better results than the
benchmarks over most reasoning skill types. Interestingly, in some skills such as estimation, mea-

surement, and probability, Patch-TRM performs better than average human beings. This implies that
neural networks have a promising potential to develop the basic ability of mathematical reasoning.

Quantitative Analysis. We visualize one example with the cross-modal attention map generated by
our baseline Patch-TRM in Figure 9. The visualized attention shows that our baseline is capable of
attending to the corresponding patch regions with higher weights given the input question.

6.3 Ablation Study

To study the functions of individual components in our model, we conduct an ablation analysis. Table
7 presents the results of different simplifications of our full model, where each implementation is
trained on the IconQA train set and tested on the validation set. Instead of ResNet101 pre-trained on
the icon classification task, Patch-TRM w/o pre utilizes ResNet101 pre-trained on natural image data
for patch feature extraction. The decreasing performance of 0.95-2.49% indicates that pre-training
backbones on tasks within similar domains is critical to downstream tasks. The attention mechanism
helps to combine the image and question representations and improves the model performance by
up to 7% compared to using simple concatenation (denoted as Patch-TRM w/o att). Positional
embeddings of the ordered diagram patches benefit the vision Transformer by enabling it to learn
spatial relationships among the patches, compared to the baseline without position embeddings
(Patch-TRM w/o pos). Patch-TRM V-CLS uses the output embedding of [CLS] token as the diagram
feature instead, which leads to a drastic performance decline. We have also experimented with coarse-
grained patch cropping (e.g., Pyramid 1+4+9+16 denotes 30 patches, Pyramid 1+4+9 denotes 14
patches), which results in a performance degradation of 0.51% to 7.79%.

6.4 Icon Classification for Pre-training

Table 8: Results for icon classification.
Method Total Head Medium Tail

ResNet32 [16] + CB [8] 27.91 19.66 36.51 33.53
ResNet32 [16] + Focal Loss [34] 32.80 51.59 36.51 8.94
ResNet32 [16] + LDAM [5] 42.65 55.68 46.42 24.94
ResNet101 [16] + LDAM [5] 62.93 70.29 70.50 47.51

The Icon645 dataset is collected to pre-train the back-
bone network for patch feature extraction. The dataset
has a long-tailed distribution, and thus we address
the class-imbalanced issue following previous studies
on specific loss functions such as CB loss [8], Focal
loss[34], and LDAM loss [5]. The metric of Top-5 ac-
curacy is used to evaluate different model setups and the evaluation results are summarized in Table 8.
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Following [35], to demonstrate performances on different data parts, we divide the dataset into three
balanced clusters: Head, Medium, and Tail, corresponding to 132, 122, and 123 classes respectively.
All classes in Head have at least 1,000 instances, all classes in Medium have 300 - 999 instances,
and all classes in Tail have fewer than 300 instances. As the results show, the backbone network
ResNet101 with a re-balanced LDAM loss function achieves the best result for icon classification on
Icon645. Consequently, we adopt this pre-trained ResNet101 network to extract patch features in our
baseline Patch-TRM for IconQA.

7 Conclusion

In this work, we introduce IconQA, an open-source dataset of icon question answering in real-world
scenarios for assessing the abilities of abstract diagram understanding and visual language reasoning.
IconQA features 107,439 questions, three sub-tasks, and thirteen types of cognitive reasoning skills.
We benchmark the IconQA task extensively with a user study, three blind studies, as well as multiple
existing attention-based and Transformer-based approaches. We further develop a strong baseline,
Patch-TRM, which parses the diagram in a pyramid layout and applies cross-modal Transformers
with attention mechanism to learn the meaningful joint diagram-question feature. Additionally, we
introduce Icon645, a large-scale icon dataset that is useful to pre-train the diagram encoding network
used in Patch-TRM for the IconQA task.

By releasing a new dataset of icon question answering for abstract diagram understanding and visual
language reasoning, we envision that IconQA will facilitate a wide range of research in computer
vision and natural language processing, as well as smart education applications like tutoring systems,
to invent the future of AI for science education.
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