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Abstract

Modeling the effect of sequence variation on function is a fundamental problem
for understanding and designing proteins. Since evolution encodes information
about function into patterns in protein sequences, unsupervised models of variant
effects can be learned from sequence data. The approach to date has been to fit
a model to a family of related sequences. The conventional setting is limited,
since a new model must be trained for each prediction task. We show that using
only zero-shot inference, without any supervision from experimental data or addi-
tional training, protein language models capture the functional effects of sequence
variation, performing at state-of-the-art.

1 Introduction

Proteins have a myriad of diverse functions that underlie the complexity of life. Protein sequences
encode function via structure through the spontaneous folding of the sequence into the three dimen-
sional structure of the protein [1]. The effects of sequence mutations on function form a landscape
that reveals how function constrains sequence. Alterations at some sites in a protein sequence cannot
be tolerated because they are essential to the protein’s function. Other sites evolve together because
the structure and function is determined by them collectively. Mutations can enhance the activity of a
protein, attenuate it, or leave it unchanged.

The functional effect of sequence variations can be measured through deep mutational scanning
experiments [2]. Consisting of thousands to hundreds of thousands of measurements of protein
function, deep mutational scans give insight into the intrinsic constraints on a protein’s structure and
function. Due to the cost and difficulty of implementing such experiments, compilations of deep
mutational scanning data include experiments on a few dozens of proteins at most, relative to the tens
of thousands of proteins encoded in the human genome, and the millions more across the tree of life
that we would like to understand.

A model that learns the landscape linking sequence to function can provide insight into function
without having to do experiments. Unsupervised models of mutational effects can be learned from
sequences [3, 4]. Statistical patterns in a family of evolutionarily related protein sequences contain
information about structure and function [5–7]. This is because the properties of a protein act as
constraints on the selection of sequences through evolution [8].

In the natural language modeling community, there has been interest in zero-shot transfer of models
to new tasks. Massive language models can solve tasks they haven’t been directly trained on [9–11].
Recently protein language models have achieved state-of-the-art in various structure prediction tasks
[12–14]. Work to date has mainly focused on transfer in the classical representation learning setting,
using pre-trained features with supervision on the downstream task.
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Figure 1: Depiction of a mutational effect prediction task. The objective is to score the effect of
sequence mutations on the function of a protein. Deep mutational scanning experiments provide
ground truth experimental measurements of the protein’s function (fluorescence activity in the
example here) for a large set of single mutations or combinations of mutations. For each protein, the
prediction task is to score each possible mutation and rank its relative activity. Predictions for single
substitutions can be described in a score matrix. The columns are the positions in the sequence. The
rows are the possible variations at each position.

In this work we show that language models trained on large and diverse protein sequence databases can
predict experimental measurements of protein function without further supervision. Prior work has
focused on transferring the representations using supervision from experimental data [15, 16]. We find
that language models can transfer to predict functional measurements without supervision. Language
models perform zero-shot and few-shot prediction of mutational effects across a variety of proteins
with widely differing functions. We perform experiments with state-of-the-art protein language
models ESM-1b [12] and MSA Transformer [13]. We introduce a new protein language model,
ESM-1v, with zero-shot performance comparable to state-of-the-art mutational effect predictors.
Performance can be further improved by fine-tuning the model with sequences from the protein family.
Predictions capture the functional landscape of the protein, correlate with amino acid conservation
patterns in the core and surface, and identify residues responsible for binding and activity.

2 Zero-shot transfer

Zero-shot learning has classically described the extension of a classifier to a new set of classes that
have not been seen in training [17]. In natural language processing this idea has been extended to
describe the transfer of models to entirely new tasks without further training. Proposed as zero-data
learning by Larochelle et al. [18], this perspective on transfer has been at the center of recent work
understanding the generalization capabilities of large language models [9–11, 19]. The distinction
from representation learning is that the models are used directly without additional supervision for
the task. This means that the tasks must be learned purely from pre-training.

In this work we take a similar perspective on zero-shot transfer to that of GPT-3, described in Brown
et al. [10]. We define zero-shot transfer to be transfer of a model to a new task without any further
supervision to specialize the model to the task. We also consider the closely related idea of few-shot
transfer. Here as in Brown et al. [10] we define the few-shot setting to be one in which a few positive
examples are given to the model as inputs at inference time. As in the zero-shot setting, no gradient
updates are performed to specialize the model. Similar to Brown et al. [10], the claim is not one of
out-of-distribution generalization. The assumption is that in the pre-training stage, the model learns
information relevant to the tasks to which it will later be transferred. In the case of protein language
models, the pre-training dataset includes sequences from across evolution, which implies the model
may see examples of sequences from protein families on which it will be evaluated. The essential
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Figure 2: Steps involved in variant effect prediction methods. Compared with EVMutation [4] and
DeepSequence [20], MSA Transformer and ESM-1v require no task-specific model training for
inference. Moreover, ESM-1v does not require MSA generation.

departure from the standard approach in computational biology is that the model is general purpose
and can be applied across a variety of tasks without specialization.

Measurements of function, a property of central importance to the understanding and design of
proteins, are a practical ground for studying the generalization capability of protein language models.
Deep mutational scanning experiments measure the effects of thousands to hundreds of thousands
of mutations on a single protein, and have been performed on a variety of proteins having different
functions and using various forms of experimental measurement. We study zero-shot and few-shot
transfer of protein language models to function prediction using this data.

Supervised methods trained with data from experimental measurements [15, 16], and unsupervised
methods trained only on sequences [3, 4] have been developed for prediction of mutational effects.
Unsupervised mutational effect predictors are trained as task specific models on sequences from
an individual protein family. In this view every protein is an independent prediction task where
the objective is to score the effect of mutations on the protein’s function. While mutational effect
predictors trained on multiple sequence alignments (MSAs) are typically described as unsupervised,
they can also be seen as weakly supervised. Hsu et al. [15] observe that such models have weak
supervision on the task through the MSA, which describes the fitness landscape of the protein through
positive examples.

If protein language models can learn the information necessary to solve a task from pre-training,
then they can be applied directly to new instances of the task, without specialization. This would
mean that in practice a single general purpose model can be trained once and then applied to a variety
of possible tasks. Thus zero-shot and few-shot transfer represent fundamentally new unsupervised
learning capabilities that protein language models can bring to the computational biology toolkit.

3 Method

Protein language models trained with the masked language modeling objective are supervised to
output the probability that an amino acid occurs at a position in a protein given the surrounding
context. We use this capability to score sequence variations. For a given mutation we can consider
the amino acid in the wildtype protein as a reference state, comparing the probability assigned to the
mutated amino acid with the probability assigned to the wildtype.
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Models Full Test
PSSM 0.460 0.460
EVMutation (published) 0.508 0.495
EVMutation (replicated) 0.511 0.498
DeepSequence (published) 0.514 0.499
DeepSequence (replicated) 0.520 0.506
MSA Transformer 0.542 0.524
ESM-1v (zero shot) 0.509 0.482
ESM-1v (+further training) 0.538 0.519

Table 1: Comparison of protein language models to state-of-the-art methods. Average |Spearman
ρ| on full and test sets. DeepSequence and ESM-1v models are each ensembles of 5 models. MSA
Transformer is a single model, but is ensembled across 5 random samples of the MSA.

We score mutations using the log odds ratio at the mutated position, assuming an additive model
when multiple mutations T exist in the same sequence:∑

t∈T
log p(xt = xmt

t |x\T )− log p(xt = xwt
t |x\T ) (1)

Here the sum is over the mutated positions, and the sequence input to the model is masked at every
mutated position.

3.1 Zero-shot and few-shot transfer

In the zero-shot setting, inference is performed directly on the sequence to be evaluated. Since the
MSA Transformer can take multiple sequences as input at inference time, we use this model in the
few-shot setting, where additional sequences from the protein family are provided along with the
sequence to be evaluated. In both the zero-shot and few-shot settings, only forward passes of the
models are performed during inference; no gradient updates are taken. Fig. 2 illustrates the approach
in comparison to the current practice of fitting a new model for each task.

3.2 Inference efficiency

Inference with ESM-1v is more efficient than current state-of-the-art methods. This is a result
of two important differences: (i) the effect of mutations can be inferred directly without training
a task-specific model; (ii) fitness landscapes can be predicted with a single forward pass. Time
requirements are summarized in Fig. 7.

3.3 Scoring with MSA Transformer

We score mutations with MSA Transformer using the log odds ratio and additive model in Eq. (1).
However, since MSA Transformer uses a set of sequences for inference, we input the sequence to be
evaluated as the first sequence, and provide additional sequences from the MSA as context. Masking
and scoring are performed on the first sequence only.

4 Results

4.1 Experimental setup

Prediction Models We compare to state-of-the-art unsupervised variant prediction methods, EV-
Mutation [4] and DeepSequence [20]. We also examine performance of a variety of protein language
models that have been recently introduced in the literature.

The position specific scoring matrix (PSSM), EVmutation [4], and DeepSequence [20] methods
are all MSA based. The PSSM treats each position in the sequence independently, factorizing the
likelihood into one term per sequence position. EVmutation is a Potts model, which adds pairwise
terms modeling the interactions between positions. DeepSequence introduces a latent code, allowing
potential higher-order interactions between positions.
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Figure 3: Per task performance. Comparison across 41 deep mutational scanning datasets. Points
are |Spearman ρ| on each dataset, error bars show standard deviation of 20 bootstrapped samples.
Validation proteins are shown to the left of the dividing line and test proteins to the right. In 17 out of
the 41 tasks, ESM-1v zero-shot has a higher |Spearman ρ| than DeepSequence.

UniRep [21], TAPE [22], ProtBERT-BFD [14], ESM-1b [12], and ESM-1v (introduced here), are
all single-sequence language models trained on large databases of unaligned and unrelated protein
sequences (e.g. Pfam [23] or UniRef [24]). With the exception of UniRep, which is trained using
next token prediction, all models are trained with masked language modeling [25].

Finally, the MSA Transformer [13] is a combination of both approaches; it is trained on a large
database of MSAs using masked language modeling and takes an MSA as input during inference.

ESM-1v We train ESM-1v, a 650M parameter transformer language model for prediction of variant
effects, on 98 million diverse protein sequences across evolution. The model is trained only on
sequences, without any supervision from experimental measurements of function. We use Uniref90
2020-03 [24], employing the ESM-1b architecture and masked language modeling approach of
Rives et al. [12]. The model attains a perplexity of 7.29 on a set of held-out Uniref90 sequences
(Table 10). We train five models with different seeds to produce an ensemble.

Evaluation Models are evaluated on a set of 41 deep mutational scans collected by Riesselman
et al. [20], which comprise a variety of tasks assessing a diverse set of proteins. Across tasks, the
experiments differ in the functions tested and in the measurements performed. We treat each deep
mutational scanning dataset as a separate prediction task, scoring each of the variants in the dataset
with the model. The tasks are split into a validation set of ten mutational scanning datasets and a test
set consisting of the remaining datasets. We evaluate performance by comparing the scores with the
experimental measurements using Spearman rank correlation.

Comparisons Since the published versions of EVMutation and DeepSequence use MSAs generated
from an earlier version of Uniref100, we generate new MSAs using EVMutation methodology and the
version of Uniref100 concurrent with our pretraining dataset. We train replications of EVMutation and
DeepSequence using their open source code. The same MSAs are also used in few-shot experiments
with MSA Transformer and unsupervised fine-tuning experiments with ESM-1v.

4.2 Language models enable zero-shot and few-shot prediction of the effects of mutations

ESM-1v and MSA Transformer models make state-of-the-art predictions. Table 1 compares overall
performance of the models across the 41 mutational scanning datasets. Fig. 3 presents a comparison
between ESM-1v and DeepSequence on each of the tasks. Zero-shot inference with ESM-1v has a
better correlation with experimental measurements than DeepSequence on 17 of the 41 datasets. The
two methods are not statistically distinguishable via a paired t-test.
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Models Full Test
UniRep 0.156 0.151
TAPE 0.171 0.175
ProtBERT-BFD 0.428 0.399
ESM-1b 0.459 0.424
ESM-1v† 0.484 0.457
ESM-1v? 0.509 0.482

Table 2: Zero-shot performance. Average |Spearman ρ| on full and test sets. †Average performance
of five ESM-1v models. ?Ensemble of the five ESM-1v models.

Table 2 compares protein language models in the zero-shot setting. ESM-1v outperforms existing
protein language models TAPE [22], UniRep [21], ProtBERT-BFD [14], and ESM-1b [12]. Fig. 8
breaks down performance across each of the tasks.

Pre-training data We examine the effect of the clustering level of pre-training data. Fig. 4
compares models pre-trained on datasets clustered at increasing sequence identity thresholds. ESM-
1b is trained on sequences clustered at a 50% identity threshold. Improvements are seen using a 70%
threshold with greatest improvement at 90%. Uniref100 performance appears to deteriorate early
in training despite being the largest of the datasets. These results establish a link between model
performance and the data distribution, highlighting the importance of training data in the design of
protein language models.

Scoring methods We compare four scoring methods on the validation set - masked marginals,
wildtype marginals, mutant marginals, and psuedolikelihood. Table 5 shows that the masked marginal
approach described in Eq. (1) outperforms other scoring methods, including ones in which the
likelihood changes at non-mutated positions are considered. The scoring methods are described in
detail in Appendix A.

Parameter count Previous work with protein language models has established a link between
model scale and learning of protein structure [12, 26]. We examine zero-shot transfer performance
as a function of parameter count. We train models using the same width, depth, and learning rate
as described in Henighan et al. [27], observing improvements with scale (Fig. 9). These findings
suggest that continued scaling of the models will further improve results.

4.3 MSA Transformer

We examine how the sequences provided to MSA Transformer affect few-shot transfer. Table 8
compares sequence selection methods that vary the diversity of the sequences. Providing a more
diverse set of sequences improves few-shot performance. Selecting a set of sequences to maximize
diversity outperforms selecting a diversity minimizing set of sequences. Random sampling performs
even better, and sampling sequences according to sequence weights [28] performs best.

We also vary the number of sequences used for inference. Fig. 11 shows few-shot performance as
a function of the number of sequences given as input. The model performs well using only a few
sequences, but performs best with 384 total sequences. In the main tables we report results sampling
384 sequences using sequence reweighting and ensembling predictions over five different subsamples
from the MSA.

4.4 Unsupervised fine-tuning on MSAs

While ESM-1v performs well when evaluated in the zero-shot setting, we explore whether results
can be improved by fine-tuning on the MSA. Fine-tuning on MSAs has been used in previous work
[21, 16] as a stage in transfer learning to specialize a pre-trained model to a protein family, before
applying supervision with labeled data. Here we consider using the fine-tuned model to make
unsupervised predictions directly, without adding supervision from experimental data.
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Figure 4: Comparison of pre-training datasets. Average |Spearman ρ| on the single-mutation validation
set. While a 50% clustering threshold was used for ESM-1b, training with 90% clustering results in
a significant improvement on variant prediction tasks. Notably, models trained on Uniref100, the
largest dataset in this figure, appear to deteriorate early in training. These results establish a link
between model performance and the data distribution, and highlight the importance of training data
in the design of protein language models.

We observe that naively fine-tuning the model on the MSA results in rapid overfitting and poor
performance on the prediction tasks (Fig. 12). While we experiment with a variety of approaches to
freezing parameters during fine-tuning, detailed in Appendix B, none produce significant improve-
ments. We find that an approach using pre-training sequences to regularize the fine-tuning performs
well and enables training of all parameters without overfitting (Fig. 13). Spiked fine-tuning improves
average absolute Spearman rho on the full dataset from 0.510 for zero-shot evaluation to 0.537 with
fine-tuning.

5 Analysis of models

Protein structure and function ESM-1v probabilities reflect the functional properties of sites
within the protein. We use the entropy of the model’s predictions for a position as a measure of its
estimation of conservation. The lowest entropy predictions cluster at binding sites. Fig. 14 compares
the distribution of the model’s entropy between binding sites and non-binding sites. A significant
difference is observed between the entropy assignment to binding and non-binding site residues.
Fig. 5 visualizes the side chains of the 10 lowest entropy residues as predicted by the model on
the crystal structure of DNA methyltransferase M.HaeIII interacting with its DNA substrate. In the
crystal structure a cytosine of the substrate is inserted into the active site of the enzyme. The low
entropy residues cluster in the active site and interact with the cytosine. Additional examples are
visualized in Fig. 18.

The model probabilities also correspond to structure. Fig. 15 compares the entropy assigned to sites
that are buried in the core of the protein vs. exposed on the surface. The model assigns significantly
lower entropy to sites that are in the core of the protein, consistent with the idea that tight packing
in the core places greater constraints on the selection of residues. Fig. 5B visualizes the entropy
assigned by the model to each position overlayed on the structure of Indole-3-glycerolphosphate
Synthase, a TIM barrel protein. Higher entropy is assigned to residues having outward facing side
chains on the alpha helices, while lower entropy is assigned to the inward facing positions. Fig. 17
compares the probability assigned to hydrophobic, polar, and charged amino acids for buried sites
vs. non-buried sites. The model prefers hydrophobic residues in the core and hydrophilic residues
on the surface. The model probabilities closely match the empirical probabilities and those from
the PSSM. Fig. 5C visualizes probability assigned to hydrophobic amino acids on the structure of
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Figure 5: ESM-1v reflects the molecular basis of function in proteins. (A) DNA methylase HaeIII
(pdbid: 1DCT [29]). Side chains for the top 10 positions with lowest prediction entropy shown
in blue. Low-entropy positions cluster in the active site. (B) TIM Barrel (pdbid: 1IGS [30]) with
residues colored by entropy. The model’s predictions for residues on the surface have highest entropy
(red) while those in the core have lower entropy (blue). Notably, residues on the alpha helices show
a clear gradient from high to low entropy as residues transition from surface-facing to core-facing.
(C) Sucrose-specific Porin (pdbid: 1A0T [31]), a transmembrane protein. The model predicts a
hydrophobic band where the protein is embedded in the membrane.

Sucrose-specific Porin, a transmembrane protein. The model predicts a hydrophobic band in the
center where the protein embeds in the membrane.

Calibration We evaluate model calibration using 15008 sequences with length < 1024 from the
trRosetta [32] dataset. ESM-1v probabilities for each amino acid at each position are calculated with
the masked marginal probability in Eq. (1). Fig. 6 shows that the model is generally well calibrated
for all amino acids except Methionine. ESM-1v always predicts Methionine as the first position in
the sequence since full protein sequences always start with it, so care must be used when applying the
model to subsequences. When excepting the first residue, the model achieves an average calibration
error (defined for the multi-class setting in Appendix D.4) of 0.006.

We also explore the relationship between conservation (entropy of the PSSM) and the model’s
predicted entropy. Fig. 16 shows that these are well correlated (Pearson’s r = 0.44), suggesting the
model is able to identify conserved positions.

6 Related Work

6.1 Protein language models

In the past few years, a number of groups have developed language models for protein sequences
[21, 33, 14, 34, 35, 22, 13, 12]. These models have been used for many tasks, including supervised
low-N function prediction [16, 12], remote homology detection [22, 12], and protein generation [35].
The approach to the tasks typically involves transfer learning, where a pretrained language model is
fine-tuned for a particular problem. Vig et al. [36] and Rao et al. [26] found that transformer attention
corresponds to known biological properties such as structure and binding sites and can be used to
predict contacts.
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Figure 6: Calibration plot for ESM-1v predictions on each of the 20 naturally occurring amino
acids on the trRosetta dataset. The multi-class classification is converted into a set of 20 one-
versus-all classifications for the purpose of this analysis. Left and right plots show calibration of all
positions and positions excluding the first residue, respectively. Since full sequences always start
with Methionine, the model overwhelmingly predicts it in the first position. When evaluating the
model on subsequences, such as those in the trRosetta dataset, this causes a miscalibration at the first
residue. Including the first residue, the model has an average calibration error (ACE) of 0.011 in the
first case and 0.006 in the second.

6.2 Mutation effect prediction

Supervised and unsupervised methods have been developed for prediction of mutational effects.
Supervised methods train models using experimental measurements or labels from databases of
clinical variants. Standard machine learning tools including linear regression, random forests, and
support-vector machines can be used [37]. Models have been designed specifically for proteins, using
feature engineering such as Envision [38] and PolyPhen-2 [39], ensemble methods such as Revel
[40], MPC [41], CADD [42], and M-CAP [43], language models such as UniRep [21, 16] and ESM
[12], and other representation learning approaches [44, 45].

Unsupervised mutation effect predictors work by inferring the likelihood of a mutation from the
evolutionary landscape of the original protein. A density model fit to related sequences is used for
scoring. SIFT [46] is a first order approach using a position-specific-scoring-matrix. EVMutation [4]
extends this to a second-order approach by training a Potts model on the MSA. DeepSequence [20]
includes higher-order interactions by training a VAE on the MSA instead, using the ELBO to score
mutations. Riesselman et al. [47] proposes using an autoregressive model that does not require the
sequences to be aligned. Laine et al. [48] uses an evolutionary tree structure inferred from the MSA
to compare mutations.

Hsu et al. [15] show that unsupervised mutational effect predictors can be extended to perform
supervised predictions, with better unsupervised predictors generally resulting in better supervised
predictors. This suggests improving unsupervised prediction can drive progress in both settings.
Concurrent with our work, Hie et al. [49] use open-source protein language models ESM-1b and
TAPE to predict the direction of evolution in protein fitness landscapes.

7 Discussion

Advances in language modeling at scale are bringing the goal of a general purpose model for proteins
closer to realization. This line of work aspires to a model that learns to read and write biology in
its native language, that can be directly applied across a range of protein understanding and design
tasks. For scalability, learning from sequences is important: while there are no central databases
of high-throughput functional measurements, and few compilations exist, billions of sequences are
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available to learn from in sequence databases [50, 51]. Sequences give an unparalleled view into
the vast diversity and complexity of molecular parts invented by nature through billions of years of
evolution.

Unsupervised structure [52–54, 28, 55, 56] and function [3, 4] learning methods first effectively
realized the idea that biological properties could be read directly from sequences without supervision
from experimental measurements. However these methods are not general purpose in the sense that a
specialized model must be trained for every protein for which a prediction is to be made. We show
that the same performance can be realized by a general purpose model that has been trained across
many diverse protein families. Similar to observations on the learning of tertiary protein structure in
large language models [12, 26], we find that increasing the scale of models leads to improvements
in function learning. The understanding of mutational landscapes in the models correlates with the
molecular basis of function in proteins, capturing binding sites and amino acid preferences that are
determined by the folded structure.

Zero-shot transfer is an interesting capability of large scale language models, and represents a major
point of departure from the unsupervised learning methods that are the basis for current state-of-the-
art inference of protein structure and function. The capability for zero-shot transfer implies that a
model can be trained once and then applied to perform inference for many tasks. It is also a window
into deeper questions about the forms of generalization that are possible in learning from sequences.
Reading structural and functional design principles from sequences is a necessary capability for
writing new biologically active sequences. Generalization in the zero-shot setting suggests the
potential for large language models to capture knowledge that can be transferred to generating new
functional proteins.
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