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Abstract

Entity disambiguation (ED) is the task of link-
ing mentions in text to corresponding entries in
a knowledge base. Dual Encoders address this
by embedding mentions and label candidates
in a shared embedding space and applying a
similarity metric to predict the correct label. In
this work, we focus on evaluating key design
decisions for Dual Encoder-based ED, such as
its loss function, similarity metric, label verbal-
ization format, and negative sampling strategy.
We present the resulting model VERBALIZED,
a document-level Dual Encoder model that in-
cludes contextual label verbalizations and effi-
cient hard negative sampling. Additionally, we
explore an iterative prediction variant that aims
to improve the disambiguation of challenging
data points. Comprehensive experiments on
AIDA-Yago validate the effectiveness of our ap-
proach, offering insights into impactful design
choices that result in a new State-of-the-Art
system on the ZELDA benchmark.

1 Introduction

Entity disambiguation (ED) is the task of resolving
ambiguous mentions of named entities in text to
their corresponding entries in a predefined knowl-
edge base (KB), such as Wikipedia or Wikidata.
The ability to correctly link mentions of entities
(e.g., "Einstein" or "Princeton") to their respective
KB entries is crucial for downstream tasks such as
knowledge graph construction, question answering,
and information retrieval. Formally, for a given set
of entity mentions M = {m1, . . . ,mT } in corpus
D, entity disambiguation aims to link each mention
mt to its corresponding gold entity et from a set of
possible entities E = {e1, . . . , e|E|}.

Traditional ED systems often operate on lexical
similarity, link popularity, hand-crafted features,
and candidate lists (Ganea and Hofmann, 2017; Ya-
mada et al., 2016) or simple classification-based
approaches (Broscheit, 2019; Févry et al., 2020)

that involve fine-tuning a classification head on top
of a pre-trained language model. More recent ap-
proaches are dense retrieval based, with the Dual
Encoder (Gillick et al., 2019; Wu et al., 2020; Pro-
copio et al., 2023; Wang et al., 2024) as one of
the most popular architectures. It encodes men-
tions and KB entries into a shared vector space for
similarity-based matching.

However, despite its simplicity, the Dual En-
coder architecture involves key design choices that
can greatly influence its ability to properly disam-
biguate entities. For instance, key questions include
how to best verbalize labels and how to model sim-
ilarity. Furthermore, training is greatly affected by
decisions on negative sampling, loss functions and
efficient label embedding strategies.
Contributions. Our work aims at evaluating those
key design decisions for Dual Encoder models sys-
tematically. We further introduce VERBALIZED as
a resulting system, which integrates document-
level processing, refined label verbalizations, hard
negative sampling and efficient label embedding
updates1. Additionally, we conduct exploratory
experiments with an iterative prediction and ver-
balization strategy that leverages already predicted
neighboring mentions. This approach aims to im-
prove contextual understanding and address chal-
lenging ambiguous cases.

In more detail, our contributions are:

• We present VERBALIZED, a dual encoder ar-
chitecture for Entity Disambiguation that uses
label verbalizations and efficient hard negative
sampling, without relying on candidate lists.

• We conduct extensive experiments to eval-
uate our design choices on the AIDA-Yago
benchmark and compare the resulting model
to several other ED models on the much larger
ZELDA benchmark.

1We will release VERBALIZED and our label verbaliza-
tions upon acceptance.
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Figure 1: Overview of VERBALIZED during training: The Mention Encoder produces an embedding for each entity
mention in a given text (here "Italy" and "Marcello Cuttitta"). The Label Encoder similarly produces an embedding
for each unique target in the General Label Set (spanning entities such as "Italy" and "Italy_national_football_team"),
by embedding their respective verbalizations. The purpose of training is to learn an embedding space in which
mention embeddings lie close to the embeddings of the correct target verbalization. Training uses a Negative
Sampling strategy which leverages embeddings to find hard negatives.

• We introduce a variant of VERBALIZED that
predicts mentions iteratively, leveraging early
disambiguations to assist in resolving chal-
lenging cases and show qualitative insights.

2 The VERBALIZED Architecture

This section outlines the Dual Encoder architecture
and its key techniques and design decisions.

2.1 Dual Encoder Basics

Figure 1 gives an overview of the Dual Encoder
and its main components during training:

Mention Encoder. The Mention Encoder pro-
cesses the textual context surrounding an entity
mention. For instance, in a document or sentence
containing the mention "Italy", the encoder consid-
ers the surrounding words to generate a contextu-
ally rich embedding for the mention. Our approach
leverages the entire document as context during
mention encoding, ensuring richer semantic infor-
mation for each mention.

Label Encoder. The Label Encoder generates
embeddings for all entities using metadata such as
descriptions and KB relations for accurate repre-
sentation. The label set may e.g. include "Italy"
(the country), "Italy_national_rugby_team" and
"Italy_national_football_team". The Label Verbal-
izer produces short descriptions for each, like ver-
balizing "Italy" as "Country in Southern Europe",
which is then encoded into an entity embedding.

Similarity Computation. The embeddings from
the Mention and Label Encoder are pooled to ob-
tain span representations and then compared using
a similarity metric (e.g., cosine similarity or Eu-
clidean distance). The entity whose embedding is
most similar to the mention embedding is selected
as the predicted label. The purpose of training is
thus to learn an embedding space in which men-
tion embeddings lie close to the embedding of the
correct target verbalization.

Sampling Negatives for Training. To improve
disambiguation and training robustness, we in-
corporate negative sampling over the label pool,
so the model learns to distinguish correct la-
bels from hard negative candidates. For ex-
ample, for the mention "Italy" with gold label
"Italy_national_rugby_team", a close but incorrect
label like "Italy" (country) serves as negative label.

Inference. Inference involves embedding men-
tions and entities, comparing embeddings in the
shared space and selecting the most similar match.

2.2 Design Decisions for the Dual Encoder

The effectiveness of the Dual Encoder model relies
on several key design choices, which we summa-
rize here before providing detailed discussion and
evaluation for each in Sect. 3.

Enriching representations. One of the most cru-
cial aspects is creating high-quality entity represen-
tations. Expressive label verbalizations, like de-
scriptions or structured KB data, enrich entity em-
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Component Albert_Einstein Wembley_Stadium

Title Albert Einstein Wembley Stadium
Description German-born theoretical physicist (1879–1955) football stadium in London, England
Categories occupation: physicist, scientist instance of: multi-purpose sports venue;

country: United Kingdom
Paragraph Albert Einstein was a German-born theoretical

physicist who is best known for developing the the-
ory of relativity. [...]

Wembley Stadium is an association football stadium
in Wembley, London. It opened in 2007 on the site
of the original Wembley Stadium [...]

Table 1: Examples for different components for creating label verbalizations.

Verbalization F1

Title 63.68 ± 0.05
Title + Categories 64.00 ± 0.13
Title + Description 64.48 ± 0.10
Title + Description + Categories 65.01 ± 0.08
Title + Paragraph (100) 64.30 ± 0.02
Title + Paragraph (500) 63.49 ± 0.50

Table 2: Comparing verbalizations formats.

beddings and help disambiguate context-sensitive
mentions. These work alongside document-level
mention representations to ensure rich semantic
understanding. Both encoders require an effective
pooling strategy, such as mean pooling, to obtain
concise representations per mention or label.

Training Dynamics. Additionally, a suitable
similarity metric is essential, as is a loss func-
tion to optimize the embedding space, i.e. pulling
positive mention-entity pairs closer while pushing
negatives away. Both require negative samples:
Hard negatives – incorrect entities similar to the
mention – help improve fine-grained differentia-
tion, while in-batch negatives offer computational
efficiency. For negative sampling, cached entity
embeddings must be efficiently updated to reflect
model changes, with the update frequency man-
aged to balance accuracy and computation.

3 Evaluating Design Choices

We conduct several ablation experiments to assess
the impact of the design choices sketched in Sect
2.2. Due to limited computational resources, these
experiments were performed using the smaller
AIDA-CoNLL-Yago (Hoffart et al., 2011) as train
set, while evaluation was carried out on the diverse,
out-of-domain ZELDA test sets (Milich and Akbik,
2023). The only exception is the ablation for label
update frequency (Sect. 3.5), where we also trained
on ZELDA. We report the mean F1 over ZELDA-
test with standard deviation of three runs. Unless

Loss Pooling F1

Triplet Mean 64.48 ± 0.10
First-last 66.25 ± 0.40

Cross-Entropy Mean 65.84 ± 0.22
First-last 66.66 ± 0.09

Table 3: Comparing span pooling methods.

otherwise specified, the default experimental setup
uses Title + Description for verbalization, triplet
loss, Euclidean distance, hard negative mining with
a dynamic factor, and mean pooling, while varying
the options of the respective design choice.

3.1 Label Verbalization Formats

Design Choices. We evaluate different verbal-
ization formats and use Wikidata, similar to prior
work (Procopio et al., 2023; Atzeni et al., 2023).
Table 1 illustrates the verbalizations we consider:
(1) The entity’s Title, (2) a short Description, or (3)
more structured Categories using the instance_of,
subset_of, country, and occupation relations from
Wikidata. We further experiment with (4) using
the first Wikipedia Paragraph. We test various
component combinations, using a semicolon after
the title and commas as separators. Verbalizations
have a soft 50-character limit, splitting at the next
punctuation. For paragraphs, we allow lengths of
100 or 500 characters.

Experimental Analysis. Table 2 shows the re-
sults. Using only the title performs worst but
remains competitive, suggesting that individual
missing descriptions do not severely impact per-
formance. Descriptions slightly outperform cat-
egories, but combining all three yields the best
results. Descriptions add detail, while categories
provide structure for better generalization. Since
some entities have only descriptions (2.1%) or cat-
egories (3.3%), both are essential for full coverage.
Wikipedia paragraphs perform worse, especially at
the longer length of 500 characters.

3



Loss Similarity F1

Triplet Cosine 50.65 ± 0.20
Dot Product 64.43 ± 0.05
Euclidean 64.48 ± 0.10

Cross-Entropy Cosine 34.34 ± 0.25
Dot Product 64.52 ± 0.04
Euclidean 65.84 ± 0.22

Table 4: Comparing loss and similarity metrics.

3.2 Span Pooling Method

Design Choices. For both mention and label span
representations, we evaluate two pooling methods:
Taking the mean of the token embeddings within
the mention span or label, or concatenating the em-
beddings of the first and last tokens of the mention
span or label. For label verbalizations, we use only
title tokens, computing either their mean or con-
catenating the first and last token, while treating
the rest (e.g. the description) as context, mirroring
mention token processing.

Experimental Analysis. Table 3 shows that con-
catenating the embeddings of the first and last span
token consistently performs better than averaging
all span tokens. The first and last tokens often en-
capsulate critical boundary information of the span,
which can be especially helpful for disambiguation.

3.3 Similarity Metric and Loss

Design Choices. The choice of similarity met-
ric significantly impacts model effectiveness. We
experiment with three options: Cosine similar-
ity, which measures the angle between vectors and
works well for normalized embeddings; Euclidean
Distance, measuring the straight-line distance be-
tween vectors, used as a negative since our model is
similarity-based; and Dot Product, which directly
computes unnormalized similarity.

For optimizing the embedding space, we explore
two loss functions: Triplet Loss pulls positive
mention-label pairs closer while maintaining a mar-
gin from a given negative; Cross-Entropy Loss
adapts the classification objective to entity disam-
biguation by aligning mention embeddings with
correct labels and penalizing incorrect associations.

Experimental Analysis. Table 4 shows that
cross-entropy loss combined with Euclidean sim-
ilarity achieves best performance. For triplet loss,
both dot product and Euclidean distance yield sim-
ilar results. Cosine distance performs worse.

Loss Negatives F1

Triplet In-Batch, dyn 54.39 ± 0.08
Hard, 1 64.46 ± 0.06
Hard, dyn 64.48 ± 0.10

Cross-Entropy In-Batch, dyn 54.06 ± 0.14
Hard, 1 65.78 ± 0.17
Hard, dyn 65.84 ± 0.22

Table 5: Comparing negative sampling methods.

3.4 Negative Sampling Methods

Design Choices. Training with all possible entity
candidates is computationally prohibitive, so we
use negative sampling. For each mention, we ei-
ther sample in-batch negatives (labels from other
mentions in the batch) or hard negatives (incorrect
entities most similar to the mention). The number
of negatives per mention is another design choice.
As re-encoding all labels at each step is infeasible,
negatives are retrieved from periodically refreshed
cached embeddings, while gold and selected nega-
tives are freshly embedded for loss calculation.

Experimental Analysis. The results in Table 5
show that hard negative sampling significantly out-
performs in-batch sampling. We compare using 1
negative label per positive sample and a dynamic
approach, where number of negatives is maximized
based on GPU memory capacity for each batch,
leading to marginal improvements.

3.5 Frequency of Label Embedding Updates

Design Choices. Updating label embeddings is
crucial for accurate representation, but re-encoding
all labels every step is infeasible. To balance ac-
curacy and efficiency, we cache embeddings and
refresh them periodically, either after each epoch
or at more frequent intervals. Additionally, labels
actively used in a batch (positive or negative) are
updated on-the-fly, keeping frequently used labels
up to date without full re-encoding.

Experimental Analysis. We validate the effec-
tiveness of frequently and dynamically updating
cached label embeddings, rather than updating
them only after each epoch (see Table 6). Note that
this ablation was conducted training on ZELDA, as
the update frequency is more impactful for larger
datasets where once every epoch is not enough. The
results show that more frequent label embedding
updates are crucial for performance.
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Predict

Pick N Predictions with 
Highest Similarity

Insert Verbalizations into Text

Predict

Nyjer Morgan → Nyjer_Morgan

Nyjer Morgan Nyjer_Morgan   ( 0.9 )
Jose Reyes Jose_Javier_Reyes   ( 0.6 )

Step 1

Jose Reyes José_Reyes_(infielder)   ( 0.8 )

Step 2

Nyjer Morgan shakes hands with Jose Reyes.

Original Text

Nyjer Morgan (American former professional baseball 
and ice hockey player) shakes hands with Jose Reyes.

Text after Iteration 1

“Nyjer Morgan; American former 
professional baseball and ice hockey player”

Label Verbalization Dictionary

Figure 2: Iterative variant: All mentions are initially predicted, the top-N with highest similarity are selected for text
insertion. The enriched text is then re-embedded, and the remaining mentions are re-predicted.

Label Embedding Updates F1

Once after Epoch 76.17 ± 0.04
Frequent + On-the-Fly 82.32 ± 0.10

Table 6: Comparing label embedding update frequency.
Trained on ZELDA.

3.6 Takeaways

We summarize the key findings from the above
ablations. The best label verbalization format com-
bines title, description, and categories, underlining
the importance of semantic richness as well as cov-
erage. For span pooling, concatenating the first
and last token embeddings surpasses mean pooling.
Among similarity metrics and loss functions, cross-
entropy loss with Euclidean distance achieved the
highest performance. Hard negatives consistently
outperformed in-batch negatives. For large training
data, frequent label embedding updates are crucial.

4 Iterative Prediction

We experiment with an iterative prediction variant
of our base architecture that aims to particularly
help challenging, ambiguous cases.

4.1 Enriching Context with Label Insertions

In this approach, illustrated in Figure 2, after pre-
dicting all mentions in a document, the N predic-
tions with highest similarity scores are selected,
and their label verbalizations are inserted into the
text in brackets after their respective mentions. The
modified text is re-embedded, and the remaining
mentions are re-predicted. This process repeats un-
til all mentions are resolved2. The goal is to incre-
mentally enrich the context with entity descriptions,
improving subsequent predictions.

2N is set to one-third of the mentions in a batch. We only
overwrite previous labels if the similarity score is higher.

In the example from Figure 2, the original
text contains the mentions "Nyjer Morgan" and
"Jose Reyes". In the first prediction step, the
model identifies possible entities, assigning sim-
ilarity scores (e.g., "Nyjer_Morgan" with 0.9 and
"Jose_Javier_Reyes" with 0.6). The most confi-
dent prediction, "Nyjer_Morgan", is selected for
text insertion, thus its verbalization is added to the
text. In the next prediction step, this additional con-
text helps the model correctly disambiguate "Jose
Reyes" to "José_Reyes_(infielder)" with higher
confidence (0.8) instead of the incorrect previous
prediction, a film director. More examples of these
insertions are shown in Tables 9 and 10.

4.2 Modified Training

Iterative insertion and prediction can, in theory, be
directly applied during inference due to its natural
language format. However, to reinforce its utility,
we adapt the training process by incorporating label
verbalizations for a random subset of mentions3.
Mentions selected for verbalization are excluded
from the loss calculation of the current batch, as
their target label is already present in the text.

5 Experiments on ZELDA benchmark

We compare our resulting system VERBALIZED to
different baseline and competitive models.

5.1 Experimental Setup

Data. The ZELDA benchmark (Milich and Ak-
bik, 2023) addresses inconsistencies in previous
ED setups by unifying training data and entity
vocabularies. It includes 95,000 Wikipedia para-
graphs (2.6M mentions, ~822,000 unique entities)
for training and nine test splits across diverse do-
mains to evaluate model generalizability across

3Gold labels are used initially (10% randomly corrupted),
later in training we switch to confident predictions.
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Method Train
data AIDA-B TWEEKI REDDIT-

POSTS
REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHAD.

SLINKS-
TOP AVG

Classification
FEVRYALL Z 79.2 71.8 88.5 84.1 68.0 84.3 63.8 43.4 53.1 70.7
FEVRYCL Z 79.5 76.9 89.0 86.5 70.3 84.5 87.6 31.9 47.7 72.7
LUKEPRE Z 79.3 73.8 76.1 69.9 66.8 68.4 97.7 20.4 50.8 67.0
LUKEFT Z 81.2 77.9 81.5 78.5 70.3 76.5 98.0 22.5 51.8 71.0

Generative
GENREALL Z 72.4 75.9 88.8 83.9 66.5 85.2 95.3 38.7 43.5 72.2
GENRECL Z 78.6 80.1 92.8 91.5 73.6 88.4 99.6 37.3 52.8 77.2

Dense Retrieval
FUSIONED Z 80.1 81.4 93.9 92.3 73.6 89.0 98.3 41.5 57.9 78.7

Proposed
VERBALIZED Z 82.6 78.9 89.2 86.2 69.8 91.4 98.6 65.3 67.0 81.0

+ iter. prediction Z 84.4 78.4 89.5 87.1 70.4 91.2 98.7 65.3 67.2 81.4
+ iter. training Z 88.2 78.9 92.2 88.4 71.5 90.8 98.2 66.3 65.9 82.3

Table 7: Comparison between VERBALIZED and other SoTA models on the ZELDA benchmark.

varying text lengths and contexts. These are:
AIDA-B (Hoffart et al., 2011), the test split of

the AIDA-Yago dataset, consisting of 231 news ar-
ticles. TWEEKI (Harandizadeh and Singh, 2020),
a collection of 500 tweets. Reddit-POSTS and
Reddit-COMMENTS, a collection of posts and
comments from the Reddit forum (Botzer et al.,
2021). WNED-WIKI and WNED-CWEB, a col-
lection of Wikipedia articles vs. web pages (Guo
and Barbosa, 2017). Finally, the Shadowlinks cor-
pora, three datasets with different levels of diffi-
culty in terms of overshadowing (Provatorova et al.,
2021). TOP includes the easiest cases (the correct
entity is the most frequent one), SHADOW the
most difficult (the correct entity is overshadowed
by a more frequent one) and TAIL includes gener-
ally rare though mostly not overshadowed entities.

In addition to the main experiments on ZELDA,
we further evaluate on MSNBC (Cucerzan,
2007), AQUAINT (Milne and Witten, 2008) and
ACE2004 (Ratinov et al., 2011), see Sect. A.3.

General Label Set. Comparing ED approaches
is challenging due to differences in pretraining,
reliance on candidate lists and selected label set
(Shavarani and Sarkar, 2023; Milich and Akbik,
2023; Yamada et al., 2022; Wang et al., 2024; Ong
et al., 2024). For consistency, as a fixed label set
we use all 821,402 unique ZELDA candidates and
no mention specific candidate list. Further training
details and hyperparameters are in Appendix A.1.

Baselines and Competitive Models. We com-
pare to the models reported by the ZELDA authors
(Milich and Akbik, 2023): Their reimplementa-
tion of the classification baseline FEVRY (Févry

et al., 2020) with and without using the mention-
candidate lists (FEVRYCL and FEVRYALL). A
global ED model LUKE (Yamada et al., 2022)
in two variants: Pre-training in which entity em-
beddings are learned (LUKEPRE), and an op-
tional final epoch of fine-tuning with frozen en-
tity embeddings (LUKEFT ). The generative model
GENRE (De Cao et al., 2021), which generates
the target label title, restricting either to the full
(GENREALL) or to the mention’s specific can-
didate pool (GENRECL). We add FUSIONED
(Wang et al., 2024), a novel encoder-decoder ar-
chitecture to fuse entity descriptions and candidate
embeddings which is also trained on ZELDA.

We further compare our approach to BLINK
(Wu et al., 2020) and CHATEL (Ding et al., 2024).
As differences in training data and label sets make
direct comparison to our and the other models chal-
lenging, see Appendix A.3 for the results.

5.2 Results
We train VERBALIZED on ZELDA train and eval-
uate on its test sets (Table 7). For MSNBC,
ACE2004, AQUAINT, and comparison to BLINK
and CHATEL, see Tables 12 and 14 in A.3.

5.2.1 Baseline Comparison
Overall Performance. On average, VERBAL-
IZED achieves the highest performance over the
ZELDA test sets, outperforming both classification
and generative approaches. The highly competitive
FUSIONED is surpassed on 5 of the 9 datasets.
Strength on Shadowlinks Corpora. VERBAL-
IZED achieves top results on SHADOW and TOP,
where candidate list-based models struggle due to
low recall (56.7% on SHAD, 73.1% on TOP). The
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Step 1 Step 2

Input "Peggy Olson is awesome... one of the best
characters on #madmen"

"Peggy Olson (fictional character from Mad Men) is awesome... one
of the best characters on #madmen"

Prediction Mad_(TV_series) (✗) Mad_Men (✓)

Input "Karlsruhe 3 (Reich 29th, Carl 44th, Dundee
69th) Freiburg 0. Halftime 2-0."

"Karlsruhe (German sport club) 3 (Reich 29th, Carl 44th, Dundee
69th) Freiburg (German football club) 0. Halftime 2-0."

Prediction Sean_Dundee (✓) Dundee_F.C. (✗)

Table 8: Positive and negative example of label change after iterative prediction. See more in Tables 9 and 10.

candidate-independent models also face challenges
with rare, ambiguous or overshadowed mentions.
These results highlight VERBALIZED’s ability to
effectively leverage subtle contextual cues while
also demonstrating its strength in not relying on
mention-specific candidates.
Performance on Long-Form Text. On AIDA-B
and WNED-WIKI, VERBALIZED tops all models
and remains competitive on REDDIT-POSTS – all
datasets with long, continuous documents.
Challenges with Short-Form Text. VERBAL-
IZED struggles on REDDIT-COMM and TWEEKI
due to its reliance on long context, providing lim-
ited benefit for short social media posts. Still, it
performs well, even surpassing other models on
SHADOW, despite its single-sentence documents.
Low Performance on WNED-CWEB. On
WNED-CWEB, performance is lower than ex-
pected, comparable to classification models. We
attribute this to web scraping artifacts and annota-
tion inconsistencies4. While all models face these
challenges, disjointed documents – composed of
unrelated sentences – pose a greater challenge for
document-based approaches like ours, which rely
on coherent context for effective predictions.

5.2.2 Evaluating the Iterative Variant
For evaluating the iterative variant of VERBAL-
IZED, we compare: (1) the base model without it-
eration, (2) the base model with iterative prediction
(+ iter. prediction), and (3) the full iterative variant
incorporating both iterative training and prediction
(+ iter. training). We observe some gains with itera-
tive prediction on AIDA-B, REDDIT-COMM, and
WNED-CWEB, while other datasets (TWEEKI,
REDDIT-POSTS, WNED-WIKI, SLINKS) show
no clear improvement. Adding insertions during
training boosts performance. On average, and on
five datasets, the iterative outperforms the base ap-

4E.g., our model links "William Pitt" to a person, while
gold is "University_of_Pittsburgh", or "taxpayers" to "Taxpay-
ers" and "Rose" to "Derrick_Rose," which seem more accurate
than the gold labels "Tax" and the flower "Rose."

proach, though slight declines occur on WNED-
WIKI, SLINKS-TAIL, and -TOP, and no difference
on TWEEKI. Shadowlinks datasets contain only
single-mention documents, while TWEEKI and
REDDIT-COMM, based on social media, include
only few multi-mention documents. Since the iter-
ative approach relies on neighboring mentions for
label insertions, its effect is limited in these cases.

Qualitative Inspection. As the iterative variant
showed only slight and inconsistent improvements
over the base model, we qualitatively analyze iter-
ative prediction steps. Table 8 provides examples
for both positive and negative label change. As
positive example, disambiguating "Peggy Olson"
as a character from Mad Men aids in correctly la-
beling the series. Conversely, inserting two sports
team labels leads to misinterpreting "Dundee" as
the sports team "Dundee_F.C." instead of the per-
son "Sean_Dundee", initially correctly predicted.
Refer to A.2 for additional examples and discussion
of both improved and erroneous predictions after
label insertions, along with quantitative counts.

In summary, while the iterative approach helps
with underspecified mentions and complex do-
mains, its drawbacks – susceptibility to linguistic
patterns and error propagation – outweigh its mod-
est, inconsistent gains. Given the added training
cost, we recommend the base VERBALIZED archi-
tecture, already demonstrating strong performance.

6 Related Work

Entity Disambiguation (ED) models resolve am-
biguous mentions in text to corresponding entities
in a knowledge base (KB)5. Recent advances use
transformers for better contextual representations
and zero-shot abilities.

5While Entity Disambiguation (ED) assumes mentions
already identified, Entity Linking (EL) also detects spans. We
focus on ED, though it is often integrated into end-to-end EL
or Relation Extraction systems (Shavarani and Sarkar, 2023;
Bouziani et al., 2024; Orlando et al., 2024).
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Candidates. ED is often split into candidate re-
trieval and ranking (Procopio et al., 2023; Wu et al.,
2020; Yamada et al., 2022; Yang et al., 2019).
Many methods use precompiled candidate lists
(alias tables) to map mentions to small sets of po-
tential entities, reducing the search space (Procopio
et al., 2023; Yamada et al., 2022; Wang et al., 2024;
Yang et al., 2019). Common lists are e.g. by Ganea
and Hofmann (2017) or Le and Titov (2018).

Simple Classifiers. Early classification-based
ED approaches, like Broscheit (2019) and (Févry
et al., 2020), use a softmax classification head on
a pretrained transformer. While effective, they are
limited by the need for a fixed, small label set and
sufficient training data for each label, making adap-
tation to new domains or labels challenging.

Dense Retrieval and Ranking. To provide more
flexibility in label sets, Dense Retrieval has gained
popularity, embedding mentions and entity candi-
dates into a shared embedding space. Many models
further enrich label representations by incorporat-
ing expressive label descriptions (Procopio et al.,
2023; Wu et al., 2020; Provatorova et al., 2022).

Dual Encoders (or Bi-Encoders) (Gillick et al.,
2019; Humeau et al., 2020) embed mentions and
entities into a shared space using separate encoders,
predicting labels via similarity. While often used
for retrieval (Orlando et al., 2024), they can also
make final predictions. Cross Encoders rank a
small set of pre-retrieved candidates by jointly en-
coding mentions and candidates, capturing deeper
interactions for improved ranking. Both are often
combined: Efficient candidate retrieval with a Dual
Encoder, then ranking via Cross Encoder, like in
the BLINK model (Wu et al., 2020). For training
the Bi-Encoder, they mainly use in-batch negatives,
optionally adding hard ones. While BLINK’s Bi-
Encoder focuses on candidate retrieval and priori-
tizes recall, our Dual Encoder directly handles label
prediction, omitting the expensive Cross Encoder
step. Wang et al. (2024) introduce a novel encoder-
decoder architecture FUSIONED, which employs
an encoder-decoder architecture to learn interac-
tions between the text and each candidate entity.
While using entity descriptions and hard negative
sampling is similar to our work, its decoder-based
approach introduces more complexity.

Many approaches further enhance dense retrieval
models by incorporating structural knowledge from
knowledge graphs such as entity types or relations
(Ayoola et al., 2022; Atzeni et al., 2023; Bouziani

et al., 2024), similarly to Provatorova et al. (2022)
and Tedeschi et al. (2021), who use entity type
information for filtering candidates.

Global Prediction. Most ED approaches, includ-
ing our base model, treat mentions individually
(local ED). Our iterative variant instead inserts dy-
namic label verbalizations from neighboring men-
tions, aligning it with global ED approaches (Ya-
mada et al., 2022; Oba et al., 2022; Xiao et al.,
2023; Ganea and Hofmann, 2017; Le and Titov,
2018; Yang et al., 2018; Provatorova et al., 2022;
Yang et al., 2019). LUKE (Yamada et al., 2022)
proposes a global ED model that resolves mentions
within a document sequentially, using previously
resolved entities as additional input tokens. Unlike
our verbalization insertions, LUKE appends entity
titles and relies on candidate lists.

Alternative Methods. Generative models like
GENRE (De Cao et al., 2021) frame ED as
sequence-to-sequence to generate label titles from
an entity list. Other methods use knowledge graphs
(Li et al., 2022), structured prediction (Shavarani
and Sarkar, 2023), or span extraction (Barba et al.,
2022). Recently, few-shot ED with LLM prompt-
ing gained more attention (Liu et al., 2024; Zhou
et al., 2024; Xu et al., 2023; Ding et al., 2024).

7 Conclusion

We systematically evaluated key design choices
for Dual Encoder-based entity disambiguation, fo-
cusing on loss functions, similarity metrics, label
verbalization formats, negative sampling and effi-
cient label embedding updates. Our experiments on
the AIDA and ZELDA benchmarks provide valu-
able insights into the impact of these decisions for
the effectiveness of Dual Encoder models for ED.

Based on these investigations, we introduced
VERBALIZED, a system that integrates document-
level processing, contextual label verbalizations,
efficient hard negative sampling, and cashed label
embeddings and achieves state-of-the-art perfor-
mance on the ZELDA benchmark. By eliminating
the reliance on candidate lists, VERBALIZED of-
fers a scalable and flexible solution.

While our iterative prediction strategy on av-
erage improved performance, gains were incon-
sistent and qualitative analysis revealed some un-
wanted negative effects. However, with positive
cases mostly prevailing, there is potential for fur-
ther pursuing this variant.
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Limitations

While our approach demonstrates significant ad-
vancements in entity disambiguation, several lim-
itations remain that offer avenues for future im-
provement:

Limited Evaluation of Training Configurations.
Due to time and resource constraints, we could not
run extensive training experiments on the ZELDA
dataset across multiple seeds or hyperparameter
configurations and had to rely on the ablations con-
ducted on AIDA-Yago. This limits the robustness
of our reported results on this benchmark. It is
possible, that the difference in size and diversity of
ZELDA train, would favor different settings for cer-
tain design choices. Furthermore, there are several
hyperparameters that we did not evaluate systemat-
ically, such as the margin parameter for triplet loss,
which may significantly impact its effectiveness
depending on the chosen similarity metric or more
in-depth analysis of the effect of the number of
negative samples per datapoint, length of label ver-
balizations or, concerning the iterative prediction
variant, insertion format.

Dependency on Descriptions for Labels. Our
approach relies heavily on the availability of de-
tailed descriptions for most labels in the entity set.
This dependence may restrict its applicability to
domains or datasets lacking such. On the other
hand, our approach only relies on descriptions and
does not require e.g. candidate lists which also are
challenging to collect. Furthermore, the title-only
setting still showed reasonable results, suggesting
that individual sparse cases pose minimal concern.

Training Complexity of the Iterative Model.
The iterative variant of our approach for enriching
entity disambiguation with contextual verbaliza-
tions shows potential, but a) requires significantly
more time and computational resources to train and
also for inference, and b) given the inconclusive
results concerning its added value, further investiga-
tion is needed to fully understand its impact, refine
its methodology and determine its usefulness.

Focus on English Datasets. Our experiments
were conducted exclusively on English ED datasets,
leaving the generalizability of our method to multi-
lingual scenarios unexplored. Unfortunately, while
very valuable, this was beyond the scope of this
work. Thaid said, applying dual encoder systems
to other languages could pose challenges including

the quality of multilingual resources (e.g., Wiki-
data), linguistic differences which might affect
span encoding method (e.g., first-last pooling), and
the scarcity of large-scale annotated datasets. Fu-
ture work addressing these challenges will help
ensure broader applicability.

Ethical Considerations

While our approach to entity disambiguation has
few direct ethical concerns, some considerations
arise due to inherent limitations in language models
and the reliance on external data. Human-written
label descriptions can contain errors, misinforma-
tion, and biases. Potentially, rare entities, being
less documented, might be more likely to be mis-
classified, perpetuating disparities in representation.
Additionally, the language model may perpetuate
biases, such as gender stereotyping in professions
or favoring frequent entities (Chen et al., 2021;
Provatorova et al., 2021).
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A Appendix

A.1 Hyperparameters for Training

We use bert-base-uncased (Devlin et al., 2019) as
the backbone for both the label and mention en-
coders, each comprising 110 million parameters6.

6We chose BERT-base due to its balance between compu-
tational efficiency and strong performance. Using more pow-
erful models like BERT-large or RoBERTa could potentially
improve results by providing richer contextual embeddings,
but these models come with significantly higher computational
and memory requirements. Given the scale of training (~300
model runs for our ablations) and the document-level context
used in this work, BERT-base was a practical choice. How-
ever, we argue that using larger models might not necessarily
result in significant gains. LLMs excel on tasks requiring
extensive reasoning, but for tasks like ED, where representa-

Models are trained with a batch size of 32 doc-
uments per update step. To handle CUDA mem-
ory limitations, especially with long documents in
the ZELDA benchmark, we employ minibatching
based on maximum chunk length and number of
mentions per chunk: When mention count or text
length exceeds GPU capacity, documents are split
into smaller chunks, each containing up to 100
mentions and 2,800 characters, while maintaining
as much contextual continuity as possible. Verbal-
izations are truncated after a soft threshold of 50
(100 or 500 for the paragraph setting) characters,
using heuristics to avoid splitting words or phrases.
Label embeddings are computed with a batch size
of 128. Training employs the AdamW optimizer
with a learning rate of 5e-6. For the triplet loss,
margin values are set to 0.5 for cosine similarity
and 3.0 for euclidean and dot product similarity.

Label embeddings are fully updated at the start
of each epoch. For the large ZELDA training set,
additional full updates occur after every 160,000
spans to prevent outdated negative samples, as well
as the on-the-fly updates (see Sect. 3.5).

In training the iterative variant, we initially insert
a random subset of gold labels per batch (partly cor-
rupted). After 30,000 spans, we switch to inserting
real predictions instead, aligning the training setup
with the procedure during inference.

A.2 Qualitative Insights of Iterative
Prediction

In addition to the short discussion in Sect. 5.2.2, we
give some more qualitative insights into the model
predictions of the iterative VERBALIZED variant.

Examples for Label Change. Table 9 highlights
instances where label insertions improved predic-
tions. In the first example, "Penn" was initially
mislinked to Pennsylvania State University but cor-
rected to the Penn State football team after insert-
ing "University of Alabama Football Team" from
a neighboring mention. Similarly, the context of
baseball clarified "Jose Reyes" as a Dominican
baseball player rather than a film and television
director.

However, the iterative approach did not deliver
consistent performance improvements. Table 10
illustrates cases where insertions misled predic-

tions rely heavily on structured context and fine-tuning, the
improvements might be marginal. Also, in Dual Encoder
setups, the simplicity of embedding space operations (like
similarity comparisons) may not fully leverage the additional
representational power of larger models.
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Step 1 Step 2

Input ex-
cerpt

"A few more days until I can watch Penn
state get bent over and rammed by Alabama
lol"

"A few more days until I can watch Penn state get bent over and
rammed by Alabama (University of Alabama Football Team)
lol"

Pred. Pennsylvania_State_University (✗) Penn_State_Nittany_Lions_football (✓)
Verbal. "Pennsylvania State University; public uni-

versity in Pennsylvania"
"Penn State Nittany Lions football; football team of Penn State
University"

Input ex-
cerpt

"Nyjer Morgan makes Jose Reyes seem tol-
erable."

"Nyjer Morgan (American former professional baseball and ice
hockey player) makes Jose Reyes seem tolerable."

Pred. Jose_Javier_Reyes (✗) José_Reyes_(infielder) (✓)
Verbal. "José Javier Reyes, Filipino writer and direc-

tor for film and television"
"José Reyes (infielder); Dominican baseball player, MLB All-
Star"

Input ex-
cerpt

"Relations between Clarke, Major good -
spokesman. LONDON 1996-12-06 Relations
between Chancellor of the Exchequer Ken-
neth Clarke and Prime Minister John Major
are good despite media reports”

"Relations between Clarke, Major good - spokesman. LON-
DON (capital and largest city of England and the United King-
dom) 1996-12-06 Relations between Chancellor of the Exche-
quer Kenneth Clarke (British politician (born 1940)) and Prime
Minister John Major (former prime minister of the United King-
dom (born 1943)) are good despite media reports”

Pred. Major (✗) John_Major (✓)
Verbal. "Major" "John Major; former prime minister of the United Kingdom

(born 1943)"

Input ex-
cerpt

"Peggy Olson is awesome... one of the best
characters on #madmen"

"Peggy Olson (fictional character from Mad Men) is awesome...
one of the best characters on #madmen"

Pred. Mad_(TV_series) (✗) Mad_Men (✓)
Verbal. "Mad; American adult animated sketch com-

edy television series"
"Mad Men; American period drama television series"

Input ex-
cerpt

"the director of law and order, his name is
Dick Wolf"

"the director of law and order, his name is Dick Wolf (American
television producer (born 1946))"

Pred. Law_and_order (✗) Law_&_Order (✓)
Verbal. "Law and Order; Wikimedia disambiguation

page"
"Law & Order; American police procedural and legal drama
television series"

Table 9: Insights to the iterative variant: Examples for successful disambiguation after label insertions.

tions. E.g., when multiple insertions referenced
sports teams ("German sport club", "German foot-
ball club"), the model over-relied on these, fa-
voring sports-related predictions even when the
mention referred to a person ("Dundee_F.C" vs.
"Sean_Dundee"). Similarly, when many inser-
tions include the terms "actress" and "actor", this
leads to the mention "Italian" being linked to "Cin-
ema_of_Italy" instead of the more general "Italy"
(country). While both solutions could be argued
correct in this instance, in other cases we see real er-
rors due to too much reliance or "mimicking" of the
insertions. While we attempted to address this with
a modified iterative training setup that includes a
mix of mentions with and without disambiguated
neighbouring mentions, the results remained mixed,
as the positive and negative effects balance out.

Quantitative Counts. In Table 11 we present a
quantitative analysis of the iterative variant’s im-
pact on prediction quality, comparing the initial and
final prediction state. We categorize instances into
four key types: "Correct", where both initial and
final predictions match the gold label, "Incorrect",

where both differ from the gold label, "Incorrect
> Correct", where the initial incorrect prediction
changes to a correct one after iterative adjustments,
and "Correct > Incorrect", where the initial correct
prediction later changes to an incorrect one.

We observe that as expected, no changes oc-
cur for the Shadowlinks datasets, as they consist
solely of single-mention documents, and only a few
changes are seen for social-media-based datasets
with mostly short documents with few mentions.
Although positive changes are generally more com-
mon than negative ones, there are still a signifi-
cant number of negative changes. Overall, the rate
of change is low, with most labels remaining un-
changed.

These analyses highlight the mixed results and
modest benefits of the iterative approach, particu-
larly considering its increased costs and complexity.
However, it also suggests that there is potential in
using enriched contextual clues, though the neg-
ative effects and surprisingly small gains would
need to be addressed before confidently proposing
this variant as the primary model. Still, we view
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Step 1 Step 2

Input ex-
cerpt

"Karlsruhe 3 (Reich 29th, Carl 44th, Dundee
69th) Freiburg 0. Halftime 2-0. Attendance
33,000"

"Karlsruhe (German sport club) 3 (Reich 29th, Carl 44th,
Dundee 69th) Freiburg (German football club) 0. Halftime
2-0. Attendance 33,000"

Pred. Sean_Dundee (✓) Dundee_F.C. (✗)
Verbal. "Sean Dundee; South African–German foot-

baller"
"Dundee F.C.; association football club in Dundee, Scotland"

Input ex-
cerpt

"West Indies tour manager Clive Lloyd has
apologised for Lara’s behaviour on Tuesday
. He (Lara) had told Australia coach Geoff
Marsh that ..."

"West Indies (multinational cricket team) tour manager Clive
Lloyd has apologised for Lara’s behaviour on Tuesday . He
(Lara) had told Australia (national sports team) coach Geoff
Marsh that ..."

Pred. Brian_Lara (✓) Australia_national_cricket_team (✗)
Verbal. "Brian Lara; West Indian cricketer" "Australia national cricket team; national sports team"

Input ex-
cerpt

"We offer the following types of posters;
Classic Film posters, movie posters, French
movie posters, Italian movie posters, cinema
posters, affiche de cinema, bogart posters [...]
Vintage Movie posters about the greats of
their time like Humphrey Bogart, Marylin
Monroe, Audrey Hepburn, Brigitte Bardot,
Marlene Dietrich, James Dean, Greta Garbo
[...]"

"We offer the following types of posters; Classic Film posters,
movie posters, French movie posters, Italian movie posters,
cinema posters, affiche de cinema, bogart posters [...] Vintage
Movie posters about the greats of their time like Humphrey Bog-
art (American actor (1899–1957)), Marylin Monroe, Audrey
Hepburn (British actress (1929–1993)), Brigitte Bardot, Mar-
lene Dietrich, James Dean (American actor (1931–1955)), Greta
Garbo (Swedish-American actress (1905–1990)) [...]"

Pred. Italy (✓) Cinema_of_Italy (✗)
Verbal. "Italy; country in Southern Europe" "Cinema of Italy; aspect of history"

Input ex-
cerpt

"Alright. ESPN not in HD has sound. HD
doesn’t. Boo."

"Alright. ESPN (American television and radio sports network)
not in HD has sound. HD doesn’t. Boo."

Pred. High-definition_television (✓) HD_Radio (✗)
Verbal. "High-definition television; TV resolution

standard"
"HD Radio; digital radio technology"

Table 10: Insights to the iterative variant: Examples for detrimental label insertions resulting in worse prediction.

the successful cases as evidence of the approach’s
potential and the failures as valuable lessons for
developing future global or iterative ED models.

A.3 Comparison to BLINK and CHATEL

We add two competitive models to our comparison,
which we exclude from our main results (Table
7) due to differences in training and evaluation
settings, making direct comparison challenging.

Comparison to BLINK. BLINK (Wu et al.,
2020) combines a Bi-Encoder with a subsequent
Cross Encoder. The Bi-Encoder retrieves top 100
candidates using dot product similarity, which are
then ranked by the the Cross Encoder. As the Bi-
Encoder is very similar to our Dual Encode (the
biggest difference being the verbalizations and neg-
ative sampling) and BLINK is currently widely
used for ED, comparison remains interesting.

As the BLINK model was trained on different
data and with a different label set7, direct com-
parison to our approach is challenging. See Table

7The BLINK dataset consist of 9M datapoints with a label
dictionary of size 5.9M, created from a 2019 Wikipedia dump
(Wu et al., 2020). ZELDA only includes 2.6M datapoints and
822K entities (Milich and Akbik, 2023).

12 for the following comparison setups, for all of
which we used their code base8: We first evaluate
their final model on the ZELDA test sets, both the
Bi-Encoder (BLINK-OGbi) and the Cross Encoder
(BLINK-OGcross). For better comparison, we also
train a BLINK Bi-Encoder on ZELDA (BLINK-
Zbi), where we plug in our general label set (ca.
800K entities) but keep the BLINK verbalizations9.

Unsurprisingly the original BLINK-OGcross –
benefiting from more data and the additional cross-
encoder step – beats VERBALIZED on most (not
all) datasets and on average, while our iterative
variant comes close. Interestingly, our model (also
the base variant) significantly outperforms the orig-
inal BLINK Bi-Encoder. This is particularly im-
pressive given the similar architecture of BLINK’s
Bi-Encoder and its advantage in training data10.

For the BLINK Bi-Encoder trained on ZELDA,
the results lag behind our Dual Encoder as well

8https://github.com/facebookresearch/BLINK
9Note that ~3% of the labels in our label set do not appear

in the BLINK label set. We exclude those from the label set
for this experiment as well as exclude the affected datapoints
from evaluation.

10However we acknowledged that their bigger label set
makes accurate disambiguation also more challenging.
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Method AIDA-B TWEEKI REDDIT-
POSTS

REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHAD.

SLINKS-
TOP

correct 3843 657 642 561 7771 6054 884 599 595
incorrect > correct 97 10 7 2 171 70 0 0 0
correct > incorrect 63 12 2 4 156 79 0 0 0
incorrect 482 177 52 70 3042 562 15 305 309
#Mentions 4485 856 703 637 11140 6765 899 904 904

Accuracy Step 1 87.1 78.2 91.6 88.7 71.2 90.7 98.3 66.3 65.8
Accuracy Last Step 87.9 77.9 92.3 88.4 71.3 90.5 98.3 66.3 65.8

Table 11: Insights to the iterative variant’s performance over iteration steps. Correct: initial and final prediction
align with gold label, incorrect: initial and final prediction are different from gold label, incorrect > correct and
correct > incorrect: prediction changes from initially incorrect to correct and vice versa.

Method Train
data AIDA-B TWEEKI REDDIT-

POSTS
REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHAD.

SLINKS-
TOP AVG

BLINK-OGbi
1 B 80.6 77.3 90.8 87.8 68.2 79.8 97.9 50.1 57.3 76.6

BLINK-OGcross
1 B 84.2 82.4 92.8 91.2 77.3 82.3 99.2 64.8 74.2 83.2

BLINK-Zbi
2 Z 65.5 72.1 83.1 79.1 58.1 73.1 96.3 41.8 42.6 68.0

VERBALIZED Z 82.6 78.9 89.2 86.2 69.8 91.4 98.6 65.3 67.0 81.0
+ iter. training Z 88.2 78.9 92.2 88.4 71.5 90.8 98.2 66.3 65.9 82.3

Table 12: Comparison between VERBALIZED and BLINK on the ZELDA benchmark. 1BLINK-OG results come
from evaluating the original BLINK on ZELDA test sets (Wu et al., 2020). However, they are not fully comparable
since BLINK-OG was trained on significantly more data (B). 2BLINK-Z: We trained a BLINK Bi-Encoder on
ZELDA, using our general label set with the BLINK verbalizations.

as the original BLINK Bi-Encoder11. Next to the
smaller train data, this performance drop is likely
due to differences in BLINK’s and our training
setup like our dynamic hard negatives, large con-
text, constant label embedding updates and more
concise label verbalizations, all of which likely
contribute to its superior performance.

BLINK’s vs. our Label Verbalizations. For di-
rect comparison of the effect of the applied label
verbalizations, we trained two BLINK Bi-Encoders
on AIDA with our general label set: Once with our
verbalizations (Title+Description), and once with
the BLINK verbalizations (first Wikipedia para-
graph). The results in Table 13 highlight the effec-
tiveness of concise descriptions in otherwise exact
settings, moreover when only having access to a
small train set like AIDA.

Comparison to CHATEL. We also include a rep-
resentative of another system type, CHATEL (Ding

11We did not have the resources to perform an extensive
hyperparameter search for BLINK. Furthermore, based on our
observations and reports from an open issue (github.com/
facebookresearch/BLINK/issues/31), the code version in
the repository appears to rely solely on in-batch negatives,
omitting the hard negatives described in Wu et al. (2020).
This discrepancy suggests that the original BLINK model may
have benefited from a more robust negative sampling strategy,
which we could not reproduce.

et al., 2024), a current method that leverages LLM
prompting for ED. In this approach, a small set of
entity candidates is provided to a LLM. It is first
tasked to enhance the mention context by generat-
ing auxiliary information from the document and its
own knowledge and, in a second step, it is asked to
select the correct entity through a multiple-choice
formatted prompt.

Refer to Table 14 for a comparison of VERBAL-
IZED to the prompting method CHATEL12, as well
as the BLINK models, on the subset of datasets
for which all three models report numbers, includ-
ing MSNBC (Cucerzan, 2007), ACE2004 (Ratinov
et al., 2011) and AQUAINT (Milne and Witten,
2008). As these are not part of the ZELDA splits,
it is not guaranteed that all their target labels are
included in our employed label set. In fact, we
found that ~15% of their target labels are miss-
ing, mostly due to changes in article names. For
example, one gold label in AQUAINT is the arti-
cle "Dave_Richardson", an article now redirecting
to "David_Richardson", which is a disambigua-
tion page that links to, among others, two different
cricket players with the same name. To ensure a

12We report the numbers that are presented in the
README of the repository (https://github.com/
yifding/In_Context_EL), for which they used GPT-3.5.
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Method Train
data AIDA-B TWEEKI REDDIT-

POSTS
REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHAD.

SLINKS-
TOP AVG

BLINKbi with
BLINK verbalizations A 59.4 47.9 50.9 53.7 44.2 50.5 76.3 40.3 38.5 51.3
our verbalizations A 61.8 57.7 77.4 73.2 49.5 51.8 80.1 23.3 25.3 55.6

Table 13: Training a BLINK Bi-Encoder on AIDA, using our label set with BLINK’s vs. our verbalizations.

Method Train
data AIDA CWEB WIKI MSNBC ACE2004 AQUAINT AVG

LLM Prompting
CHATEL (B+CL) 82.1 71.1 77.1 86.6 88.4 79.1 80.7

Dense Retrieval
BLINK-OGbi B 80.6 68.2 79.8 83.5 84.3 87.2 80.6
BLINK-OGcross B 84.2 77.3 82.3 97.1 98.4 98.7 89.7
BLINK-Zbi Z 65.5 58.1 73.1 67.4 74.0 79.8 69.7

VERBALIZED
ZELDA labels Z 82.6 69.8 91.4 74.7 75.9 73.0 77.9
+ additional labels Z 82.6 69.8 91.4 80.3 82.5 80.5 81.2

+ iter. training Z 88.2 71.5 90.8 80.8 85.6 84.2 83.5

Table 14: VERBALIZED performance compared to CHATEL and BLINK. We include the datasets for which both
models report numbers, including MSNBC, ACE2004, and AQUAINT. (B+CL): CHATEL, as a prompting method,
does not use any specific train data, however for candidate generation they use both BLINK as well as candidate
lists based on frequency statistics from hyperlinks (Ganea and Hofmann, 2017). + additional labels: About 15%
of labels from MSNBC, ACE2004 and AQUAINT are not included in our ZELDA-based label set. To enable fair
evaluation, we add those to the label set for inference.

Method AIDA-B TWEEKI REDDIT-
POSTS

REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHAD.

SLINKS-
TOP AVG

VERBALIZED 94.5 91.0 97.7 95.9 83.1 96.3 99.6 97.7 93.9 94.4
+ iter. training 95.7 91.1 97.9 97.3 84.0 95.6 99.7 98.1 92.6 94.7

Table 15: Results on ZELDA, restricting to the respective target dataset’s label set for inference.

fair evaluation, we add the missing labels (along
with their verbalizations) to our pool. Keep in mind
that while this ensures the inclusion of all labels,
this may lead to a) incomplete verbalizations for
outdated entity labels, and b) possibly multiple ver-
sions of the same entity, decreasing the likelihood
of selecting the "correct" one.

On average over all datasets for which we could
compare scores, VERBALIZED beats CHATEL
and the BLINK Bi-Encoder, while on MSNBC and
ACE2004 CHATEL performs better, possibly due
to the discrepancy in the label sets. Note that the
performance improvements after incorporating ad-
ditional labels highlight VERBALIZED’s ability to
adapt to unseen labels without requiring retraining.

A.4 Results with Target Label Set

In Table 15, we report results of our main models
trained with the general label set on ZELDA, but
restricting the label set to each respective target

label set for inference. As expected, this simplifica-
tion leads to significantly higher accuracy across all
datasets. The findings indicate that training with a
broader label set does not compromise performance
on more specific label sets.
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