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ABSTRACT

The vulnerability of deep neural networks to adversarial patches has motivated nu-
merous defense strategies for boosting model robustness. However, the prevailing
defenses depend on single observation or pre-established adversary information to
counter adversarial patches, often failing to be confronted with unseen or adaptive
adversarial attacks and easily exhibiting unsatisfying performance in dynamic 3D
environments. Inspired by active human perception and recurrent feedback mecha-
nisms, we develop Embodied Active Defense (EAD), a proactive defensive strategy
that actively contextualizes environmental information to address misaligned ad-
versarial patches in 3D real-world settings. To achieve this, EAD develops two
central recurrent sub-modules, i.e., a perception module and a policy module,
to implement two critical functions of active vision. These models recurrently
process a series of beliefs and observations, facilitating progressive refinement of
their comprehension of the target object and enabling the development of strategic
actions to counter adversarial patches in 3D environments. To optimize learning
efficiency, we incorporate a differentiable approximation of environmental dynam-
ics and deploy patches that are agnostic to the adversary’s strategies. Extensive
experiments demonstrate that EAD substantially enhances robustness against a
variety of patches within just a few steps through its action policy in safety-critical
tasks (e.g., face recognition and object detection), without compromising standard
accuracy. Furthermore, due to the attack-agnostic characteristic, EAD facilitates
excellent generalization to unseen attacks, diminishing the averaged attack success
rate by 95% across a range of unseen adversarial attacks.

1 INTRODUCTION

Adversarial patches (Brown et al., 2017) have emerged as a prominent threat to the security of deep
neural networks (DNNs) in prevailing visual tasks (Sharif et al., 2016; Thys et al., 2019; Xu et al.,
2020; Zhu et al., 2023). These crafted adversarial patches can be maliciously placed on objects within
a scene, aiming to induce erroneous model predictions in real-world 3D physical environments. As a
result, this poses security risks or serious consequences in numerous safety-critical applications, such
as identity verification (Sharif et al., 2016; Yang et al., 2022; Xiao et al., 2021), autonomous driving
(Song et al., 2018; Zhu et al., 2023) and security surveillance (Thys et al., 2019; Xu et al., 2020).

Due to the threats, a multitude of defense strategies have been devised to boost the robustness
of DNNs. Adversarial training (Madry et al., 2017; Wu et al., 2019; Rao et al., 2020) is one
effective countermeasure (Gowal et al., 2021) that incorporates adversarial examples into the training
data batch. Besides, input preprocessing techniques like adversarial purification aim to eliminate
these perturbations (Xiang et al., 2021; Liu et al., 2022; Xu et al., 2023). Overall, these strategies
predominantly serve as passive defenses; they mitigate adversarial effects on uncertain monocular
observations (Smith & Gal, 2018) with prior knowledge of the adversary (Naseer et al., 2019; Liu
et al., 2022; Xu et al., 2023). However, passive defenses possess inherent limitations. First, they
remain susceptible to unseen or adaptive attacks (Athalye et al., 2018a; Tramer et al., 2020) that
evolve to circumvent the robustness, owing to their dependence on presuppositions regarding the
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adversary’s capabilities. Second, these strategies treat each static 2D image independently without
considering the intrinsic physical context and corresponding understanding of the scene and objects
in the 3D realm, potentially rendering them less effective in real-world 3D physical environments.

As a comparison, human perception employs extensive scene precedents and spatial reasoning to
discern elements that are anomalous or incongruent. Some research (Thomas, 1999; Elsayed et al.,
2018) illustrates that human perception can effortlessly pinpoint misplaced patches or objects within
3D environments, even when such discrepancies trigger errors in DNNs on individual viewpoints.
Inspired by this, we introduce Embodied Active Defense (EAD), a novel defensive framework
that actively contextualizes environmental context and harnesses shared scene attributes to address
misaligned adversarial patches in 3D real-world settings. By separately implementing two critical
functions of active vision, namely perception and movement, EAD comprises of two primary sub-
modules: the perception model and the policy model. The perception model continually refines its
understanding of the scene based on both current and past observations. The policy model, in turn,
derives strategic actions based on this understanding, facilitating more effective observation collection.
Working in tandem, these modules enable EAD to actively improve its scene comprehension through
proactive movements and iterative predictions, ultimately mitigating the detrimental effects of
adversarial patches. Furthermore, our theoretical analysis also validates the effectiveness of EAD in
minimizing uncertainties related to target objects.

However, training an embodied model designed for environmental interactions presents inherent chal-
lenges, since the policy and perception models are interconnected through complex and probabilistic
environmental dynamics. To tackle this, we employ a deterministic and differentiable approximation
of the environment, bridging the gap between the two sub-modules and leveraging advancements
in supervised learning. Moreover, to fully investigate the intrinsic physical context of the scene
and objects, we deploy adversary-agnostic patches from the Uniform Superset Approximation for
Adversarial Patches (USAP). The USAP provides computationally efficient surrogates encompassing
diverse potential adversarial patches, thus precluding the overfitting to a specific adversary pattern.

Extensive experiments validate that EAD possesses several distinct advantages over typical passive
defenses. First, in terms of effectiveness, EAD dramatically improves defenses against adversarial
patches by a substantial margin over state-of-the-art defense methods within a few steps. Notably, it
maintains or even improves standard accuracy due to instructive information optimal for perceiving
target objects in dynamic 3D environments. Second, the attack-agnostic designs allow for exceptional
generalizability in a wide array of previously unseen adversarial attacks, outperforming state-of-the-
art defense strategy, by achieving an attack success rate reduction of 95% across a large spectrum of
patches crafted with diverse unseen adversarial attacks. Our contributions are as follows:

• To our knowledge, this work represents the inaugural effort to address adversarial robustness within
the context of embodied active defense. Through theoretical analysis, EAD can greedily utilize
recurrent feedback to alleviate the uncertainty induced by adversarial patches in 3D environments.

• To facilitate efficient EAD learning within the stochastic environment, we employ a deterministic
and differentiable environmental approximation along with adversary-agnostic patches from USAP,
thus enabling the effective application of supervised learning techniques.

• Through exhaustive evaluations, we demonstrate that our EAD significantly outperforms contempo-
rary advanced defense methods in both effectiveness and generalization based on two safety-critical
tasks, including face recognition and object detection.

2 BACKGROUND

In this section, we introduce the threat from adversarial patches under a 3D environment and their
corresponding defense strategy. Given a scene x ∈ X with its ground-truth label y ∈ Y , the
perception model f : O → Y aims to predict the scene annotation y using the image observation
oi ∈ O. The observation oi is derived from scene x conditioned on the camera’s state si (e.g.,
camera’s position and viewpoint). The function L(·) denotes a task-specific loss function (e.g.,
cross-entropy loss for classification).

Adversarial patches. Though adversarial patches are designed to manipulate a specific region of
an image to mislead the image classifiers (Brown et al., 2017), they have now evolved to deceive
various perception models (Sharif et al., 2016; Song et al., 2018) under 3D environment (Eykholt
et al., 2018; Yang et al., 2022; Zhu et al., 2023; Yang et al., 2023). Formally, an adversarial patch p is
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introduced to the image observation oi, and results in erroneous prediction of the perception model f .
Typically, the generation of adversarial patches in 3D scenes (Zhu et al., 2023) emphasizes solving
the optimization problem presented as:

max
p

EsiL(f(A(oi, p; si)), y), (1)

where A(·) denotes the applying function to project adversarial patch p from the 3D physical space
to 2D perspective views of camera observations oi based on the camera’s state si. This approach
provides a more general 3D formulation for adversarial patches. By specifying the state si as a
mixture of 2D transformations and patch locations, it aligns with the 2D formulation by Brown et al.
(2017). To ensure clarity in subsequent sections, we define the set of adversarial patches Px that can
deceive the model f under scene x as:

Px = {p ∈ [0, 1]Hp×Wp×C : Esif(A(oi, p; si)) ̸= y}, (2)

where Hp and Wp denote the patch’s height and width. In practice, the approximate solution of Px

is determined by applying specific methods (Goodfellow et al., 2014; Madry et al., 2017; Carlini &
Wagner, 2017; Dong et al., 2018) to solve the problem in Eq. (1).

Adversarial defenses against patches. A multitude of defensive strategies, including both empirical
(Dziugaite et al., 2016; Hayes, 2018; Naseer et al., 2019; Rao et al., 2020; Xu et al., 2023) and
certified defenses (Li et al., 2018; Zhang & Wang, 2019; Xiang et al., 2021), have been suggested to
safeguard perception models against patch attacks. However, the majority of contemporary defense
mechanisms fall under the category of passive defenses, as they primarily rely on information
obtained from passively-received monocular observation and prior adversary’s knowledge to alleviate
adversarial effects. In particular, adversarial training approaches (Madry et al., 2017; Wu et al., 2019;
Rao et al., 2020) strive to learn a more robust perception model f , while adversarial purification-
based techniques (Hayes, 2018; Naseer et al., 2019; Liu et al., 2022; Xu et al., 2023) introduce an
auxiliary purifier g : O → O to “detect and remove” (Liu et al., 2022) adversarial patches in image
observations, subsequently enhancing robustness through the amended perception model f ◦ g.

Embodied perception. In the realm of embodied perception (Aloimonos et al., 1988; Bajcsy, 1988),
an embodied agent can navigate its environment to optimize perception or enhance the efficacy of task
performance. Such concept has found applications in diverse tasks such as object detection (Yang
et al., 2019; Chaplot et al., 2021; Kotar & Mottaghi, 2022; Jing & Kong, 2023), 3D pose estimation
(Doumanoglou et al., 2016; Ci et al., 2023) and 3D scene understanding (Das et al., 2018; Ma et al.,
2022). To our knowledge, our work is the first to integrate an embodied active strategy to diminish
the high uncertainty derived from adversarial patches to enhance model robustness.

3 METHODOLOGY

We first introduce Embodied Active Defense (EAD) that utilizes embodied recurrent feedback to
counter adversarial patches in Sec. 3.1. We then provide a theoretical analysis of the defensive ability
of EAD in Sec. 3.2. Lastly, the technical implementation details of EAD are discussed in Sec. 3.3.

3.1 EMBODIED ACTIVE DEFENSE

Conventional passive defenses usually process single observation oi for countering adversarial
patches, thereby neglecting the rich scenic information available from alternative observations
acquired through proactive movement (Ronneberger et al., 2015; He et al., 2017). In this paper,
we propose the Embodied Active Defense (EAD), which emphasizes active engagement within a
scene and iteratively utilizes environmental feedback to improve the robustness of perception against
adversarial patches. Unlike previous methods, EAD captures a series of observations through strategic
actions, instead of solely relying on a single passively-received observation.

EAD is comprised of two recurrent models that emulate the cerebral structure underlying active human
vision, each with distinct functions. The perception model f(·;θ), parameterized by θ, is dedicated
to visual perception by fully utilizing the contextual information within temporal observations from
the external world. It leverages the observation ot and the prevailing internal belief bt−1 on the scene
to construct a better representation of the surrounding environment bt in a recurrent paradigm and
simultaneously predict scene annotation, as expressed by:

{yt, bt} = f(ot, bt−1;θ). (3)
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Figure 1: An overview of our proposed embodied activate defense. The perception model utilizes observation
ot from the external world and previous internal belief bt−1 on the scene to refine a representation of the
surrounding environment bt and simultaneously make task-specific prediction yt. The policy model generates
strategic action at in response to shared environmental understanding bt. As the perception process unfolds, the
initially high informative uncertainty H(y|bt−1, ot) caused by adversarial patch monotonically decreases.

The subsequent policy model π(·;ϕ), parameterized by ϕ, governs the visual control of movement.
Formally, It derives at rooted in the collective environmental understanding bt sustained by the
perception model, as formalized by at ∼ π(bt;ϕ).

Leveraging recurrent feedback from the environment. Formally, the EAD’s interaction with its
environment (as depicted in Figure 1) follows a simplified Partially-Observable Markov Decision
Process (POMDP) framework, facilitating the proactive exploration of EAD within the scene x. The
interaction process is denoted by M(x) := ⟨S,A, T ,O,Z⟩ . Here, each x determines a specific
MDP by parameterizing a transition distribution T (st+1|st, at,x) and an observation distribution
Z(ot|st,x). At every moment t, EAD obtains an observation ot ∼ Z(·|st,x) based on current state
st. It utilizes ot as an environmental feedback to refine the understanding of environment bt through
perception model f(·;θ). Such a recurrent perception mechanism is pivotal for the stability of human
vision (Thomas, 1999; Kok et al., 2012; Kar et al., 2019). Subsequently, the EAD model executes
actions at ∼ π(bt;ϕ), rather than remaining static and passively assimilating observation. Thanks to
the policy model, EAD is capable of determining the optimal action, ensuring the acquisition of the
most informative feedback from the scene, thereby enhancing perceptual efficacy.

Training EAD against adversarial patches. Within the intricately constructed EAD model, we in-
troduce a specialized learning algorithm tailored for EAD to counter adversarial patches. Considering
a data distribution D with paired data (x, y) and adversarial patches p ∈ Px crafted with unknown
attack techniques, our proposed approach optimizes parameters θ and ϕ by minimizing the expected
loss amid threats from adversarial patches, where the adversarial patch p contaminates the observation
ot and yields o′t = A(ot, p; st). Consequently, the learning of EAD to mitigate adversarial patches is
cast as an optimization problem:

min
θ,ϕ

E(x,y)∼D

[ ∑
p∈Px

L(yt, y)
]
,with {yt, bt} = f(A(ot, p; st), bt−1;θ), at ∼ π(·|bt;ϕ)

s.t. ot ∼ Z(·|st,x), st ∼ T (·|st−1, at−1,x),

(4)

where t = 1, . . . , τ , yt denotes the model’s prediction at timestep t and τ represents the maximum
horizon length of EAD. Importantly, the loss function L remains agnostic to tasks, underscoring the
remarkable versatility of EAD. This flexibility ensures EAD to offer robust defenses across diverse
perception tasks. We further delve into the efficacy of EAD through an information-theoretic lens.

3.2 A PERSPECTIVE FROM INFORMATION THEORY

Drawing inspiration from active human vision, we introduce EAD in Sec. 3.1 as a strategy to enhance
a model’s robustness against adversarial patches. However, due to the black-box nature of neural
networks, the fundamental driver behind this defensive tactic remains elusive. To delve deeper into
model behaviors, we examine a generic instance of EAD in Eq. (4), where the agent employs the
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InfoNCE objective (Oord et al., 2018). This is succinctly reformulated1 as:

max
θ,ϕ

E(x(j),y(j))∼D

− K∑
j=1

log
e−S(f(b

(j)
t−1,o

(j)
t ;θ),y(j))∑

ŷ(j) e
−S(f(b

(j)
t−1,o

(j)
t ;θ),ŷ(j))

 , (5)

where S(·) : Y × Y → R measures the similarity between predicted scene annotation and ground
truth, and K denotes the size of data batch {(x(j), y(j))}Kj=1 sampled from D. Under the realm of
embodied perception, the target task with InfoNCE objective is to match the observations collected
from given scene x with its annotation y other modalities like CLIP (Radford et al., 2021), where the
annotations are usually text for tasks like captioning given scene (Jin et al., 2015) or answering the
question about scene (Ma et al., 2022).
Theorem 3.1 (Proof in Appendix A.1). For mutual information between current observation ot and
scene annotation y conditioned on previous belief bt−1, denoted as I(ot; y|bt−1), we have:

I(ot; y|bt−1)) ≥ E(x(j),y(j))∼D

 K∑
j=1

log
qθ(y

(j)|b(j)t−1, o
(j)
t )∑

ŷ(j) qθ(ŷ(j)|b(j)t−1, o
(j)
t )

+ log(K), (6)

where qθ(y|o1, · · · , ot) denotes variational distribution for conditional distribution p(y|o1, · · · , ot)
with samples {(x(j), y(j))}Kj=1.

Remark. To bridge the lower bound of conditional mutual information with the objective, we
can rewrite qθ(y|bt−1, ot) with the similarity term in Eq. (4) served as score function, and obtain
qθ(y|bt−1, ot) := p(bt−1, ot)e

−S(f(bt−1,ot;θ),y). Then, this term is equivalent to the negative In-
foNCE objective for EAD in Eq. (4). It indicates that the training procedure for EAD is actually to
indirectly maximize the conditional mutual information, thereby leading the agent to learn an action
policy aiming to collect an observation ot to better determine the task-designated annotation y. And
the bound will be tighter as the batch size K increases.
Definition 3.1 (Greedy Informative Exploration). A greedy informative exploration, denoted by π∗,
is an action policy which, at any timestep t, chooses an action at that maximizes the decrease in the
conditional entropy of a random variable y given a new observation ot resulting from taking action
at. Formally,

π∗ = argmax
π∈Π

[H(y|bt−1)−H(y|bt−1, ot)], (7)

where H(·) denotes the entropy, Π is the space of all policies.

Remark. The conditional entropy H(y|bt−1) quantifies the uncertainty of the target y given previ-
ously sustained belief bt−1, while H(y|bt−1, ot) denotes the uncertainty of y with extra observation
ot. Although not optimal throughout the whole trajectory, the greedy informative exploration serves
as a relatively efficient baseline for agents to rapidly understand their environment by performing
continuous actions and observations. The efficiency of the greedy policy is empirically demonstrated
in Appendix D.7.

Given unlimited model capacity and data samples, the optimal policy model π∗
ϕ in problem (5)

is a greedy informative exploration policy. The optimization procedure in Eq. (5) simultaneously
estimates the mutual information and improves the action policy with its guidance. Owing to the
mutual information being equivalent to the conditional entropy decrease (detailed proof in Appendix
A.2), it leads the action policy approaching greedy informative exploration.

Therefore, we theoretically demonstrate the effectiveness of EAD from the perspective of information
theory. A well-learned EAD model for contrastive task adopts a greedy informative policy to explore
the environment, utilizing the rich context information to reduce the abnormally high uncertainty
(Smith & Gal, 2018; Deng et al., 2021) of scenes caused by adversarial patches.

3.3 IMPLEMENTATION TECHNIQUES

The crux of EAD’s learning revolves around the solution of the optimization problem (4). However,
due to the intractability of the environment dynamics, namely the observation Z and transition T , it
is not feasible to directly optimize the policy model parameters using gradient descent. Concurrently,

1Constraints in Eq. (4) and belief bt in the output have been excluded for simplicity.
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Algorithm 1 Learning Embodied Active Defense

Require: Training data D, number of epochs N , loss function L, perception model f(·;θ), policy model
π(·;ϕ), differentiable observation function Z and transition function T , max horizon length τ , uniform
superset approximation for adversarial patches P̃ and applying function A.

Ensure: The parameters θ,ϕ of the learned EAD model.
1: for epoch← 1 to N do
2: X,Y ← sample a batch from Dtrain;
3: P ← sample a batch from from P̃;
4: t← 1,A0 ← null,B0 ← null, randomly initialize world state S0;
5: repeat
6: St ← T (St−1,At−1, X), Ot ← Z(St,X), O′

t ← A(Ot,P ;St); ▷ Compute observations
7: Bt,Y t ← f(Bt−1,O

′
t;θ),At ← π(Bt;ϕ); ▷ Compute beliefs, actions and predictions

8: St+1 ← T (St,At,X), Ot+1 ← Z(St+1,X), O′
t+1 ← A(Ot+1,P ;St+1);

9: Bt+1,Y t+1 ← f(Bt,O
′
t+1;θ),At+1 ← π(Bt+1;ϕ);

10: Lt+1 ← L(Y t+1,Y );
11: Update θ,ϕ using∇Lt+1;
12: t← t+ 2;
13: until t > τ
14: end for

the scene-specific adversarial patches Px cannot be derived analytically. To address these challenges,
we propose two approximation methods to achieve near-accurate solutions. Empirical evidence from
experiments demonstrates that these approaches are effective in reliably solving problem (4).

Deterministic and differentiable approximation for environments. Formally, we employ the
Delta distribution to deterministically model the transition T and observation Z . For instance,
the approximation of T is expressed as T (st+1|st, at,x) = δ(st+1 − T (st, at,x)), where T :
S × A × X → S denotes the mapping of the current state and action to the most probable next
state, and δ(·) represents the Delta distribution. Additionally, we use advancements in differentiable
rendering (Kato et al., 2020) to model deterministic observations by rendering multi-view image
observations differentiably, conditioned on camera parameters deduced from the agent’s current state.

These approximations allow us to create a connected computational graph between the policy and
perception models (Abadi, 2016; Paszke et al., 2019), thereby supporting the use of backpropagation
(Werbos, 1990; Williams & Peng, 1990) to optimize the policy model’s parameter ϕ via supervised
learning. To maximize supervision signal frequency and minimize computational overhead, we update
model parameters θ and ϕ every second step, right upon the formation of the minimal computational
graph that includes the policy model. This approach allows us to seamlessly integrate the passive
perception models into EAD to enhance resistance to adversarial patches.

Uniform superset approximation for adversarial patches. The computation of Px typically neces-
sitates the resolution of the inner maximization in Eq. (4). However, this is not only computationally
expensive (Wong et al., 2020) but also problematic as inadequate assumptions for characterizing
adversaries can hinder the models’ capacity to generalize across diverse, unseen attacks (Laidlaw
et al., 2020). To circumvent these limitations, we adopt an assumption-free strategy that solely relies
on uniformly sampled patches, which act as surrogate representatives encompassing a broad spectrum
of potential adversarial examples. Formally, the surrogate set of adversarial patches is defined as:

P̃ := {pi}Ni=1, pi ∼ U(0, 1)Hp×Wp×C , (8)

where N represents the size of the surrogate patch set P̃. In the context of implementation, N
corresponds to the training epochs, suggesting that as N → ∞, we achieve Px ⊆ P̃. By demanding
the EAD to address various patches, the active perception significantly bolsters its resilience against
adversarial patches (refer to Sec. 4.1). The overall training procedure is outlined in Algorithm 1.

4 EXPERIMENTS

In this section, we first introduce the experimental environment, and then present extensive experi-
ments to demonstrate the effectiveness of EAD on face recognition (FR) and object detection.

Experimental Environment. To enable EAD’s free navigation and observation collection, a ma-
nipulable simulation environment is indispensable for both training and testing. For alignment with
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Table 1: Standard accuracy and adversarial attack success rates on FR models. † denotes the methods involved
with adversarial training. Columns with Adpt represent results under adaptive attack, and the adaptive attack
against EAD optimizes the patch with an expected gradient over the distribution of possible action policy.

Method Acc. (%) Dodging ASR (%) Impersonation ASR (%)

MIM EoT GenAP 3DAdv Adpt MIM EoT GenAP 3DAdv Adpt

Undefended 88.86 100.0 100.0 99.0 98.0 100.0 100.0 100.0 99.0 89.0 100.0

JPEG 89.98 98.0 99.0 95.0 88.0 100.0 99.0 100.0 99.0 93.0 99.0
LGS 83.50 49.5 52.6 74.0 77.9 78.9 5.1 7.2 33.7 30.6 38.4
SAC 86.83 73.5 73.2 92.8 78.6 65.2 6.1 9.1 67.7 64.6 48.0
PZ 87.58 6.9 8.0 58.4 57.1 88.9 4.1 5.2 59.4 45.8 89.8
SAC† 80.55 78.8 78.6 79.6 85.8 85.0 3.2 3.2 18.9 22.1 51.7
PZ† 85.85 6.1 6.2 14.3 20.4 69.4 3.1 3.2 19.1 27.4 61.0
DOA† 79.55 75.3 67.4 87.6 95.5 95.5 95.5 89.9 96.6 89.9 89.9
EAD (ours) 90.45 0.0 0.0 2.1 13.7 22.1 4.1 3.1 5.1 7.2 8.3

given vision tasks, we define the state as a composite of the camera’s yaw and pitch and the action as
the camera’s rotation. This sets the transition function, so the core of the simulation environment
revolves around the observation function, which renders a 2D image given the camera state. 1)
Training environment. As discussed in Sec. 3.3, model training demands differentiable environ-
mental dynamics. To this end, we employ the cutting-edge 3D generative model, EG3D (Chan et al.,
2022) for realistic differentiable rendering (see Appendix D.1 for details on simulation fidelity). 2)
Testing environment. In addition to evaluations conducted in EG3D-based simulations, we extend
our testing for object detection within CARLA (Dosovitskiy et al., 2017), aiming to assess EAD in
more safety-critical autonomous driving scenarios. The details can be found in Appendix C.

4.1 EVALUATION ON FACE RECOGNITION

Evaluation setting. We conduct our experiments on CelebA-3D, which we utilize GAN inversion
(Zhu et al., 2016) with EG3D (Chan et al., 2022) to reconstruct 2D face image from CelebA into a
3D form. For standard accuracy, we sample 2, 000 test pairs from the CelebA and follow the standard
protocol from LFW (Huang et al., 2007). As for robustness evaluation, we report the white-box attack
success rate (ASR) on 100 identity pairs in both impersonation and dodging attacks (Yang & Zhu,
2023) with various attack methods, including MIM (Dong et al., 2018), EoT (Athalye et al., 2018b),
GenAP (Xiao et al., 2021) and Face3Dadv (3DAdv) (Yang et al., 2022). Note that 3DAdv utilizes
expectation over 3D transformations in optimization, rendering it robust to 3D viewpoint variation
(within ±15◦, refer to Appendix D.7). More details are described in Appendix D.1 & D.2.

Implementation details. For the visual backbone, we employ the pretrained IResNet-50 Arc-
Face(Duta et al., 2021) with frozen weight in subsequent training. To implement the recurrent
perception and policy, we adopt a variant of the Decision Transformer (Chen et al., 2021) to model
the temporal process which uses feature sequences extracted by the visual backbone to predict a
normalized embedding for FR. To expedite EAD’s learning of efficient policies requiring minimal
perceptual steps, we configure the max horizon length τ = 4. Discussion about this horizon length is
provided in Appendix D.7 and the details for EAD are elaborated in Appendix D.5.

Defense baselines. We benchmark EAD against a range of defense methods, including adversarial
training-based Defense against Occlusion Attacks (DOA) (Wu et al., 2019), and purification-based
methods like JPEG compression (JPEG) (Dziugaite et al., 2016), local gradient smoothing (LGS)
(Naseer et al., 2019), segment and complete (SAC) (Liu et al., 2022) and PatchZero (PZ) (Xu et al.,
2023). For DOA, we use rectangle PGD patch attacks (Madry et al., 2017) with 10 iterations and
step size 2/255. SAC and PZ require a patch segmenter to locate the area of the adversarial patch.
Therefore, we train the segmenter with patches of Gaussian noise to ensure the same adversarial-
agnostic setting as EAD. Besides, enhanced versions of SAC and PZ involve training with EoT-
generated adversarial patches, denoted as SAC† and PZ†. More details are in Appendix D.4.

Effectiveness of EAD. Table 1 demonstrates both standard accuracy and robust performance against
diverse attacks under a white-box setting. The patch is 8% of the image size. Remarkably, our
approach outperforms previous state-of-the-art techniques that are agnostic to adversarial examples
in both clean accuracy and defense efficacy. For instance, EAD reduces the attack success rate of
3DAdv by 84.3% in impersonation and by 81.8% in dodging scenarios. Our EAD even surpasses
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Figure 3: Comparative evaluation of defense methods across varying attack iterations with different adversarial
patch sizes. The adversarial patches are crafted by 3DAdv for impersonation.

the undefended passive model in standard accuracy, which facilitates the reconciliation between
robustness and accuracy (Su et al., 2018) through embodied perception. Furthermore, our method
even outstrips baselines by incorporating adversarial examples during training. Although SAC† and
PZ† are trained using patches generated via EoT (Athalye et al., 2018b), we still obtain superior
performance which stems from effective utilization of the environmental feedback in active defense.

Figure 2 illustrates the defense process executed by EAD. While EAD may fooled at first glance, its
subsequent active interactions with the environment progressively increase the similarity between the
positive pair and decrease the similarity between the negative pair. Consequently, EAD effectively
mitigates adversarial effects through the proactive acquisition of additional observations.

Effectiveness against adaptive attack. While the deterministic and differential approximation could
enable backpropagation through the entire inference trajectory of EAD, the computational cost is
prohibitive due to rapid GPU memory consumption as trajectory length τ increases. To overcome
this, we resort to an approach similar to USAP that approximates the true gradient with the expected
gradient over a surrogate uniform superset policy distribution. This necessitates an optimized patch
to handle various action policies. Our adaptive attack implementation builds upon 3DAdv (Yang
et al., 2022) using 3D viewpoint variations. We can see that EAD maintains its robustness against
the most potent attacks. It further shows that EAD’s defensive capabilities arise from the synergistic
integration of its policy and perception models, rather than learning a short-cut strategy to neutralize
adversarial patches from specific viewpoints. More details are in Appendix D.3.

Generalization of EAD. As illustrated in Table 1, despite no knowledge of adversaries, ours
demonstrates strong generalizability across various unseen adversarial attack methods. It is partially
attributed to EAD’s capability to dynamically interact with its environment, enabling it to adapt and
respond to new types of attacks. Additionally, we assess the model’s resilience across a wide range
of patch sizes and attack iterations. Trained solely on patches constituting 10% of the image, EAD
maintains a notably low attack success rate even when the patch size and attack iteration increases,
as shown in Figure 3. This resilience can be attributed to EAD’s primary reliance on environmental
information rather than patterns of presupposed adversaries, thus avoiding overfitting specific attack
types. The details are available in Appendix D.7.

Ablation study. We conduct ablation studies within EAD in Table 2. 1) Effectiveness of recurrent
feedback. We initially demonstrate the role of recurrent feedback, i.e., reflecting on prior belief
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Table 2: Standard accuracy and white-box impersonation adversarial attack success rates on ablated models. For
the model with random action policy, we report the mean and standard deviation under five rounds.

Method Acc. (%) Attack Success Rate (%)

MIM EoT GenAP 3DAdv Adpt

Undefended 88.86 100.0 100.0 99.00 98.00 98.00
Random Movement 90.38 4.17± 2.28 5.05± 1.35 8.33± 2.21 76.77± 3.34 76.77± 3.34
Perception Model 90.22 18.13± 4.64 18.62± 2.24 22.19± 3.97 30.77± 1.81 31.13± 3.01

+ Policy Model 89.85 3.09 4.12 7.23 11.34 15.63
+ USAP 90.45 4.12 3.07 5.15 7.21 8.33

Step 1Ground Truth Step 2 Step 3 Step 4

Figure 4: Qualitative results of EAD on object detection. The adversarial patches are generated using MIM and
attached to the billboards within the scene, leading to the “disappearing” of the target vehicle. The setting is
from the CARLA-GEAR. These images illustrate the model’s interactive inference steps to counter the patches.

with a comprehensive fusion model, in achieving robust performance. EAD with only the perception
model significantly surpasses both the undefended baseline and passive FR model with multi-view
ensembles (Random Movement). Notably, the multi-view ensemble model fails to counteract 3DAdv,
corroborating that EAD’s defensive strength is not merely a function of the vulnerability of adversarial
examples to viewpoint transformations. 2) Utility of learned policy. We then investigate the benefits
of the learned policy on robust perception by comparing Clean-Data EAD with the perception model
adopting random action. The learned policy markedly enhances resistance to various attacks. The
findings supporting the effectiveness and efficiency of the learned policy are furnished in Appendix
D.7. 3) Influence of patched data. By employing EAD to handle a diverse set of patches sampled
from a surrogate uniform superset during training, the robustness of EAD is further augmented.

4.2 EVALUATION ON OBJECT DETECTION

Table 3: The mAP (%) of Mask-RCNN under
different adversarial attacks.

Method Clean MIM TIM SIB

Undefended 46.6 30.6 34.2 31.2
LGS 45.8 36.5 37.8 36.4
SAC† 46.5 33.3 35.1 32.5
PZ† 46.3 33.2 35.1 32.9
EAD (ours) 46.6 39.4 39.3 39.5

Experimental setup. We further apply EAD to ob-
ject detection to verify its adaptability. We train EAD
with a simulation environment powered by EG3D (Chan
et al., 2022), and evaluate the performance of EAD on
robustness evaluation API provided by CARLA-GEAR
(Nesti et al., 2022). For the object detector, we use the
pretrained Mask-RCNN (He et al., 2017) on COCO (Lin
et al., 2014). We assess model robustness on 360 test
scenes featuring patches attached to billboards and re-
port the mean Average Precision (mAP). For attacks, we use methods including MIM (Dong et al.,
2018), TIM (Dong et al., 2019) and SIB (Zhao et al., 2019) with iterations set at 150 and a step size
of 0.5. Specifically, we augment MIM and TIM by incorporating EoT over 2D transformations to
enhance patch resilience against viewpoint changes. Meanwhile, SIB demonstrates robustness with
varying distances (1 ∼ 25 m) and angles (±60◦). (Zhao et al., 2019). The patch size varies with the
billboard size, constituting 4 ∼ 8% of the image size. Further details can be found in Appendix E.

Experimental results. As evidenced in Table 3, our approach surpasses the others in both clean and
robust performances. Furthermore, EAD retains its robustness and effectively generalizes against a
variety of unencountered attacks, thus substantiating our previous assertions in FR. A visualization of
the defense process is provided in Figure 4. More detailed results are provided in Appendix E.5.

5 CONCLUSION

In this paper, we introduce a novel proactive strategy against adversarial patches, named EAD. Inspired
by active human vision, EAD merges external visual signals and internal cognitive feedback via
two recurrent sub-modules. It facilitates the derivation of proactive strategic actions and continuous
refinement of target understanding by recurrently leveraging environmental feedback. Experiments
validate the effectiveness and generalizability of EAD in enhancing defensive capabilities.
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A PROOFS AND ADDITIONAL THEORY

A.1 PROOF OF THEOREM 3.1

Proof. For series of observations {o1, · · · ot} and previously maintained belief belief bt−1 are deter-
mined by the scene x, we expand the left-hand side of Eq. (6) as follows:

I(ot; y|bt−1)

= Ex,y log
p(bt−1)p(o1, · · · ot, y)

p(bt−1, ot−1, y)p(bt−1, ot)

= Ex,y log
p(y|bt−1, ot)

p(y|bt−1)
. (9)

By multiplying and dividing the integrand in Eq. (9) by variational distribution qθ(y|o1, · · · ot), we
have:

Ex,y log
p(y|bt−1, ot)qθ(y|bt−1ot)

p(y|bt−1)qθ(y|bt−1, ot)

= Ex,y[log
qθ(y|bt−1, ot)

p(y|bt−1)
−DKL(p(y|bt−1, ot)∥qθ(y|bt−1, ot))].

Due to the non-negativity of KL-divergence, we have a lower bound for mutual information:

Ex,y[log
qθ(y|bt−1, ot)

p(y|bt−1)
−DKL(p(y|bt−1, ot)∥qθ(y|bt−1, ot))]

≥ Ex,y log
qθ(y|bt−1, ot)

p(y|bt−1, ot−1)

= Ex,y log qθ(y|bt−1, ot) +H(y|bt−1), (10)

where H(y|bt−1) denotes the conditional entropy of y given belief bt−1 and Eq. (10) is well known
as Barber and Agakov bound (Barber & Agakov, 2004). Then, we choose an energy-based variational
family that uses a critic Eθ(bt−1, ot, y) and is scaled by the data density p(bt−1, ot):

qθ(y|bt−1, ot) =
p(y|bt−1)

Z(bt−1, ot)
eEθ(bt−1,ot,y), (11)

where Z(bt−1, ot) = Eye
Eθ(bt−1,ot,y). By substituting Eq. (11) distribution into Eq. (10), we have:

Ex,y log qθ(y|bt−1, ot) +H(y|bt−1)

= Ex,y[Eθ(bt−1, ot, y)]− Ex[logZ(bt−1, ot)], (12)

which is the unnormalized version of the Barber and Agakov bound. By applying inequality
logZ(bt−1, ot) ≤ Z(bt−1,ot)

a(bt−1,ot)
+ log[a(bt−1, ot)] − 1 for any a(bt−1, ot) > 0, and the bound is

tight when a(bt−1, ot) = Z(bt−1, ot). Therefore, we have a tractable upper bound, which is known
as a tractable unnormalized version of the Barber and Agakov lower bound on mutual information:

Ex,y[Eθ(bt−1, ot, y)]− Ex[logZ(bt−1, ot)]

≥ Ex,y[Eθ(bt−1, ot, y)]− Ex[
Ey[e

Eθ(bt−1,ot,y)]

a(bt−1, ot)
+ log[a(bt−1, ot)]− 1]

= 1 + Ex,y[log
eEθ(bt−1,ot,y)

a(bt−1, ot)
]− Ex[

Eye
Eθ(bt−1,ot,y)

a(bt−1, ot)
]. (13)

To reduce variance, we leverage multiple samples {x(j), y(j)}Kj=1 from D to implement a low-
variance but high-bias estimation for mutual information. For other observation trajectory which is
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originated from other scene (x(j), y(j)) (j ̸= i), we have its annotations {y(j)}Kj=1,j ̸=i independent
from x(i) and y(i), we have:

a(bt−1, ot) = a(bt−1, ot; y
(1), · · · , y(K)).

Then, we are capable of utilize additional samples{x(j), y(j)}Kj=1 to build a Monte-Carlo estimate of
the function Z(bt−1, ot):

a(bt−1, ot; y1, · · · yK) = m(bt−1, ot; y
(1), · · · y(K)) =

1

K

K∑
j=1

eEθ(y
(j)|bt−1,ot).

To estimate the bound over K samples, the last term in Eq. (13) becomes constant 1:

Ex[
Ey(1),··· ,y(K)eEθ(bt−1,ot,y)

m(bt−1, ot; y(1), · · · y(K))
] = Ex1

[
1
K

∑K
j=1 e

Eθ(bt−1,o
(1)
t ,y(j))

m(bt−1, o
(1)
t ; y(1), · · · y(K))

] = 1. (14)

By applying Eq. (14) back to Eq. (13) and averaging the bound over K samples, (reindexing x(1) as
x(j) for each term), we exactly recover the lower bound on mutual information proposed by Oord
et al. (2018) as:

1 + Ex(j),y(j) [log
eEθ(b

(j)
t−1,y

(j))

a(b
(j)
t−1; y

(1), · · · , y(K))
]− Ex(j) [

Ey(j)eEθ(b
(j)
t−1,o

(j)
t ,ŷ(j))

a(b
(j)
t−1, o

(j)
t ; y(1), · · · ,(K) )

]

= Ex(j),y(j) [log
eEθ(b

(j)
t−1,o

(j)
t ,y(j))

a(b
(j)
t−1, o

(j)
t ; y(1), · · · , y(K))

]

= Ex(j),y(j) [log
eEθ(b

(j)
t−1,o

(j)
t ,y(j))

1
K

∑
ŷ(j) e

Eθ(b
(j)
t−1,o

(j)
t ,ŷ(j))

].

By multiplying and dividing the integrand in Eq. (9) by the
p(y|b(j)t−1,ot−1)

Z(b
(j)
t−1,ot)

and extracting 1
K out of the

brackets, it transforms into:

Ex(j),y(j) [log
qθ(b

(j)
t−1, o

(j)
t , y(j))∑

ŷ(j) qθ(b
(j)
t−1, o

(j)
t , ŷ(j))

] + log(K).

A.2 MUTUAL INFORMATION AND CONDITIONAL ENTROPY

Given scene annotation y, we measure the uncertainty of annotation y at time step t with conditional
entropy of y given series of observations {bt−1, ot}, denoted as H(y|bt−1, ot). In this section, we
prove that the conditional entropy decrease is equivalent to the conditional mutual information in Eq.
(6).
Theorem A.1. For any time step t > 1, the following holds:

H(y|bt−1)−H(y|bt−1, ot) = I(ot; y|bt−1). (15)

Proof. Initially, by replacing the conditional entropy with the difference between entropy and mutual
information, the left-hand side becomes:

H(y|bt−1)−H(y|bt−1, ot)

= [H(y)− I(y; bt−1)]− [H(y)− I(y; bt−1, ot)]

= I(y; bt−1, ot)− I(y; bt−1).
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By applying Kolmogorov identities (Polyanskiy & Wu, 2014), it transforms into:

I(y; bt−1, ot)− I(y; bt−1) = I(ot; y|bt−1).

With Theorem A.1, we can establish a connection between the mutual information in Eq. (6). The
greedy informative exploration in Definition 3.1, thereby deducing the relationship between the policy
model of EAD with the InfoNCE objective in Eq. (5) and greedy informative exploration.

B OVERVIEW OF REINFORCEMENT LEARNING FUNDAMENTALS

At its core, reinforcement learning entails an agent learning to make decisions, interacting with its
environment, and employing a Markov Decision Process (MDP) to model this interactive process. In
the context of embodied perception, only three elements are relevant: observation, action, and state.
The agent is in a particular state and needs to obtain observations from the environment to better
understand it, take actions, interact with the environment, and transition to the next environment. To
illustrate this with a robot, consider the procedure in which the robot captures an image from one
specific position and then moves to the next position.

Furthermore, the Embodied Active Defense (EAD) method extends these concepts in reinforcement
learning. Unlike making a one-time decision based on a single observation, EAD consistently
monitors its environment, adjusting its understanding over time. It can be likened to a security camera
that doesn’t capture a single snapshot but rather continuously observes and adapts to its surroundings.
A distinctive feature of EAD is its integration of perception (seeing and understanding) with action
(taking informed actions based on that understanding). EAD doesn’t merely passively observe; it
actively interacts with its environment. This proactive engagement enhances EAD’s ability to acquire
more precise and reliable information, ultimately resulting in more informed decision-making.

C EXPERIMENT DETAILS FOR SIMULATION ENVIRONMENT

Envrionmental dynamics. Formally, we define the state st = (ht, vt), as a combination of camera’s
yaw ht ∈ R and pitch yt ∈ R at moment t, while the action is defined as continuous rotation denoted
by at = (∆h,∆v). Thereby, the transition function is denoted as T (st, at,x) = st + at, while the
observation function is reformulated with the 3D generative model O(st,x) = R(st,x), where R(·)
is a renderer (e.g., 3D generative model or graphic engine) that renders 2D image observation ot
given camera parameters determined by state st.

In practice, the detailed formulation for renderer in computational graphics is presented as:

ot = R′(Et, I,x), (16)

where Et ∈ R4×4 is the camera’s extrinsic determined by state st, while I ∈ R3×3 is the pre-defined
camera intrinsic. That is to say, we need to calculate the camera’s extrinsic Et ∈ R4×4 with st to
utilize renderer to render 2D images. Assuming that we’re using a right-handed coordinate system
and column vectors, we have:

Et =

[
Rt T
0 1

]
, (17)

Where Rt ∈ R3×3 is the rotation matrix determined by st and T ∈ R3×1 is the invariant translation
vector. The rotation matrices for yaw ht and pitch vt are:

Ry(ht) =

[
cos(ht) 0 sin(ht)

0 1 0
− sin(ht) 0 cos(ht)

]
, (18)

Rx(vt) =

[
1 0 0
0 cos(vt) − sin(vt)
0 sin(vt) cos(vt)

]
. (19)

The combined rotation Rt would then be Rt = Ry(ht) × Rx(vt). Then, the complete extrinsic
matrix becomes:
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Et =

[
Ry(ht)×Rx(vt) T

0 1

]
. (20)

Applying function. In our experiments, the adversarial patch is attached to a flat surface, such as
eyeglasses for face recognition and billboards for object detection. Utilizing known corner coordinates
of the adversarial patch in the world coordinate system, we employ both extrinsic Et and intrinsic K
parameters to render image observations containing the adversarial patch. We follow the projection
process of 3D patch by Zhu et al. (2023) to construct the applying function, with the projection matrix
M3d−2d ∈ R4×4 specified as follows:

M3d−2d =

[
K 0
0 1

]
×Et. (21)

This process is differentiable, which allows for the optimization of the adversarial patches.

In summary, we propose a deterministic environmental model applicable to all our experimental
environments (e.g., EG3D, CARLA):

State st = (ht, vt) ∈ R2,

Action at = (∆h,∆v) ∈ R2,

Transition Function T (st, at,x) = st + at,

Observation Function Z(st,x) = R(st,x).

The primary distinction between simulations for different tasks lies in the feasible viewpoint regions.
These are detailed in the implementation sections for each task, specifically in Appendices D and E.

D EXPERIMENT DETAILS FOR FACE RECOGNITION

D.1 CELEBA-3D

We use unofficial implemented GAN Inversion with EG3D (https://github.com/
oneThousand1000/EG3D-projector) and its default parameters to convert 2D images
from CelebA (Liu et al., 2018) into 3D latent representation w+. For the 3D generative model
prior, we use the EG3D models pre-trained on FFHQ which is officially released at https:
//catalog.ngc.nvidia.com/orgs/nvidia/teams/research/models/eg3d. For
lower computational overhead, we desert the super-resolution module of EG3D and directly render
RGB images of 112× 112 with its neural renderer.

We further evaluate the quality of the reconstructed CelebA-3D dataset. We measure image quality
with PSNR, SSIM and LPIPS between original images and EG3D-rendered images from the same
viewpoint. We later evaluate the identity consistency between the reconstructed 3D face and their
original 2D face with identity consistency (ID), which is slightly different from the one in (Chan et al.,
2022), for we measure them by calculating the mean ArcFace (Deng et al., 2019) cosine similarity
score between pairs of views of the face rendered from random camera poses and its original image
from CelebA.

As shown in Table 4, the learned 3D prior over FFHQ enables surprisingly high-quality single-view
geometry recovery. So our reconstructed CelebA-3D is equipped with high image quality and
sufficient identity consistency with its original 2D form for later experiments. And the selection of
reconstructed multi-view faces is shown in Figure 5.

The CelebA-3D dataset inherits annotations from the original CelebA dataset, which is accessi-
ble at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. The release of this
dataset for public access is forthcoming.
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Table 4: quantitative evaluation for CelebA-3D. The image size is 112× 112.

PSNR↑ SSIM↑ LPIPS↓ ID↑
CelebA-3D 21.28 .7601 .1314 .5771

Original Reconstruction

Figure 5: qualitative evaluation for CelebA-3D. The first column presents the original face from CelebA, and the
subsequent columns demonstrate the rendered multiview faces from inverted w+ with EG3D. The image size is
112× 112.

D.2 DETAILS FOR ATTACKS

Impersonation and dodging in adversarial attacks against FR system. In adversarial attacks
against FR systems, two main subtasks are identified: impersonation and dodging. Impersonation
involves manipulating an image to deceive FR systems into misidentifying an individual as another
specific person. Dodging, conversely, aims to prevent accurate identification by the FR system. It
involves modifying an image so that the FR system either fails to detect a face or cannot associate the
detected face with any data of its authentic identity in its database. These subtasks pose significant
challenges to FR system security, highlighting the need for robust countermeasures in FR technology.

Attacks in pixel space. The Momentum Iterative Method (MIM) (Dong et al., 2018) and Expecta-
tion over Transformation (EoT) (Athalye et al., 2018b) focus on refining adversarial patches in RGB
pixel space. MIM enhances the generation of adversarial examples by incorporating momentum
into the optimization process, which enhances transferring of adversarial examples. In contrast, EoT
considers various transformations, such as rotations and lighting changes, thereby strengthening
the robustness of attacks under diverse physical conditions. For implementation, we adhered to the
optimal parameters as reported in (Xiao et al., 2021), setting the number of iterations at N = 150,
the learning rate at α = 1.5/255, and the decay factor at µ = 1. These parameters were consistent
across all experiments. The sampling frequency for EoT was established at M = 10.

Attacks in latent space of the generative model. In the context of GenAP (Xiao et al., 2021) and
Face3DAdv (Yang et al., 2022), the focus was on optimizing adversarial patches within the latent
space of a Generative Adversarial Network (GAN). GenAP utilizes the generative capabilities of
GANs to develop adversarial patches, whereas Face3DAdv is specifically designed for attacking
facial recognition systems, accounting for 3D variations. Additionally, we employed the latent space
of EG3D for patch optimization, opting for the Adam optimizer (Kingma & Ba, 2014) with a learning
rate of η = 0.01 and an iteration count of N = 150. The sampling frequency was also set at M = 10.
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D.3 DETAILS FOR ADAPTIVE ATTACKS

Adaptive attack for defense baselines. To launch adaptive attacks against parameter-free,
purification-based defenses such as JPEG and LGS, we employ Backward Pass Differentiable
Approximation (BPDA) as proposed by Athalye et al. (2018a). This method assumes that the output
from each defense mechanism closely approximates the original input. For adaptive attacks on SAC
and PZ, we use their official implementations (Liu et al., 2022), incorporating Straight-Through
Estimators (STE) (Bengio et al., 2013) for backpropagation through thresholding operations.

Adaptive attack with uniform superset policy. In adaptive attacks for EAD, we leverage uniform
superset approximation for the policy model. Thus, we have the surrogate policy

π̃ := U(hmin, hmax)× U(vmin, vmax), (22)

where at ∈ [hmin, hmax]× [vmin, vmax], and [hmin, hmax], [vmin, vmax] separately denotes the pre-defined
feasible region for horizontal rotation (yaw) and vertical rotation (pitch). The optimization objective
is outlined as follows, with a simplified sequential representation for clarity2:

max
p

Es1∼P1,ai∼π̃L(yτ , y),

with {yτ , bτ} = f({A(oi, p; s1 +

i−1∑
j=1

aj)}τi=1;θ)

s.t. p ∈ [0, 1]Hp×Wp×C ,

(23)

where P1 denotes the distribution of initial state s1, and L is the task-specific loss function.

Adaptive Attack Against Sub-Modules. An end-to-end attack may not always be the most
effective strategy, particularly against defenses with complex forward passes. Targeting the weakest
component is often sufficient. Therefore, we propose two separate adaptive attacks: one against
the perception model and another against the policy model. The attack on the perception model
aims to generate an adversarial patch that corrupts the internal belief bt (Sabour et al., 2015). The
optimization objective for this attack is to maximize the Euclidean distance between the corrupted
belief bτ and the benign belief bτ+, formulated as follows:

max
p

Es1∼P1,ai∼π̃∥bτ − b+τ ∥22,

with {yτ , bτ} = f({A(oi, p; s1 +

i−1∑
j=1

aj)}τi=1;θ),

{y+τ , b+τ } = f({oi}τi=1;θ),

s.t. p ∈ [0, 1]Hp×Wp×C .

(24)

For the attack against the policy model, the goal is to create an adversarial patch that induces the
policy model to output a zero action ai = π(bi;ϕ) = 0, thereby keeping the EAD model stationary
with an invariant state si = s1 and generating erroneous predictions yτ . While the original problem
can be challenging with policy output as a constraint, we employ Lagrangian relaxation to incorporate
the constraint into the objective and address the following problem:

max
p

Es1∼P1
L(yτ , y) + c · ∥π({A(o1, p; s1)}τi=1;ϕ)∥22,

with {yτ , bτ} = f({A(o1, p; s1)}τi=1;θ)

s.t. p ∈ [0, 1]Hp×Wp×C ,

(25)

where c > 0 is a constant that yields an adversarial example ensuring the model outputs zero actions.

2The recurrent inference procedure is presented sequentially in this section for simplicity.
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Adaptive Attack for the Entire Pipeline. Attacking the EAD model through backpropagation is
infeasible due to the rapid consumption of GPU memory as trajectory length increases (e.g., 4 steps
require nearly 90 GB of video memory). To mitigate this, we use gradient checkpointing (Chen et al.,
2016) to reduce memory consumption. By selectively recomputing parts of the computation graph
defined by the τ -step EAD inference procedure, instead of storing them, this technique effectively
reduces memory costs at the expense of additional computation. Using this method, we successfully
attacked the entire pipeline along a 4-step trajectory using an NVIDIA RTX 3090 Ti.

Regarding implementation, we adopted the same hyper-parameters as Face3DAdv and considered the
action bounds defined in Appendix D.5. For the constant c in the adaptive attack against the policy
model, we employed a bisection search to identify the optimal value as per Carlini & Wagner (2017),
finding c = 100 to be the most effective. Additionally, the evaluation results from these adaptive
attacks and analysis are detailed in Appendix D.7 with main results in Table 9.

D.4 DETAILS FOR DEFENSES

JPEG compression. we set the quality parameter to 75.

Local gradients smoothing. We adopt the implementation at https://github.com/
fabiobrau/local_gradients_smoothing, and maintain the default hyper-parameters
claimed in Naseer et al. (2019).

Segment and complete. We use official implementation at https://github.com/
joellliu/SegmentAndComplete, and retrain the patch segmenter with adversarial patches
optimized by EoT (Athalye et al., 2018a) and USAP technique separately. We adopt the same
hyper-parameters and training process claimed in Liu et al. (2022), except for the prior patch sizes,
which we resize them proportionally to the input image size.

Patchzero. For Patchzero (Xu et al., 2023), we directly utilize the trained patch segmenter of SAC,
for they share almost the same training pipeline.

Defense against Occlusion Attacks. DOA is an adversarial training-based method. We adopt
the DOA training paradigm to fine-tune the same pre-trained IResNet-50 and training data as
EAD with the code at https://github.com/P2333/Bag-of-Tricks-for-AT. As for
hyper-parameters, we adopt the default ones in Wu et al. (2019) with the training patch size scaled
proportionally.

D.5 DETAILS FOR IMPLEMENTATIONS

Model details. In the context of face recognition, we implement EAD model with a composition of
a pre-trained face recognition feature extractor and a Decision transformer, specifically, we select
IResNet-50 as the the visual backbone to extract feature. For each time step t > 0, we use the
IResNet-50 to map the current observation input of dimensions 112× 112× 3 into an embedding
with a dimensionality of 512. This embedding is then concatenated with the previously extracted
embedding sequence of dimensions (t− 1)× 512, thus forming the temporal sequence of observation
embeddings (t × 512) for Decision Transformer input. The Decision Transformer subsequently
outputs the temporal-fused face embedding for inference as well as the predicted action. For the
training process, we further map the fused face embedding into logits using a linear projection layer.
For the sake of simplicity, we directly employ the Softmax loss function for model training.

In experiments, we use pre-trained IResNet-50 with ArcFace margin on MS1MV3 (Guo et al.,
2016) from InsightFace (Deng et al., 2019), which is available at https://github.com/
deepinsight/insightface/tree/master/model_zoo.

Phased training. It’s observed that the training suffers from considerable instability when simulta-
neously training perception and policy models from scratch. A primary concern is that the perception
model, in its early training stages, is unable to provide accurate supervision signals, leading the policy
network to generate irrational actions and hindering the overall learning process. To mitigate this
issue, we initially train the perception model independently using frames obtained from a random
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action policy, namely offline phase. Once achieving a stable performance from the perception model,
we proceed to the online phase and jointly train both the perception and policy networks, employing
Algorithm 1,thereby ensuring their effective coordination and learning.

Meanwhile, learning offline with pre-collected data in the first phase proves to be significantly more
efficient than online learning through interactive data collection from the environment. By dividing
the training process into two distinct phases offline and online, we substantially enhance training
efficiency and reduce computational costs.

Training details. To train EAD for face recognition, we randomly sample images from 2, 500
distinct identities from the training set of CelebA-3D. we adopt the previously demonstrated phased
training paradigm with hyper-parameters listed in Table 5.

Table 5: Hyper-parameters of EAD for face recognition

Hyper-parameter Value
Lower bound for horizontal rotation (hmin) −0.35
Upper bound for horizontal rotation (hmax) 0.35

Lower bound for vertical rotation (vmin) −0.25
Upper bound for vertical rotation (vmax) 0.25

Ratio of patched data (rpatch) 0.4

Training epochs for offline phase (lroffline) 50

learning rate for offline phase (lroffline) 1E-3
batch size for offline phase (boffline) 64
Training epochs for online phase 50
learning rate for online phase (lronline) 1.5E-4
batch size for offline phase (bonline) 48

D.6 COMPUTATIONAL OVERHEAD

This section evaluates our method’s computational overhead compared to other passive defense
baselines in facial recognition systems. The performance assessment is conducted on a NVIDIA
GeForce RTX 3090 Ti and an AMD EPYC 7302 16-Core Processor, using a training batch size of 64.
SAC and PZ necessitate training a segmenter to identify the patch area, entailing two stages: initial
training with pre-generated adversarial images and subsequent self-adversarial training (Liu et al.,
2022; Xu et al., 2023). DOA, an adversarial training-based approach, requires retraining the feature
extractor (Wu et al., 2019). Additionally, EAD’s training involves offline and online phases, without
involving adversarial training.

As indicated in Table 6, although differential rendering imposes significant computational demands
during the online training phase, the total training time of our EAD model is effectively balanced
between the pure adversarial training method DOA and the partially adversarial methods like SAC
and PZ. This efficiency stems mainly from our unique USAP approach, which bypasses the need for
generating adversarial examples, thereby boosting training efficiency. In terms of model inference,
our EAD, along with PZ and DOA, demonstrates superior speed compared to LGS and SAC. This
is attributed to the latter methods requiring CPU-intensive, rule-based image preprocessing, which
diminishes their inference efficiency.

Regarding detailed training, the EAD model was trained following the configuration in Appendix D.5.
The offline training utilized 2 NVIDIA Tesla A100 GPUs for approximately 4 hours (210 minutes).
Due to the substantial memory demands of EG3D differential rendering, the online training phase
required 8 NVIDIA Tesla A100 GPUs and extended to about 14 hours (867 minutes). Figure 6
illustrates the training curves of our method.
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Table 6: omputational overhead comparison of different defense methods in face recognition. We report the
training and inference time of defense on a NVIDIA GeForce RTX 3090 Ti and an AMD EPYC 7302 16-Core
Processor with the training batch size as 64.

Method # Params (M) Parametric
Model

Training
Epochs

Training
Time per
batch (s)

Overall
Training

Time (GPU
hours)

Inference
Time per

Instance (ms)

JPEG - non-
parametric - - - 9.65

LGS - non-
parametric - - - 26.22

SAC
44.71 segmenter 50 + 10 0.152/4.018 104

26.43

PZ 11.88

DOA 43.63 feature
extractor 100 1.732 376 8.10

EAD 57.30
policy and
perception

model
50 + 50 0.595/1.021 175 11.51
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Figure 6: The training curves of EAD model for face recognition.

D.7 MORE EVALUATION RESULTS

Evaluation with different patch sizes. To further assess the generalizability of the EAD model
across varying patch sizes and attack methods, we conduct experiments featuring both impersonation
and doding attacks. These attacks share similarities with the setup illustrated in Table 1. Although
with different patch sizes, the results in Table 7 and Table 8 bear a considerable resemblance to those
displayed in Table 1. This congruence further supports the adaptability of the EAD model in tackling
unseen attack methods and accommodating diverse patch sizes.

Evaluation with different attack iterations. Figure 7 shows that EAD generalizes well under a
wide spectrum of attack iterations, and the only ASR slightly increases when the patch gets larger. As
for dodging attacks, Figure 8 demonstrates EAD’s superior generalizability compared to other defense
strategies when countering dodging attacks. This is akin to the observations in Figure 3, where EAD,
trained exclusively with patches comprising 10% of the image, consistently exhibits a low attack
success rate, even with increasing patch sizes and attack iterations. This further underscores EAD’s
exceptional generalizability. One subtle phenomenon to note is that the segmenter-based method (i.e.
SAC and PZ) degrades when the attack iterations become smaller. Because the patches become more
imperceptible.

Evaluation with different adaptive attacks. As Table 9 demonstrates, our original adaptive attack
using USP was more effective than tracing the authentic policy of EAD (overall). This may be
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Table 7: The white-box impersonation attack success rates on face recognition models with different patch sizes.
† denotes methods are trained with adversarial examples.

Method 8% 10 % 12%

MIM EoT GenAP 3DAdv MIM EoT GenAP 3DAdv MIM EoT GenAP 3DAdv

Undefended 100.0 100.0 99.00 98.00 100.0 100.0 100.0 99.00 100.0 100.0 100.0 99.00
JPEG 99.00 100.0 99.00 93.00 100.0 100.0 99.00 99.00 100.0 100.0 99.00 99.00
LGS 5.10 7.21 33.67 30.61 6.19 7.29 41.23 36.08 7.21 12.37 61.85 49.48
SAC 6.06 9.09 67.68 64.64 1.01 3.03 67.34 63.26 5.05 4.08 69.70 66.32
PZ 4.17 5.21 59.38 45.83 2.08 3.13 60.63 58.51 4.17 3.13 60.63 58.33
SAC† 3.16 3.16 18.94 22.11 2.10 3.16 21.05 16.84 3.16 4.21 15.78 18.95
PZ† 3.13 3.16 19.14 27.37 2.11 3.13 20.00 30.53 5.26 5.26 18.95 28.42
DOA† 95.50 89.89 96.63 89.89 95.50 93.26 100.0 96.63 94.38 93.26 100.0 100.0
EAD (ours) 4.12 3.09 5.15 7.21 3.09 2.06 4.17 8.33 3.09 5.15 8.33 10.42

Table 8: The white-box dodging attack success rates (%) on face recognition models with different patch sizes. †

denotes methods are trained with adversarial examples.

Method 8% 10 % 12%

MIM EoT GenAP 3DAdv MIM EoT GenAP 3DAdv MIM EoT GenAP 3DAdv

Undefended 100.0 100.0 99.00 89.00 100.0 100.0 100.0 95.00 100.0 100.0 100.0 99.00
JPEG 98.00 99.00 95.00 88.00 100.0 100.0 99.00 95.00 100.0 100.0 100.0 98.00
LGS 49.47 52.63 74.00 77.89 48.93 52.63 89.47 75.78 55.78 54.73 100.0 89.47
SAC 73.46 73.20 92.85 78.57 80.06 78.57 92.85 91.83 76.53 77.55 92.85 92.92
PZ 6.89 8.04 58.44 57.14 8.04 8.04 60.52 65.78 13.79 12.64 68.49 75.71
SAC† 78.78 78.57 79.59 85.85 81.65 80.80 82.82 86.73 80.61 84.69 87.87 87.75
PZ† 6.12 6.25 14.29 20.41 7.14 6.12 21.43 25.51 11.22 10.20 24.49 30.61
DOA† 75.28 67.42 87.64 95.51 78.65 75.28 97.75 98.88 80.90 82.02 94.38 100.0
EAD (ours) 0.00 0.00 2.10 13.68 2.11 1.05 6.32 16.84 2.10 3.16 12.64 34.84

10 20 30 40 50 60 70 80 100 150 200 250 300

Iteration

0

20

40

60

80

100

A
tta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

Undefended-8%
Undefended-10%
Undefended-12%
EAD-8%
EAD-10%
EAD-12%

(a) Impersonation.

10 20 30 40 50 60 70 80 100 150 200 250 300

Iteration

0

20

40

60

80

100

A
tta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

Undefended-8%
Undefended-10%
Undefended-12%
EAD-8%
EAD-10%
EAD-12%

(b) Dodging.

Figure 7: Performance of EAD under varying attack iterations and patch sizes. The adversarial patches are
crafted by 3DAdv.

attributed to vanishing or exploding gradients (Athalye et al., 2018a) that impedes optimization.
This problem is potentially mitigated by our approach of computing expectations over a uniform
policy distribution. In the meantime, The results reaffirm the robustness of EAD against a spectrum
of adaptive attacks. It further shows that EAD’s defensive capabilities arise from the synergistic
integration of its policy and perception models, facilitating strategic observation collection rather
than learning a short-cut strategy to neutralize adversarial patches from specific viewpoints.

Impact of horizon length. We later demonstrate how the horizon length (i.e., decision steps)
influence the performance of EAD in Figure 9. Two key observations emerge from this analysis:
1) The standard accuracy initially exhibits an increase but subsequently declines as t surpasses the
maximum trajectory length τ = 4 which is manually set in model training, as detailed in Figure 9a. 2)
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Figure 8: Comparative evaluation of defense methods across varying attack iterations with different adversarial
patch sizes. The sizes of the adversarial patches for each subfigure, from left to right, are 8%, 10%, and 12%,
respectively. The adversarial patches are crafted by 3DAdv for dodging.

Table 9: Evaluation of adaptive attacks on the EAD Model. Columns with USP represent results obtained by
optimizing the patch with expected gradients over the Uniform Superset Policy (USP). And perception and
policy separately represent adaptive attack against single sub-module. And overall denotes attacking EAD by
following the gradients for along the overall (4 step) trajectory with gradient-checkpointing.

Dodging Impersonation

USP Perception Policy Overall USP Perception Policy Overall

ASR (%) 22.11 10.11 16.84 15.79 8.33 1.04 9.38 7.29

The changes in the similarity between face pairs affected by adversarial patches consistently decline.
Specifically, for impersonation attacks (Figure 9b), the change in similarity implies an increase, while
a decrease is noted for dodging attacks (Figure 9c). This trend indicates that more information from
additional viewpoints is accumulated during the decision process, effectively mitigating the issues of
information loss and model hallucination caused by adversarial patches.

Efficiency of EAD’s policy. Although the efficiency of EAD’s policy is theoretically demonstrated
as it has proven to be a greedy informative strategy in Sec. 3.2, we further validate the superiority of the
EAD’s policy empirically by comparing the performance of EAD and EAD integrated with a random
movement policy, hereafter referred to as EADRAND. Both approaches share identical neural network
architecture and parameters. Figures 9b and 9c illustrate that the EADRAND is unable to mitigate the
adversarial effect with random exploration, even when more action are employed. Consequently, the
exploration efficiency of the random policy significantly lags behind the approximate solution of the
greedy informative strategy, which is derived from parameter learning.
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Figure 9: Model’s performance variation along the number of decision steps.

Evaluation under various viewpoints. To further assess the versatility of defenses over multiple
viewpoints, we examine model performance under 3D viewpoint variation. For all the experiments,
we utilize facial images requiring specific movement ranges for the cruciform rail, spanning from
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−15◦ to 15◦, corresponding to yaw and pitch respectively. Moreover, these conditions are linearly
combined to form a new category termed as mixture. We employ Face3DAdv as the adversary,
provided that solely adversarial examples crafted with Face3DAdv hat do not exhibit performance
degradation when encountering viewpoint variations. Table 10 demonstrates that EAD consistently
upholds superior performance, even under varied viewpoint conditions.

Table 10: Standard accuracy (%) and attack success rates (%) of Face3DAdv on face recognition models under
various testing viewpoint protocols. “Acc.” denotes the accuracy with best threshold calculated with standard
protocol from LFW (Huang et al., 2007). “Imp.” and “Dod.” respectively represents the attack success rate of
impersonation and dodging attacks.

Method Yaw Pitch Mixture

Acc. Imp. Dod. Acc. Imp. Dod. Acc. Imp. Dod.

Undefended 98.64 94.74 87.24 98.87 91.95 86.04 98.39 88.35 83.65
JPEG 98.88 91.48 86.43 98.94 89.26 84.83 98.39 84.94 82.60
LGS 93.12 29.32 72.39 92.42 26.23 69.32 91.92 24.54 68.50
SAC 95.47 57.22 75.21 96.30 59.83 74.84 95.24 53.83 74.04
PZ 97.81 41.07 51.91 97.77 39.99 49.66 97.39 36.35 48.54

EAD (ours) - - - - - - 99.28 13.68 7.21

D.8 MORE QUALITATIVE RESULTS

Qualitative comparison of different version of SAC. SAC is a preprocessing-based method that
adopts a segmentation model to detect patch areas, followed by a ”shape completion” technique
to extend the predicted area into a larger square, and remove the suspicious area (Liu et al., 2022).
As shown in Figure 10, the enhanced SAC, while exhibiting superior segmentation performance
in scenarios like face recognition, inadvertently increases the likelihood of masking critical facial
features such as eyes and noses. This leads to a reduced ability of the face recognition model to
correctly identify individuals, thus impacting its performance in dodging attacks.

Image Processed with 
Segmenter-predicted Mask

Image Processed with 
Completed Mask

Enhanced 
SAC

Regular 
SAC

Adversarial Image

Figure 10: Qualitative results of SAC trained with different data. The first column present the adversarial image
processed by regular SAC which trained with patch filled with Gaussian noise, while the subsequent column
demonstrate the one processed by enhanced SAC. The adversarial patches are generated with 3DAdv and occupy
8% of the image.

More qualitative results of EAD. As shown in Figure 11, EAD model prioritizes a distinct
viewpoint to improve target understanding while simultaneously maintaining a perspective where
adversarial patches are minimally effective.
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(1.15, -6.88) (10.43, -9.16) (-9.21, 2.81) (-14.89, 9.03)

Step 1 Step 2 Step 3 Step 4

(9.28, -2.28) (-19.64, 11.97) (-5.68, 6.22)

State

Action

Figure 11: Qualitative results of EAD. The state represents the yaw and pitch of camera, and the action indicates
the camera rotation predicted by EAD’s policy model. The adversarial patches are generated with 3DAdv and
occupy 8% of the image.

E EXPERIMENT DETAILS FOR OBJECT DETECTION

E.1 DETAILS FOR EXPERIMENTAL DATA

Details on CARLA. For model testing, we use the scene basis billboard05 from CARLA-
GEAR (Nesti et al., 2022). For each testing scene, we randomly place different objects within the
scene to ensure the diversity of testing scenarios. In this setting, the adversarial patch are affixed to
billboards on the street. scene examples are represented in Figure 12.

Figure 12: Scene examples from billboard05 of CARLA-GEAR. The first two and last two images belong
to different scenes. The first image is a benign image, while the second image is contaminated with adversarial
patches attached to the billboards. For the last two images, they are rendered from different viewpoints.

Details on EG3D. We use a pre-trained EG3D model on ShapeNet Cars at https://catalog.
ngc.nvidia.com/orgs/nvidia/teams/research/models/eg3d to generate multi-
view car images with the resolution of 128×128. And the seed is 114514. As for data annotation, We
select the pre-trained YOLOv5x model which is the largest and performs the best (Jocher et al., 2021).
We fine-tune it on the generated car images for 500 iterations and then utilize it as an annotation
model to label bounding boxes for later generated images.

E.2 DETAILS FOR ATTACKS

As for MIM (Dong et al., 2018), we set the decay factor µ = 1.0, while the size of the Gaussian
kernel is 21 for TIM (Dong et al., 2019).

Details on CARLA. For attacks in CARLA, we utilize the attack against Mask-RCNN imple-
mented by CARLA-GEAR at https://github.com/retis-ai/PatchAttackTool and
its default hyper-parameters.

Details on EG3D. For attacks in environment powered by EG3D, we set the number of iterations as
N = 100 and the learning rate α = 10/255.
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E.3 DETAILS FOR DEFENSE

For SAC† and PZ†, We use official implementation and its pre-trained patch segmenter checkpoint
for object detection at https://github.com/joellliu/SegmentAndComplete, which
is trained with adversarial examples generated with PGD (Madry et al., 2017).

E.4 DETAILS FOR IMPLEMENTATION

Model details. For experiment conducted on simulation environment based on EG3D, We imple-
ment EAD for object detection with a combination of YOLOv5n and Decision Transformer. For each
time step t > 0, given the current observation of dimensions 640× 640× 3 as input, the smallest
feature maps (4× 4× 512) within the feature pyramid are utilized. These maps are extracted via the
YOLOv5 backbone and reshaped into a sequence with dimensions 16× 512. we utilize the smallest
feature maps (4× 4× 512) in the feature pyramid which is extracted with the YOLOv5 backbone
and reshape it into a sequence (16× 512). To concatenate it with the previous extracted observation
sequence 16(t− 1)× 512, we have a temporal sequence of visual features as the input of Decision
Transformer, and it output the temporal-fused visual feature sequences (16 × 512) and predicted
action. To predict the bounding boxes and target label which is required in object detection, we
reshape the temporal-fused visual sequence back to its original shape and utilize it as part of the
feature pyramid in the later stage for object detection in YOLOv5n. As for experiment on CARLA,
we utilize a combination of Mask-RCNN and Decision Transformer with similar implementation
technique.

We use the official implementation and pre-trained model checkpoints for both YOLOv5n and
YOLOv5x at https://github.com/ultralytics/yolov5. As for Mask-RCNN, we adopt
the implementation from torchvision.

Training details. We adopt a similar training paradigm as EAD for face recognition and set the
hyper-parameters of EAD for object detection as follows:

Table 11: Hyper-Parameters of EAD for object detection

Hyper-Parameter Value
Lower bound for horizontal rotation (hmin) −π/2
Upper bound for horizontal rotation (hmax) π/2

Lower bound for vertical rotation (vmin) 0

Upper bound for vertical rotation (vmax) 0.2

Ratio of patched data (rpatch) 0.4

Training iterations for offline phase 500

learning rate for offline phase (lroffline) 2E-5
batch size for offline phase (boffline) 64

Training iterations for online phase 80

learning rate for online phase (lronline) 1E-5
batch size for online phase (bonline) 32

Figure 13: Different shapes used for evaluation. From
left to right: rectangle, ellipse and diamond.

Figure 14: Adversarial examples with patches of dif-
ferent shapes. From left to right: rectangle, ellipse and
diamond.
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E.5 MORE EVALUATION RESULTS ON EG3D

Evaluation with different patch shapes. Credits to other shapes of the patch are either too
skeptical in face recognition or non-rigid which causes 3D inconsistency, we conduct corresponding
experiments in the object detection scenario to evaluate the generalizability of EAD across different
shapes of the patch. Specifically, we evaluate rectangle-trained EAD with adversarial patches of
varying shapes, while maintaining a fixed occupancy of the patch area. The shapes used for evaluation
are depicted in Figure 13, with their respective adversarial examples presented in Figure 14. We
present the iterative defense process in Figure 15.

car 0.99 car 0.98car 0.86
car 0.75

car 0.54

Benign Result Adversarial Result Step 1 Step 2 Step 3 Step 4

Figure 15: Qualitative results of EAD on simulation environment powered by EG3D. The first two columns
present the detection results on be nigh and adversarial images, and the subsequent columns demonstrate the
interactive inference steps that the model took. The adversarial patches are generated with MIM and occupy 4%
of the image.

As demonstrated in Table 12, our model surpasses other methods in terms of both clean and robust
accuracy, even when faced with adversarial patches of diverse unencountered shapes. These results
further underscore the exceptional generalizability of EAD in dealing with unknown adversarial
attacks.

Table 12: The mAP (%) of YOLOv5 under different white-box adversarial attacks and patch shapes. † denotes
methods are trained with adversarial examples.

Method Clean Rectangle Ellipse Diamond

PGD MIM TIM PGD MIM TIM PGD MIM TIM

Undefended 63.4 49.5 48.8 50.2 56.4 55.9 56.8 58.9 59.0 59.7
JPEG 62.7 51.1 50.6 57.8 57.5 57.4 57.5 60.1 59.9 59.9
LGS 64.7 64.8 55.4 60.7 65.0 66.6 61.9 65.6 66.7 63.7
SAC† 63.4 49.9 47.9 48.5 52.9 51.9 52.7 57.3 56.2 56.6
PZ† 63.4 50.5 50.8 50.6 56.6 57.2 57.1 59.1 59.9 59.9
EAD (ours) 75.9 64.1 58.8 67.9 70.8 67.3 72.8 71.5 69.6 74.1
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