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Abstract—We introduce MSAMamba, a novel architecture
designed to address the context-length limitation of existing
DNA multiple sequence alignment (MSA) models. Traditional
transformers struggle with the vast context lengths inherent in
MSA genome data, mainly due to the quadratic complexity
of self-attention at large batch sizes. MSAMamba leverages a
selective scan operation along the sequence dimension and sepa-
rates sequence length and MSA dimension processing to enhance
efficiency while accounting for MSA-level inductive biases. This
architecture enables scalable analysis of long DNA sequences,
increasing the training context length of previous methods by
8x. In addition, we develop a row-sparse training method that
significantly reduces the computational overhead of the selective
scan operation during model training. We demonstrate that
MSAMamba achieves performance on par with state-of-the-art
(SOTA) transformer-based models in variant effect prediction
tasks and exceeds their performance at larger context lengths.
We also demonstrate that our model excels in GenomicBench-
marks tasks. Our results indicate that MSAMamba mitigates
the computational challenges of long-context DNA MSA analysis
and sets a new standard for scalability and efficiency in genomic
modeling.

I. INTRODUCTION

Advances in model sizes and architectures have brought
about a revolution in sequence modeling capabilities. The
introduction of recurrence [24], attention [2], and memory
[22] have led to many performance improvements. The trans-
former model [46], commonly used in large language models
(LLMs) [7], applies self-attention and implicit memory [12]
to sequence modeling.

Transformers have shown impressive generalization capa-
bilities in natural language processing, prompting researchers
to extend the models’ abilities to sequences beyond language.
Transformers have been applied to protein sequences [29] and
genomics data [40]. Recently, they have been used in DNA
modeling [8]. However, The human genome consists of 3
billion base pairs, with gene sizes ranging from 10 thousand
to 2 million base pairs [31]. These large DNA sequences are
expensive to analyze using a transformer due to the quadratic
nature of self-attention [26] and the model’s instability across
extended context windows [30]. Subquadratic models [37]
are alternatives to transformers that show high performance
in modeling global relationships across long DNA sequences
[35], [41].

Raw DNA sequences lack explicit evolution and homol-
ogy information. DNA multiple sequence alignments (MSAs)
provide this information [45]. Models that operate on MSAs
show advances in mutation detection and sequence analysis
tasks [43].

However, current DNA MSA modeling architectures are not
scalable to long sequences. Axial attention-based transformers
[21] are the current state-of-the-art for DNA variant effect
prediction using MSAs. Previous methods use this training
method because it is more efficient than full self attention
across the entire MSA sequence. However, the computational
complexity of axial attention scales quadratically in both the
sequence length and MSA dimensions (see proof III-B2).
Because of this limitation, previous methods only train on
sequences of up to 128 base pairs [4].

A less complex algorithm is required to support long context
lengths and robust MSA sizes in DNA analysis. We introduce
MSAMamba: a variant of the MSA Transformer model that re-
places axial attention with a horizontal SSM selective scan [16]
and a vertical attention block. This algorithm scales linearly
with sequence length, allowing for more efficient model infer-
ence. We also introduce a row-level masking methodology to
improve training efficiency on sparse MSA sequences. These
changes decrease the computational complexity of training
and fine-tuning at large context lengths, allowing us to train
on longer sequences efficiently. We find that an SSM-based
DNA MSA model performs similarly to SOTA transformer-
based MSA models in variant effect prediction at short context
lengths (128) and exceeds transformer models when training
on longer sequences (1024). Additionally, MSAMamba shows
improved performance in 2 out of 8 GenomicBenchmarks
tasks compared to single-sequence models and transformer-
based MSA models (see Table V-E).

II. BACKGROUND

This section provides an overview of biological and AI
representation concepts used to construct the MSAMamba
model.

A. DNA Terminology

Deoxyribonucleic acid is a polymer made up of 4 base
nucleotides (adenine, cytosine, guanine, and thymine). The



Fig. 1. A diagram of the proposed MSAMamba architecture. The architecture consists of multiple MSAMamba blocks, each containing a mamba block that
acts on the sequence length dimension and masked self-attention that acts on the MSA dimension. An MLP block follows the two processes [12].

polymer forms a double helix structure from two complemen-
tary strands. DNA contains regions known as genes, which can
code for different proteins to cause cellular change. Genes also
consist of control sequences. These include enhancers, which
can increase the DNA transcription of a specific gene into a
protein; promoters, which allow the initiation of transcription;
and silencers, which prevent transcription from occurring. [6]

DNA sequences also contain introns and exons. Exons
contain DNA information used to form the final protein, while
introns are non-coding regions that can be spliced out in
different combinations to create varying gene outputs. Genes
can vary in length from thousands to millions of base pairs,
increasing the need for models with a large and effective
context window.

DNA MSAs DNA Multiple Sequence Alignments
(MSAs) are combinations of DNA sequences across different
species. These sequences are aligned such that base pairs that
evolve similarly are in the same column across genomes.
Aligned columns in the MSA provide crucial evolutionary
information between species. A DNA sequence for a species
can be considered as a function of a different species’ genome.
This function consists of multiple mutations, such as inser-
tions, deletions, and replacements. By aligning these sequences
using MSA creation algorithms, models can extract evolution,
conservation, coevolution, and homology information. DNA
MSAs are also used to find motifs (short, repetitive sequences
across genes). Implicit detection of these motifs in AI models
can provide enhanced information for genome analysis. [45]

B. Subquadratic Sequence Models

Recently, variants of state space models (SSMs) have been
applied to discrete sequence modeling and have shown im-
pressive results on long context tasks with lower compute
requirements [18]. The original SSM formulation consists of
four matrices that act as gates across a continuous data stream.

ht+1 = Aht +Bxt+1 (1)

yt+1 = Cht+1 +Dxt+1 (2)

In the discrete-time formulation, these matrices are dis-
cretized1 [36] with a ∆ value representing a step size across
a continuous sequence.

Ā = exp(∆A) (3)

B̄ = (∆A)−1(exp(∆A)− I)∆B (4)

The original SSM formulation is linear time-invariant, al-
lowing it to be computed as an efficient 1-dimensional con-
volution over a sequence. However, the Mamba SSM variant
makes the B, C, and D matrices input-dependent, making them
more adaptable using gating (The A matrix is determined
using the HiPPO matrix formulation for long context data

1Recent work has shown that using the fixed HiPPO matrix and discretiza-
tion cannot perform well in state-tracking tasks [33]. We acknowledge this
approach, but we use the original Mamba implementation due to its memory-
efficient selective scan kernel



storage [17]). Although this model is no longer time-invariant,
it does not use activation functions, allowing the model to be
computed in an O(N) associative scan [5] using a parallelized,
hardware-aware kernel [9].

C. Axial Attention

Previous MSA-based models [25] [39] applied axial at-
tention to establish relations across the sequence and MSA
dimensions. Axial attention applies the attention process across
items in a 2D matrix that share the same coordinates, allowing
relevant row and column can be incorporated into the attention
formulation [21] (Figure 4).

Axial attention has shown high performance in protein
models [25]. In this data modality, sequences reach a realistic
maximum length of 2000 amino acids. However, the sizes of
genes are much larger than that of proteins (see III-B2).

III. METHODS

This section provides an overview of the MSAMamba
architecture, which fixes the computational complexity and
context-length limitations of previous DNA MSA models.
This model uses Mamba’s selective scan operation along the
sequence dimension, which allows sequence lengths to scale
with a linear computational complexity (Proof III-B3).

Unlike axial attention, analysis across the sequence and
MSA dimensions are separated in MSAMamba. This sepa-
ration is done to decrease the number of relations between
base pairs across the MSA that must be computed per position.
Instead of comparing each base pair in the MSA using a dense
attention framework, the separation of row and column pro-
cessing allows each base pair to embed relevant sequence and
MSA-related features independently. After running a selective
scan in the horizontal dimension, the model runs multi-head
attention with absolute position embeddings2 along the MSA
dimension. While this process shows quadratic scaling along
the MSA dimension, most DNA MSAs do not scale past 100
species (see IV-A), making MSA-related complexity scaling
trivial compared to the sequence length dimension.

An MSAMamba block consists of a horizontal selective
scan, an absolutely positioned vertical attention block, and
a transition MLP block to encode memory [25]. There are
residual connections [20] and RMSNorm [47] blocks after the
selective scan and attention operations, analogous to the Add
+ Norm block used in transformer models [46].

The selective scan operation (using the Mamba imple-
mentation) across the sequence-length dimension allows the
model to attend to a context length 8 times larger than
previous methods. Transformer-based methods have trained
on sequence lengths of 128 base pairs, but MSAMamba can
attend to 1024 base pairs per sample during training, allowing
it to capture long-context relationships within DNA data.

Fig. 2. Shows the row-level masking method used for sparse computations
of the full MSA matrix. We mask approximately half of all additional MSA
sequences based on a random probability and filter out masked rows during
the selective scan process. This decreases selective scan complexity for larger
batch sizes without heavily diminishing performance

A. Row-Level Masking

To decrease the computational costs of MSAMamba further,
we mask a percentage3 of auxiliary aligned sequences in each
MSA sample (Figure 2). This method allows the model to
filter out masked rows during the selective scan operation,
which decreases computational complexity on large batch sizes
during training4.

We compare training loss trajectories of MSAMamba with
and without row-level masking to determine its effect on
training performance. We find that while MSAMamba with
row-level masking is slower to converge to an initial local min-
imum, it reaches a similar training loss level to MSAMamba
without row-level masking (Figure 3).

B. Computational Complexity Proof

In this section, we symbolically calculate the computational
complexity of both axial-attention transformer models and the
proposed MSAMamba architecture for DNA MSA modeling.
We prove the following theorem:

lim
n→∞

Caxial

CMSAMamba
> 1 (5)

Where axial and MSAMamba are both parallelized vector
functions that take in an input tensor of dimension (m,n, d) 5,
where n is the sequence length, m is the number of sequences
in the MSA, and d is the vector function’s dimension.

This theorem shows that MSAMamba’s separated process-
ing operation requires fewer computational operations than the
previous state-of-the-art method (axial attention).

2Used over rotary position embeddings because the absolute position of
keys is required to identify which auxiliary sequence the model is analyzing

3We found that a 50% masking rate was optimal for row-level masking
4drops overall selective scan batch size due to MSA length scaling in batch

(batch size * MSA length)
5excludes batch size for calculation



Fig. 3. Shows the efficacy of row-level masking on training masked language
modeling loss across the first 15000 physical batches (batch size of 2,
excluding gradient accumulation). This analysis was done on an MSAMamba
model with a model dimension of 128 and a sequence length of 1024

The values, Caxial and CMSAMamba, represent the com-
putational complexity of the respective models, given the
baseline that one vector dot product or vector elementwise
operation equates to one complexity unit.6

1) Assumptions: Some assumptions we make during the
proof are as follows:

• We define C as the symbolic computational complexity,
which we measure in units of # of operations. An
operation can denote an elementwise vector operation
or a vector dot product. A matrix multiplication Rm×n ·
Rn×d = Rm×d is considered to be m×d total operations

• We exclude commonalities among the models (MLPs,
normalization, residuals) from the complexity calculation
and only include calculations that involve modeling rela-
tionships across MSA sequences

• the model size d is chosen to be 1 for the sake of symbolic
simplicity throughout the proof. This does not affect the
output of the limit, as it is determined by the sequence
length variable n

2) Complexity of Axial Attention: Axial Attention (Figure
4) involves comparing each element within the input tensor
with other elements on the same n and m axes. Each rela-
tionship comparison involves two dot products: one during
the multiplication of Q and K matrices and another during
multiplication by the V matrix. Each attention computation
also consists of a softmax operation and an elementwise
multiplication (scaling). The complexity calculation of axial
attention for a single element in the tensor is as follows:

6Complexity is defined as computational complexity but is calculated simi-
larly to time complexity. However, we do not use the term ”time complexity”
due to parallelization that occurs on GPUs and other AI processing units

Fig. 4. A visualization of axial attention compared to fully dense attention.
Axial attention significantly decreases the amount of relationships required
per attention process.

Ci,j = 4(n+m− 1) (6)

This number of dot products is computed for every element
in the MSA, leading to mn axial attention computations. The
computational complexity of axial attention can be calculated
with this information:

Caxial = 4nm(n+m− 1) = 4n2m+ 4nm2 − 4nm (7)

3) Complexity of MSAMamba: MSAMamba leverages the
mamba operator for every sequence in the MSA, while the
number of attention processes scales linearly based on se-
quence size.

Mamba’s Selective Scan involves 3 vector dot products7 and
four elementwise multiplications8 per sequence. We use this
information to calculate Mamba’s computational complexity:

Cmamba = n(3 + 4) = 7n (8)

The column-wise attention process involves comparing ev-
ery element of the same base pair index across MSA’s, which
leads to m2 total comparisons per item in the sequence.
Each relation consists of 2 dot products, as described in the
axial attention complexity analysis in III-B2. This leads to a
complexity of

Cattention = 2nm2 (9)

The overall computational complexity of MSAMamba is

CMSAMamba = 7n+ 2nm2 (10)

7Creation of B, C, and D matrices. Assumes 1:1 scale from input to inner
SSM dimension

8A, B, C, and D gating matrices



4) Confirming MSAMamba’s Lower Time Complexity: We
evaluate the limit defined in Eq. 5 given the time complexities
calculated in Eq. 7 and 10. This gives the equation:

lim
n→∞

4n2m+ 4nm2 − 4nm

7n+ 2nm2
> 1 (11)

To evaluate the limit to infinity, we take the terms in the
numerator and denominator with the highest degree9 of n,
leading to the equation:

lim
n→∞

2n2m

n(2m2 + 7)
> 1 (12)

Since the degree of n in the numerator is higher than the
degree of n in the denominator, we can ignore constant term
coefficients and prove the following:

lim
n→∞

n2

n
> 1 (13)

lim
n→∞

n > 1 (14)

Therefore, the computational complexity (based on the
number of vector calculations) of axial attention-based DNA
MSA models increases by an order of magnitude faster than
MSAMamba when scaling sequence length.

5) Summary of Proof and Relation To Proposed Model:
The above proof shows that MSAMamba is more computation-
ally efficient (concerning the number of vector calculations) at
larger context lengths. DNA sequences consist of genes that
can be up to millions of base pairs long and genomes made of
billions of base pairs. MSAMamba’s scaling properties show
they can model longer DNA sequences more efficiently than
current axial attention-based implementations.

IV. DATASETS

This section gives an overview of the datasets used to pre-
train and fine-tune MSAMamba, why they were selected for
training, and data preprocessing for training tasks.

A. Pre-Training: MultiZ100Way

During model pre-training, we leverage the MultiZ100Way
dataset, which consists of an MSA of the length of the
human genome without any gap sequences10 in the human
sequence. It also consists of 99 auxiliary aligned sequences
(with gap sequences) from related species. This data has been
curated from the public UCSC Genome Browser [34]. We
use a modified version of this dataset, which excludes ten
auxiliary sequences of organisms that are very similar to those
of humans [4]. This modification was done to decrease training
time and memory requirements while losing minimal auxiliary
information.11

9If two terms with the same degree are present, we take the one with the
highest coefficient assuming m = 90

10Gap sequences occur in MSAs when alignment moves around nucleotides
to fit the proper evolutionary configuration, leaving placeholders for locations
affected by shift/insertion/deletion mutations

11The MultiZ90Way is publicly accessible through HuggingFace datasets
[28]

Algorithm 1 MSAMamba Masked Language Modeling
Input: MSA x : (B, M, L, D), Mrow : (B, M), yt : (B, L,
D), lr, θ (Model Params)
Output: y : (B, L, D)
h0 = mask(x, p=0.15)
for i = 1 to nlayers do

hsparse = hi[Mrow]
Omamba = scatter(Mamba(xsparse), Mrow) + hi

Oatt = SelfAttention(Omamba) + Omamba

hi+1 = MLP(Oatt)
end for
loss = CrossEntropy(hnlayers−1[h0 = MASK], yt)
θ ← AdamW(lr)

This dataset was used to train MSAMamba and all MSA-
based baseline models12. The same random seeds were also
used for data shuffling and batch loading during pre-training
for MSAMamba and other baseline models.

1) Data Preprocessing: The initial training data was col-
lected from the MultiZ100Way dataset by sampling random
locations across the genome and selecting DNA sequences
based on the required context length for training (128, 512,
or 1024).13

Data in the MultiZ100Way dataset was parsed using a
tokenizer with a vocabulary size of 6. This consists of 4
nucleotides, one token for gap sequences, and one mask token.
There was no need for <PAD> tokens due to all excerpts from
the dataset being the same length.

This data was preprocessed based on the masked language
modeling algorithm. This involves masking 15% of the se-
quence, where 80% of masked tokens are replaced with the
<MASK> token, 10% is replaced with a random token, and the
final 10% is not replaced [11].

Note: Only the top sequence in the MSA (the human
sequence) is masked due to the focus on the human genome,
with other genomes being additional information

B. Evaluation

1) Variant Effect Prediction Tasks: We use the OMIM and
ClinVar Datasets during the evaluation process. The OMIM
dataset relates gene sequences to different genetic disorders
and their forms [19], while ClinVar relates aggregated gene
variance information to overall human health [27]. Fine-tuning
on this dataset evaluates a DNA MSA model’s ability to
perceive overall and individual gene relationships to determine
its properties. The addition of MSA information provides key
evolutionary information that is useful for these tasks [4].

These two datasets were used at three sequence lengths:
128, 512, and 1024. Previous DNA-MSA transformer models
were trained on a sequence length of 128 [4]. However,
MSAMamba is trained on sequence lengths of 128, 512,

12Non-MSA models used as baselines were trained on the regular human
genome without MSA augmentation

13We were unable to train on the entire genome due to lack of computational
power



and 1024. We compare evaluations from the fine-tuning pro-
cesses across these increasing context windows to determine
MSAMamba’s relative efficacy when parsing longer MSA
sequences.

The original dataset consisted of 128-length sequences. We
modified these original sequences to include the area around
the original sequence to add up to larger context lengths.
This tests models’ abilities to analyze specific mutations and
segments within longer sequences.

All sequences were retrieved from the MultiZ90Way
database given each sequence’s chromosome index, start in-
dices, and end indices. These sequences were not masked but
passed as a tuple with a binary label as the fine-tuning target.

2) Genomic Benchmark Tasks: MSAMamba and other rel-
evant models were also evaluated on the GenomicBenchmarks
dataset [15]. This dataset consists of 8 different tasks relating
to sequence-level classification. The original GenomicBench-
marks datasets are single-sequence, containing only the hu-
man genome. However, we use start indices, stop indices,
and chromosome metadata from the datasets along with the
MultiZ90Way database to generate MSA versions of these
evaluation datasets.

These datasets were not modified for different sequence
lengths and were only trained on their original sequence
lengths.

Note: Ethical considerations were carefully addressed dur-
ing the data curation/processing step. All genome data used in
this study were obtained and modified from publicly available
datasets (e.g., MultiZ100Way, OMIM, ClinVar)

V. TRAINING

This section gives an overview of the different methodolo-
gies and hyperparameters used during the training process. We
also provide different model sizes and configurations tested
during the process.

Four MSAMamba models were trained to determine the
architecture’s efficacy (see Table I). Three models were trained
on DNA sequence lengths of 128, 512, and 1024, respec-
tively (with row-level masking). The fourth model was trained
on a sequence length of 1024 without row-level masking
to determine its effect on training performance (see III-A).
MSAMamba was trained on batch sizes that amounted to
a total of 49152 nucleotides per logical batch (excluding
augmented MSA sequences).14

The masked language modeling task (Algorithm 1) was used
for pre-training, with 15% of each sequence being masked
[11]. Both models were trained on the MultiZ9015 genome
dataset (see IV-A)

A. Baseline Models

The primary baseline model we compare to is GPN-MSA,
an axial-attention-based DNA modeling architecture that was

14batch size 48 for 1024 sequence length, batch size 96 for 512 sequence
length, batch size 384 for 128 sequence length

15Modified from MultiZ100Way to exclude the ten genomes most similar
to humans [4]

TABLE I
TABLE OF MODEL CONFIGURATIONS THAT UNDERWENT THE TRAINING,

FINE-TUNING, AND EVALUATION PROCESSES WITH COMPARISON TO
BASELINE MODELS WITH SIMILAR PARAMETERS

dmodel dssm nlayers SEQ. LEN ROW SPARSE

128 256 3 128
√

128 256 3 512
√

128 256 3 1024
√

128 256 3 1024 ×

trained on multiple sequence alignments of size 128. We eval-
uated the original pre-trained GPN-MSA model on sequences
of 128, 512, and 1024 base pairs to compare to MSAMamba
at respective sequence lengths. The model had a dimension
of 256 and consisted of 6 transformer layers. We trained the
model with hyperparameters provided in the original paper.16.

In addition, we use benchmarks from CADD, PhyloP, and
phastCons in DNA variant effect prediction. Results for these
models on 128 sequence length inputs were used from baseline
metrics in GPN-MSA’s evaluations. We evaluate these models
on sequence lengths of 512 and 1024 on the same dataset
used in evaluating MSAMamba. These models were fine-tuned
for the given task based on the default provided hyperpa-
rameters and configuration [34]. We also evalute HyenaDNA,
DNABERT, and a CNN classifier as baseline models on
Genomic Benchmarks tasks.

B. MSA Mamba Training

When training MSAMamba, we swept across different
magnitudes of learning rates and weight decays. We also
tested with two primary configurations of betas in the AdamW
optimizer, and we experimented with warm-up [14] and cosine
annealing learning rate [32] schedulers.

1) Model Sizes: We trained MSAMamba on a size of
3 total layers with a model dimension of 128. The SSM
layer’s dimension was scaled up by two times the model
dimension, and the transition MLP module’s magnification
rate was 4x (similar to that of transformers). Model depth was
kept constant to prevent external factors from influencing the
model’s long-context modeling performance measurements.

C. Optimizers and Schedulers

We used the AdamW optimizer17 during the pre-training and
fine-tuning processes. We also used a warm-up scheduler for
the first 10% of gradient steps. A weight decay of 1e-3 was
used throughout pre-training and fine-tuning. For both tasks,
we used betas of (0.9, 0.95)18.

16learning rate: 1e-4, weight decay: 0.01, 30K batches with warm-up
scheduler for first 1K batches

17We also tested the SGD optimizer due to initial issues in the adaptive
training algorithm leveraged by Mamba. However, we found minimal differ-
ence between the two

18We experimented with a second beta of 0.99, but we discovered that it
would lead to slower convergence and moved it to 0.95



D. Hyperparameter Selection

We used a learning rate of 3e-5 for pre-training across
all context lengths and row-level masking configurations. For
fine-tuning, we used a learning rate of 3e-4. We swept
across the following learning rates during the pre-training
process: 8e-3, 2e-3, 3e-4, 3e-5, 8e-6, and found that
3e-5 was the highest performing learning rate in all model
configurations.

Due to limited resources, the model was trained on a total
sequence length of 2048 base pairs per physical batch. To
compensate, we use a gradient accumulation across batches.
This led to 49,152 base pairs in the provided MSA input per
theoretical batch19. Validation loss was calculated after every
two gradient updates. Half-size batch sizes were used when
fine-tuning the model.

E. MSAMamba Evaluation

The base MSAMamba model was modified during the
evaluation process for sequence classification tasks. This was
done by appending a pooler module that takes the last hidden
state of each sequence in the batch and passes it as input
to a single linear layer. A classifier linear layer follows this.
Dropout was placed in between these layers with p=0.25.
The final classifier layer was followed by a sigmoid function,
which was used to compute binary cross-entropy loss as the
objective function for genomic benchmarks and variant effect
prediction tasks.

VI. RESULTS

We evaluate MSAMamba on the OMIM and ClinVar
datasets for variant effect prediction on missense mutations.
This task tests the ability to leverage MSA information,
as mutation predictions rely heavily on evolutionary data
provided in aligned sequences [4]. This task was chosen to
compare to current SOTA20 MSA and non-MSA DNA models
with similar training data. We assess the chosen models at
increasing context lengths21 to demonstrate MSAMamba’s
improved prediction capabilities at larger context lengths.
General DNA models (MSAMamba, GPN-MSA) were fine-
tuned using pooler and classification layers (see IV-B1), while
task-specific methods (PhastCons, PhyloP) were used without
fine-tuning. At each context length threshold, we evaluate the
MSAMamba model trained at the respective sequence length.
We evaluate baseline models based on released pre-trained
models of similar size to MSAMamba’s model dimensions
(see Table I).

Results (Figure 5) show that while GPN-MSA’s perfor-
mance on OMIM and ClinVar variant effect prediction de-
creases with increasing context length, the performance of
MSAMamba increases. This is likely due to GPN-MSA’s
difficulty in analyzing global relationships across longer se-
quences. MSAMamba shows the most significant performance

19physical batch size × gradient accumulation iterations
20GPN-MSA [4] is the current state of the art for MSA-based processing.

PhastCons, PhyloP, and CADD [42] are also evaluated
21sequence lengths of size 128, 512, and 1024

increase across context length and exceeds SOTA DNA MSA
models by a margin of ≈ 0.2 AUROC/AUPRC at a context
length of 1024.

In addition, we evaluate MSAMamba on the Ge-
nomicBenchmarks datasets [15] (modified using methods in
IV-B2). Evaluations show that MSAMamba performs better
than alternative models in 2 of 8 tasks (Table V-E). These
tasks are based on evolutionary relationships across species
and require attention to global relationships. MSAMamba’s
longer context training and MSA data augmentation provide
an advantage in these features. MSAMamba shows minor
performance differences from the state-of-the-art in other Ge-
nomicBenchmarks tasks (maximum 2.4%). HyenaDNA shows
high performance in 2 tasks due to its training on 220 base
pairs per batch, making it highly attuned to global DNA
relationships [35].

VII. DISCUSSION

A. Summary

By incorporating a subquadratic selective scan operation and
separating processing along the sequence and MSA dimen-
sions, MSAMamba achieves efficient and scalable inference
on long DNA sequences. Our experiments demonstrate that
MSAMamba exceeds the performance of state-of-the-art MSA
and single-sequence models in four GenomicBenchmarks
tasks (Table V-E). In addition, the model shows performance
exceeding current state-of-the-art DNA MSA models in long-
context variant effect prediction (Figure 5). The row-sparse
method used in MSAMamba’s training process further en-
hances computational efficiency during the training process
(Figure 3), making MSAMamba a viable and powerful tool
for large-scale DNA analysis.

B. Analysis of Results

In this section, we provide a comprehensive analysis of the
results on fine-tuning benchmarks that MSAMamba received.

1) Variant Effect Prediction: We evaluated baseline models
and the proposed MSAMamba model on the Variant Effect
Prediction task using the OMIM and ClinVar datasets. We
used a different set of baseline models that were proposed for
variant effect prediction.22

• phastCons - a hidden Markov model (HMM) for identify-
ing conserved elements within a DNA multiple sequence
alignment. This model predicts a nucleotide-level score
of conservation, which can be used to determine DNA
variants/mutations [44]

• PhyloP - similar to phastCons, but it computes p-value
probabilities per nucleotide for evolutionary conservation
[38]

• CADD - an SVM-based model to predict mutation sites
[42]

Note on data: the ClinVar and OMIM datasets are tradi-
tionally single sequence models, so we extract MSA versions

22Other models were proposed specifically for DNA language modeling
and do not have the same level of inductive bias integrated into variant effect
prediction-aligned models



Fig. 5. Graphs of MSAMamba (with row-level masking) and related models’ performance on OMIM (AUPRC) and ClinVar (AUROC) missense mutation
detection. The x axis shows the context length of the evaluated sequences

TASK NAME CNN DNABERT HYENADNA GPN-MSA MSAMAMBA

MOUSE ENHANCERS 69.0 66.9 85.1 76.4 82.7
CODING VS INTERGENOMIC 87.6 92.5 91.3 90.3 90.0
HUMAN VS WORM 93.0 96.5 96.6 98.9 98.5
HUMAN ENHANCERS COHN 69.5 74.0 74.2 73.1 72.7
HUMAN ENHANCERS ENSEMBL 68.9 85.7 89.2 89.3 88.8
HUMAN REGULATORY 93.3 88.1 93.8 93.5 94.4
HUMAN NONTATA PROMOTERS 84.6 85.6 96.6 90.9 94.2
HUMAN OCR ENSEMBL 68.0 75.1 80.9 76.8 82.5

TABLE II
EVALUATION OF MSAMAMBA (WITH ROW-LEVEL MASKING), GPN-MSA, AND OTHER SINGLE SEQUENCE MODELS ON GENOMICBENCHMARKS TASKS

USING TOP-1 ACCURACY (%) METRIC

of the data from the UCSC Genome Browser [34] given the
start and stop coordinates of each input sequence

The following models are traditional mutation/variant effect
prediction tools, and they are used for evaluation to compare to
results found in GPN-MSA, which leveraged the same models
for evaluation.

When evaluating the models on both datasets at a context
length of 128, MSAMamba showed performance worse than
GPN-MSA, as well as worse performance compared to CADD
in ClinVar evaluations. This occurs due to GPN-MSA and
other algorithms’ affinity to shorter DNA sequences. Since
GPN-MSA uses the fully connected mixer methodology [23]
of self-attention, it can understand deeper relationships at
smaller context lengths. In contrast, MSAMamba is akin
to a semiseparable matrix mixer, which lacks the level of
relationship establishment that a transformer has.

However, MSAMamba shows equivalent performance com-
pared to GPN-MSA at a context length of 512 and im-
proves on GPN-MSA’s performance at a context length of
1024. This occurs due to MSAMamba’s specific focus on
longer sequences during training. In contrast, GPN-MSA and
other methods were trained on 128-length DNA sequences.
MSAMamba’s long-context representation abilities outperform
GPN-MSA’s high-resolution relationship evaluation through
attention. In addition, GPN-MSA embeds a full MSA column
as a single token. MSAMamba’s more fine-grained approach
with column-wise attention provides more inductive bias for

extracting MSA-related features (coevolution, conservation),
which can improve performance when evaluating longer con-
text relationships [1].

2) Genomic Benchmarks: We evaluate MSAMamba on the
genomic benchmarks dataset, which consists of 8 separate
tasks. The ”Mouse Enhancers” task is a dummy task with
a small dataset, used for testing the fine-tuning process. Both
”Coding vs Intergenomic” and ”Human vs Worm” datasets
are demo datasets with medium-size data. All other tasks are
full-size datasets with consistent reproducible results.

Note on data: the genomic benchmarks datasets are tradi-
tionally single sequence models, so we extract MSA versions
of the data from the UCSC Genome Browser [34] given the
start and stop coordinates of each input sequence

We evaluate MSAMamba along with the following baseline
models for comparison:

• a CNN architecture with one-dimensional sets of short
convolutions, along with standard ReLU, BatchNorm, and
MaxPooling layers

• DNABERT (110 million parameters) - a BERT trans-
former architecture trained to represent DNA sequences

• HyenaDNA - a long convolution-based subquadratic ar-
chitecture for DNA processing. The HyenaDNA-tiny ver-
sion was used with a model dimension of 128 and a
sequence length of 16k

• GPN-MSA - a transformer model that processes DNA
MSAs (note: all other models work on single sequence



only). We used a model with a dimension of 128 and
used a checkpoint trained on sequences of length 12823

In all 5 relevant tasks, scores between HyenaDNA, GPN-
MSA, and MSAMamba are within 2% of each other.
MSAMamba shows the best performance in the ”Human
Regulatory” and ”Human OCR Ensembl,” which are both tasks
related to non-regulatory open-chromatin regions (OCR)24.
MSAMamba’s training data, while randomly sampled from the
human genome, has a bias towards open chromatin regions,
leading to their improved performance on these tasks.

HyenaDNA shows the best performance on regulatory re-
gion analysis (enhancers and promoters). Since the Hye-
naDNA model that was used was trained on sequence lengths
of 16k, it can better understand long-context regulatory rela-
tionships.

3) Conclusions: Overall, an analysis of benchmarks shows
that MSAMamba shows state-of-the-art performance in eval-
uating and classifying open chromatin regions, while previous
work shows better performance on analyzing regulatory se-
quences. MSAMamba also shows high performance in long-
context variant effect prediction tasks.

C. Applications

With high performance in open chromatin region represen-
tation and long-context variant effect prediction, MSAMamba
can be applied to genomic tasks that require an evolutionary
basis of understanding. This is useful in mutation detection
tasks and detecting conserved or coevolved locations within
a DNA sequence. In addition, DNA language models can
be combined with protein models to assist in drug discov-
ery/protein design with genomic priors.

D. Limitations

While MSAMamba provides benefits in computational com-
plexity and context length scaling. However, it loses the
expressiveness that full self-attention inherently possesses.
In the perspective of matrix mixers [23], full self attention
consists of a full matrix. In contrast, Mamba’s mixer matrix
is semiseparable, which leads the MSAMamba model to be
inherently causal [10]. Building this model with a bidirectional
version of Mamba may be more performant [41] [23].

Many protein model architectures have inductive biases that
improve performance. However, current DNA language mod-
els do not have this specificity. Specific blocks that inherently
compute common DNA features, such as coevolved/conserved
positions [13] and short motifs [3], may improve performance
DNA language modeling performance even further.

E. Future Work

In future studies, we hope to address the following:
• Testing MSAMamba with a bidirectional subquadratic

model

23Trained on smaller length due to this value being used in the original
paper and computational constraints

24While the ”Human Regulatory” task contains both regulatory and OCR
regions, it contains a majority of OCR regions

• Creating an operator that is attuned to extracting MSA-
level features, such as coevolved sequences and motifs
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Panagiotis Alexiou. Genomic benchmarks: a collection of datasets for
genomic sequence classification. BMC Genomic Data, 24(1):25, 2023.

[16] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with
selective state spaces, 2023.

[17] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Re.
Hippo: Recurrent memory with optimal polynomial projections, 2020.



[18] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long
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Hyena hierarchy: Towards larger convolutional language models, 2023.

[38] Katherine S. Pollard, Melissa J. Hubisz, Kate R. Rosenbloom, and
Adam Siepel. Detection of nonneutral substitution rates on mammalian
phylogenies. Genome Research, 20(1):110–121, October 2009.

[39] Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny,
Pieter Abbeel, Tom Sercu, and Alexander Rives. Msa transformer. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8844–8856. PMLR, 18–24 Jul 2021.

[40] Yanay Rosen, Yusuf Roohani, Ayush Agarwal, Leon Samotorčan,
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