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Abstract

In this study, we address the challenge of us-
ing energy-based models to produce high-quality,
label-specific data in complex structured datasets.
Traditional training methods encounter difficulties
due to inefficient Markov chain Monte Carlo mix-
ing, which affects the diversity of synthetic data
and increases generation times. To address these
issues, we use a novel training algorithm that ex-
ploits non-equilibrium MCMC effects. This ap-
proach improves the model’s ability to correctly
classify samples and generate high-quality sam-
ples in only a few sampling steps. The effective-
ness of this method is demonstrated learning three
datasets with Restricted Boltzmann Machines:
handwritten digits for visualization, a human mu-
tation genome dataset classified by continental
origin, and sequences of an enzyme protein family
categorized by experimental biological function.

1. Introduction
Energy-based models (EBMs) (Ackley et al., 1985; Smolen-
sky, 1987; LeCun et al., 2006; Xie et al., 2016) are powerful
generative models that encode the complex data set distribu-
tion into the Boltzmann distribution of a given energy func-
tion. Their simplest versions, the Boltzmann (Ackley et al.,
1985) and the Restricted Boltzmann machine (Smolensky,
1987), have recently got renewed attention in the scientific
world, not only because they can generate high-quality syn-
thetic samples in datasets for which convolutional layers
offer no appreciable advantage (Cocco et al., 2018; Yelmen
et al., 2021; 2023), but also because they offer appealing
modelling and interpretation capabilities for applications
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INRIA Tau team, LISN, 91190 Gif-sur-Yvette, France.. Correspon-
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while requiring relatively small training sets. Indeed, the
trained model can be understood and studied as a physical in-
teraction system to model many-body distributions (Carleo
& Troyer, 2017; Melko et al., 2019), infer physical inter-
actions (Weigt et al., 2009; Morcos et al., 2011), extract
patterns (Tubiana et al., 2019), or cluster (Decelle et al.,
2023). The process of feature coding can also be analyt-
ically rationalized to some extent (Decelle & Furtlehner,
2021; Decelle et al., 2017).

EBMs, however, pose a major difficulty in training because
the goodness of the trained models depends entirely on the
quality of convergence to equilibrium of the Markov Chain
Monte Carlo (MCMC) used to estimate the log-likelihood
gradient during training (Decelle et al., 2021; Nijkamp et al.,
2022). These concerns are especially critical when deal-
ing with highly structured datasets, as sampling multimodal
distributions is particularly costly. This is because mixing
times increase rapidly during training, which is dominated
by barriers between metastable states. Non-ergodic MCMC
sampling often leads to models that overrepresent certain
modes at the equilibrium distribution level (Nijkamp et al.,
2020; Decelle et al., 2021). Moreover, even perfectly trained
models can be very poor generators because they are unable
to display all of the diversity encoded in the probability mea-
sure due to the inability of the chains to mix in a reasonable
amount of time.

Recent work has shown that linking the Boltzmann distri-
bution to the empirical distribution is indeed a nuisance
that should be avoided if the ultimate goal is to generate
samples. Instead, it is more efficient to train the model to
fit the statistics of the dataset, not at the convergence of
the MCMC process (as is common when training EBMs),
but after a short and predetermined sampling process (Ni-
jkamp et al., 2019; Decelle et al., 2021; Agoritsas et al.,
2023). This means that EBMs can be trained to function
as stable diffusion models (Sohl-Dickstein et al., 2015),
i.e., fast and accurate generators that perform a set of de-
coding tasks impressed on the model during training. For
structured datasets, this strategy offers two obvious improve-
ments: The generated samples better reflect the diversity of
the dataset, and one does not need an excessive number of
MCMC steps to generate good-quality samples. Moreover,
training out-of-equilibrium EBMs is not only faster than
the standard procedure, but also more stable and easier to



control (Decelle et al., 2021).

In this paper, we show that Restricted Boltzmann Machines
(RBMs) can be simultaneously trained to perform two dif-
ferent tasks after a few MCMC sweeps. First, they are able
to generate samples conditioned on a particular label when
initialized with random conditions. The samples generated
by the model satisfy well the individual label statistics with
high accuracy and cover the entire data space (Fig. 1). Sec-
ond, they can accurately predict the label associated with
a given sample. We validate our method on three different
datasets: MNIST, primarily to illustrate the method, and
two highly structured datasets - one listing human DNA mu-
tations in individuals, and the other featuring sequences of a
protein family. For these two complex cases, a high-quality
generation is usually challenging, if not impossible.

The structure of this paper is as follows: We begin by in-
troducing our EBM. This is followed by an explanation of
the out-of-equilibrium training. We then discuss our results
in detail, coupled with an analysis of the tests performed
to assess the quality of the generated samples. The paper
concludes with a summary of our results and conclusions.

2. Restricted Boltzmann Machine
Although RBMs have been around for a long time, they are
largely used to describe aligned DNA/RNA or homologous
protein sequence datasets (Tubiana et al., 2019; Bravi et al.,
2021; Yelmen et al., 2021; 2023). There are two reasons
for this. First, convolutional layers are unlikely to provide
much advantage in this case, and most importantly, they
do not require many training examples to provide reliable
results. The latter is especially important when dealing
with semi-supervised tasks, since the number of manually
curated entries is usually very small compared to the number
of sequences available in public databases. We will devote
all our work to this type of tasks and machines.

2.1. Definition of the model

The RBM is a Markov random field with pairwise in-
teractions defined on a bipartite graph of two noninter-
acting layers of variables: The visible variables vvv =
{vi}i=1,...,Nv represent the data, while the hidden variables
hhh = {hµ}µ=1,...,Nh

form a latent representation of the data
that models the effective interactions between the visible
variables. The joint probability distribution of the visible
and hidden variables is given by the Boltzmann distribution

pθθθ(vvv,hhh) =
1
Zθθθ

e−Eθθθ(vvv,hhh) with Zθθθ =
∑

vvv,hhh e
−Eθθθ(vvv,hhh). (1)

In the previous expressions, the normalization factor Zθθθ is
called the partition function, θθθ refers to the parameters of
the model and E is the energy function or Hamiltonian. In
the simplest case, both the visible and the hidden units are

binary variables, vi, hµ ∈ {0, 1}, but we will also consider
categorical (namely Potts) variables for vi in the case of
the protein sequence dataset, see e.g. (Tubiana et al., 2019;
Decelle et al., 2023) for a Potts version of the model. For
the semi-supervised setting, we introduce an additional cat-
egorical variable in the visible layer, ℓ ∈ {1, . . . , Nℓ}, that
represents the label associated with the data point. That is,
we follow the same scheme as in Ref. (Larochelle et al.,
2012), but use a categorical variable for the label instead.
The associated Hamiltonian is

Eθθθ(vvv,hhh, ℓ)=−
∑
i

aivi−
∑
µ

bµhµ−
∑
iµ

viwiµhµ

−
∑

m cmδℓ,m−
∑

mµ δℓ,mdmµhµ, (2)

where δℓ,m is the Kronecker symbol that returns 1 if the
label has the value m and 0 otherwise, aaa = {ai}, bbb =
{bµ} and ccc = {cm} are three sets of local fields acting
respectively on the visible and hidden layers and on the
label variable. www = {wiµ} is the weight matrix that models
the interactions between visible and hidden layers, and ddd =
{dmµ} is the label matrix that represents the interactions
between the label and the hidden layer. The structure of the
semi-supervised RBM is sketched in Fig. 2-A.

2.2. Out-of-equilibrium training

EBMs are generally trained by maximizing the Log-
Likelihood (LL) function of the model computed on the
dataset D = {(vvv(1), ℓ(1)), . . . , (vvv(M), ℓ(M))}

L(θθθ|D)= 1
M

∑M
m=1 log pθθθ

(
vvv=vvv(m), ℓ = ℓ(m)

)
=

1

M

M∑
m=1

log
∑
hhh

e−Eθθθ(vvv(m),hhh,ℓ(m))−logZθθθ, (3)

via (stochastic) gradient ascent. As usual, the gradient of L
is obtained by deriving it with respect to all parameters of
the model (i.e., θ = {aaa,bbb, ccc,ddd} in our RBMs), which can
be written as a subtraction of two terms:

∂L
∂θi

=

〈
−∂Eθθθ

∂θi

〉
D
−

〈
−∂Eθθθ

∂θi

〉
E

. (4)

The symbols ⟨·⟩D, and ⟨·⟩E represent the average over the
dataset and the model’s Boltzmann measure (1), respec-
tively. One of the main challenges in training Energy-Based
Models (EBMs) is computing a term on the right-hand side,
usually estimated via MCMC simulations. This term re-
quires the Markov chains to reach equilibrium—reflecting
the Boltzmann measure—before statistical averages can be
computed. This process can be very time-consuming, es-
pecially with complex datasets. The same issue comes up
when generating new data samples according to the Boltz-
mann distribution. However, as mentioned in the introduc-
tion, there is a simple way around this problem (Nijkamp
et al., 2019; Decelle et al., 2021; Agoritsas et al., 2023).
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Figure 1. Conditioned generation F&F for the MNIST (A), HGD (B), and GH30 (C) datasets after 10 MCMC steps from a random
initialization. The data are projected along the first two principal components of the dataset’s PCA. The big dots correspond to true data
and the small contoured dots are the generated samples, with different colors corresponding to the different labels.The synthetic dataset
has the same structure as the real dataset, i.e. each category contains the same number of entries as the real dataset. In the outer panels, the
histograms represent the distributions of the dataset (black outline) and the generated samples (violet-shaded area) when projected along
each of the two principal directions used for the central scatter plot. The corresponding figure obtained with a standard PCD training is
shown in Fig. 8 in Appendix D.
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Figure 2. A): Scheme of the semi-supervised RBM. B): Sketch of the sampling procedures used to calculate the two gradients during
training. Left): label prediction. The visible layer is clamped to the data, while the labels are initialized randomly. The hidden layer and
labels are sampled alternately using block-Gibbs sampling and, after k MCMC steps, the model must provide the correct labels. Right):
Conditional Sampling. The labels are fixed and the visible layer is initialized randomly. The model must generate a sample corresponding
to the label in k MCMC steps.

The learning dynamics ruled by the gradient in Eq. 4
have a fixed point where the moments of the distribution
match those of the dataset, signified by ⟨−∂Eθθθ/∂θi⟩D =
⟨−∂Eθθθ/∂θi⟩E . This indicates that even with accurate gradi-
ent computation during training—which is often not achiev-
able—generation with these models is costly. It involves
equilibrating the MCMC chains prior to generating good
quality samples. This becomes more challenging as the
mixing times increase during training (Decelle et al., 2021;
Dabelow & Ueda, 2022). An alternative approach suggests
training the model to replicate the dataset’s moments not
at equilibrium, but after a few sampling steps k from an
initial distribution p0. This can be achieved by adjusting the

gradient as

∂LOOE

∂θi
=

〈
−∂Eθθθ

∂θi

〉
D
−
〈
−∂Eθθθ

∂θi

〉
p(k,p0)

. (5)

Here, p(k,p0) represents the non-stationary distribution of
samples generated through an MCMC process that hasn’t
reached equilibrium. The model trained this way is opti-
mized to generate quality samples when sampled following
the exact same procedure (at the fixed point): same update
rules, initialization distribution and number of steps. This
possibility has been recently proven rigorously (Agoritsas
et al., 2023), and experimentally validated in several studies
across different EBMs (Nijkamp et al., 2019; 2020; Muntoni
et al., 2021), including RBMs (Decelle et al., 2021).

In this paper we will go one step further. We want to train
the RBM to perform not one but two different generative
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Figure 3. A): For each of the datasets considered, we show the evolution of three different quality scores as a function of sampling
generation time, tG, for each label separately. The first row shows the error on the eigenvalue spectra, the second row shows the error on
the entropy, and the third row shows the Adversarial Accuracy Indicator. For the GH30 dataset only, we used the training set to generate
the error curves because there was a too limited data in the testset to compare certain categories. The definition of the scores can be found
in the Appendix C. B): Accuracy of the F&F RBM in the label prediction task as a function of training time.

tasks after only k = 10 MCMC sweeps by manipulating
the chain initializations p0. Specifically, we want to train
the model to both synthesize (from random) samples of a
given a label, and to infer the correct label when given a
dataset sample as chain initialization. To this end, we use
two different out-of-equilibrium gradients in training, each
designed for one of these tasks. The difference between
the two is how we compute ⟨·⟩p(k,p0)

in (5). For label
prediction, this term is computed by clamping the visible
layer onto the images/sequences in the minibatch and letting
evolve the label configurations. For conditional generation,
this term is computed using chains where the visible layer
is randomly initialized and the labels are kept fixed to the
labels in the minibatch. A sketch of the sampling procedures
used to compute the two gradients can be found in Fig. 2-B.
We refer to the models trained in this way as F&F RBMs.
The model and hyperparameters used for the training are
listed in Tab. 2 of the Appendix B.

3. Results
We applied the F&F RBM to three labeled datasets. First,
MNIST (LeCun et al., 1998), which comprises images of
handwritten digits along with their respective labels, en-
abling us to visually evaluate conditional generation quality.
Second, the Human Genome Dataset (HGD) (Consortium
et al., 2015), comprising binary vectors representing a hu-
man individual with 1s or 0s indicating gene mutation rela-
tive to a reference sequence. Labels here signify the individ-
ual’s continental origin. Lastly, the GH30 enzyme protein
family dataset, a benchmark for the model’s capability to

generate artificial protein sequences having a particular bio-
logical function trained using natural sequences classified
in the CAZy database (Lombard et al., 2014). Detailed
explanations of these datasets are available in Appendix A.

Classification task – Fig.3-B illustrates the label prediction
accuracy for the testset over training time. For MNIST, ac-
curacy peaks at 0.9 after about 2000 epochs, then declines.
In contrast, accuracy continually rises for both HGD and
GH30, achieving 0.96 and 0.99, respectively, in the most
trained models. The confusion matrices from label predic-
tion for all datasets are gathered in Appendix D, Fig. 5.

Conditioned Generation task –We show in Fig. 1 a projec-
tion of the samples generated with a given label onto the first
two principal directions of each dataset. The F&F model
effectively generates data within a few MCMC steps (10
sweeps in our case) that satisfy the target labels and cover
the entire data space following a very similar distribution
to the original data, as can be seen from the comparison of
the histograms in the figure. To further assess the gener-
ated data’s quality, we used several error scores comparing
synthetic and real data properties over the sampling time.
These scores examine error in the covariance matrix spec-
trum, ϵS, diversity via an entropy measure, ∆S, and mode
collapse and overfitting using the Adversarial Accuracy Indi-
cator (Yale et al., 2020), ϵAAI. In all three cases the score is
always positive and the perfect generation corresponds to an
error of zero. Detailed definitions are found in Appendix C.
As shown in Fig. 3-A, the best quality samples of each cat-
egory are generated at about 10 steps, the same number of
steps used for gradient estimation during training.



For comparison, we show in Fig. 7 of the Appendix D
the scores obtained by the F&F RBM and the traditional
RBM trained in semi-supervised mode with PCD on the
three datasets. Interestingly, based on previous experience
with models trained on these datasets without label moni-
toring, we found some unexpected results when we applied
this analysis to the semi-supervised PCD-RBM. On the
MNIST dataset, which normally yields well-trained PCD-
RBM models (Decelle et al., 2021), we obtained machines
with enormous thermalization times after only a few epochs
of training. Conversely, even though the HGD is typically
a very difficult benchmark dataset for classical equilibrium
RBM models (Béreux et al., 2023), we found that semi-
supervised training yielded very high-quality models with
thermalization times of only a few hundred MCMC steps.
Finally, we found that PCD-RBM completely fails in gener-
ating samples from the GH30 dataset, as the Markov chains
immediately get stuck in wrong regions of the data space.
In Fig. 8 in the Appendix D, we show a visualization of
the results obtained by generating data using PCD-RBM
models after no less than 105 MCMC steps for the three
different datasets. These results show that classical training
of RBMs with PCD is unreliable for conditional generation.
In contrast, the F&F model proved to be robust and reliable
for all the tested datasets and provided high-quality artificial
samples after only a few MCMC steps.

For a more biologically relevant measure of generated pro-
tein sequences’ quality, we extensively assessed their pre-
dicted three-dimensional structure using the esm tool (Lin
et al., 2023), comparing these predictions with the test set.
Specifically, we created histograms for both the generated
sequences and the test set based on the frequency of pre-
dicted pLDDT scores from esm, indicating the average
confidence in the folding. The generated set consists of 150
samples per each of the 9 categories. These distributions are
displayed in Fig. 4 showing a remarkable agreement.

4. Conclusions
In this study, we used a unique method for training RBMs
to embed the statistics of the datasets into the nonstationary
distributions of a Markov chain process (Nijkamp et al.,
2019; Decelle et al., 2021; Agoritsas et al., 2023), in con-
trast to conventional methods that encode information only
at the equilibrium measure level. This strategy allows us to
use RBMs as efficient generators, similar to stable diffusion
models, with the added benefit that various generative tasks
can be easily encoded into the model. In particular, we
trained RBMs to generate label-conditioned samples in a
minimal number of sampling steps– a process that is typi-
cally tedious and slow in conventional methods (Larochelle
et al., 2012)– and derive the good label when Markov chains
are randomly initialized. We have shown that our approach

Figure 4. Histograms of frequencies of the pLDDT score for gen-
erated data (green) and real data (red). Given a reference protein
structure and a structure predicted by a model, the LDDT (Local
Distance Difference Test) score assesses how well local atomic
interactions in the reference protein structure are reproduced in the
prediction. The pLDDT (predicted LDDT) score is returned by the
esm model, and it allows us to evaluate the degree of confidence
of a folding even without having the reference structure.

successfully generates high-quality synthetic samples that
accurately reflect the full diversity of the dataset even from
highly structured data, overcoming the limitations of stan-
dard (equilibrium) training methods. Last but not least, the
two-gradient method presented here can be easily imple-
mented in more powerful EBMs to model other complex
datasets.
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A. Dataset description
A.1. MNIST dataset

The MNIST dataset (LeCun et al., 1998) consists of 28× 28 grayscale images of handwritten digits tagged with a label
indicating the digit represented, from 0 to 9. We first extracted a training set and a test set of respectively 10000 and 2000
images, and we then binarized the data by setting each pixel to 1 if the normalized value was above 0.3, and to 0 otherwise.
To be fed to the RBM, the images have to be flattened into 784-dimensional binary vectors.

A.2. Human Genome Dataset (HGD)

The Human Genome dataset (HGD) (Consortium et al., 2015) represents the human genetic variations of a population of
5008 individuals sampled from 26 populations in Africa, East Asia, South Asia, Europe, and the Americas. Each sample is a
sequence of 805 binary variables, vi ∈ {0, 1}, representing the change alteration or not of a gene relative to a reference
genetic sequence. Sequences are classified based on the continental origin of individuals. We trained the RBM on 4507
samples and retained 501 samples for the test set.

A.3. GH30 family

The glycoside hydrolases (EC 3.2.1.-), GH for short, are a family of enzymes that hydrolyze the glycosidic bond between
two or more carbohydrates or between a carbohydrate and a non-carbohydrate moiety. GH30 is one of the GH families that
has been divided into subfamilies in CAZy. It includes nine different subfamilies (GH30-1,..., GH30-9) corresponding to 11
different enzymatic chemical reactions. We created a training and test set of respectively 3922 and 975 annotated sequences
from CAZy (Lombard et al., 2014; Cantarel et al., 2009), having care of reproducing the same samples-per-label proportion
between training and test sets. The sequences were previously aligned in an MSA matrix using the MUSCLE algorithm
(Edgar, 2004) with default parameters. We then cleaned all MSA columns in which the proportion of gaps was above 70%
of the entries. The resulting sequences have a length of Nv = 430.

The details about the composition of the training/testing sets used for each dataset can be found in Table 1.

MNIST

Label 0 1 2 3 4 5 6 7 8 9

Train set count 1022 1078 1046 1031 965 916 972 1042 977 951

Test set count 188 224 218 191 220 174 208 178 197 202

HGD

Label African American East Asian European South Asian

Train set count 1184 622 912 910 879

Test set count 138 72 96 96 99

GH30

Label GH30 1 GH30 2 GH30 3 GH30 4 GH30 5 GH30 6 GH30 7 GH30 8 GH30 9

Train set count 886 287 1044 270 435 39 89 810 62

Test set count 221 71 260 67 108 9 22 202 15

Table 1. Number of data samples for each category in the train and test sets for the used datasets.

B. RBM training details
The hyperparameters used for the training processes discussed in this paper are given in Table 2.

http://www.cazy.org/GH30.html


dataset epochs minibatch
size

total gradient
updates k

learning
rate Nh

MNIST (PCD) 30000 500 6 · 105 100 10−2 1024

HGD (PCD) 30000 4507 3 · 104 100 10−2 1024

GH30 (PCD) 30000 1961 6 · 104 100 10−2 1024

MNIST (F&F) 30000 500 6 · 105 10 10−2 1024

HGD (F&F) 30000 4507 3 · 104 10 10−2 1024

GH30 (F&F) 30000 1961 6 · 104 10 10−2 1024

Table 2. Hyper-parameters of the RBMs used in this work.

C. Quality scores
To assess the generation capabilities of the RBM, one can compute a set of observables on the generated dataset and the
actual data and compare them (Decelle et al., 2021). In the plots of Figs. 3-A and 7 we have considered the following scores:

• Error on the spectrum (ϵS): Given a data matrix X ∈ RM×Nv , its singular value decomposition (SVD) consists in
writing X as the matrix product

X = USV T ,

where U ∈ RM×M , S is an M ×Nv matrix with the singular values of X in the diagonal, and V ∈ RNv×Nv . Let us
call Ns = min(M,Nv). Once we sort the singular values {si} such that s1 > s2 > · · · > sNs

, we can define the error
of the spectrum as

ϵS =
1

Ns

Ns∑
i=1

(
sdatai − sgeni

)2
, (6)

where {sdatai } are the singular values of the true data and {sgeni } are the singular values of the generated dataset.

• Error on the entropy (∆S): We approximate the entropy of a given dataset by its byte size when compressed with
gzip (Baronchelli et al., 2005). In particular, if Sdata is the estimated entropy of the true data and Sgen is the estimated
entropy of the generated data, we define the error of entropy as

∆S =

(
Sgen

Sdata
− 1

)2

. (7)

A large ∆S indicates that the generated set lacks diversity or that the generated samples are less “ordered” than the
dataset.

• Error on the Adversarial Accuracy Indicator (ϵAAI): This score was introduced in Ref. (Yale et al., 2020) to
quantify the similarity and “privacy” of data drawn from a generative model with respect to the training set. We first
construct a dataset obtained by joining the real dataset with the generated dataset, and then compute the matrix of
distances between each pair of data points. We denote by PGG the probability that a generated datapoint has as the
nearest neighbour a generated data and by PDD the probability that a true datapoint has as the nearest neighbour a
true data. In the best case, when the generated data are statistically indistinguishable from the true ones, we have
PGG = PDD = 0.5. Therefore, we can define the error of the Adversarial Accuracy Indicator as follows:

ϵAAI =
1

2

[
(PGG − 0.5)2 + (PDD − 0.5)2

]
. (8)

D. Supplementary figures
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Figure 5. Confusion matrices for the label classification using F&F on the test sets of A) MNIST, B) HGD and C) GH30.
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Figure 6. MNIST images created using different methods for specific labels. From left to right, the first box shows the output of F&F for
k = 10 MCMC steps. The images in the second box are generated using a PCD-RBM after 105 MCMC steps when the Markov chains
are clamped to a specific label value. The third box shows the result of sampling with a PCD-RBM, where we also sample the labels when
running the Markov chains. An empty slot means that the RBM never provided the appropriate sample in our tests after 105 MCMC steps.
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Figure 7. Comparison of the scores on the generated data between PCD and F&F RBMs as a function of the generation time for A)
MNIST, B) HGD and C) GH30. All the scores are computed by comparing the test set with an identical (in terms of samples for each
category) generated dataset. The samples of each category of the dataset have been compared with the corresponding samples of the
synthetic data, and the curves shown in the figure represent the average scores across the different categories. The different colours of the
curves represent different training times (tage), expressed in terms of gradient updates. Notice that for the PCD-RBM the generation time
ranges up to 105 MCMC updates, while for the F&F-RBM it only reaches 102 MCMC updates.
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Figure 8. Conditioned generation using PCD for MNIST (A), HGD (B) and GH30 (C) datasets after 105 MCMC steps. The data are
projected along the first two principal components of the dataset’s PCA. The big dots correspond to true data and the small contoured dots
are the generated samples, where different colours correspond to different labels. The synthetic dataset has the same structure as the true
one, meaning that each category contains the same number of data as the true dataset. On the sides of the PCA, the histograms represent
the distributions of the data (black contour) and the generated samples (violet-shaded area) when projected along the first two principal
directions.


