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ABSTRACT

Many-objective optimization (MaOO) simultaneously optimizes many conflict-
ing objectives to identify the Pareto front - a set of diverse solutions that rep-
resent different optimal balances between conflicting objectives. For expensive
MaOO problems, due to their costly function evaluations, computationally cheap
surrogates have been widely used in MaOO to save evaluation budget. However,
as the number of objectives )M increases, the cost of using surrogates increases
rapidly as many optimization algorithms need maintain M surrogates. In addi-
tion, a large M indicates a high-dimensional objective space, increasing the diffi-
culty of maintaining solution diversity. It is a challenge to reach diverse optimal
solutions with a relatively low cost of using surrogates for MaOO problems. To
handle this challenge, we propose LORA-MaOO, a surrogate-assisted MaOO al-
gorithm that learns M surrogates from spherical coordinates, including an ordinal-
regression-based surrogate that learns the ordinal relations between solutions (de-
noted as radial surrogate) and M-1 regression-based surrogates that trained on
angular coordinates (denoted as angular surrogates). In each optimization itera-
tion, model-based search is completed with a single radial surrogate, while M-1
angular surrogates are used only once for selecting diverse candidates. Therefore,
the frequency of using angular surrogates is largely reduced, lowering the cost of
using surrogates. In addition, we design a clustering method to quantify artificial
ordinal relations for non-dominated solutions and improve the quantification of
dominance-based ordinal relations. These ordinal relations are used to train the ra-
dial surrogate which predicts how desirable the candidates are in terms of conver-
gence. The solution diversity is maintained via angles between solutions instead
of pre-defined auxiliary reference vectors, which is parameter-free. Experimental
results show that LORA-MaOQO significantly outperforms other surrogate-assisted
MaOO methods on most MaOO benchmark problems and real-world applications.

1 INTRODUCTION

Multi-objective optimization problems (MOOPs) and many-objective optimization problems
(MaOOQPs) P_-l widely exist in many real-world applications, such as production scheduling |Lin &
Gen| (2018), traffic signal control [Shaikh et al.| (2020), and water resource engineering Janga Reddy
& Nagesh Kumar (2021). These MOOPs and MaOOPs have many conflicting objectives to opti-
mize, and thus all objectives cannot reach their optimum simultaneously. As a result, the optimum
of MOOPs and MaOOPs is the Pareto front (PF): A set of non-dominated solutions in the objective
space that represent different optimal balance between conflicting objectives. These optimization
problems aim to find non-dominated solutions that are close to the PF and also well distributed
along the PF, indicating that MOOPs and MaOOPs should consider both convergence and diversity.

Various evolutionary optimization algorithms have been proposed to solve MOOPs Deb et al.|(2002)
and MaOOPs Deb & Jain| (2013). These optimization algorithms usually require plenty of solution
samplings and evaluations to find converged and diverse non-dominated solutions. However, in
many real-world MOOPs and MaOOPs, the evaluation of solution performance could be costly

| "Multi-objective optimization has 2 or 3 objectives, many-objective optimization has 4 or more objectives. |
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et al.| (2022)). Therefore, the evaluation budget only allows a limited number of solutions to be evalu-
ated on the expensive objective functions. To address expensive optimization problems, evolutionary
optimization is combined with computationally cheap surrogates to enhance sampling efficiency and
save evaluations, which are known as surrogate-assisted evolutionary algorithms (SAEAs).

Yet, compared with well-studied MOOPs, MaOOPs are more challenging for SAEAs since the cost
of using surrogates and the difficulty of maintaining solution diversity could increase rapidly as the
number of objectives )/ increases. For example, conventional SAEAs usually use regression-based
surrogates to approximate each objective function separately |(Chugh et al.[(2016); Song et al.|(2021)).
For MaOOPs, many objectives indicate maintaining many surrogates for surrogate-assisted search
and selection, which results in a low efficiency of SAEAs. In addition, it is difficult to maintain
solution diversity in high-dimensional objective space. Some SAEAs|Knowles| (2006)); Zhang et al.
(2010); [Chugh et al.| (2016) need to investigate proper parametric strategies to generate reference
vectors or divide objective space into subspaces. Recently, a family of classification-based SAEAs
Pan et al.| (2018)); |[Hao et al.|(2022) attempted to use a single surrogate to learn pairwise dominance
relations, which hugely reduces the cost of using surrogates. However, their single surrogate can
provide very limited information about solution diversity, making these algorithms more efficient
but less effective than the SAEAs with many surrogates. Additionally, many Bayesian optimization
(BO) algorithms [Tu et al.| (2022); |[Zhang & Golovin| (2020)); [Paria et al| (2020); /Abdolshah et al.
(2019) were proposed to solve expensive MOOPs. However, they are mainly based on the compu-
tation of hypervolume, which would be very time-consuming in MaOOPs.

In this paper, we propose a different framework to implement surrogate-assisted evolutionary opti-
mization for expensive MaOOPs, named LORA-MaOO, where a single surrogate is developed to
learn ordinal relations for guiding optimization, and several angular surrogates are generated from
spherical coordinates to maintain diversity. LORA-MaOO reaches diverse and as optimal as possi-
ble solutions for MaOOPs but with relatively low cost of using surrogates. Our major contributions
are summarized as follows:

e We introduce the framework of spherical coordinates approximation into surrogate-assisted
evolutionary optimization and proposed LORA-MaOQO to solve expensive MaOOPs. Dif-
ferent from existing SAEAs which learn approximation models from Cartesian coordinates
and use all surrogates to handle convergence and diversity, we consider convergence and
diversity via separate surrogates: An ordinal surrogate is treated as a radial coordinate for
convergence purpose, while remaining regression-based surrogates approximate angular
coordinates for maintaining diversity. This framework provides a flexibility to reduce the
frequency of using surrogates and thus reduce the cost of using surrogates.

e We develop a novel ordinal-regression-based model to learn the ordinal landscape of ex-
pensive MaOOPs. A clustering method is designed to generate artificial ordinal relations
for improving modeling performance for many objectives. In addition, we also propose an
improved way to quantify dominance-based ordinal relations for surrogate modeling.

e A non-parametric approach is developed to select diverse solutions for expensive evalua-
tions via our angular coordinate surrogates.

e Extensive experiments on benchmark and real-world optimization problems are conducted
under a range of scales and numbers of objectives. Empirical results show that our LORA-
MaOQO is effective and outperforms the state-of-the-arts.

2 RELATED WORK

2.1 MULTI-/MANY-OBJECTIVE SURROGATE-ASSISTED EVOLUTIONARY ALGORITHMS

Regression-based SAEAs. Regression-based SAEAs employ regression-based surrogates such as
Kriging |Stein| (1999); [Williams & Rasmussen| (2006) to approximate either the objective values of
solutions or the objective functions of expensive problems Jin|(2005)). To maintain solution diversity,
ParEGO Knowles|(2006)) employs a Kriging model to iteratively approximate an scalarized objective
function which aggregates all objectives into one via a set of pre-defined scale vectors. In MOEA/D-
EGO |Zhang et al.| (2010), plenty of scale vectors are generated uniformly to decompose the target
MOQOP into many single-objective subproblems. K-RVEA |Chugh et al.| (2016) also designs a set of
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scale vectors as reference vectors to maintain solution diversity. Similarity or density estimation is
an alternative option for maintaining diversity. For instance, KTA2 |Song et al. (2021) estimates the
distribution status of non-dominated solutions by defining a similarity or density indicator.

Classification-based SAEAs. In model-based optimization, the optimization is guided by the rela-
tion between solutions rather than accurate objective values. Therefore, there is a tendency for re-
cently proposed SAEAS to use classification-based surrogates to learn the relation between solutions
directly. CSEA |Pan et al.|(2018) trains a neural network to justify whether candidate solutions can
be dominated by given reference points or not. -DEA-DP Yuan & Banzhaf] (2022) uses two neural
networks to predict the Pareto dominance relation and #-dominance relation between two solutions,
respectively. REMO |[Hao et al.| (2022) employs a neural network to fit a ternary classifier, which is
able to learn the dominance relation between pairs of solutions. Compared with regression-based
SAEAs, although classification-based SAEAs take advantage of learning solution relations directly,
their drawbacks are also clear: The prediction of solution relations lacks the information of how
solutions are distributed in the objective space, making it difficult for classification-based SAEAs
to maintain solution diversity. In |Pan et al.| (2018)); [Hao et al|(2022), a radial projection selection
approach is adapted to select diverse reference points. However, its effect on diversity maintenance
is limited. In addition, although classification-based SAEAs maintain only one surrogate, the cost
of learning pairwise relations from large datasets is inevitably increased.

SAEAs based on Other Surrogates. HSMEA |Habib et al.| (2019) uses an ensemble of multiple
surrogates in the optimization. In addition, a new category of surrogates, namely dominance-based
ordinal regression surrogate |Yu et al.|(2019)) or level-based classification surrogate Liu et al.[(2022),
is proposed to combine regression-based surrogates with classification-based surrogates. However,
the shortcoming remains the same as these surrogates lack the information of solution distribution,
especially when M is large. Moreover, in MaOOPs, dominance-based ordinal relations could be
less effective due to the large proportion of non-dominated solutions.

2.2 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

MOBO. Bayesian Optimization (BO)|Song et al.|(2022); Huang et al.|(2024) is also a typical model-
based optimization method for expensive optimization, while multi-objective BO (MOBO) methods
are designed for expensive MOOPs Daulton et al.| (2021; 2022)); Lin et al.[(2022)); |]Ahmadianshalchi
et al.| (2024). Some MOBO generalizes the acquisition functions such as upper confidence bound
(UCB) [Zuluaga et al.[(2016)), expected improvement (EI) Emmerich et al.| (2006), Thompson sam-
pling Belakaria et al.| (2020), to solve expensive MOOPs. In addition, entropy search methods have
also been employed in MOBO [Belakaria et al.| (2019); |Suzuki et al.| (2020). To maintain solution
diversity, the EI of a multi-objective performance indicator, Hypervolume (HV) [Zitzler & Thiele
(1998), was used as the acquisition function in recent MOBO |Daulton et al.|(2020);|Lin et al.| (2022).
Based on the Hypervolume improvement (HVI), PSL |Lin et al|(2022) proposes a learning method
to approximate the whole Pareto set for MOBO, and PDBO Ahmadianshalchi et al.| (2024) auto-
matically selects the best acquisition function for objective functions in each iteration. However,
the time complexity of computing HV increases exponentially with the number of objectives, which
may limit the application of MOBO methods on MaOOPs.

Connection to Multi-/Many-Objective SAEAs. Both multi-/many-objective SAEAs (denoted as
SAEAs below) and MOBO are model-based optimization methods. A SAEA is also a MOBO if it
uses probability models as surrogates and employs an acquisition function for candidate selection ,
and a MOBO is also a SAEA if it searches candidate solutions with evolutionary search algorithms.
Therefore, some model-based optimization methods belong to both SAEAs and MOBO |[Knowles
(2006); [Emmerich et al.| (2006)); Zhang et al.|(2010).

3 LORA-MAOO: THE PROPOSED ALGORITHM

This section first introduces the LORA-MaOO framework, followed by detailed algorithm descrip-
tions.
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3.1 LORA-MAOO FRAMEWORK

The pseudocode of LORA-MaOO is depicted in Alg. [I] it consists of four phases:

Algorithm 1 LORA-MaOO framework

Input: M objective functions of the optimization problem f(x) = (f1(x), ..., fu(x));
Evaluation budget: The number of allowed function evaluations F'F,,, .

Procedure:

1: Sample a set of solutions {1, ..., ®11p—_1} and evaluate them on f.

2: Save all evaluated solutions (x, f(x)) in an archive S 4. Set the number of used function evalu-

ations FE = |S4].

3: while FE < FE,,,, do

4:  Ordinal training set S, +— Quantify ordinal values for all x; € S4 (Alg. 2).
5:  Ordinal surrogate h, < Train Kriging(S4, S,).
6.
7
8

Population of candidate solutions P < Run an optimizer on h, (Alg. [3).
x] + Use the ordinal surrogate to select a solution from P by convergence criterion.
: Evaluate ] and update S4 = S4 U {(z7, f(}))}, FE = FE+ 1.
9:  Angular training set S, < Calculate angular coordinates for all x; € S4.
10:  M-1 angular surrogates h,; « Train Kriging (S4,S,),i =1,...,M — 1.
11: x5 < Use angular surrogates to select a solution from P by diversity criterion (Alg. [).
12:  Evaluate 3 and update S4 = Sa U {(x35, f(x3))}, FE = FE + 1.
13: end while

Output: Non-dominated solutions in archive S 4.

1. Initialization: An initial dataset of size 11D - 1 (As suggested in the literature Knowles
(2006))) are sampled from the decision space using the Latin hypercube sampling (LHS)
McKay et al.| (2000) (line 1), where D is the dimensionality of decision variables. The
sampled solutions are evaluated on objective functions f and then saved in an archive S4
(line 2).

2. Surrogate modeling: For all solutions & € S4, quantify their ordinal values (line 4) and
calculate their angular coordinates (line 9). The set of ordinal values .S, is used to train
the ordinal surrogate h, (line 5). The angular coordinates are used to fit M/ — 1 angular
surrogates h,; separately (line 10).

3. Sampling (Search and Selection): Run an optimizer on surrogate h,, to generate a popula-
tion of candidate solutions P (line 6). Select optimal candidate solutions z7, 5 from P
based on surrogates h,, hy;, respectively (lines 7 and 11).

4. Update: Evaluate new optimal candidate solutions 7, 3 on expensive objective functions
f, update archive S 4 and the number of used function evaluations F'F (lines 8 and 12).
The algorithm will go to phase 2 until the evaluation budget F'E,,,,, has run out.

3.2 SURROGATE MODELING

The ordinal surrogate h, is mainly trained on dominance-based ordinal relations, additional
clustering-based artificial ordinal relations will be introduced for training if M is large. Additionally,
for an M -objective problem, M-1 angular surrogates h,; are trained on angular coordinates. These
surrogates are used in the selection procedure for diversity but are idle in the search procedure.

3.2.1 LEARNING DOMINANCE-BASED ORDINAL RELATIONS.

In LORA-MaOO, the concept of ordinal regression |Yu et al.|(2019) is adapted to learn dominance-
based ordinal relations. Clearly, the dominance-based ordinal relation between a set of reference
points Srpp and a given solution x is quantified as a relation value. Such a relation value is a
numerical value that is used for training the ordinal-regression surrogate h,. The quantification of
relation values consists of two steps: The selection of reference points Sz p and the computation of
relation values.
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Selection of Reference Points. We propose the definition of A-dominance relationship to simplify
the selection of reference points.

Definition 1. (\-Dominance Relationship)
A solution " is said to A\-dominate another solution x* (denoted by ' < x2) if and only if:

a(z') < ga(x?), (D
where A > 0 is the dominance coefficient and g is a smooth objective function defined as:
filx) — =f
fin(z) = Ma 2
9ri(x) = fin(x) + X max(fin(x)),j e {1,..., M}, 3)
where fin, fjn denotes a normalized objective function, z* = {zf,...,z}}, zred =
{zpad | z?f‘i} are ideal point and nadir point for the current non-dominated solutions, respec-
tively.

More detailed definitions about the background of MOO or MaOO are available in Appendix [A] All
non-A-dominated solutions in S4 are selected as reference points Sgp. There are two reasons to
introduce the definition of A-dominance:

e The A\-dominance can smoothen the original PF by excluding dominance resistant solutions
(DRSs) Hanne| (1999); Wang et al.[(2018)). DRSs are solutions that are best or close to best
on one or several objectives but extremely poor on at least one of the remaining objectives.
Such a solution is apparently not desirable but may be regarded as one of the best solutions
since there may not exist any other solutions dominating it in the solution set.

e Second, \-dominance can eliminate some similar non-dominated solutions from the Pareto
set, which can be used to adjust the size of Pareto set. When M is large, it is possible that a
majority of past evaluated samples are non-dominated to each other. To balance the number
of reference points and remaining samples, we introduce the dominance coefficient A to
sightly reduce the ratio of reference points in S4. This alleviates the situation of extreme
imbalance of samples in different ordinal levels (see the division of ordinal levels below).

Computation of Relation Values. To quantify ordinal relation values, we first calculate extension
coefficients ec(x) for each € Sy4. ec(x) is defined as the minimal coefficient ec > 1 to make a
solution & non-A-dominated to all solutions =’ in the extended reference:

ec(x) = arg min Px’ € Spp : (x' x ec) <y x. 4)

Although extension coefficient ec(x) quantifies the distance between a solution « and reference
Srp,ithas not been used to train the ordinal regression-based surrogate directly. To generate a stable
ordinal regression-based surrogate, solutions in S4 are divided into N, = max(n,,|Sal|/|Srp|)
ordinal levels, where n, is a pre-defined parameter denoting the minimal number of ordinal levels.
The solutions in Sk p are classified into the non-dominated ordinal level, thus the relation value v, =
1.0 is assigned to them. Remaining solutions in S4 are sorted by their extension coefficients ec(x)
and then divided into IV,-1 ordinal levels uniformly. The relation value v; = 1 — J\Z[O’_ll will be

assigned to the solutions x in the i*" ordinal level. Lastly, relation values serve as radial coordinates
and a Kriging model is employed to approximate them.

3.2.2 ARTIFICIAL CLUSTERING-BASED ORDINAL RELATIONS.

When the number of objectives M is large, most evaluated solutions in archive S 4 could be non-
dominated solutions, indicating that these solutions will be divided into the same non-dominated
ordinal level and thus treated as reference points Sgp. This is harmful to the ordinal surrogate
modeling due to the extreme imbalance between the numbers of training samples in different ordinal
levels. To reduce the ratio of Sgp, we use a clustering method to generate n_clusters clusters for
Srp, where n_clusters is the half of the size of Sgp. All solutions * € Sgip are mapped to
the closest cluster centers. The solutions with the shortest projection on each cluster center will be
selected as the new S p, while the remaining solutions will be moved to the next ordinal level. Such
artificial ordinal relations greatly reduce the ratio of Sgp in S4. In LORA-MaOO, we set a ratio
threshold rp_ratio for Sgp, once the ratio of Sgp is larger than rp_ratio, artificial ordinal relations
will be generated for surrogate modeling. Details are available in Appendix [C} Alg. [2]and Fig. 5]
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3.2.3 SURROGATES FOR ANGULAR COORDINATES.

Given a solution « € S 4 with Cartesian coordinates (f1(x), ..., far(x)), The angular coordinates
of solution « are transformed with the following rules:

fi(e) — 27
Vfile) =202+ 4+ (fu () — 23,)
where z* is the ideal point. The resulting angular coordinates (¢1, . .., @ar—1) are used to fit M — 1

regression-based surrogates separately. In LORA-MaOO, we use the Kriging model to approximate
angular coordinates. The introduction and usage of Kriging model is given in Appendix [B]

P = arccos i=1,...,M—1, 5)

3.3 SAMPLING: SEARCH AND SELECTION

In this subsection, we describe how to use surrogate h, to search for candidate solutions and how to
use surrogates h, and h,; to select optimal ones from candidate solutions for expensive evaluations.

3.3.1 SEARCH: GENERATION OF CANDIDATE SOLUTIONS.

An advantage of LORA-MaOO is that it searches for candidate solutions on ordinal surrogate h,
only, leaving all angular surrogates h,; idle in this search procedure. This saves a lot of time from
predicting with all surrogates. LORA-MaOO employs an optimizer (e.g. PSO Eberhart & Kennedy
(1995)) to generate a population of candidate solutions P (Detailed pseudo-code is available in Ap-
pendix [C| Alg. [B). The initial population for optimization search consists of two parts. The first
half initial solutions are generated randomly from the decision space, while the remaining initial
solutions are mutants of current reference points Srpp. To ensure the diversity of initial candidate
solutions, a KNN clustering method is applied to divide Sgp into several different clusters, from
each cluster, an equal number of mutants are generated as initial candidate solutions. The global op-
timal population P produced by PSO is the candidate solutions for further environmental selection.

3.3.2 SELECTION CRITERIA.

To take both convergence and diversity into consideration, in each iteration, LORA-MaOO selects
two optimal candidate solutions x7, 5 from P for objective function evaluations. 7, x5 are sam-
pled on the basis of convergence and diversity, respectively.

Convergence Criterion for environmental selection is the expected improvement (EI) Emmerich
et al.| (2006)) of ordinal values, which is similar to many MOBO methods [Knowles| (2000); [Zhang
et al.[(2010). Since the output of our ordinal surrogate h, () is an 1-D numerical value, the solution
with maximal 1-D El in P is selected as xj.

Diversity Criterion to sample x5 from P is defined as angles d,,, between candidate solutions
and reference points Sip. Firstly, the minimal degree between each candidate solution and Sip is
measured. Among these minimal degrees mdgy 4, the solution with MAX(md,,g) is selected as x5
(Detailed pseudo-code is available in Appendix [C| Alg. [).

4 EXPERIMENTS

To evaluate the optimization performance of LORA-MaOO on expensive MaOOPs, we conduct
experiments to compare LORA-MaOO with other SAEAs on different MaOOPs, including a series
of scalable multi-/many-objective benchmark optimization problems DTLZ Deb et al.| (2005)), WFG
Huband et al.|(2006), and a real-world network architecture search (NAS) problem.

4.1 EXPERIMENTAL SETUPS

Optimization Problem Setup. To ensure a fair comparison, the following optimization problem
setup is the same as the setup that has been widely used in the literature |(Chugh et al.| (2016)); |Pan
et al.| (2018));|Song et al.| (2021)); Hao et al.|(2022)). In our experiments, initial datasets of size F'E;,;¢
=11 D - 1 are used to initialize surrogates, while the maximum number of allowed evaluations
FE,,q. 1s 300. The statistical results are obtained from 30 independent runs. For each run, different
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comparison algorithms share the same initial dataset.
Comparison Algorithms. We compare LORA-MaOO with 6 state-of-the-art SAEAs, some of them
also known as MOBO methods. These comparison algorithms can be classified into three categories:

e Regression-based optimization methods: ParEGO |[Knowles| (2006), K-RVEA |Chugh et al.
(2016)), and KTA2|Song et al.{(2021). ParEGO is a classic regression-based SAEA and also
a MOBO, which serves as a baseline. K-RVEA is a typical SAEA which uses reference
vector to guide the diversity maintenance. KTA2 is a newly proposed algorithm to use an
independent archive to keep solution diversity.

o (Classification-based optimization methods: CSEA [Pan et al.| (2018), REMO |Hao et al.
(2022). CSEA is a classic classification-based SAEA which serves as a baseline. REMO is
anewly proposed SAEA which represents the state-of-the-art performance of classification-
based SAEAs.

e Ordinal-regression-based optimization method: OREA [Yu et al|(2019) is a new category
of SAEA that is different from common regression-based and classification-based SAEAs.
We compare with it since it is directly related to our radial surrogate.

Note that some classic SAEAs and MOBO methods such as MOEA/D-EGO|Zhang et al.|(2010) and
CPS-MOEA [Zhang et al.| (2015)) are not compared in our experiments as they failed to outperform
other comparison algorithms on any DTLZ problem |[Hao et al| (2022). Some HV-based MOBO
methods are not compared as they failed to solve many objectives.

Parameter Setup. For the surrogate modeling, the Kriging models used in all comparison algo-
rithms are implemented using DACE |Sacks et al.| (1989)), just as |[Knowles| (2006) suggested. For
regression-based Kriging surrogates, the range of hyper-parameter 6 € [107°,100]. And for the
neural networks in CSEA and REMO, the parameters are the same as suggested in the literature.
In the sampling strategy, the mutation operator used to initialize candidate solutions is polynomial
mutation |Deb & Goyal| (1996), the mutation probability p,,, = 1/d and mutation index 7,, = 20,
as recommended in [Song et al.[ (2021)); [Hao et al.| (2022). The size of offspring population is 100.
The settings of the PSO optimizer are the range of hyper-parameter in the ordinal-regression-based
surrogate are the same as suggested in|Yu et al.[(2019).

For the specific parameters exist in LORA-MaOO, such as the dominance coefficient A and the
threshold ratio of reference points to introduce clustering-based ordinal relations rp_ratio. As there
is no relevant study in the literature for their setups, we conducted ablation studies to investigate
the effect of these parameters on the performance of LORA-MaOO. The results are summarized
in Section and reported in Appendix || The source code of LORA-MaOO [| will be available
online.

Performance Indicator. To have a comprehensive estimation of optimization performance, we use
three different performance indicators in our experiments: The inverted generational distance (IGD)
Bosman & Thierens| (2003)), the inverted generational distance plus (IGD+) [Ishibuchi et al.| (2015),
and the Hypervolume (HV) Zitzler & Thiele| (1998)). IGD and IGD+ use a set of truth Pareto front
to measure the quality of a set of non-dominated solutions in terms of convergence and diversity.
A smaller IGD or IGD+ value indicates better MaOO performance. HV uses a reference point to
calculate the area covered by a set of non-dominated solutions, a large HV value is preferable to
MaOO. See Appendix [D|for details and setups about performance indicators.

4.2 ABLATION STUDIES ON PARAMETERS AND ALGORITHM COMPONENTS

We conduct ablation studies on DTLZ and WFG benchmark problems with D = 10 variables and
M={3, 6, 10} objectives. LHS McKay et al.| (2000) is used to sample initial dataset. The ef-
fects of four parameters are investigated: The minimal number of ordinal levels n,, the dominance
coefficient A, the ratio threshold of reference points rp_ratio, and the clustering number for re-
production n.. Meanwhile, the contribution of three algorithm components are demonstrated: The
A-dominance, the artificial relations, and the clustering-based initialization. Three representative
results obtained on the WFGS problem with 3 and 10 objectives are depicted in Fig. (I Complete
results, statistical analysis of ablation studies, and in-depth analysis of component contributions are
reported in Appendix [F}

2The link of code and data will be released here once the paper is accepted.
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Figure 1: IGD curves averaged over 15 runs on WFGS5 problem instances for LORA-MaOO with
different parameter setups. Upper: 10 variables, 3 objectives. Lower: 10 variables, 10 objectives.
Shaded area is + std of the mean.

4.3  OPTIMIZATION ON BENCHMARK PROBLEMS

The optimization performance of LORA-MaOO is evaluated on DTLZ and WFG benchmark prob-
lems with D = 10 variables and M={3, 4, 6, 8, 10} objectives. The IGD values obtained on DTLZ
problems with different M are reported in Table[T] It shows that LORA-MaOO achieves the best op-
timization results among all the comparison algorithms in terms of IGD values, followed by KTA2
and KRVEA. The IGD values obtained on the WFG problems, the IGD+ and HV results, and the
results obtained under different scales (D=5 or 20) are reported in Appendix [H] A consistent result
can be concluded from the IGD+ and HV values. The results on the 3- and 10-objective problems
are plotted in Fig. [2]

4.4 REAL-WORLD NETWORK ARCHITECTURE SEARCH PROBLEMS

Further comparison is conducted on two real-world network architecture search (NAS) problems, the
best three algorithms listed in Table |I|are compared: LORA-MaOO, KTA2, and KRVEA. The NAS
problems tested are two different NASbench201 problems implemented in EvoXBench [Lu et al.
(2023)), the first problem has 6 variables and 5 objectives, the second problem has 6 variables and 8
objectives. Details of two NAS problems are provided in Appendix [E] Considering NASbench201
problems are real-world applications and we do not know their exact PF, we use HV to evaluate
optimization performance since HV can be calculated without the exact PF. In practice, log( H V)
is employed to amplify the visual difference of the obtained HV values:

log(HVgigr) = log(HViax — HV)
where H Viax is the maximal HV value on the given NAS problem that is provided in EvoXBench.

Fig. B]plots the results. As can be seen in the figure, LORA-MaOO outperforms KTA2 and KRVEA
on two NAS problems. When M is 5, although KTA2 and KRVEA have quicker convergence rate
than LORA-MaOO at the beginning of the optimization, both of them slow down their convergence
speed as the number of evaluations increases. In comparison, when M is 8§, KRVEA and LORA-
MaOO have similar convergence rate and both of them are quicker than KTA2’s convergence rate.
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Table 1: Statistical results of the IGD value obtained by the comparison algorithms on the 35 DTLZ

optimization problems over 30 runs. Symbols ‘+’, ‘=

LY

, ‘=’ denote LORA-MaOO is statistically

significantly superior to, equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last three rows are the total win/tie/loss
results on DTLZ, WFG, and both of them, respectively.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO (ours)
DTLZI 3 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)~ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)~ 4.35e+1(1.80e+1)
4 4.68e+1(3.71e+0)+  6.45e+1(1.47e+1)+  4.08e+1(1.60e+1)~  3.69e+1(1.08e+1)~ 3.92e+I(l.11e+1)~  3.80e+1(1.23e+1)~ 4.06e+1(1.34e+1)
6 3.0de+1(2.74e+0)+  3.22e+1(7.66e+0)+  2.03e+1(8.12e+0)+  1.56e+1(4.96e+0)~  1.22e+1(4.65¢+0)—  1.74e+1(3.98e+0)~ 1.58e+1(6.17e+0)
8 1.23e+1(2.99e+0)+  8.52e+0(2.97e+0)+  4.54e+0(2.66e+0)~  5.08e+0(2.47e+0)~ 3.33e+0(1.93e+0)~ 5.87e+0(2.91e+0)+ 3.83e+0(2.35e+0)
10 4.37e-1(1.63e-1)+  3.32e-1(9.91e-2)+  3.00e-1(8.76e-2)+  2.90e-1(7.13e-2)4+  2.42e-1(6.97e-2)~  2.58e-1(6.33e-2)~ 2.31e-1(3.8%-2)
DTLZ2 3 3.38¢-1(2.84e-2)+ 1.32e-1(2.77e-2)+  6.17e-2(3.13e-! 2.26e-1(2.61e-2)+ 1.65e-1(2.18¢e-2)+  8.59%-2(8.51e-3)+ 6.19¢-2(3.48¢-3)
4 423e-1(2.79¢-2)+  2.06e-1(2.95¢-2)+  1.4le-1(5.45 2.92e-1(1.89e-2)+  2.43e-1(2.33e-2)+  1.83e-1(1.37e-2)+ 1.38¢-1(9.86¢-3)
6 5.53e-1(2.17e-2)+  3.40e-1(1.20e-2)+  3.24e-1(2.63e-2)+  4.42e-1(3.37e-2)+  3.77e-1(3.16e-2)+  3.96e-1(2.57e-2)+ 2.67e-1(8.78e-3)
8 6.53e-1(1.86e-2)+  4.19e-1(2.65e-2)+  4.44e-1(1.86e-2)+  595e-1(2.77e-2)+  5.10e-1(3.90e-2)+  5.56e-1(2.19e-2)+ 3.80e-1(1.46e-2)
10 6.95e-1(2.23e-2)+  5.92e-1(4.25e-2)+  4.50e-1(1.00e-2)~  6.76e-1(2.52¢-2)+  5.85e-1(3.72e-2)+  6.55e-1(2.66e-2)+ 4.54e-1(1.41e-2)
DTLZ3 3 1.66e+2(1.31e+1)+ 2.43e+2(4.6le+])+ 1.52e+2(4.73e+1)~ 1.62e+2(4.84e+1)~ 1.49e+2(3.88e+1)~ 1.26e+2(3.18e+1)— 1.57e+2(3.83e+1)
4 1.42e+2(1.57e+1)+  1.83e+2(4.00e+1)+  1.18e+2(3.4%+1)~ 1.29e+2(3.58e+1)~ 1.16e+2(3.00e+1)~ 1.22e+2(4.13e+1)~ 1.25e+2(4.20e+1)
6 9.17e+1(1.59e+1)+  1.06e+2(2.96e+1)+  6.65e+1(2.63e+1)~ 5.27e+1(1.56e+1)~ 5.23e+1(1.71e+1)~ 5.24e+1(1.68e+1)~ 5.96e+1(2.05e+1)
8 4.13e+1(9.84e+0)+  2.96e+1(1.15e+1)+  1.74e+1(1.10e+1)~  1.60e+1(9.76e+0)~ 1.60e+1(7.70e+0)~  1.50e+1(6.27e+0)~ 1.27e+1(8.33e+0)
10 1.36e+0(3.15e-1)+  1.23e+0(4.27e-1)+  9.95e-1(2.25e-1)+  1.01e+0(2.45e-1)+  9.53e-1(2.74e-1)+  8.77e-1(1.08e-1)+ 8.14e-1(1.33e-1)
DTLZ4 3 6.70e-1(7.61e-2)+  3.32e-1(I.1Te-I)+  3.49e-1(1.09-1)+  4.62e-1(1.36e-1)+  2.3Ie-1(I.15e-1)+  2.39e-1(1.65e-1)+ 1.89e-1(2.34e-1)
4 7.18e-1(6.40e-2)+  4.07e-1(8.73e-2)+  4.77e-1(9.70e-2)+  4.31e-1(6.36e-2)+  3.36e-1(7.02e-2)~  3.45e-1(1.52¢-1)~ 3.48e-1(1.60e-1)
6 7.06e-1(3.07e-2)+  5.04e-1(5.42e-2)+  6.05e-1(8.43e-2)+  4.94e-1(4.55e-2)+  4.97e-1(4.95e-2)+  4.47e-1(4.8%¢-2)~ 4.55e-1(6.53e-2)
8 6.8le-1(1.48e-2)+  5.49e-1(3.42e-2)+  6.24e-1(5.48e-2)+  5.85e-1(4.20e-2)+  6.16e-1(4.03e-2)+  5.29e-1(3.79e-2)~ 5.32e-1(2.38¢-2)
10 6.77e-1(1.26e-2)+  6.07e-1(2.42e-2)+  6.36e-1(3.58e-2)+  6.38e-1(2.38¢e-2)+  6.71e-1(2.69¢-2)+  5.90e-1(1.94e-2)~ 5.90e-1(2.51e-2)
DTLZ5 3 216e-1d45¢-20)+  1.19e-1(338¢2)+  134c2(2.83e3)~  1.I8e-1(2.566-2)F  7.36e-2(2.03¢-2)F  2.02e-2(4.77e-3)+ 1.266-2(2.55¢-3)
4 1.8%e-1(3.70e-2)+  7.05e-2(2.25e-2)+  4.24e-2(8.84e-3)+ 1.16e-1(2.23e-2)+  9.02e-2(2.48e-2)+  3.48e-2(7.82e-3)+ 2.85e-2(9.37¢-3)
6 1.41e-1(2.32¢-2)+  3.53e-2(1.02e-2)—  8.87e-2(1.91e-2)+  7.72e-2(2.57e-2)+  5.53e-2(1.90e-2)+  4.62e-2(1.50e-2)~ 4.26e-2(1.11e-2)
8 7.72e-2(1.22e-2)+ 1.99e-2(4.92e-3)—  6.43e-2(8.60e-3)+  3.81e-2(1.03e-2)+  3.10e-2(7.33e-3)~  2.59e-2(6.96¢-3)— 2.84¢-2(4.88e-3)
10 225e-2(1.87e-3)+  125¢2(1.90e-3)+  2.04e-2(2.55e-3)+  1.27e-2(1.46e-3)+  9.35e-3(2.00e-3)—  1.03e-2(1.62e-3)~ 1.06e-2(2.36e-3)
DTLZ6 3 3.15e-1(1.62e-1)+  3.06e+0(5.21e-1)+  1.83e+0(4.37e-1)+  4.86e+0(6.30e-1)+  4.27e+0(5.4%-1)+  3.09e-1(3.99e-1)+ 1.18e-1(1.57e-1)
4 3.56e-1(2.12e-1)~  2.46e+0(3.84e-1)+  1.85e+0(5.06e-1)+  5.13e+0(4.23e-1)+  4.08e+0(6.16e-1)+  1.43e+0(8.89%¢-1)+ 3.29e-1(2.22¢-1)
6 2.66e-1(1.37e-1)— 1.36e+0(2.73e-1)+  1.51e+0(5.85e-1)+  3.15e+0(4.35e-1)+  2.33e+0(5.70e-1)+  2.05e+0(6.16e-1)+ 9.89e-1(1.02e+0)
8 1.61e-1(6.17e-2)~  5.28e-1(1.50e-1)+  8.64e-1(3.88e-1)+  1.56e+0(4.28e-1)+  9.64e-1(4.38e-1)+  1.06e+0(3.95e-1)+ 3.56e-1(4.31e-1)
10 1.72e-1(1.45¢e-1)+  7.73e-2(3.13e-2)~ 1.0le-1(4.97e-2)+  2.09e-1(2.28e-1)+  7.91e-2(1.11e-I)~ 1.50e-1(7.37e-2)+ 7.05e-2(3.25¢-2)
DTLZ7 3 2.45¢-1(4.80e-2)+ 1.35¢-12.37¢-2)~  2.19¢-1(2.40e-1)—  1.75e+0(6.32¢-1)+  1.27e+0(5.65¢-1)+  2.73e-1(1.58¢-1)+ 2.0Te-1(1.93e-1)
4 6.59-1(1.02e-1)+  3.38e-1(7.6le-2)~  3.73e-1(1.68e-1)~  2.94e+0(6.5%-1)+  2.06e+0(7.31e-1)+  8.92e-1(4.27e-1)+ 4.20e-1(2.21e-1)
6 1.21e+0(1.58e-1)—  6.04e-1(4.57e-2)—  6.46e-1(1.68e-1)—  4.92e+0(9.92e-1)+  3.09e+0(6.71e-1)+  4.03e+0(1.84e+0)+ 1.71e+0(6.54e-1)
8 1.45e+0(1.24e-1)—  8.71e-1(7.01e-2)—  1.02e+0(1.65¢-1)—  6.12e+0(1.85e+0)+  3.82e+0(5.39%¢-1)+  4.55e+0(2.63e+0)+ 2.44¢+0(6.78e-1)
10 1.67e+0(1.24e-1)+  1.12e+0(4.25¢-2)—  1.30e+0(2.04e-1)~  1.99e+0(3.05e-1)+  1.99e+0(3.36e-1)+  1.63e+0(2.42¢-1)+ 1.34e+0(9.19¢-2)
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Figure 2: IGD(log) curves averaged over 30 runs on the DTLZ problems for the comparison algo-
rithms (shaded area is £ std of the mean). More figures are displayed in Appendices and@

Particularly, KTA2 is trapped on local optima and thus fails to reach better results in two NAS
problems. In comparison, LORA-MaOO reaches better NAS results on two problems when the
evaluation number is larger than 250 and 150, respectively.
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Figure 3: Log(H Vgg) curves averaged over 30 runs on the NAS problem for the comparison algo-
rithms. Left: M =5 objectives. Right: M = 8 objectives.

4.5 RUNTIME COMPARISON

We compare the runtime on benchmark problems for all the comparison algorithms to in-
vestigate the relation between their optimization efficiency and the number of objectives M.

Fig. M illustrates how the runtime of each
comparison algorithm varies as the M in-

3.01
creases. It can be observed that the runtime o
of KTA2 increases exactly in the same rate E2s
as M increases. In comparison, the runtime ::E Y
of LORA-MaOO increases slightly when M 5
increases. This demonstrates that using an- N 15/
gular surrogates only at the end of environ- g
mental selection process is beneficial to the g 101
optimization efficiency of LORA-MaOO. In 0.5
addition, the runtimes of ParEGO, CSEA,
REMO, and OREA do not increase signif- 00 pifGO KRVEA KIA2 CSEA REMO OREALORA-MaOO
icantly with M since they do not maintain
specific surrogates to manage the diversity Figure 4: Comparison of runtime averaged over
of non-dominated solutions. Consequently, 30 runs on benchmark problems D = 10 variables
their overall performance reported in Table and M =3, 4, 6, 8, and 10 objectives for the com-

[[] is not desirable. Overall, LORA-MaOO parison algorithms. For each algorithm, its run-
finds a good trade-off between optimization times are normalized by the runtime it costed on

efficiency and optimization results. 3-objective problems.

5 CONCLUSION

In this paper, we propose an efficient MaOO method, LORA-MaOO, to solve expensive MaOOPs.
Different from existing surrogate modeling approaches, our LORA-MaOO learns surrogate models
from ordinal relations and spherical coordinates. LORA-MaOO provides an insight of handling
convergence and diversity with different subsets of surrogates, showing a more flexible way to use
surrogates during model-based optimization. Particularly, only one ordinal surrogate is used in the
model-based search, which hugely improve the efficiency of optimization. Our empirical studies
have demonstrated that our LORA-MaOO significantly outperforms other state-of-the-art efficient
MaOO methods, including SAEAs and MOBO methods.
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A BACKGROUND OF MANY-OBJECTIVE OPTIMIZATION

We consider minimization problems and many-objective optimization problems (MaOOPs) can be
formulated as follows:

Definition 2. (Expensive Many-Objective Optimization Problem)
Given M expensive objective functions f1,..., fapr and an evaluation budget F E,,,., obtain the
Pareto set for the following many-objective optimization problem:

argminf(z) = (f1(@), ..., fu(e))
recX

where X C RP is the decision space of the problem.

The Pareto set is defined through the following definitions: Pareto set and Pareto front are defined
as follows:

Definition 3. Pareto dominance:
A solution ' is said to dominate another solution x* (denoted by x' < x?) if and only if:

Vi e {1,2,...,M}: fr(z') < fr(z®)A

ke {1,2,...,M}: fi(xh) < fr(z?)

Definition 4. Non-dominated solution:
A non-dominated solution x* in the decision space X is a solution that cannot be dominated by any
other solutions in X :

Jre X :x<a*

Definition S. Pareto set:
Pareto set Sy is the set of all non-dominated solutions in the decision space X :

Sps={x* e X|fre X :x < z*}

Definition 6. Pareto front:
FPareto front Spy is the corresponding unique set of the Pareto set in the objective space:

Spr = {f(@)|z € Sps}
B KRIGING MODEL

Kriging model, also known as Gaussian process model [Jones et al.| (1998) or design and analysis
of computer experiments (DACE) model Sacks et al.[ (1989), is a stochastic process model used
to approximate an unknown objective function. LORA-MaOO uses Kriging models to implement
angular surrogates and the radial surrogate, to avoid potential confusion and help the understanding
of our algorithm, the working mechanism of the Kriging model is described below.

A common way to approximate an unknown objective function with n observations is linear regres-
sion:

N
y(@') = Bufula’) + €, 6)
k=1

where x’ is the i*? sample point observed from the objective function. fr(x?), B, are a linear or
nonlinear function of x* and its coefficient, respectively. N is the number of functions f(x). € is
an independent error term, which is normally distributed with mean zero and variance o2.

However, a stochastic process model such as Kriging does not assume that the error terms € are
independent. Hence, an error term €' is rewritten as e(a:l) Moreover, these error terms are assumed
to be related or correlated to each other. The correlation between two error terms ¢(z?) and e(x?)
is inversely proportional to the distance between the corresponding points Jones et al.|(1998). The
correlation function in the Kriging model is defined as:

Corr(e(x"), e(x?)) = exp[—dis(z', z?)], @)
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where the distance between two points 2’ and =/ are measured using the special weighted distance
formula shown below:

D
dis(z', @) = Oilay — x|, (8)
k=1

where D is the number of decision variables, § € RQO and p € [1,2]” are parameters of the Kriging
model. It can be seen from Eq. that the correlation is ranged within (0, 1] and is increasing as the
distance between two points decreases. Particularly, in Eq.(8), the parameter 6, can be explained as
the importance of the decision variable xy, and the parameter pj, can be interpreted as the smoothness

of the correlation function in the k" coordinate direction.

Due to the effectiveness of correlation modelling, the regression model in Eq.(6) can be simplified
without degrading modelling performance Jones et al.| (1998). Clearly, all regression terms are
replaced with a constant term, thus the Kriging regression model can be rewritten as follows:

y(@') = p+e(@'), )

where 4 is the mean of this stochastic process, €(z?) ~ N(0, 0?).

B.1 TRAINING THE KRIGING MODEL

To train the Kriging model and estimate the parameters 8, p in Eq.(8), the following likelihood
function is maximised:

1 expl— (y —11)"R™}(y — 1p)
(27)/2(52)n/2|R|1/2 252
where |R| is the determinant of the correlation matrix, each element in the matrix is obtained us-

ing Eq.(7). y is the n-dimensional vector of dependent variables that observed from the objective
function. The mean value y and variance o2 in Eq.@) and Eq. can be estimated by:

B (10)

/j = @7 (11)
1R
.1 . _ .
6=~y = 1) R (y = 1j2). (12)

B.2 PREDICTION WITH THE KRIGING MODEL

For a new solution x*, the Kriging model predicts the approximation of §(x*) and the uncertainty
32(x*) as follows:

J(a”) = i+ 'Ry = 17), (13)

§%(x*) =6%(1 —rR7'r), (14)

where r is a n-dimensional vector of correlations between ¢(x*) and the error terms at the training
data, which can be calculated via Eq..

Further details and a comprehensive description of the Kriging model and Gaussian Process can be
found in Williams & Rasmussen| (2006). In this paper, all regression-based Kriging models have
6 € [107°,100]", p = 27.

C ADDITIONAL DESCRIPTION OF LORA-MAOO
This section describes LORA-MaOO with more details.

C.1 QUANTIFICATION OF ORDINAL RELATIONS

In order to learn the ordinal landscape of MaOOPs, we need to quantify the ordinal relations between
solutions into numerical values. Alg. illustrates the pseudocode of quantifying ordinal relation
it describes line 4 in Alg. |1| of the main file. It can be seen that Alg. [2|is mainly working on the

3Symbol ‘< indicates the result of a function, Symbol ‘=" indicates an assignment operation.
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Algorithm 2 Quantify Ordinal Relations for LORA-MaOO

Input:
S 4: Archive of evaluated solutions;
rp-ratio: Ratio threshold of reference points in S4;
no: Minimal number of ordinal levels.

Procedure:

1: Sgpp < Non-dominated solutions in .S 4 that are non-A-dominated to any other solution in .S 4.
Non-dominated level (The first ordinal level) L, < Sgp.
The number of non-dominated ordinal levels n,,4; = 1.

Ratio of reference points ratio = Ilsst L.

if ratio > rprqtio then

Npdl = Npdr + 1.

/* Add Artificial Ordinal Relations. */
Divide Sgrp into S%P‘ clusters via KNN clustering.
8:  For x in each cluster, calculate the projection length of  on the corresponding cluster center.

AN A

~

9:  L; < Solutions x with the shortest projection on each cluster.

10: Lo < Remaining @ solutions in Sip.

11: end if
12: Calculate extension coefficient ec(x) for all x € Sy.
s
St
14: L; < According to the order of ec(z), uniformly divide solutions « € (S4 — Sgp) into N, -
Nna levels. A
15: Ordinal relation value v; = 1 — 1\§;—11 for x € L;.

13: The number of ordinal levels N, = max(n,,

Output: An ordinal training set .S, consisting of ordinal relation values v;.

Y Y

Figure 5: Illustration of artificial clustering-based ordinal relations. Left: Non-dominated solutions
without artificial ordinal relations. Right: Non-dominated solutions with artificial ordinal relations.
Red solutions are new non-dominated solutions in L, remaining blue solutions are moved to next
ordinal level L. Dash circles are clusters, green vectors are cluster centers.

quantification of dominance-based ordinal relations. Artificial ordinal relations will not be added
unless the ratio of reference points is larger than ratio threshold 7p,.q+;, (line 5).

An illustration of artificial clustering-based ordinal relations is given in Fig. [5] By using clustering
methods, artificial ordinal relations are generated for training ordinal regression surrogates. Picking
one solution from each cluster ensures the diversity of non-dominated solutions in the first ordinal
level L1. Meanwhile, the selection within each cluster is based on the projection length on cluster
center, which is beneficial to the convergence of non-dominated solutions.

C.2 GENERATION OF CANDIDATE SOLUTIONS
Algo. | gives the pseudocode of generating candidate solutions, it is the implementation of line 6 in

Alg. of the main file. In lines 1-9, a population Py is generated. Since reference points Sip are
the optimal solutions in .S 4 in terms of convergence, a half initial solutions are generated from Srp
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Algorithm 3 Generation of candidate solutions in LORA-MaOO
Input:

Srp: Reference points used in the ordinal regression;

ho: Ordinal regression surrogate;

n.: The number of clusters to initialize population P;

| P|: The size of population P;

G maz: The number of generations for reproduction.
Procedure:

1: P, < Randomly sample @ solutions from the decision space.

2: Divide Sgp into n. clusters via KNN clustering.

3: P.=0.

4: for i = 1ton,do

5. P, < Randomly sample % solutions from 4" cluster.
6: P.; + Mutation ( P,;).

7. P.=P.UP,.

8: end for

9: Initial population Py = P, U P..
10: h,(Py) < Evaluate P, on ordinal surrogate h,,.
11: Global Optimal Population Pyjopq; = Fo.
12: for i = 1 to Gy, do
13:  P; < PSO operation on P;_1 and Pyiopar.
14:  ho(P;) + Evaluate P; on ordinal surrogate h,.
15:  Update Pyopq using ho(P;) and ho(Pi—1).
16: end for
Output: A generation of candidate solutions P = Pyjopq.

(lines 2-8). To obtain a diverse subset of Sgp, LORA-MaOO divides Sgp into n. clusters before
sampling solutions (line 2). The remaining initial solutions are sampled from the decision space
randomly, ensuring the diversity of initial population and thus reducing the risk of being trapped in
local optima (line 1). Once population initialization is completed (line 9), a normal PSO is conducted
to produce candidate solutions (lines 11-16). Please be noted that, although we are solving expensive
MaOOPs, only a single ordinal surrogate h,, is used in the reproduction process (line 14). This is a
great advantage of LORA-MaOO since existing regression-based SAEAs involve all M surrogates
in the reproduction process. Hence, LORA-MaOO is more efficient than these regression-based
SAEAs.

C.3 ANGLE-BASED DIVERSITY SELECTION

Alg. A gives the pseudocode of selecting the second optimal solution 3 from P via our angle-based
diversity criterion, it is the implementation of line 11 in Alg. [I] of the main file. This angle-based
diversity selection does not require extra parameters for generating guidance vectors, it selects the
candidate solution that is mostly deviate from solutions in S p. Note that all angular surrogates are
only used to evaluate one population P during the whole reproduction and environmental selection
procedures. Therefore, although LORA-MaOO fits M surrogates in total (one ordinal surrogate and
M-1 angular surrogates), its runtime cost is less than other SAEAs which fit M surrogates from
Cartesian coordinates.

D DETAILS OF PERFORMANCE INDICATORS USED IN OUR EXPERIMENTS

In our experiments, we use IGD [Bosman & Thierens| (2003)), IGD+ Ishibuchi et al.|(2015)), and HV
Zitzler & Thiele| (1998) to measure the performance of many objective optimization. Both IGD
and IGD+ require a subset of Pareto front as reference points. In our experiments, the number
of IGD/IGD+ reference points is set to 5000 for 3-, 4-, and 6-objective optimization problems, as
widely used in the literature [Yu et al| (2019). Considering the large objective space, we set the
number of IGD/IGD+ reference points to 10000 for 8- and 10-objective optimization problems to
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Algorithm 4 Angle-Based Diversity Selection in LORA-MaOO
Input:

Srp: Reference points used in the ordinal regression;

P: Population of candidate solutions;

hat, .. haar—1): M-1 angular surrogates;

Procedure:
1: h(ai)(P) «+ Evaluate P on angular surrogates hg;,i=1,..., M — 1.
:forj=2to |PLd0
x; < The j'" solution in P. /* Assume the first solution in P is selected as @} already. */
dang < Calculate the angles between «; and all reference points in Sgp.
Mdang < The angle between x; and its nearest reference point.
end for
x5 < The candidate solution in P with maximal mdgyg.

Output: The second candidate solution 3.

AR AN Sl

Table 2: The HV reference points for all problems in this work.

Problem Reference Points
DTLZ (1,0,...,1.0) e R™
WFG (1,0,...,1.0) e R™

NASBench201 | (1.0, 1.0, 1.0, 1.0, 1.0)

achieve a more accurate estimation of optimization performance. The method proposed in|Li et al.
(2014) is employed to generate well-distributed IGD/IGD+ reference points.

In comparison, the calculation of HV values does not require a subset of Pareto front as reference
points. For a set of non-dominated solutions, its HV is the volume in the objective space it dominates
from the set to a single reference point. Table 2] lists the reference point used for calculating HV
values. All HV values are calculated using the reference point and the normalized solutions. A
solution « is normalize by the upper bound and lower bound of Pareto front:

xr — lbpf (15)
ubpy — lbpf7

where uby ¢, lb,; are the upper bound and lower bound of Pareto front, respectively.

E DETAILS OF THE NASBENCH201 PROBLEM

NASbench201 |Dong & Yang (2020) are discrete optimization problems that aim to identify the
optimal architecture for neural networks. The search space is defined by a cell with 4 nodes inside,
forming a directed acyclic graph as illustrated in Fig. [6| The decision variables are 6 edges, each

——> zeroize

M ————p skip-connect
. — 1x1 convolution

3x3 convolution

@ ’ —— 3x3 average pool
Figure 6: Diagram of a network architecture in NASbench201.

edge is associated with an operation selected from a predefined operation set {zeroize, skip-connect,
1x1 convolution, 3x3 convolution, 3x3 average pool}. Therefore, a network architecture can be
encoded into a 6-dimensional decision vector with 5 discrete numbers. In total, there are 55=15,625
different candidates for neural architecture search.

The optimization objectives in NASbench201 varies in different optimization problems. In this pa-
per, our first NASbench201 problem consider 5 objectives, including the accuracy in CI-FAR10

18



Under review as a conference paper at ICLR 2025

dataset, groundtruth floating point operations (FLOPs), the number of parameters, latency, and en-
ergy cost. All these objectives are normalized to [0, 1] in the optimization. The optimization problem
can be formulated as

F(x) = {face(®), frrors(®), fparam(®), fiatency(T), fenergy ()}, (16)

where decision vector & € {0,1,2,3,4}%. The second NASbench201 problem consider 3 more
objectives, including eyeriss latency, eyeriss energy, and eyeriss arithmetic intensity.

F COMPLETE RESULTS OF ABLATION STUDIES

In this section, we report complete results of our ablation studies that are not displayed in the main
paper. We conduct four ablation studies to investigate the effect of the following four parameters on
the optimization performance of LORA-MaOO.

1. n,: The minimal number of ordinal levels. A parameter in the modeling of our ordinal-
regression-based surrogate h,,.

2. A: The dominance coefficient. A parameter in the modeling of our ordinal-regression-based
surrogate h,,.

3. TPratio: The ratio threshold of reference points Sgpp. A parameter to determine whether to
introduce artificial ordinal relations via clustering.

4. n.: The number of clusters generated from reference points Srp to initialize PSO popula-
tion. A parameter in the generation of candidate solutions.

Note that setting A to 0 will result in a LORA-MaOO variant without the algorithm component
A-dominance, so the contribution of this component can be observed and analyzed in the ablation
studies on \. Similarly, setting 7p;.q1;0 to 1 or setting n. to 1 will produce two LORA-MaOO variants
without the algorithm components artificial relations or clustering-based initialization. Therefore,
we analyze their component contributions in the corresponding ablation studies.

Setup of Ablation Studies. Our ablation studies are conducted on 7 DTLZ and 9 WFG bench-
mark optimization problems. These benchmark problems have different features, such as unimodal,
multi-modal, scaled, degenerated, and discontinuous. Therefore, the effect of four parameters can
be investigated comprehensively. Considering our paper focuses on many-objective optimization
instead of scalable optimization, we are interested in the optimization performance under different
numbers of objectives M rather than the performance under different numbers of decision variables
D. Hence, we set D = 10 for all benchmark optimization problems, as suggested in literature |(Chugh
et al.| (2016)); [Pan et al.|(2018); Song et al.|(2021); Hao et al.| (2022)). In comparison, we set M =
{3,6,10} to observe the optimization performance with different objectives. Other setups are the
same as described in Section [4.] of the main file.

F.1 INFLUENCE OF MINIMAL NUMBER OF ORDINAL LEVELS n,.

This subsection investigates the influence of minimal number of ordinal levels n,, on the optimization
performance. We set n, = {10, 8, 6, 4, 3} to generate five LORA-MaQO variants. For all variants,
in this ablation study, we tentatively set A = 0.2, p,qti0 = 2/3, n. = 5 for a fair comparison. The
IGD+ values obtained by five LORA-MaOO variants with different n, are reported in Table 3]

In the last five rows of Table[3] the summary of statistical test results shows that n, = 4 is the optimal
parameter setup for LORA-MaOO, because it is the only variant that is significantly superior to or
equivalent to all other variants. In comparison, the LORA-MaOO variant with n, = 10, 8, 6, 3 are
significantly inferior to other 4, 1, 1, 2 LORA-MaOO variants, respectively.

F.2 INFLUENCE OF DOMINANCE COEFFICIENT .
In this subsection, we analyze the influence of A-dominance coefficient A on the optimization per-

formance. We set A = {0, 0.1, 0.2, 0.3} to generate four LORA-MaOO variants. As determined in
the previous ablation study, we set n, = 4 for all variants. The remaining two parameters 7p.qtio
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Table 3: Statistical results of the IGD+ value obtained by LORA-MaOO with different n, on
48 benchmark optimization problems over 15 runs. The last five rows count the total results of
Wilcoxon rank sum tests (significance level is 0.05). ‘4, ‘~’, and ‘—’ denote the corresponding
LORA-MaOO variant is statistically significantly superior to, almost equivalent to, and inferior to

the compared variants in Wilcoxon tests, respectively.

Problems M no=10 No=8 No=6 ne=4 Ne=3
DTLZ1 3 4.63e+1(1.60e+1) 4.64e+1(1.23e+1) 5.61e+1(2.04e+1) 4.84e+1(1.34e+1) 4.58e+1(1.85e+1)
6 1.35e+1(7.10e+0)  1.77e+1(5.08e+0) 1.87e+1(6.85e+0) 1.64e+1(3.24e+0) 1.50e+1(7.84e+0)
10 1.56e-1(3.58e-2) 1.60e-1(3.60e-2) 1.63e-1(6.95¢-2) 1.60e-1(2.67e-2) 1.63e-1(3.51e-2)
DTLZ2 3 4.50e-2(3.90e-3)  4.54e-2(4.16e-3)  4.38e-2(2.61e-3)  4.45e-2(4.72¢e-3)  4.39e-2(3.88e-3)
6 2.67e-1(1.47e-2)  2.73e-1(1.93e-2)  2.64e-1(1.67e-2)  2.57e-1(1.91e-2)  2.51e-1(2.20e-2)
10 3.04e-1(1.55e-2)  2.97e-1(1.63e-2)  2.94e-1(1.24e-2)  3.00e-1(1.31e-2)  3.11e-1(1.78e-2)
DTLZ3 3 1.50e+2(4.72e+1)  1.60e+2(4.92e+1) 1.55e+2(5.03e+1) 1.48e+2(4.92e+1) 1.45e+2(4.10e+1)
6 5.43e+1(1.85e+1) 5.65e+1(1.99e+1) 6.92e+1(2.39e+1) 6.68e+1(1.64e+1) 6.24e+1(2.34e+1)
10 4.51e-1(4.40e-2)  4.68e-1(6.10e-2)  4.35e-1(3.71e-2)  4.72e-1(5.45e-2)  4.85e-1(7.87e-2)
DTLZ4 3 1.03e-1(1.28e-1)  8.77e-2(1.30e-1)  9.16e-2(1.25e-1) 1.05e-1(1.27e-1) 1.15e-1(1.33e-1)
6 1.74e-1(3.63e-2) 1.60e-1(3.35¢-2) 1.84e-1(3.79¢-2) 1.75e-1(3.57e-2) 1.68e-1(2.11e-2)
10 2.29e-1(1.05e-2)  2.29e-1(9.43e-3)  2.36e-1(1.27e-2)  2.38e-1(1.35e-2)  2.42e-1(1.71e-2)
DTLZ5 3 8.65e-3(1.39¢e-3)  8.76e-3(1.53e-3)  9.03e-3(1.67e-3)  9.26e-3(1.22e-3)  9.26e-3(2.23e-3)
6 3.43e-2(7.07e-3)  3.28e-2(7.74e-3)  3.24e-2(7.73e-3)  3.25e-2(8.25e-3)  3.33e-2(9.38e-3)
10 4.06e-3(6.52e-4)  3.99¢-3(4.47e-4)  3.94e-3(4.04e-4)  3.97e-3(9.34e-4)  4.02¢-3(1.10e-3)
DTLZ6 3 5.09e-2(5.72e-2) 1.05e-1(2.57e-1)  2.45e-2(8.80e-3)  4.67e-2(4.92e-2)  3.12e-2(1.58e-2)
6 9.45e-1(1.13e+0)  5.16e-1(6.72e-1)  5.42e-1(8.28e-1)  7.52e-1(9.50e-1)  1.34e+0(1.04e+0)
10 4.48e-2(3.90e-2)  2.50e-2(7.37e-3)  5.14e-2(4.26e-2)  4.18e-2(4.66e-2)  4.72e-2(4.57e-2)
DTLZ7 3 1.19e-1(1.00e-1)  9.47e-2(1.15e-1) 1.16e-1(7.80e-2) 1.61e-1(2.77e-1) 1.46e-1(1.27e-1)
6 1.90e+0(9.89¢-1)  1.72e+0(6.52e-1)  1.77e+0(7.63e-1)  1.25e+0(4.72e-1)  1.54e+0(8.80e-1)
10 1.19e+0(9.00e-2)  1.18e+0(9.13e-2)  1.17e+0(8.41e-2)  1.17e+0(8.97e-2)  1.22e+0(1.13e-1)
WFGI 3 1.65e+0(5.78e-2)  1.65e+0(3.73e-2)  1.64e+0(3.86e-2) 1.67e+0(4.67e-2)  1.65e+0(5.96e-2)
6 2.24e+0(5.47e-2)  2.20e+0(6.93e-2)  2.23e+0(4.37e-2)  2.22e+0(6.80e-2)  2.21e+0(5.52¢-2)
10 2.62e+0(8.72e-2)  2.58e+0(7.39¢-2)  2.59e+0(7.81e-2)  2.62e+0(8.93e-2)  2.58e+0(1.16e-1)
WEG2 3 2.39e-1(3.16e-2)  2.49e-1(4.94e-2)  2.68e-1(4.81e-2)  2.52e-1(4.94e-2)  2.66e-1(4.58e-2)
6 5.91e-1(1.79¢e-1)  5.85e-1(9.10e-2)  5.6le-1(1.29e-1)  5.43e-1(1.51e-1)  5.67e-1(1.07e-1)
10 1.50e+0(3.53e-1)  1.41e+0(2.62e-1)  1.42e+0(3.21e-1)  1.47e+0(4.49¢-1)  1.39e+0(2.82¢-1)
WEFG3 3 242e-1(4.10e-2)  2.66e-1(3.75e-2)  2.57e-1(3.28e-2)  2.4le-1(3.21e-2)  2.56e-1(5.04e-2)
6 6.19¢-1(8.08¢-2)  6.28e-1(6.58e-2)  6.15e-1(9.32e-2)  5.92e-1(7.43e-2)  6.19e-1(1.22e-1)
10 6.24e-1(9.78e-2)  6.07e-1(8.67e-2)  6.18e-1(8.74e-2)  6.60e-1(8.00e-2)  6.61e-1(8.80e-2)
WEFG4 3 2.62e-1(5.18e-2)  2.52e-1(1.99e-2)  2.51e-1(1.27e-2)  2.48e-1(1.04e-2)  2.38e-1(8.69¢-3)
6 1.41e+0(2.17e-1)  1.34e+0(1.96e-1)  1.27e+0(2.31e-1)  1.30e+0(2.41e-1)  1.58e+0(4.08e-1)
10 4.12e+0(5.64e-1)  3.63e+0(6.43e-1)  3.55e+0(5.77e-1)  3.99e+0(7.21e-1)  4.08e+0(7.57¢e-1)
WEGS 3 2.93e-1(4.46e-2)  2.89%-1(5.58e-2)  3.0le-1(9.11e-2)  3.10e-1(5.46e-2)  3.19e-1(9.97e-2)
6 1.69e+0(8.33e-2)  1.72e+0(8.16e-2)  1.66e+0(9.57e-2)  1.69e+0(1.53e-1)  1.83e+0(1.34e-1)
10 4.76e+0(2.87e-1)  4.57e+0(3.19¢-1)  4.10e+0(3.07e-1)  3.71e+0(3.87e-1)  3.71e+0(4.39¢-1)
WEG6 3 4.66e-1(4.13e-2)  4.91e-1(4.44e-2)  4.51e-1(4.36e-2) 4.76e-1(6.61e-2)  4.58e-1(8.29¢-2)
6 1.70e+0(1.48e-1)  1.65e+0(9.89¢-2)  1.61e+0(1.10e-1)  1.67e+0(1.35e-1)  1.81e+0(2.71e-1)
10 3.88e+0(6.68e-1)  3.60e+0(3.51e-1)  3.64e+0(2.96e-1)  3.45e+0(4.44e-1)  3.72e+0(5.21e-1)
WEG7 3 3.12e-1(2.16e-2)  3.02e-1(2.17e-2)  3.00e-1(2.68e-2)  3.02e-1(2.75e-2)  2.99e-1(2.96e-2)
6 1.78e+0(1.05e-1)  1.69e+0(1.27e-1)  1.73e+0(1.38e-1)  1.67e+0(1.85e-1)  1.74e+0(2.32e-1)
10 5.15e+0(3.94e-1)  5.11e+0(2.97e-1)  4.89e+0(2.62e-1)  4.97e+0(3.07e-1)  4.94e+0(4.00e-1)
WEFG8 3 5.84e-1(5.34e-2)  6.09e-1(5.54e-2)  6.07e-1(4.8%¢-2)  5.68e-1(4.78e-2)  5.70e-1(4.15e-2)
6 2.19e+0(1.08¢e-1)  2.11e+0(9.97e-2)  2.15e+0(1.22e-1)  2.25e+0(1.12¢e-1)  2.37e+0(1.76e-1)
10 5.22e+0(4.43e-1)  5.31e+0(3.08e-1)  4.99e+0(3.75e-1)  5.16e+0(5.37e-1)  5.37e+0(4.82¢-1)
WFGY 3 3.79e-1(7.28e-2)  3.85e-1(1.20e-1)  3.73e-1(8.90e-2)  4.12e-1(1.17e-1)  4.17e-1(1.11e-1)
6 1.87e+0(1.95e-1)  1.73e+0(2.02e-1)  1.78e+0(2.45e-1)  1.77e+0(2.57e-1)  1.76e+0(1.35e-1)
10 5.03e+0(2.28e-1)  4.63e+0(4.11e-1)  4.44e+0(4.68e-1)  3.96e+0(3.83e-1)  3.73e+0(2.50e-1)
+/~/— n,=10 -/-I- 1/41/6 2/40/6 0/44/4 3/41/4
+/~/— n,=8 6/41/1 -/-I- 2/43/3 3/42/3 4/40/4
+/~/— n,=6 6/40/2 3/43/2 -/-I- 3/41/4 7/38/3
+/~/— n,=4 4/44/0 3/42/3 4/41/3 -/-1- 2/45/1
+/~/— n,=3 4/41/3 4/40/4 3/38/7 1/45/2 -/-1-

and n, are set to 2/3 and 5, respectively. The IGD+ values obtained by four LORA-MaOO variants
with different \ are reported in Table 4]

The last four rows of Table [] shows that A = 0.2 is the optimal parameter setup for LORA-MaOO.
The variant of A = 0.2 is significantly superior to both the variants of A = 0 and A = 0.1, and it is
equivalent to the variant of A = 0.3. We note that the variant of A\ = 0.3 is also significantly superior
to both the variants of A =0 and A = 0.1. However, this variant wins/ties/losses 30/105/9 statistical
tests in total, while the variant of A\ = 0.2 wins/ties/losses 32/109/3 statistical tests in total. Therefore,
setting A = 0.2 is preferable to setting A = 0.3.
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Table 4: Statistical results of the IGD+ value obtained by LORA-MaOO with different A on 48
benchmark optimization problems over 15 runs.
Wilcoxon rank sum tests (significance level is 0.05). ‘+’, ‘~’, and ‘—’ denote the correspond-
ing LORA-MaOO variant is statistically significantly superior to, almost equivalent to, and inferior

to the compared variants in Wilcoxon tests, respectively.

The last four rows count the total results of

Problems M A=0 A=0.1 A=02 A=03
DTLZ1 3 7.51e+1(1.74e+1) 6.88e+1(1.28e+1) 4.84e+1(1.34e+1) 4.96e+1(1.56e+1)
6 2.74e+1(5.30e+0) 1.73e+1(3.80e+0) 1.64e+1(3.24e+0) 1.41e+1(7.02e+0)
10 1.62e-1(5.15e-2)  1.43e-1(2.33e-2)  1.60e-1(2.67e-2)  1.53e-1(2.28e-2)
DTLZ2 3 4.95e-2(3.32e-3)  4.89¢-2(5.80e-3)  4.45e-2(4.72e-3)  4.81e-2(4.10e-3)
6 2.51e-1(2.91e-2)  2.56e-1(2.48e-2)  2.57e-1(1.91e-2)  2.67e-1(1.34e-2)
10 2.97e-1(1.72e-2)  2.94e-1(1.54e-2)  3.00e-1(1.31e-2)  2.92e-1(1.35e-2)
DTLZ3 3 1.91e+2(6.02e+1) 1.80e+2(2.31e+1) 1.48e+2(4.92e+1) 1.57e+2(4.54e+1)
6 9.0le+1(3.13e+1) 8.06e+1(2.18e+1) 6.68e+1(1.64e+1) 6.05e+1(2.03e+1)
10 5.74e-1(2.57e-1)  4.60e-1(5.69e-2)  4.72e-1(5.45e-2)  4.48e-1(4.14e-2)
DTLZ4 3 9.37e-2(1.30e-1) 1.16e-1(1.35e-1) 1.05e-1(1.27e-1)  1.02e-1(1.28e-1)
6 1.72e-1(291e-2)  1.63e-1(3.51e-2)  1.75e-1(3.57e-2)  1.61e-1(1.96e-2)
10 2.36e-1(1.29e-2)  2.37e-1(1.77e-2)  2.38e-1(1.35e-2)  2.28e-1(1.05¢e-2)
DTLZ5 3 1.40e-2(2.50e-3) 1.13e-2(3.34e-3)  9.26e-3(1.22e-3)  7.96e-3(1.58e-3)
6 5.00e-2(9.20e-3)  4.52e-2(1.60e-2)  3.25e-2(8.25e-3)  3.48e-2(5.12e-3)
10 5.16e-3(9.20e-4)  4.44e-3(1.43e-3)  3.97e-3(9.34e-4)  4.10e-3(3.97e-4)
DTLZ6 3 1.54e-1(1.65¢e-1)  4.14e-2(1.61e-2)  4.67e-2(4.92¢-2)  4.13e-2(2.30e-2)
6 1.72e+0(7.66e-1)  1.52e+0(1.08e+0)  7.52e-1(9.50e-1)  2.45e-1(4.79-1)
10 9.60e-2(7.76e-2)  6.08e-2(5.26e-2)  4.18e-2(4.66e-2)  2.99e-2(9.13e-3)
DTLZ7 3 6.57e-2(1.85¢-2)  1.25e-1(1.06e-1)  1.61e-1(2.77e-1)  1.05e-1(1.80e-1)
6 2.74e+0(1.22e+0)  1.53e+0(8.21e-1)  1.25e+0(4.72e-1)  1.66e+0(1.06e+0)
10 1.19e+0(9.70e-2)  1.18e+0(8.58e-2)  1.17e+0(8.97e-2)  1.27e+0(1.61e-1)
WEGI1 3 1.74e+0(4.92e-2)  1.67e+0(4.82e-2)  1.67e+0(4.67e-2)  1.64e+0(3.52¢-2)
6 2.30e+0(3.54e-2)  2.22e+0(8.09e-2)  2.22e+0(6.80e-2)  2.23e+0(7.54¢-2)
10 2.71e+0(6.98¢e-2)  2.63e+0(7.80e-2)  2.62e+0(8.93e-2)  2.63e+0(7.71e-2)
WEG2 3 2.94e-1(5.47e-2)  2.69e-1(5.46e-2)  2.52e-1(4.94e-2)  2.55e-1(3.46e-2)
6 6.84e-1(1.47e-1)  5.38e-1(1.05e-1)  5.43e-1(1.51e-1)  6.65e-1(2.55¢e-1)
10 1.67e+0(5.02e-1)  1.27e+0(2.80e-1)  1.47e+0(4.49¢e-1)  1.37e+0(3.46e-1)
WFG3 3 4.08¢-1(4.84e-2)  3.25e-1(3.53e-2)  2.4le-1(3.21e-2)  2.70e-1(5.19e-2)
6 8.23e-1(6.96e-2)  7.51e-1(9.15e-2)  5.92e-1(7.43e-2)  4.94e-1(6.55e-2)
10 7.58e-1(7.71e-2)  7.71e-1(1.08e-1)  6.60e-1(8.00e-2)  6.35e-1(1.04e-1)
WFG4 3 2.55e-1(1.63e-2)  2.56e-1(1.48e-2)  2.48e-1(1.04e-2)  2.57e-1(1.44e-2)
6 1.28e+0(2.24e-1)  1.31e+0(2.39e-1)  1.30e+0(2.41e-1)  1.37e+0(2.50e-1)
10 3.85e+0(5.45e-1)  3.84e+0(5.48e-1)  3.99e+0(7.21e-1)  3.79e+0(4.91e-1)
WFG5 3 3.84e-1(1.18e-1)  2.89e-1(6.47e-2)  3.10e-1(5.46e-2)  3.11e-1(6.94¢-2)
6 1.77e+0(1.36e-1)  1.72e+0(1.43e-1)  1.69e+0(1.53e-1)  1.72e+0(1.20e-1)
10 3.70e+0(4.80e-1)  3.58e+0(2.79e-1)  3.71e+0(3.87e-1)  4.38e+0(2.67¢-1)
WFG6 3 4.78e-1(7.23e-2)  4.63e-1(5.50e-2)  4.76e-1(6.61e-2)  4.74e-1(4.87¢-2)
6 1.62e+0(1.67e-1)  1.59e+0(1.21e-1)  1.67e+0(1.35e-1)  1.60e+0(1.52¢-1)
10 3.48e+0(2.80e-1)  3.43e+0(3.18e-1)  3.45e+0(4.44e-1)  3.70e+0(3.85¢-1)
WFG7 3 3.16e-1(2.20e-2)  3.13e-1(3.79¢-2)  3.02e-1(2.75e-2)  3.17e-1(4.42¢-2)
6 1.62e+0(1.57e-1)  1.68e+0(1.80e-1)  1.67e+0(1.85e-1)  1.69e+0(1.88e-1)
10 4.88¢+0(4.14e-1)  4.99e+0(3.94e-1)  4.97e+0(3.07e-1)  4.98e+0(2.87e-1)
WFG38 3 5.96e-1(4.58¢e-2)  6.09¢-1(3.63e-2)  5.68e-1(4.78e-2)  5.96e-1(3.58¢-2)
6 2.21e+0(1.49e-1)  2.20e+0(1.18e-1)  2.25e+0(1.12e-1)  2.20e+0(7.76e-2)
10 5.07e+0(4.48¢e-1)  4.96e+0(4.84e-1)  5.16e+0(5.37e-1)  5.09e+0(3.92¢-1)
WEG9 3 3.72e-1(391e-2)  3.82e-1(9.02e-2)  4.12e-1(1.17e-1)  3.80e-1(1.00e-1)
6 1.76e+0(2.07e-1)  1.67e+0(1.86e-1)  1.77e+0(2.57e-1)  1.81e+0(1.69¢e-1)
10 3.87e+0(3.66e-1)  4.13e+0(3.55e-1)  3.96e+0(3.83e-1)  4.76e+0(2.31e-1)
+/~/— I=0 -/-1- 0/35/13 0/29/19 3/27/18
+/~/— A=0.1 13/35/0 -/-I- 0/38/10 3/36/9
+/~/— X=02 19/29/0 10/38/0 -/-1- 3/42/3
+/~/— A=03 18/27/3 9/36/3 3/42/3 -/-I-

Note that all other LORA-MaOQO variants outperform the variant of A = 0, this implies that excluding
some samples from the set of non-dominated solutions is beneficial to the performance of ordinal
regression. The effectiveness of using our A-dominance approach in LORA-MaOO is demonstrated.

F.3 INFLUENCE OF RATIO THRESHOLD 7Prqtio-

In this subsection, we investigate the influence of ratio threshold rp,.,+;, on the optimization perfor-
mance. rpyrqtio 18 the threshold to determine when to add artificial ordinal relations for the training
{1, 2/3, 1/2, 1/3} to generate four LORA-MaOO variants.

of ordinal surrogate h,. We set rp,qtio =

For all variants, we set n,, A to 4, 0.2, respectively, which are consistent with our conclusions in
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Table 5: Statistical results of the IGD+ value obtained by LORA-MaOO with different rp,.qt;, On
48 benchmark optimization problems over 15 runs. The last four rows count the total results of
Wilcoxon rank sum tests (significance level is 0.05). ‘4, ‘~’, and ‘—’ denote the corresponding
LORA-MaOO variant is statistically significantly superior to, almost equivalent to, and inferior to

the compared variants in Wilcoxon tests, respectively.

Problems M TDratio=1 TPratio=2/3 TDratio=1/2 TDratio=1/3
DTLZ1 3 4.84e+1(1.34e+1) 4.84e+1(1.34e+1) 4.75e+1(1.54e+1) 4.75e+1(1.54e+1)
6 1.83¢+1(1.066+1)  1.64e+1(3.24e40) 1.35¢+1(6.23¢40)  1.35¢+1(6.23¢+0)
10 1.63¢-1(2.74¢-2)  1.60e-1(2.67¢-2)  1.58¢-1(2.81¢-2)  1.58¢-1(2.81¢-2)
DTLZ2 3 4.45e-2(4.72e-3)  4.45e-2(4.72e-3)  4.37e-2(3.41e-3)  3.60e-2(3.69¢-3)
6 257e-1(1.93¢2)  2.57e-1(1.91e-2)  1.80e-1(1.17e-2)  1.80e-1(7.34e-3)
10 374e-1(8.09¢-3)  3.00e-1(1.31e-2)  2.87e-1(1.71e-2)  2.87e-1(1.71e-2)
DTLZ3 3 1.48e+2(4.92e+1) 1.48e+2(4.92e+1) 1.54e+2(4.89e+1) 1.54e+2(4.89e+1)
6 6.52e+1(2.87e+1)  6.68e+1(1.64c+1)  6.01e+1(2.61e+1) 6.01e+1(2.61e+1)
10 423e-1(5.630-2)  4.72e-1(545¢-2) 4.84e-1(5.71e2)  4.84e-1(5.71e-2)
DTLZ4 3 T05e-1(127e-1)  1.05e-1(127e-1)  1.06e-1(1.32e-1)  1.06e-1(1.32¢-1)
6 1.70e-1(3.566-2)  1.75e-1(3.57¢-2)  1.79¢-1(4.06¢-2)  1.79%-1(4.06¢-2)
10 233e-1(1.2602)  2.38¢-1(1.35¢-2)  2.38¢-1(1.56¢-2)  2.49-1(1.46e-2)
DTLZ5 3 9.26e-3(1.22e-3)  9.26e-3(1.22e-3)  8.98e-3(1.67e-3)  8.71e-3(1.89%¢-3)
6 3.40e-2(9.35e-3)  3.25e-2(8.25e-3)  3.31e-2(7.84e-3)  2.81le-2(1.15e-2)
10 3.83¢-3(6.08c-4)  3.97¢-3(9.34c-4)  4.85¢-3(1.78¢-3)  4.92¢-3(1.54¢-3)
DTLZ6 3 4.67e-2(4.92e-2)  4.67e-2(4.92e-2)  6.38e-2(7.62e-2)  2.56e-2(6.58e-3)
6 470e-1(7.64¢-1)  7.52e-1(9.50e-1)  7.28e-1(1.00e+0)  1.25¢+0(1.13¢+0)
10 338c-2(1.18¢-2)  4.186-2(4.66¢-2)  3.926-2(3.62¢-2)  3.27¢-2(2.08¢-2)
DTLZ7 3 1.61e-1(2.77e-1) 1.61e-1(2.77e-1) 1.36e-1(1.32e-1)  7.58e-2(2.50e-2)
6 1.41e40(9.24e-1)  1.25e+0(4.72¢-1)  1.21e+0(7.32¢-1)  1.28¢+0(6.69%-1)
10 1.17e+0(8.28¢-2)  1.17e+0(8.97¢-2)  1.23e+0(1.33e-1)  1.23e+0(1.33¢-1)
WFG1 3 1.67e+0(4.67e-2)  1.67e+0(4.67e-2)  1.67e+0(4.86e-2)  1.67e+0(4.86e-2)
6 2.20e+0(6.03e-2)  2.22e+0(6.80e-2)  2.21e+0(5.69e-2)  2.21e+0(5.69¢-2)
10 2.61e+0(1.15¢-1)  2.62e+0(8.93¢-2)  2.55¢+0(1.15e-1)  2.55¢+0(1.15¢-1)
WFG2 3 2.52e-1(4.94e-2)  2.52e-1(4.94e-2)  2.48e-1(5.57e-2)  2.48e-1(5.57e-2)
6 5.73e-1(1.75e-1) ~ 5.43e-1(1.51e-1)  5.35e-1(9.94e-2)  5.35e-1(9.94e-2)
10 137¢+0(3.08¢-1)  1.47e+0(4.49%-1)  1.36e+0(3.13¢-1)  1.25¢+0(3.81¢-1)
WEG3 3 2.41e-1(3.21e-2) 2.41e-1(3.21e-2) 2.51e-1(3.82e-2) 2.51e-1(3.26e-2)
6 5.82e-1(4.97e-2)  5.92e-1(7.43e-2)  5.83e-1(8.20e-2)  6.05e-1(9.65¢e-2)
10 6.09¢-1(4.65¢2)  6.60e-1(8.00e-2)  6.93¢-1(1.22¢-1)  6.63¢-1(1.05¢-1)
WEGA 3 248e-1(1.04c2)  2.48e-1(1.0de2)  2.49e-1(2.61e2)  2.96e-1(9.20e-2)
6 2.06e+0(421e-1)  1.30e+02.41e-1)  1.35e40(3.15e-1)  1.35¢+0(3.15¢-1)
10 551e+0(6.14¢-1)  3.99¢+0(7.21e-1)  3.866+40(6.03¢-1)  3.86¢+0(6.03¢-1)
WFG5 3 3.10e-1(5.46e-2)  3.10e-1(5.46e-2)  3.06e-1(1.05e-1)  4.28e-1(1.46e-1)
6 1.93e+0(1.20e-1)  1.69e+0(1.53¢-1)  1.72e+0(1.26e-1)  1.72e+0(1.26e-1)
10 5.50e+0(3.80e-1)  3.71e+0(3.87¢-1)  3.63¢+0(4.80e-1)  3.63¢-+0(4.80¢-1)
WFG6 3 4.76e-1(6.61e-2)  4.76e-1(6.61e-2)  4.87e-1(1.00e-1)  6.26e-1(1.19e-1)
6 2.21e+0(2.26e-1)  1.67e+0(1.35e-1)  1.62e+0(1.85e-1)  1.62e+0(1.85e-1)
10 5.43c+0(4.78¢-1)  3.45e+0(44de-1)  3.19e40(2.14e-1)  3.19¢+0(2.14e-1)
WEG7 3 3.00e-1(2.75¢2)  3.02e-1(2.75¢2)  2.95¢-1(2.76e2)  2.98¢-1(3.12¢-2)
6 2.10e+0(2.12e-1)  1.67e+0(1.85e-1)  1.58e+0(1.47e-1)  1.58e+0(1.47e-1)
10 5.85¢+0(5.16¢-1)  4.97e+0(3.07e-1)  4.766+0(4.89-1)  4.76e-+0(4.89%¢-1)
WFGS 3 5.68e-1(4.78e-2)  5.68e-1(4.78e-2)  5.71e-1(4.02e-2)  5.83e-1(4.65¢e-2)
6 2.61e40(2.09-1)  2.25¢+0(1.12e-1)  2.21e+0(121e-1)  2.21e+0(1.21e-1)
10 6.41e+0(4.20e-1)  5.16e+0(5.37¢-1)  5.066+40(5.80e-1)  5.06¢-+0(5.80¢-1)
WFGY 3 4.12e-1(1.17e-1)  4.12e-1(1.17e-1) 3.81e-1(1.02e-1) 3.66e-1(8.95¢-2)
6 1.86e+0(2.00e-1)  1.77e+0(2.57e-1)  1.48e+0(2.27e-1)  1.45¢+0(1.77e-1)
10 557e+0(2.73¢-1)  3.96e+0(3.83¢-1)  4.02640(4.62e-1)  4.026+0(4.62¢-1)
+/~/—  rDratio=1 -/-1- 2/34/12 2/32/14 5/28/15
+/ = TDratio=2/3 12/34/2 -/-1- 0/46/2 3/42/3
+/~ /= TPratio=112 14/32/2 2/46/0 -/-1- 2/45/1
+/ =~ TPratio=1/3 15/28/5 3/42/3 1/45/12 -/-1-

previous ablation studies. Parameter n. is tentatively set to 5. The IGD+ values obtained by four
LORA-MaOO variants with different rp,.q+;, are reported in Table E} It should be noted that, when
the number of objectives M = 3, the results of 7p,.q1;0 = 1 are the same as the results of rp,.q4i, = 2/3,
because the ratio of reference points in archive S 4 is always lower than 2/3. Consequently, when M
= 3, setting ratio threshold rp; 4+, to either 1 or 2/3 makes no difference to the optimization process
of LORA-MaOO. Similarly, the results of 7p,.4t;0 = 1/3 on some problems are the same as the results
obtained by setting rp,qtio to 1/2, because on these problems, the ratio of reference points in Sy is

always higher than 1/2.
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As shown in TableE], the variant of rp,.q4¢;, = 1/2 outperforms other variants and achieves the optimal
behavior. Therefore, we set 7p,.qt;0 = 1/2 for LORA-MaOO. In comparison, the variants of 7p.qti0
= 2/3 and rp,q1i0 = 1/3 have competitive performance, both of them are inferior to the variant of
TDratio = 1/2 but significantly superior to the variant of rp,.q¢;0 = 1.

Setting rp,qtio = 1 indicates this LORA-MaOO variant will never introduce artificial ordinal re-
lations for the learning of the ordinal surrogate. The ordinal surrogate in this variant is trained
completely on the basis of dominance ordinal relations. When the number of objectives M is large,
a majority of evaluated solutions in archive S4 are non-dominated, leading to a large ratio of ref-
erence points Sgp in S4. As a result, there would be a significant imbalance between the number
of evaluated solutions in each ordinal level, which causes a poor performance on ordinal surrogate
and LORA-MaOQO. In particular, on most 10-objective WFG problems, the variant of rp,.qt;0 = 1
performs worse than all other variants. This observation shows the detrimental effect of imbalance
solutions in ordinal levels on the optimization performance, which also demonstrates the effective-
ness of using artificial ordinal relations in LORA-MaOO to address many-objective optimization
problems.

F.4 INFLUENCE OF CLUSTERING NUMBER FOR REPRODUCTION n..

This subsection analyzes the influence of clustering number n,. on the optimization performance. n,
is used in the reproduction process to initialize the PSO population. We set n. = {1, 3, 5, 7, 10} to
generate five LORA-MaOO variants. According to the conclusions of previous ablation studies, in
this ablation study, we set n, =4, A = 0.2, rp,qtio = 1/2 for all variants. The IGD+ values obtained
by five LORA-MaOO variants with different n, are reported in Table|[6]

It can be observed that both the variants of n. =5 and n. = 7 outperform three other variants and are
inferior to one variant, showing the optimal performance over other variants in this ablation study.
In comparison, the variants of n. = 3 and n. = 10 are significantly superior to two variants but are
also significantly inferior to two other variants. The variant of n. = 1 reaches the worst optimization
results as it is significantly inferior to all other variants. In addition, considering that the variant of
n. =7 wins/ties/losses 2/45/1 statistical tests when compared with the variant of n. = 5, we set n. =
7 for LORA-MaOO.

The result of this ablation study demonstrates the influence of population initialization on the opti-
mization results. By clustering the evaluated solutions into several clusters and sampling the same
amount of initial solutions from each cluster, the solutions in the initial population are distributed
in a more diverse way than the solutions sampled from the set of reference points Spp directly.
Consequently, all variants of n. > 1 have achieved better optimization results than the variant of n,
=1

G SOLUTION DISTRIBUTION

The solution distribution we obtained on some 3-objective DTLZ problems are plotted.

H COMPLETE RESULTS OF BENCHMARK OPTIMIZATION

In Section [.3] of the main file, we display the optimization results of comparison algorithms on
DTLZ problems in terms of IGD values. In this section, we provide detailed IGD results on WFG
problems and more results on IGD+ and HV values. In addition, the optimization results on DTLZ
problems with different scales, such as D =5 and 20, are reported.

H.1 1IGD RESULTS ON WFG OPTIMIZATION PROBLEMS

Table [/ shows the optimization results on WFG problems in terms of IGD values. The last row
summarizes the results of statistical tests, which has reported at the end of Table in the main file.
It can be seen that LORA-MaOO outperforms all comparison algorithms, followed by KTA2 and
KRVEA. This is consistent with the results we observed from Table [Il The results on six 3- and
10-objective WFG problems are plotted in Fig.
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Table 6: Statistical results of the IGD+ value obtained by LORA-MaOO with different n. on
48 benchmark optimization problems over 15 runs. The last five rows count the total results of
Wilcoxon rank sum tests (significance level is 0.05). ‘4, ‘~’, and ‘—’ denote the corresponding
LORA-MaOO variant is statistically significantly superior to, almost equivalent to, and inferior to

the compared variants in Wilcoxon tests, respectively.

Problems M ne=1 ne=3 ne=5 ne=7 ne=10
DTLZ1 3 645e+1(1.31e+1) 5.77e+1(2.13e+1) 4.75e+1(1.54e+1) 4.02e+1(1.46e+1) 3.91e+1(1.53e+1)
6 2.22e+1(5.99¢+0) 1.67e+1(4.35¢+0) 1.35¢+1(6.23e+0) 1.55¢+1(5.29¢+0)  1.56e+1(7.51e+0)
10 1.52e-1(3.01e-2)  1.67e-1(4.03e-2)  1.58e-1(2.81e-2)  1.58e-1(3.11e-2)  1.64e-1(3.19¢-2)
DTLZ2 3 440e-2(3.06¢-3)  4.38e-2(4.17¢-3) 4.37e-2(3.41e-3)  4.48e-2(3.51e-3)  4.29¢-2(4.38¢-3)
6 1.84e-1(1.50e-2)  1.79e-1(1.02¢-2)  1.80e-1(1.17e-2)  1.79¢-1(9.20e-3)  1.80e-1(1.49¢-2)
10 2.89e-1(1.00e-2)  2.97e-1(1.40e-2)  2.87e-1(1.71e-2)  2.90e-1(1.22e-2)  2.85e-1(1.09¢-2)
DTLZ3 3 1.89¢+2(4.68e+1) 1.61e+2(3.71e+1) 1.54e+2(4.89e+1) 1.58e+2(3.45e+1) 1.57¢+2(3.17e+1)
6 744e+1(2.34e+1)  6.06e+1(1.32e+1) 6.0le+1(2.61e+1) 6.65¢+1(2.14e+1)  6.44e+1(2.63e+1)
10 4.65¢-1(1.12e-1)  4.70e-1(8.67¢-2)  4.84e-1(5.71e-2)  4.92¢-1(1.38¢-1)  4.61e-1(4.94¢-2)
DTLZ4 3 8.66e-2(1.25e-1)  1.35e-1(1.64e-1)  1.06e-1(1.32e-1)  8.82e-2(1.26e-1)  1.04e-1(1.28e-1)
6 1.69e-1(2.20e-2)  1.80e-1(3.27¢-2)  1.79%-1(4.06e-2)  1.81le-1(4.77e-2)  1.79¢-1(2.78¢-2)
10 2.29e-1(1.15¢-2)  2.30e-1(1.06e-2)  2.38e-1(1.56e-2)  2.37¢-1(2.00e-2)  2.37e-1(1.88¢-2)
DTLZ5 3 9.75¢-3(2.19¢-3)  8.93¢-3(1.67¢-3)  8.98e-3(1.67e-3)  9.15e-3(1.58¢-3)  8.80e-3(1.44e-3)
6 3.12¢-2(9.30e-3)  2.98¢-2(1.02¢-2)  3.31e-2(7.84e-3)  2.72¢-2(7.30e-3)  3.00e-2(1.05¢-2)
10 5.60e-3(1.76e-3)  3.92¢-3(6.78¢-4)  4.85¢-3(1.78¢-3)  5.65¢-3(2.12¢-3)  6.02¢-3(1.70e-3)
DTLZ6 3 487¢-2(2.65¢-2) 4.28¢2(273¢-2)  6.38e-2(7.62¢-2)  9.93¢-2(2.14e-1)  5.04¢-2(3.71e-2)
6 1.09¢+0(1.19¢+0)  1.11e+0(1.07e+0)  7.28¢-1(1.00e+0)  1.01e+0(1.13e+0)  8.36¢-1(1.16e+0)
10 225¢-2(7.14e-3)  6.20e-2(5.11e-2)  3.92e-2(3.62e-2)  3.51e-2(3.23¢-2)  4.42¢-2(4.00e-2)
DTLZ7 3 6.96¢-2(3.03¢-2)  7.83¢-2(5.28¢-2)  1.36e-1(1.32e-1)  1.28e-1(1.31e-1)  9.71e-2(5.24¢-2)
6 6.96e-1(2.65¢-1)  1.68e+0(8.29¢-1)  1.21e+0(7.32e-1)  1.16e+0(6.33¢-1)  1.74e+0(8.02¢-1)
10 1.24e+0(1.54e-1)  1.20e+0(9.84¢-2)  1.23e+0(1.33e-1)  1.20e+0(8.92¢-2)  1.25¢+0(1.08e-1)
WFGI 3 1.67¢+0(4.91c-2) 1.64e+0(5.90¢-2) 1.67e+0(4.86e-2) 1.62¢+0(3.43¢-2)  1.61e+0(4.98¢-2)
6 2.27e+0(5.70e-2)  2.24e+0(5.05¢-2)  2.21e+0(5.69¢-2)  2.21e+0(7.43e-2)  2.20e+0(6.16¢-2)
10 2.67e+0(8.46e-2)  2.56e+0(1.07e-1)  2.55e+0(1.15e-1)  2.64e+0(7.62e-2)  2.61e+0(8.36¢-2)
WFG2 3 2.63¢-1(3.41e-2) 2.63e-1(3.89¢-2)  2.48e-1(5.57¢-2) 2.47e-1(4.40e-2)  2.44e-1(5.40e-2)
6 5.17e-1(1.03e-1)  5.43e-1(1.35e-1)  5.35e-1(9.94e-2)  5.24e-1(1.26e-1)  5.09e-1(1.49¢-1)
10 1.39e+0(4.37e-1)  1.39e+0(3.77e-1)  1.36e+0(3.13¢-1)  1.40e+0(2.71e-1)  1.38e+0(3.83¢-1)
WFG3 3 257¢-1(3.61e-2) 2.64e-1(7.85¢-2) 2.51e-1(3.82e-2)  2.78¢-1(5.66e-2)  2.48¢-1(2.96¢-2)
6 6.25¢-1(1.13e-1)  5.89¢-1(6.72¢-2)  5.83¢-1(8.20e-2)  5.80e-1(7.49¢-2)  6.56e-1(1.04e-1)
10 6.67¢-1(8.95¢-2)  6.93e-1(9.45¢-2)  6.93e-1(1.22e-1)  7.03e-1(9.06e-2)  7.47e-1(8.54¢-2)
WFG4 3 256e-13.27e-2)  2.49e-1(2.04e-2) 2.49e-1(2.61e-2)  2.48e-1(1.75e-2)  2.41e-1(1.77¢-2)
6 1.30e+0(1.91e-1)  1.34e+0(2.28¢-1)  1.35e+0(3.15e-1)  1.20e+0(2.23¢-1)  1.38e+0(2.88¢-1)
10 3.68¢+0(6.78¢-1)  3.87e+0(7.96e-1)  3.86e+0(6.03¢-1)  3.83¢+0(7.38¢-1)  3.65¢+0(3.90e-1)
WFG5 3 317e-1(1.22e-1)  3.50e-1(1.07e-1)  3.06e-1(1.05e-1)  3.12e-1(1.25e-1)  2.92e-1(1.28e-1)
6 1.78¢+0(9.49¢-2)  1.76e+0(1.11e-1)  1.72e+0(1.26e-1)  1.73¢+0(9.61e-2)  1.74e+0(1.33e-1)
10 3.79e+0(2.92¢-1)  3.59e+0(2.8le-1)  3.63e+0(4.80¢-1)  3.87¢+0(3.19¢-1)  3.79e+0(2.71e-1)
WFG6 3 448e-1(1.00e-1)  5.24e-1(1.08e-1)  4.87e-1(1.00e-1)  4.86e-1(9.23¢-2)  4.64¢-1(9.08¢-2)
6 1.65¢+0(1.84e-1)  1.63e+0(8.15¢-2)  1.62e+0(1.85¢-1)  1.61e+0(1.48¢e-1)  1.59e+0(2.47e-1)
10 3.35e+0(4.95¢-1)  3.51e+0(3.14e-1)  3.19e+0(2.14e-1)  3.33¢+0(3.76e-1)  3.14e+0(5.76¢-1)
WFG7 3 2.90e-1(3.37¢-2)  3.14e-1(3.26e-2)  2.95e-1(2.76e-2)  2.95¢-1(2.68¢-2)  2.90e-1(3.27¢-2)
6 1.62e+0(2.02¢-1)  1.72e+0(1.37e-1)  1.58e+0(1.47e-1)  1.61e+0(1.63¢-1)  1.64e+0(1.85¢-1)
10 4.55e+0(3.72¢-1)  4.81e+0(3.13e-1)  4.76e+0(4.89¢-1)  4.82¢+0(3.93¢-1)  4.51e+0(2.58¢-1)
WFG8 3 5.91e-1(6.73¢-2)  6.06e-1(5.44e-2)  5.71e-1(4.02¢-2)  5.77e-1(3.92e-2)  5.61e-1(3.98¢-2)
6 2.20e+0(1.50e-1)  2.20e+0(1.48¢-1)  2.21e+0(1.21e-1)  2.24e+0(1.57e-1)  2.16e+0(1.06e-1)
10 4.99e+0(4.45¢-1)  5.15e+0(4.48¢-1)  5.06e+0(5.80e-1)  5.00e+0(3.93¢-1)  4.90e+0(5.04¢-1)
WFG9 3 3.68e-1(1.03e-1)  4.43e-1(1.41e-1)  3.81e-1(1.02e-1)  3.85e-1(9.50e-2)  3.56e-1(6.48¢-2)
6 1.54e+0(1.81e-1)  1.51e+0(1.73¢-1)  1.48e+0(2.27e-1)  1.45e+0(1.19¢-1)  1.48e+0(1.75¢-1)
10 4.02e+0(2.34e-1)  3.97e+0(4.11e-1)  4.02e+0(4.62e-1)  3.94e+0(3.94e-1)  3.96¢+0(3.20e-1)
F/~]/— n=l /- 274373 174176 174275 374174
/=~ /= n.=3 314372 - 074672 274571 174176
+/~/= n.=5 6/4171 2746/0 - 17452 274571
iy (PO | 5/4271 174572 274571 /- 274571
+/~/= n.=10 474173 6/4171 17452 17452 ~7-I-
H.2 1IGD+ RESULTS ON DTLZ AND WFG OPTIMIZATION PROBLEMS

Tables[8]and [0 display the IGD+ optimization results of comparison algorithms on DTLZ and WFG
optimization problems, respectively. Different from IGD results, although LORA-MaOO achieves
the smallest IGD+ values on most DTLZ problems, its perform is competitive to KRVEA and KTA2
on WFG problems. However, from the perspective of overall performance, we can still conclude that
our LORA-MaOO outperforms all comparison algorithms on benchmark optimization problems in
terms of IGD+ values. Such a observation is consistent with the results we observed from IGD
values.
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Figure 7: Distribution of obtained non-dominated solutions on DTLZ2 with 10 variables and 3
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Figure 10: Log (IGD) curves averaged over 30 runs on DTLZ1, DTLZ3, and DTLZ7 for comparison
algorithms (shaded area is & std of the mean).
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Figure 11: Log (IGD) curves averaged over 30 runs on WFG1, WFG4, and WFG6 for comparison
algorithms (shaded area is & std of the mean).

H.3 HV RESULTS ON DTLZ AND WFG OPTIMIZATION PROBLEMS

Tables [T0] and [TT] report the HV optimization results of comparison algorithms on DTLZ and WFG
optimization problems, respectively. Since the calculation of HV values on 8- and 10-obj opti-
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Table 7: Statistical results of the IGD value obtained by comparison algorithms on 45 WFG opti-
mization problems over 30 runs. Symbols ‘4, ‘~’, ‘—’ denote LORA-MaOQO is statistically signif-
icantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO
WEGI 3 1.65c+0(8.08e-2)— 1.74e+0(0.01c-2)~ 1.87e+0(1.27e-1)+ 1.74c+0(8.60e-2)~ 1.73e+0(1.12¢-)~  2.03e+0(1.16e-1)+  1.71¢+0(9.26¢-2)
4 1.94e+0(7.04e-2)~  2.07¢+0(9.03e-2)+ 2.18¢+0(1.43e-1)+ 2.05¢+0(1.05e-1)+  1.96¢+0(8.19e-2)~  2.22¢+0(9.54¢-2)+  1.95¢+0(7.52¢-2)
6 238¢+0(5.53e-2)x  249e+0(6.57e-2)+ 2.56e+0(9.95¢-2)+ 2.52¢+0(9.8%-2)+ 2.42¢+0(5.34e-2)+ 2.53e+0(1.04e-1)+  2.36e+0(5.07¢-2)
8 275e+0(5.21e-2)+ 2.86e+0(7.05e-2)+ 2.85e+0(1.06e-1)+ 2.89e+0(5.19¢-2)+ 2.80e+0(7.44e-2)+ 2.82e+0(7.56e-2)+ 2.72e+0(6.21e-2)
10 3.08e+0(5.70e2)+  3.11e+0(9.16e-2)+ 2.99¢+0(9.77e-2)+  3.09¢+0(1.03e-1)+  3.04e+0(1.12e-1)+  3.10e+0(9.11e-2)+  2.93e+0(6.20¢-2)
WFG2 3 766e-1(7.11e2) T 3.6le-1(387e-2)~ 424e-1(6.65e-2)+ 548e-1(3.756-2)+ 5.22e-1(7.67e-2)+ 4.88e-1(6.53¢-2)+ 3.72e-1(4.87¢-2)
4 1.05e+0(1.40e-1)+  5.00e-1(3.97e-2)—  5.66¢-1(3.80e-2)+  7.6le-1(1.21e-1)+  7.48e-1(1.23e-1)+  7.45e-1(1.45¢-1)+  5.46e-1(3.53¢-2)
6 1.90e+0(3.5le-1)+  7.77e-1(525e-2)—  9.00e-1(5.39e-2)+  1.28e+0(4.02e-1)+ 1.28e+0(3.75e-1)+  1.49e+0(3.76e-1)+  8.55¢-1(7.00e-2)
8 2.74e+0(6.68e-1)+  1.06e+0(5.98¢-2)—  1.18e+0(1.1de-1)—  2.10e+0(6.97e-1)+  1.90e+0(5.25¢-1)+  2.06e+0(4.58¢-1)+  1.24e+0(1.23¢-1)
10 3.73e+0094le-1)+  1.18¢40(9.32e-2)—  1.37e+0(1.03e-1)—  2.84e+0(8.6le-1)+ 2.59e+0(9.91e-1)+ 2.95e+0(7.55¢-1)+  1.83e+0(2.27e-1)
WFG3 3 5.82e-1(3.86e-2)F  5.39e-1(5.81e-2)+ 3.29¢-1(5.99¢-2)+  5.040-1(6.260-2)+ 4.60e-1(5.94e-2)+  3.85¢-1(4.760-2)+  2.83¢-1(5.99¢-2)
4 730e-1(6.25¢2)+  6.66e-1(7.02¢-2)+  5.63¢-1(647e-2)+  6.05¢-1(7.26e-2)+  5.64e-1(6.43e-2)+  5.68e-1(5.92e-2)+  4.13e-1(5.98¢-2)
6 7.75e-19.36e-2)+  6.76e-1(1.32e-1)x~  7.94e-1(6.73e-2)+  7.4le-1(833e-2)+  6.37e-1(9.55¢-2)~  7.96e-1(6.68¢-2)+  6.51e-1(9.20e-2)
8 838e-1(1.63e-l)x  827e-1(9.79-2)~ 9.45e-1(7.42e-2)+ 7.63e-1(1.06e-1)—  6.25e-1(1.18e-1)—  8.92e-1(9.90e-2)~  8.54e-1(9.98¢-2)
10 6.85e-1(1.02e-1)—  6.87e-1(8.79¢-2)—  9.16e-1(8.20e-2)+  5.91e-1(9.34e-2)—  5.19-1(1.04e-1)—  7.28e-1(1.10e-)—  8.23e-1(1.14e-1)
WFGA 3 621c-1(3.68¢-2)F 4.67e-1(233e-2)+ 42le-1221e-2)+ 4.57e-1(288e-2)+ 4.23e-1(253¢-2)+ 4.34e-1(5.63e-2)+  3.36e-1(2.95¢-2)
4 1.11e+0(345¢-2)+  7.86e-1(2.45e-2)+  7.78¢-1(4.50e-2)+  9.83e-1(1.22e-1)+  8.46e-1(8.32e-2)+ 1.07e+0(I.18e-1)+  6.82e-1(4.97e-2)
6 275e+0(236e-1)+ 1.87e+0(8.92¢-2)~  1.78e+0(7.66e-2)— 3.13e+0(3.86e-1)+ 2.69e+0(3.61e-1)+ 2.92e+0(3.04e-1)+  1.86e+0(1.30e-1)
8 5.09e+0(9.78¢-1)+  3.47e+0(2.96e-1)—  3.26e+0(1.67e-1)—  5.81e+0(5.38¢-1)+ 4.99¢+0(4.67e-1)+ 5.76e+0(4.34e-1)+  3.62e+0(3.31e-1)
10 7.18e+0(1.21e+0)+  5.60e+0(6.92e-)~  4.97e+0(1.72e-1)—  8.58¢+0(8.39%e-1)+ 7.78¢+0(8.13e-1)+  8.03¢+0(5.03e-1)+  5.47e+0(4.14e-1)
WFG5 3 421c-1(3.05e2)+ 391c-1(4.2262)~ 3.30e-1(9.56e-2)—  5.50e-1(3.056-2)+  5.30e-1(4.46e-2)+ 451e-1(651e2)F  4.21e-1(1.35¢-1)
4 998e-1(8.0%-2)~  7.65¢-1(2.86e-2)—  7.20e-1(6.23¢-2)—  8.87c-1(3.98¢-2)—  8.61e-1(4.68¢-2)—  1.02¢+0(4.57¢-2)+ 9.81e-1(5.76¢-2)
6 2.82e+0(1.65¢-1)+  1.78e+0(6.23¢-2)—  1.92e+0(1.03¢-1)—  2.35¢+0(1.86¢-1)+  2.04c+0(1.29¢-1)—  2.44¢+0(1.08e-1)+  2.11e+0(9.10e-2)
8 525¢+0(2.55¢-1)+ 3.30e+0(2.6le-1)— 3.62e+0(2.64e-1)~  4.75¢+0(3.77e-1)+ 3.95¢+0(2.83¢-1)+ 4.57e+0(1.82¢-1)+  3.66e+0(9.43¢-2)
10 7.64e+03.23e-1)+ 4.67e+0(4.78e-1)—  4.76e+0(1.99e-1)—  6.88e+0(4.23e-1)+  6.11e+0(4.62e-1)+  6.68e+0(3.4%-1)+ 4.98e+0(1.57e-1)
WFG6 3 7.96e-1(5.50e-2)F  7.05¢-1(5.10e-2)+ _ 6.22¢-1(8.49¢-2)+  7.19¢-1(4.806-2)+  7.09¢-1(4.61e-2)+  5.79-1(4.68¢2)+  5.67e-1(1.09¢-1)
4 1.14e+0(347e-2)+  1.02e+0(4.90e-2)+  9.62e-1(446e-2)~  1.08e+0(4.82e-2)+ 1.04e+0(4.53e-2)+ 1.17e+0(4.94e-2)+  9.51e-1(9.85¢-2)
6 281e+02.60e-1)+ 2.18e+0(741e-2)+ 1.96e+0(4.17e-2)—  2.56e+0(2.16e-1)+  2.20e+0(1.61e-1)+ 2.77e+0(1.81e-1)+  2.04e+0(9.86¢-2)
8 470e+0(5.78e-1)+ 3.60e+0(1.17e-1)+  3.54e+0(1.85e-1)~  4.70e+0(5.18¢-1)+ 4.13e+0(3.06e-1)+  5.06e+0(3.20e-1)+  3.52e+0(1.52e-1)
10 7.66e+0(5.36e-1)+  5.00e+0(1.33e-1)+  5.09e+0(1.58¢-1)+  6.73e+0(5.98¢-1)+  5.83e+0(4.69%-1)+  7.00e+0(4.90e-1)+  4.76e+0(1.94e-1)
WFGT 3 6.69e-1(2.70e-2) T  628e-1(245¢-2)+  5.73e-1(2.76e-2)+  5.78e-1(3.23¢-2)+ 5.38e-1(3.58¢-2)+ 443e-1(d.15e-2)+  3.52e-1(2.22¢-2)
4 113e+0(4.94e-2)+  9.48e-1(2.66e-2)+  9.04e-1(2.51e-2)+  9.92e-1(8.75e-2)+  8.81e-1(3.49e-2)+  9.72e-1(7.29¢-2)+  7.07e-1(4.29¢-2)
6 3.17e+0(2.8%-1)+ 2.00e+0(5.6le-2)~ 196e+0(5.97e-2)~ 2.71e+0(3.18¢-1)+ 2.18e+0(1.49e-1)+ 2.71e+0(1.91e-1)+  1.96e+0(1.06e-1)
8 5.93e+0(3.95e-1)+  3.64e+0(1.23e-1)—  3.37e+0(1.16e-1)—  5.19e+0(5.20e-1)+  4.28e+0(4.5%-1)+  5.19e+0(3.07e-1)+  3.82e+0(1.63¢-1)
10 8.78e+0(4.70e-1)+ 531e+0(3.0le-1)—  4.88¢+0(1.76e-1)—  8.07e+0(5.07e-1)+  6.77e+0(5.93¢-1)+ 7.57e+0(4.12e-1)+  5.73e+0(3.07e-1)
WFGS 3 845e-12.87e2)F  6.42e-1(249e-2)+ 5.00¢-1(4.39¢-2)— 7.49%-1(433e-2)+ 7.13e-1(3.87e-2)+ 7.0le-1(4.3562)+  6.026-1(3.64¢-2)
4 133e+0(46le-2)+ 1.14e+0(3.89e-2)~  1.02e+0(3.96e-2)— 126e+0(6.23e-2)+ 120e+0(5.28¢-2)+  1.36e+0(6.94e-2)+ 1.13e+0(7.12¢-2)
6 3.01e+02.82e-1)+ 243e+0(7.15e-2)~  2.28e+0(5.05¢-2)—  3.00e+0(1.53¢-1)+ 2.80e+0(1.90¢-1)+  3.07e+0(1.74e-1)+  2.45¢+0(9.73¢-2)
8 5.74e+0(3.56e-1)+ 4.01e+0(2.28e-1)—  3.92e+0(1.28¢-1)—  5.56e+0(3.24e-1)+  5.11e+0(4.10e-1)+  5.34e+0(2.72e-1)+  4.22e+0(2.75¢-1)
10 830e+0(4.83e-1)+  5.56e+0(5.40e-1)— 5.71e+0(3.80e-1)~ 7.81e+0(d.74e-1)+ 7.32e+0(346e-1)+ 7.54e+0(4.88e-1)+ 5.82e+0(2.95¢-1)
WFG9 3 7.14e-1(3.09¢2)F  6.75¢-1(6.73¢-2)+  6.37c-1(8.35¢-2)+  6.74c-1(8.53¢-2)+ 6.11e-1(9.766-2)+  5.12¢-1(7.74e-2)+  4.34c-1(8.18¢-2)
4 124c+0(14le-1)+  1.06e+0(8.72¢-2)0+ 1.07¢+0(9.28¢-2)+  1.16e+0(1.18¢-1)+  1.05e+0(1.61e-1)+  1.02¢+0(7.89¢-2)+  8.43¢-1(9.25¢-2)
6 3.14e+0(2.96e-1)+ 2.22e+0(1.94e-1)+  2.19e+0(1.52e-1)+  2.83¢+0(2.36¢-1)+ 2.30e+0(1.82¢-1)+  2.55e+0(1.21e-1)+  1.97e+0(9.18¢-2)
8 578e+0(4.5le-1)+  3.93e+0(3.00c-1)+  3.77e+0(2.23¢-1)+  543e+0(3.68¢-1)+  4.60e+0(3.92¢-1)+ 4.73¢+0(3.07e-1)+  3.61e+0(2.05¢-1)
10 8.41e+0(4.80e-1)+  5.69e+0(6.42e-1)+ 5.26e+0(3.13e-1)x  7.77e+0(5.05¢-1)+  6.48¢+0(5.60e-1)+  6.74e+0(4.17e-1)+  5.16e+0(2.60¢-1)
/~]- 397472 21710714 23/6/16 17173 387374 37171

mization problems is very time-consuming, only the results obtained on 3-, 4-, and 6-objective
optimization problems are displayed. Consistent with the IGD an IGD+ results obtained on 3-,
4-, and 6-objectives, our LORA-MaOO achieves the best overall performance over all comparison
algorithms, showing the effectiveness of LORA-MaOO on addressing expensive many-objective
optimization problems.

H.4 PROBLEMS WITH DIFFERENT SCALES

In this subsection, we investigate the optimization performance of LORA-MaOO when the number
of decision variables D is different. The experimental setups for all comparison algorithms are the
same as the setups used in previous benchmark optimization problems, but the setup for optimization
problems is different:

o The optimization problems have D = {5, 10, 20} decision variables and M = 3 objectives.

e When D =5 or 10, a dataset of size 11 D - 1 is used for surrogate initialization. When D
=20, since 11 D - 1 would be greater than our evaluation budget (300), the size of initial
dataset is set to 100.

Tables [I2} [T3] and [T4] report the obtained IGD, IGD+, and HV values on benchmark optimization
problems with different numbers of decision variables D, respectively. It can be seen from Table[12]
that LORA-MaOO outperforms all comparison algorithms on DTLZ optimization problems when
D =5, 10, and 20. In addition, KTA2 reaches competitive optimization results on many optimization
problems. The observations from Tables[I3]and[T4] have demonstrated consistent conclusions.
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Figure 12: Log (IGD) curves averaged over 30 runs on WFG7, WFGS, and WFG9 for comparison
algorithms (shaded area is + std of the mean).

Table 8: Statistical results of the IGD+ value obtained by comparison algorithms on 35 DTLZ op-
timization problems over 30 runs. Symbols ‘+’, ‘~’, ‘=" denote LORA-MaOO is statistically sig-
nificantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO
DTLZI 3 598e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)~ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)~ 4.35e+1(1.80e+1)
4 4.68e+1(3.71e+0)+ 6.45e+1(1.47e+1)+ 4.08e+1(1.60e+1)~ 3.69e+1(1.08e+1)~ 3.92e+1(1.1le+1)~ 3.80e+1(1.23e+1)~ 4.06e+1(1.34e+1)
6 3.04e+1(2.74e+0)+  3.22e+1(7.66e+0)+ 2.03e+1(8.12e+0)+  1.56e+1(4.96e+0)~ 1.22e+1(4.65e+0)— 1.74e+1(3.98e+0)~  1.58e+1(6.17e+0)
8 1.23e+1(2.99e+0)+  8.52e+0(2.98e+0)+  4.54e+0(2.66e+0)~ 5.08¢+0(2.47e+0)~ 3.33e+0(1.93e+0)~ 5.87e+0(2.91e+0)+  3.82e+0(2.35¢+0)
10 3.82e-1(1.79e-1)+  2.76e-1(1.14e-1)+  2.33e-1(9.65¢-2)+  2.22e-1(8.29e-2)+  1.75e-1(7.84e-2)~  1.83e-1(6.73e-2)~  1.56e-1(3.41e-2)
DTLZ2 3 26le-1(3.63e-2)+  9.22e-2(2.57e-2)+  3.82e-2(3.29e¢-3)—  1.60e-1(2.76e-2)+  1.0le-1(1.75e-2)+  5.86e-2(8.28e-3)+  4.47e-2(3.35¢-3)
4 3.55e-1(4.11e-2)+ 1.30e-1(3.08e-2)+ 9.05e-2(6.95¢-3)— 2.05e-1(2.43e-2)+ 1.60e-1(3.01e-2)+ 1.37e-1(1.61e-2)+ 9.74e-2(1.14e-2)
6 447e-1(2.32e-2)+  1.82e-1(1.49e-2)~  2.36e-1(3.71e-2)+  3.15e-1(4.24e-2)+  2.64e-1(3.18e-2)+  3.21e-1(2.78e-2)+  1.82e-1(1.15e-2)
8 4.68e-1(1.49e-2)+ 2.34e-1(1.90e-2)— 3.43e-1(2.37e-2)+ 3.95e-1(2.66e-2)+ 3.42e-1(291e-2)+  4.19e-1(1.86e-2)+ 2.58e-1(1.88e-2)
10 4.33e-1(2.26e-2)+  2.92e-1(3.09¢-2)~  3.15e-1(1.47e-2)+  4.17e-1(2.03e-2)+  3.61e-1(2.70e-2)+  4.28e-1(1.61e-2)+  2.88e-1(1.27e-2)
DTLZ3 3 1.66e+2(131c+])+ 2.43c+2(@.6let )+ 1.52e+2(@. 3+~ 1.62e+2(4.84c+ )~ 1.49c+2(3.88c+ D)~ 1.26e+2(3.18e+1)—  1.57¢+2(3.83¢+1)
4 142e+2(1.57e+1)+  1.83e+2(4.00e+1)+ 1.18e+2(3.4%+1)~ 1.29e+2(3.58e+1)~ 1.16e+2(3.00e+1)~ 1.22e+2(4.13e+1)~ 1.25e+2(4.20e+1)
6 9.17e+1(1.59e+1)+ 1.06e+2(2.96e+1)+ 6.65e+1(2.63e+l)x  5.27e+1(1.56e+1)~ 5.23e+1(1.71e+)~  5.24e+1(1.68e+1)~  5.96e+1(2.05¢+1)
8  4.13e+1(9.84e+0)+ 2.96e+1(1.15e+1)+ 1.73e+1(1.10e+1)~  1.59e+1(9.77e+0)~  1.60e+1(7.71e+0)~ 1.49e+1(6.28e+0)~  1.26e+1(8.35e+0)
10 1.08e+0(3.73e-1)+  9.96e-1(4.96e-1)+  7.29e-1(2.75¢-1)+  6.94e-1(2.8%-1)+  6.8%-1(3.18e-1)+  5.27e-1(6.34e-2)+  4.75e-1(1.13e-1)
DTLZA 3 4.57e-1(7.52e-2)+  2.66e-1(1.02e-1)+  2.33e-1(8.36e-2)+  2.34e-1(7.76e-2)+  1.32e-1(6.41e-2)+  1.07e-1(9.68e-2)+  8.96e-2(1.25e-1)
4 486e-1(5.76e-2)+  2.84e-1(7.44e2)+  2.95e-1(6.34e-2)+  2.03e-1(3.78e-2)+  1.66e-1(3.40e-2)+  1.35e-1(9.87e-2)~  1.37e-1(9.79¢-2)
6 4.24e-1(4.26e-2)+  2.94e-1(5.11e-2)+  3.6le-1(7.84e-2)+  2.4le-1(3.82e-2)+  2.27e-1(3.26e-2)+  1.67e-1(2.62e-2)~  1.78e-1(4.02e-2)
8  3.53c-1(2.66e-2)+  2.67e-1(3.51e-2)+  3.33e-1(4.56e-2)+  2.78e-1(3.65e-2)+  2.93e-1(3.63¢-2)+  2.09e-1(2.55e-2)~  2.08e-1(1.89¢-2)
10 2.86e-1(1.61e-2)+  2.58e-1(2.11e-2)+  2.88e-1(3.27e-2)+  2.92e-1(2.16e-2)+  3.06e-1(2.71e-2)+  2.29%e-1(1.41e-2)~  2.30e-1(1.70e-2)
DTLZ5 3 1.60e-1(4.40e2)+  0.18¢-2(2.766-2)+  8.66e-3(1.96e-3)~  9.58e-2(2.60e-2)+  5.78¢-2(1.81e-2)+  1.59e-2(5.12e-3)+ _ 9.40e-3(1.93¢-3)
4 1.47e-1(3.58e-2)+  4.96e-2(1.98e-2)+  3.25e-2(9.50e-3)+  9.78e-2(2.16e-2)+  7.51e-2(2.55e-2)+  2.88e-2(7.46e-3)+  2.21e-2(7.30e-3)
6  1.08c-1Q2.44e2)+  2.24e-2(7.50e-3)—  8.02e-2(2.16e-2)+  6.16e-2(2.4%e-2)+  4.14e-2(1.76e-2)+  3.89e-2(1.47e2)~  3.20e-2(1.14e-2)
8 5.11e-2(7.70e-3)+  1.44e-2(5.17e-3)—  5.35e-2(1.14e-2)+  2.49e-2(6.87e-3)+  2.0le-2(5.56e-3)~  1.89e-2(5.87e-3)~  1.87e-2(3.21e-3)
10 1.19e-2(1.01e-3)+  6.26e-3(9.09¢-4)+  1.19e-2(1.80e-3)+  7.45e-3(9.85e-4)+  4.80e-3(1.09e-3)—  5.48e-3(9.4%9e-4)~  5.62e-3(1.75e-3)
DTLZ6 3 242e-1(1.07e-D+  3.05e+0(5.23e-1)+  1.82e+0(4.48e-1)+  4.85e+0(6.38e-1)+  4.27e+0(5.48e-1)+  2.35e-1(4.1de-1)+  6.74e-2(1.55e-1)
4 264e-1(1.83¢-1)+  2.44e+0(3.90e-1)+  1.84e+0(5.17e-1)+  5.12e+0(4.3le-1)+  4.07e+0(6.25¢-1)+  1.35¢+0(9.45¢-1)+  2.07e-1(2.06¢-1)
6 1.78e-1(1.07e-1)— 1.33e+0(2.80e-1)+  1.49e+0(5.98e-1)+  3.14e+0(4.44e-1)+  2.32e+0(5.72e-1)+  2.04e+0(6.34e-1)+  9.00e-1(1.07e+0)
8  831e-2(2.90e-2)~  4.48e-1(1.88e-1)+  8.28e-1(4.14e-1)+  1.53e+0(4.64e-1)+  9.18e-1(4.68e-1)+  1.03e+0(4.26e-1)+  2.96e-1(4.46e-1)
10 821e-2(9.39%-2)+  3.08e-2(1.03e-2)~  6.59%-2(5.61e-2)+  1.63e-1(2.40e-1)4+  5.12e-2(1.09¢-D)~  1.15e-1(7.35e-2)+  3.30e-2(2.86¢-2)
DTLZ7 3 1.10e-1(3.57e-2)+  7.39e-2(1.52e-2)~  1.54e-1(1.97e-1)—  1.65e+0(6.43e-1)+  1.20e+0(5.73e-1)+  1.79%e-1(1.20e-1)+  1.38e-1(1.53e-1)
4 498e-1(1.02e-1)+  2.20e-1(5.76e-2)~  2.3le-1(1.27e-1)~  2.82e+0(6.75e-1)+  1.96e+0(7.4%-1)+  7.18e-1(4.34e-1)+  2.80e-1(1.73e-1)
6 1.07e+0(1.62e-1)~  4.31e-1(3.82e-2)—  4.3%-1(1.48¢e-1)—  4.80e+0(1.01e+0)+  2.93e+0(7.0le-1)+  3.96e+0(1.88e+0)+  1.46e+0(6.8%¢-1)
8 1.28e+0(1.27e-1)—  6.29e-1(7.74e-2)—  7.72e-1(1.53e-1)—  6.03e+0(1.87e+0)+  3.63e+0(5.55¢-1)+  4.40e+0(2.74e+0)+  2.25e+0(6.88¢-1)
10 1.51e+0(1.37e-1)+  9.42e-1(4.54e-2)—  1.11e+0(1.99e-1)—  1.80e+0(3.39e-1)+  1.79e+0(3.78e-1)4+  1.46e+0(2.55e-1)+  1.19e+0(8.31e-2)
+/~ /- 31/2/2 24/5/6 20/9/6 28/7/0 24/9/2 20/14/1
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Table 9: Statistical results of the IGD+ value obtained by comparison algorithms on 45 WFG opti-
mization problems over 30 runs. Symbols ‘4, ‘~’, ‘—’ denote LORA-MaOQO is statistically signif-
icantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO
WEGI 3 1.62e+03.90e2)~ 1.68e+0(0.09¢-2)+ 1.78¢+0(1.38e-1)+ 1.68¢+0(7.59¢-2)+  1.69e+0(1.08¢-1)+  1.92e+0(1.27e-1)+  1.63¢+0(3.69¢-2)
4 190e+0(6.54e-2)+  1.99e+0(1.02¢-1)+  2.07e+0(1.47¢-1)+ 1.98e+0(1.06e-1)+  1.90e+0(8.14e-2)+  2.12e+0(8.95¢-2)+  1.85¢+0(7.27¢-2)
6 230e+0(4.35e-2)+  2.36e+0(7.09¢-2)+ 2.41e+0(1.08¢-1)+ 2.37e+0(9.06e-2)+ 2.29e+0(7.24e-2)+  2.39e+0(8.81e-2)+ 2.22+0(6.71e-2)
8 2.64c+0(4.48¢2)+  2.66e+0(7.65¢-2)+  2.60e+0(1.15¢-1)+  2.62e+0(6.34¢-2)+  2.55¢+0(6.82¢-2)+  2.59e+0(4.96¢-2)+  2.49¢+0(7.00¢-2)
10 2.88¢+0(6.44e-2)+  2.78e+0(991e-2)+  2.65e+0(1.26e-)~  2.71e+0(1.27e-1)+  2.71e+0(1.22e-1)+  2.78e+0(1.04e-1)+  2.62e+0(7.81¢-2)
WFG2 3 699c-1948c-2)+  2.58c-1(4.09¢2)~  2.39c-1(70lc2)~ 468c-1(5.126-2)+  4.30c-109.29¢-2)+  3.95¢-1(7.73¢-2)+  2.47c-1(4.89¢-2)
4 974e-1(1.65e-1)+  32le-1(4.70e-2)—  3.52e-1(5.16¢- 627e-1(142e-1)+  622e-1(145e-1)+  623¢-1(1.69%e-1)+  3.52¢-1(5.74e-2)
6 1.77e+0(4.19e-1)+  3.84e-1(738e-2)—  5.75e-1(1.00e-1)~  1.02e+0(4.94e-1)+  1.01e+0(4.70e-1)+  1.33e+0(4.17e-1)+  5.29e-1(1.26e-1)
8 255e+0(748e-1)+  4.09-1(1.34e-1)—  6.82e-1(1.43¢-1)—  1.77e+0(8.24e-1)+  1.52e+0(6.54e-1)+  1.84e+0(4.86e-1)+  8.28¢-1(1.52e-1)
10 349e+0(1.01e+0)+  4.18e-1(1.8le-1)—  8.19e-1(1.39%e-1)—  249e+0(9.71e-1)+  2.19e+0(1.13e+0)+ 2.67e+0(8.17e-1)+  1.40e+0(2.64e-1)
WFG3 3 5.65e-1(414e2)F  5.260-1(5.99e2)+  3.05e-1(6.026-2)+ 4.87e-1(6.706-2)+  4.42-1(6.58¢-2)+  3.67e-1(4.79e2)F  2.65¢-1(5.63¢-2)
4 7.02e-1(6.70e-2)+  635e-1(6.90e-2)+  5.33e-1(6.42e-2)+  5.75e-1(7.97e-2)+  5.24e-1(7.33e-2)+  547e-1(6.00e-2)+  3.88e-1(6.09-2)
6 7.42e-19.98e-2)+  6.24e-1(135e-1)x~  7.25e-1(7.13e-2)+  6.9le-1(844e2)+  5.60e-1(9.53e-2)~  7.62¢-1(6.68e-2)+  6.04e-1(8.95¢-2)
8 7.74e-1(1.66e-l)~  7.26e-1(1.06e-1)~  8.46e-1(7.67e-2)+  6.83e-1(1.06e-1)—  5.18e-1(1.13e-1)—  8.26e-1(1.01e-1)+  7.58¢-1(9.00e-2)
10 5.78e-1(9.80e2)—  5.54e-1(8.05e-2)—  7.80e-1(8.72e-2)+  4.91e-1(8.69e-2)—  4.07e-1(9.40e-2)—  6.4de-1(1.04e-)~  6.92e-1(1.07e-1)
WFGA 3 474c-1(A21e-2)f  3.78e-1(2.17e-2)+ 342¢-1(2356-2)+ 3.49e-1(3.80e-2)+  3.04c-1(2.99¢-2)+  3.66e-1(6.70e-2)F  2.55¢-1(3.20¢-2)
4 8.04e-1(5.34e-2)+  5.86e-1(3.17e-2)+  6.00e-1(6.42e-2)+ 7.81e-1(1.78e-1)+  6.15e-1(1.13e-1)+  9.50e-1(1.50e-1)+  4.85¢-1(6.14e-2)
6 1.83e+0(3.74e-D)+  1.20e+0(1.52e-D)x  1.12e+0(1.55¢-D~  2.78e+0(435¢-1)+  2.26e+0(442e-1)+  2.56e+0(4.05¢-1)+  1.21e+0(2.18¢-1)
8 3.39e+0(1.48e+0)~  2.33e+0(5.25¢-1)x  2.15e+0(3.46¢-1)—  5.15e+0(5.66¢-1)+  4.22e+0(5.32¢-1)+  5.19e+0(4.73¢-1)+  2.55¢+0(5.66e-1)
10 327e+0(2.29¢+0)—  4.00e+0(9.92e-1)~  345e+0(3.75¢-1)—  7.46e+0(8.64e-1)+  6.61e+0(848¢-1)+ 7.03e+0(6.17e-1)+ 3.92e+0(7.04¢-1)
WFG5 3 207c-1(1.28¢2)—  3.01e-1(3.82e2)~  2.38¢-1(7.04c2)—  3.98¢-1(3.166-2)+  3.93¢-1(5.70¢-2)+  3.60e-1(741e-2)+  3.49-1(1.55¢-1)
4 7.09e-1(149%-1)—  5.32-1(445¢-2)—  4.97e-1(4.53¢-2)—  6.09e-1(6.70e-2)—  6.13e-1(5.55¢-2)—  9.11e-1(6.00e-2)~  8.68¢-1(7.81e-2)
6 2.38e+0247¢-1)+  1.07e+0(1.36e-1)—  1.38e+0(1.64c-1)—  1.89e+0(2.56e-1)+  1.52e+0(2.17e-1)—  2.13e+0(1.77e-1)+  1.71e+0(1.09-1)
8 4.63e+0(2.8%-1)+  2.11e+0(5.15¢-1)—  2.74e+0(4.8le-)x  4.13e+0(4.55¢-1)+  3.26e+0(442e-1)+  4.08e+0(2.55¢-1)+  2.88¢+0(2.00¢-1)
10 6.67e+0(3.78¢-1)+  2.48e+0(9.46¢-1)—  3.13e+0(5.04e-1)—  5.90e+0(5.30¢-1)+  5.16e+0(5.38¢-1)+  5.84e+0(5.37e-1)+  3.87e+0(3.50¢-1)
WFG6 3 552e-1(495¢2)F  6.19e-1(6.81c-2)+  5.70e-1(8.766-2)+ 5.71e-1(3326:2)+  5.65e-1(3.43¢-2)+  5.09-1(5.01e-2)~ _ 5.21e-1(I.15¢-1)
4 8.09-1(7.65e-2)~  7.62-19.60e2)~  8.14e-1(6.5le-2)~ 8.33e-1(744e-2)~  7.87e-1(7.30e-2)~  1.07e+0(7.09%-2)+ 8.09e-1(1.12e-1)
6 225¢+0(5.29¢-1)+  1.28e+0(1.52¢-1)—  1.52e+0(9.93¢-2)~  2.17e+0(3.22¢-1)+  1.74e+0(2.70e-1)+  2.52e+0(2.20e-1)+  1.60e+0(1.59%¢-1)
8 3.63e+0(9.69-1)+  1.50e+0(2.46e-1)—  2.66e+0(3.17e-1)~  3.96e+0(7.85¢-1)+ 3.4le+0(4.65e-1)+  4.60e+0(3.93e-1)+ 2.72e+0(2.95e-1)
10 6.42e+0(8.3%-1)+  1.27e+0(1.06e-1)—  3.67e+0(3.06e-1)+ 5.61e+0(7.46e-1)+ 4.68e+0(6.46e-1)+  6.05e+0(7.21e-1)+  3.38e+0(4.60e-1)
WFGT 3 547e-1(321e-2)T  538e-1(352e-2)+ 497e-1(3.13e-2)+ 4.36e-1(3.98¢-2)+  3.94c-1(446e-2)+  3.65e-1(5.17e-2)F  2.92e-1(242¢-2)
4 925e-1(9.05¢2)+  742e-1(3.50e-2)+  7.47e-13.15e-2)+  7.74e-1(1.3%-1)+  6.29¢-1(5.40e-2)+  8.46e-1(1.05¢-1)+  5.38e-1(5.32¢-2)
6 285e+0(3.54e-1)+  141e+0(1.08e-1)—  1.41e+0(1.36e-1)— 2.29e+0(4.59%-1)+ 1.74e+0(2.09e-1)+  2.45e+0(2.22e-1)+  1.61e+0(1.56e-1)
8 537e+0(4.28e-1)+  2.59%e+0(247e-1)—  2.40e+0(3.16e-1)—  4.51e+0(6.31e-1)+  3.62e+0(5.07e-1)+  4.68¢+0(3.37e-1)+  3.28e+0(2.02e-1)
10 7.77e+0(5A4le-1)+  3.50e+0(4.76e-1)— 347e+0(3.98¢-1)—  6.92e+0(5.90e-1)+  5.72e+0(6.38¢-1)+  6.70e+0(4.31e-1)+  4.85e+0(3.42¢-1)
WFG8 3 723137662+ 589129560~  4.72e-1(45762)—  6.59¢-15.09¢2)+  621c-1(447c-2)+  6.77c-1(4.74e-2)+  5.79-1(4.03¢-2)
4 1.19e+0(6.76e-2)+  1.01e+0(5.20e-2)—  9.25¢-1(5.15e-2)—  1.14e+0(8.61e-2)+  1.07e+0(7.07e-2)~  1.30e+0(7.86e-2)+ 1.07e+0(7.91e-2)
6 2.80e+0(3.88¢-1)+  1.82e+0(1.29%¢-1)—  1.96e+0(1.02¢-1)—  2.77e+0(1.80¢-1)+  2.58e+0(2.23¢-1)+  2.90e+0(221e-1)+  2.22¢+0(1.47e-1)
8 523e+0(4.86e-1)+  2.93e+0(4.96e-1)—  3.31e+0(2.44e-1)—  5.13e+0(3.86e-1)+  4.69e+0(4.63e-1)+  4.98e+0(3.05¢-1)+  3.78¢+0(3.27e-1)
10 7.43e+0(5.62e-1)+  2.74e+0(1.25¢+0)—  4.75e40(5.99e-1)—  7.03e+0(5.46¢-1)+  6.52e+0(3.98¢-1)+  6.74e+0(5.72¢-1)+  5.03e+0(3.92¢-1)
WFGO 3 5.82e-1(7.28¢-2)F  5.83¢-1(7.77e-2)+  5.56e-1(9.066-2)+  6.10e-1(1.00e-1)+  5.32e-1(1.12¢-1)+  451e-1(8.67e-2)F  3.82¢-1(8.04¢-2)
4 1.00e+0(1.88¢-1)+  8.56e-1(1.30¢-1)+  8.76e-1(1.43¢-1)+  1.00e+0(1.56e-1)+  8.59-1(2.01e-1)+  8.50e-1(I.15e-1)+  6.77¢-1(9.61e-2)
6 272e+03.83e-1)+  1.72¢40(2.90¢-1)+  1.66e+0(2.48¢-1)+ 2.44e+0(3.25¢-1)+  1.87e+0(2.59%-1)+  2.17e+0(1.80e-1)+  1.45¢+0(1.42¢-1)
8 5.14e+0(5.22¢-1)+  3.05e+0(4.65¢-1)+  2.82e+0291e-1)x~  4.80e+0(4.05¢-1)+  3.95¢+0(4.95¢-1)+  4.17e+0(3.83¢-1)+  2.76e+0(3.72¢-1)
10 7.30e+0(5.37e-1)+  4.30e+0(8.6le-1)~  3.81e+0(4.78c-)~  6.66e+0(5.44e-1)+ 547e+0(6.11e-1)+  5.75¢+0(4.84e-1)+ 3.98¢+0(4.51e-1)
/~]- 377474 16/10/19 T8/11/16 F17173 387374 730

Table 10: Statistical results of the HV value obtained by comparison algorithms on 21 DTLZ opti-
mization problems over 30 runs. Symbols ‘+’, ‘~’, ‘—’ denote LORA-MaOQO is statistically signif-
icantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss
results.

Problems M ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO
DTLZI 3 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)
4 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)
6 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)
DTLZ2 3 453e-2(2.22e-2)+  2.6le-1(446e-2)+  3.87e-1(6.59¢-3)—  1.55e-1(3.85e-2)+  2.49e-1(3.32e-2)+  3.49e-1(1.33e-2)+  3.77e-1(6.75¢-3)
4 6.06e-2(2.65¢-2)+  3.71e-1(6.43e-2)+  4.80e-1(1.34e-2)~  1.95e-1(3.26e-2)+  3.09¢-1(4.54e-2)+  3.87e-1(3.31e-2)+  4.75e-1(2.34e-2)
6 1.26e-1(1.87e-2)+  4.85e-1(4.22e-2)+  4.48e-1(7.23e-2)+  2.86e-1(4.80e-2)+  4.00e-1(4.15e-2)+  3.66e-1(3.09¢-2)+  6.09e-1(2.27e-2)
DTLZ3 3 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)
4 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)
6 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)
DTLZA 3 420e-4(2.03e-3)+  6.42e-2(5.54e-2)+  8.85e-2(7.53e-2)+  6.53e-2(3.42e-2)+  1.99e-1(6.05e-2)+  2.52e-1(6.75e-2)+  3.24e-1(9.98¢-2)
4 327e-3(6.73¢-3)+  8.79e-2(6.62¢-2)+  8.14e-2(5.85e-2)+  1.46e-1(5.25¢-2)+  2.52e-1(6.25e-2)+  3.66e-1(8.97e-2)~  3.93e-1(9.18¢-2)
6 2.14e-2(2.69e-2)+  2.05e-1(9.66e-2)+  1.44e-1(8.78e-2)+  3.16e-1(6.50e-2)+  3.53e-1(7.16e-2)+  5.12e-1(5.37e-2)~  5.17e-1(4.93e-2)
DTLZ5 3 749¢-3(1.0dc2)+  2.60e-2(1.04e2)+  8.60e-2(1.99¢-3)~  2.54¢-2(9.46e-3)+  4.66e-2(1.02¢-2)+  8.48¢-2(1.78¢-3)~ _ 8.53¢-2(2.03¢-3)
4 4.12e-3(591e-3)+  2.35e-2(7.10e-3)+  3.31e-2(4.30e-3)+  1.10e-2(4.90e-3)+  1.65e-2(7.08e-3)+  3.55e-2(4.96e-3)~  3.73e-2(3.97e-3)
6 1.75e-3(1.88e-3)+  1.28e-2(2.87e-3)—  8.26e-3(2.88e-3)~  5.75¢-3(3.24e-3)+  8.48¢-3(3.87e-3)x~  9.99e-3(3.78¢-3)x~  9.23e-3(3.37¢-3)
DTLZ6 3 39Ie-3(7.22e-3)+  0.00e+0(0.00e+0)+  0.00e+0(0.00e+0)+  0.00e+0(0.00e+0)+  0.00e+0(0.00e+0)+  3.52e-2(2.51e-2)+  4.91e-2(2.38¢-2)
4 1.78e-3(2.86e-3)+  0.00e+0(0.00e+0)+  2.07e-5(1.11e-4)+  0.00e+0(0.00e+0)+  0.00e+0(0.00e+0)+  2.60e-4(9.64e-4)+  7.45e-3(9.93e-3)
6 1.28e-3(2.18e-3)~  0.00e+0(0.00e+0)+  1.10e-5(5.88e-5)+  0.00e+0(0.00e+0)+  0.00e+0(0.00e+0)+  1.21e-0(6.50e-0)+  7.42e-4(2.53e-3)
DTLZ7 3 1.8le-1(4.40e-2)+  2.53e-1(9.02¢-3)~  2.8le-1(3.28e-2)—  1.44e-2(2.31e-2)+  2.11e-2(2.95e-2)+  2.23e-1(3.95e-2)+  2.47e-1(3.63e-2)
4 9.45e-2(3.19e-2)+ 1.95e-1(1.73e-2)~ 2.36e-1(8.48e-3)— 4.80e-4(2.04e-3)+ 1.20e-2(2.15e-2)+ 1.04e-1(4.79e-2)+ 1.88e-1(3.33e-2)
6 3.12e-2(1.83e-2)+  1.02e-1(1.04e-2)~  1.57e-1(1.62e-2)—  5.56e-4(2.99e-3)+  1.55e-2(1.81e-2)+  8.8le-4(1.91e-3)+  1.05e-1(2.61e-2)
+/~ /- 14/7/0 11/9/1 8/9/4 15/6/0 14/7/0 10/11/0
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Table 11: Statistical results of the HV value obtained by comparison algorithms on 27 WFG opti-
mization problems over 30 runs. Symbols ‘4, ‘~’, ‘—’ denote LORA-MaOQO is statistically signif-
icantly superior to, almost equivalent to, and inferior to the compared algorithms in the Wilcoxon
rank sum test (significance level is 0.05), respectively. The last row counts the total win/tie/loss

results

Problems M ParEGO KRVEA KTAZ CSEA REMO OREA LORA-MaOO
WEGI 3 192e-1(2.6562)— 1.09e-1(3.15¢- D)~ 625¢-2(3.98¢-2)+ 8.61e-2(491e-2)~ 1.02c-1(4.70e- )~ 1.57e-2(2.69¢-2)+  1.07e-1(3.15¢-2)
4 207e-1(2.96e-2)—  1.1de-1(544e-2)+ 7.27¢2(5.18¢-2)+  1.17e-1(5.34e-2)+  1.66e-1(3.54e-2)~  2.84e-2(3.66e-2)+  1.70e-1(4.15¢-2)
6 2.16e-1(8.50e-3)~ 146e-12.93e-2)+ Llle-1(4.9%-2)+ 123e-1(525¢-2)+ 1.76e-1(2.54e-2)+  1.12e-1(5.80e-2)+  2.11e-1(2.75¢-2)
WFG2 3 5.76e-1(3.88¢-2)+ 746e-1(2.87e-2)~ 7T.11e-1(3.38¢-2)+  6.57e-1(2.85¢-2)+ 6.65e-1(444e-2)+ 692e-1(2.96e-2)+  T42e-1(3.11e-2)
4 6.14e-1(3.28¢-2)+ 820e-1(3.33¢-2)—  7.36e-1(3.33e-2)+  7.23e-1(4.35e-2)+ 7.06e-1(4.68¢-2)+  7.21e-1(3.81e-2)+  7.79%-1(3.30¢-2)
6 646e-1(5.10e-2)+ 8.5le-1(3.38e-2)~  8.26¢-1(3.84c-2)x  7.80e-1(5.00e-2)+ 7.73e-1(5.46e-2)+  7.29¢-1(4.17e-2)+  8.3%-1(3.76¢-2)
WEG3 3 1.04e-1(19662)1 1.13e-1(1.80e-2+ 1.90e-12.71e-2)~ 1.20e-1(1.90e-2)+ 1.27e-120le2)+ 1.62e-1(2.11e-2)+  1.91e-1(2.20¢-2)
4 310e22.15e-2)+ 348e-2(14le2)+ 273¢2(1.70e-2)+  3.65e-220le2)+  4.07e-2(1.92e-2)+  3.10e-2(2.15e-2)+  5.57e-2(1.56¢-2)
6 1.10e-2(1.26e-2)—  1.39e-3(2.87¢-3)—  0.00e+0(0.00e+0)~  6.59%-5(2.13¢-4)~  2.96e-3(8.32¢-3)—  0.00e+0(0.00e+0)~  0.00e+0(0.00¢+0)
WFGA 3 174e-1(1.18e2) 1 2.18e-1(1.10e-2)F  244e-1(1.30e-2)+  237e-1(1.46e-2)+ 2.55¢-1(1.52e-2)F  2.66e-1(2.01e-2)+  2.98¢-1(1.58¢-2)
4 212e-109.87e-3)+  297e-1(1.52e-2)+  3.18e-1201e-2)+  2.96e-1(2.19¢-2)+ 3.33e-1(2.24e-2)+  2.97e-1(1.89e-2)+  3.91e-1(1.96e-2)
6 2.50e-1(1.18e-2)+ 4.09-1(3.09e-2)+ 438¢-1(223¢-2)+  3.16e-1(250e-2)+ 3.78e-1(2.82e-2)+  3.19e-1(2.08e-2)+  4.78e-1(2.39%-2)
WFG5 3 298e-1(133¢2)— 2.55¢-1(2.28¢-2)~ 2.98e-1(d.75¢-2)—  2.03¢-1(1.32¢-2)+ 2.08¢-1(2.74e-2)+  2.45¢-13.49¢-2)+  2.51e-1(6.54¢-2)
4 3.19e-1(2.64e-2)— 321e-1(2.50e-2)—  3.63e-1(337e-2)—  2.92e-1(221e2)— 2.83e-1(2.44e-2)—  2.16e-1(1.31e-2)—  2.05e-1(3.01e-2)
6 3.39e-12.37e-2)—  4.17e-13.07e-2)—  3.72e-1(3.17¢-2)—  3.46e-1251e-2)—  3.53e-1(2.43e-2)—  2.78e-1(1.48e-2)—  2.66e-1(2.60e-2)
WFG6 3 115e-1(224e2) 1 1.20e-1(2.10e-2)F  1.59e-1(3.72¢-2)+  1.29e-1(2.01e-2)+ 1.31e-1(1.90e2)F  1.87e-1(1.98¢-2)~  1.85¢-1(4.25¢-2)
4 183e-1(1.87e2)+ 2.18¢-1(346e-2)x  2.17¢-124%-2)~  1.87e-1(2.16e-2)+ 2.05e-1(2.17e-2)~  1.96e-1(1.60e-2)+  2.33e-1(5.01e-2)
6 230e-1(2.14e-2)+ 2.75e-1(4.76e-2)+ 3.15e-12.12e2)x  249e-1(1.89¢-2)+ 2.93e-1(3.03¢-2)+ 242e-1(1.28¢-2)+  3.11e-1(2.91e-2)
WFGT 3 143e-1(8.60e-3)+ I14de-I(1.11e-2)+ 1.75e-1(1.26e-2)+ 19Te-1(1.74e-2)+ 2.13e-1(2.05e-2)+  2.53e-1(1.32e-2)+  2.87e-1(1.30e-2)
4 19le-1(145e2)+ 222e-1(1.23e-2)+  236e-1(1.0%e-2)+  242e-1(197e-2)+ 2.90e-1(2.08¢-2)+  2.83e-1(1.74e-2)+  3.66e-1(2.21e-2)
6 225c-1(142e-2)+ 3.24e-12.49e-2)+  338¢-12.8%¢-2)+  3.16e-13.37e-2)+ 3.77e-1(2.50e-2)+  3.07¢-1(1.80e-2)+  4.06e-1(2.28¢-2)
WFG8 3 93%2(10le2)+ 1.48¢-1(9.46e-3)+ 21de-1(1.61e-2)—  1.24e-1(1.35e2)+ 1.32e-1(1.24e2)+ 1.60e-1(144e-2)+  1.84e-1(9.51e-3)
4 132e-1(1.22¢2)+  2.03e-1(1.81e2)~  2.17e-1(1.76e-2)—  1.57e-1(1.81e-2)+ 1.79%-1(1.75e-2)+  1.80e-1(1.38e-2)+  1.95e-1(2.50e-2)
6  1.8le-1(1.26e-2)+ 2.59%-1(237e-2)— 258¢-1(1.13¢-2)—  2.18e-1(2.14e-2)+ 2.62e-1(2.31e-2)—  2.17e-1(1.19e-2)+  2.40e-1(2.32¢-2)
WFG9 3 122e-1(1.94e-2)+ 128¢-1(2.33e-2)+ 1.50e-1(321e-2)f 1.39e-1(258¢-2)+ 1.67e-1(3.64e-2)+ 2.23e-1(2.82e-2)+  246e-1(3.68¢-2)
4 174e-13.27e2+ 2.08¢-1(3.51e-2)+  2.04e-1290e-2)+  1.87e-1(3.11e-2)+  2.35e-1(4.04e-2)+  2.63e-1(2.48¢-2)+  3.06e-1(4.82¢-2)
6 2.14e-1(2.85e-2)+ 331e-1(5.50e-2)+ 3.65¢-1(5.25¢-2)x  2.76e-1(3.85¢-2)+ 3.62e-1(3.76e-2)+  2.90e-1(2.96e-2)+  3.89%-1(3.60e-2)
T/ ~]- 207176 16/6/5 157616 23202 20374 230202

Table 12: Statistical results of the IGD value obtained by comparison algorithms on 5D, 10D, and
20D DTLZ optimization problems over 30 runs. Symbols ‘+’, ‘~’, ‘=’ denote LORA-MaOO is
statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms
in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total

win/tie/loss results.

Problems D ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO
DTLZI 5 1.24c+1(4.40c+0)+ 7.19¢+0(3.77¢+0)+  4.00e+0(2.28c+0)~ 5.71c+0(2.66c+0)~ 597¢+0(2.98c+0)~ 2.27¢+0(1.45¢+0)—  4.78¢+0(2.80c+0)
10 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)~ 6.30e+1(1.69e+1)+ 5.06e+1(1.49%+1)+ 4.44e+1(1.38e+1)~ 4.35e+1(1.80e+1)
20 1.59e+2(1.56e+1)—  3.12e42(3.79e+ 1)~ 2.48e+2(3.66e+1)—  2.35e+2(3.47e+1)—  2.01e+2(3.95¢+1)—  2.94e+2(3.78e+1)~  2.91e+2(3.98¢+1)
DTLZ2 5 18Ie-I(1.26e-2)+  6.06e-2(2.40e-3)+  4.39%e-2(1.11e-3)~  1.03e-1(7.78e-3)+  7.94e-2(7.71e-3)+  6.55¢-2(6.87e-3)+  4.36e-2(2.15¢-3)
10 338e-12.84e2)+  1.32e-12.77e2)+  6.17e-2(3.13e-3)~  2.26e-1(2.61e-2)+  1.65e-1(2.18¢-2)+  8.59e-2(8.51e-3)+  6.19e-2(3.48¢-3)
20 7.15e-1(1.21e-1)+  6.66e-1(7.34e-2)+  2.85e-1(5.83e-2)+  5.17e-1(6.66e-2)+  4.00e-1(7.02e-2)+  1.62e-1(3.35e-2)+  1.02e-1(1.36e-2)
DTLZ3 5 3.17e+I(I.17e+)+ 191e+1(9.12¢+0)~ IL.17e+1(6.12e+0)~ 1.58e+1(7.60e+0)~ 1.61e+1(9.16e+0)~ 6.78¢+0(4.79¢+0)—  1.51e+1(9.40e+0)
10 1.66e+2(1.31e+1)+ 2.43e+2(4.6le+1)+ 1.52e+2(4.73e+1)~ 1.62e+2(4.84e+1)~ 1.49e+2(3.88e+1)~ 1.26e+2(3.18e+1)— 1.57e+2(3.83e+1)
20 4.32e+2(1.78e+1)—  9.11e+2(8.72e+1)~ 7.23e+2(1.38e+2)—  7.12e+2(1.10e+2)— 5.86e+2(1.18e+2)— 7.81e+2(1.20e+2)— 8.58e+2(1.31e+2)
DTLZA 5 433e1(355¢2)~ 135c-1(6.05e2)~ 1.68c-1(122c-1)~ 433c-1(1.54e-+  1.60e-1(6.12¢-2)~  29lc-124de-D~  3.96e-1(3.71c-1)
10 6.70e-1(7.61e-2)+  3.32e-1(1.11e-1)4+  3.49e-1(1.09e-1)+  4.62e-1(1.36e-1)+  2.3le-1(1.15e-1)+  2.39%-1(1.65e-1)+  1.8%e-1(2.34e-1)
20 1.02e+0(1.04e-1)+  832-1(1.36e-1)+  7.76e-1(1.29e-1)+  7.1le-1(1.74e-1)+  5.51e-1(1.18e-1)+  5.27e-12.75e-1)+  4.01e-1(3.28¢-1)
DTLZ5 5 4.16e-2(9.61e-3)+  2.31e-2(3.02e-3)+  3.57e-3(2.35e-4)—  2.18e-2(3.22e-3)+  1.49e-2(3.28e-3)+  1.12e-2(5.73e-3)+  4.20e-3(6.92e-4)
10 2.16e-1(4.45¢-2)+  1.19e-13.38e-2)+  1.34e2(2.83¢-3)~  1.18e-1(2.56e-2)+  7.36e-2(2.03e-2)+  2.02e-2(4.77e-3)+  1.26e-2(2.55¢-3)
20 6.05e-1(1.43e-1)+  6.16e-1(7.41e-2)+  2.13e-1(5.07e-2)+  4.84e-1(8.14e-2)+  3.60e-1(8.07e-2)+  8.11e-2(3.39%e-2)+  4.32e-2(1.45¢-2)
DTLZ6 5 457e2(l.1le2)+  4.69e-1(154e-1)+  2.68e-1(1.0le-1)+  7.65e-1(4.09e-1)+  4.08¢-1(2.5%-1)+  2.57e-2(2.92¢-2)~ _ 2.98¢-2(3.53¢-2)
10 3.15e-1(1.62e-1)+  3.06e+0(5.21e-1)+  1.83e+0(4.37e-1)+  4.86e+0(6.30e-1)+  4.27e+0(5.4%-1)+  3.09e-1(3.99e-1)+  1.18e-1(1.57e-1)
20 3.54e+0(1.04e+0)~  1.10e+1(7.15e-1)+  8.72e+0(1.0le+0)~  1.33e+1(8.48e-1)+  1.23e+1(7.84e-1)+ 7.06e+0(3.05¢+0)~  6.81e+0(5.11e+0)
DTLZ7 5 1.87e-12.40e-2)+  1.07e-1(1.50e-2)+  6.66e-2(4.28e-2)—  5.67e-1(2.78e-1)+  2.30e-1(1.07e-1)+  3.05e-1(2.0Te-I)+  T.4Te-1(1.50e-T)
10 245¢-1(4.80e-2)+  1.35e-1(2.37e-2)x~  2.19e-1(240e-1)—  1.75¢+0(6.32e-1)+  1.27e+0(5.65e-1)+  2.73e-1(1.58¢-1)+  2.0le-1(1.93e-1)
20 2.67e-1(4.98e-2)~  4.17e-12.04e-1)+  4.69e-1(2.56e-1)+  3.69e+0(9.09e-1)+  2.62e+0(7.33e-1)+  4.77e-1(2.53e-1)+  2.9%e-1(2.51e-1)
+/~ /- 16/3/2 16/5/0 7915 16/3/2 15/472 12/5/4

I ANALYSIS ON TIME COMPLEXITY

This section briefly analyze the time complexity of LORA-MaOO and the compared SAEAs. For
the convenience of time complexity analysis, we set the following notations:

T,,: the number of training samples.

T'n: the number of test samples.

M:: the number of objectives.

g: the number of generations for reproducing candidate solutions.
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Table 13: Statistical results of the IGD+ value obtained by comparison algorithms on 5D, 10D, and
20D DTLZ optimization problems over 30 runs. Symbols ‘+’, ‘~’, ‘—’ denote LORA-MaOO is
statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms
in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total

win/tie/loss results.

Problems D ParEGO KRVEA KTA2 CSEA REMO OREA LORA-MaOO
DTLZI 5 1.24e+1(4.40e+0)+ 7.19e+0(3.77e+0)+ 4.00e+0(2.28e+0)~ 5.70e+0(2.67e+0)~ 5.97e+0(2.98e+0)~ 2.27e+0(1.45e+0)— 4.78e+0(2.81e+0)
10 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)~ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)~ 4.35e+1(1.80e+1)
20  1.59e+2(1.56e+1)—  3.12e+2(3.79%e+1)~ 2.48e+2(3.66e+1)— 2.35e+2(3.47e+1)— 2.0le+2(3.95e+1)— 2.94e+2(3.78e+1)~ 2.91e+2(3.98e+1)
DTLZ2 5 1.00e-1(798¢3)F  2.86e-2(0.66e-4)+  1.94e-2(620e-4)—  524c-2(6.84e-3)+  3.83c-2(4.18¢3)F  3.926-2(5.96e-3)+  2.30e-2(2.07¢-3)
10 2.6le-1(3.63e-2)+  9.22e-2(2.57e-2)+  3.82e-2(3.29¢-3)—  1.60e-1(2.76e-2)+  1.0le-1(1.75e-2)+  5.86e-2(8.28e-3)+  4.47e-2(3.35¢-3)
20 65le-1(13%-1)+  6.36e-1(7.19e-2)+  2.61e-1(5.87e-2)+  4.69e-1(6.69e-2)+  3.56e-1(8.04e-2)+  1.39-1(3.02e-2)+  8.36e-2(1.22¢-2)
DTLZ3 5 3.17etl(L.17e+1)+ 1.91e+1(9.13e+0)~ 1.17e+1(6.15e+0)~ 1.58e+1(7.61e+t0)~ 1.61e+1(9.16e+0)~ 6.77e+0(4.80e+0)— 1.51e+1(9.41e+0)
10 1.66e+2(1.31e+1)+ 2.43e+2(4.6le+D)+  1.52e+2(4.73e+1)~  1.62e+2(4.84e+D)~  1.49e+2(3.88e+1)~  1.26e+2(3.18e+1)—  1.57e+2(3.83e+1)
20 4.32e+2(1.78e+1)—  9.11e+2(8.72e+1)~  7.23e+2(1.38e+2)—  7.12e+2(1.10e+2)—  5.86e+2(1.18e+2)—  7.81e+2(1.20e+2)—  8.58e+2(1.31e+2)
DTLZ4 5 1.88¢-1(3.03c2)~ T4le2(455¢2)~ 7.39¢2(5.63c2)~ 1.80c-1(7.75¢2)+  6.02¢2(2.08¢2)~  1.24e-1(1.32e-D~  1.96e-1(2.08¢-1)
10 4.57e-1(7.52e-2)+  2.66e-1(1.02e-1)+  2.33e-1(8.36e-2)+  2.34e-1(7.76e-2)+  1.32e-1(6.41e-2)+  1.07e-1(9.68e-2)+  8.96e-2(1.25e-1)
20 6.79-1(138e-1)+  7.74e-1(1.34e-1)+  6.65e-1(1.18e-1)+  5.50e-1(1.44e-1)+  4.63e-1(822e-2)+  3.16e-1(1.90e-1)+  2.27e-1(2.02¢-1)
DTLZ5 5 237e-2(3.64e-3)+  1.30e-2(1.76e-3)+  1.65e-3(1.03e-4)—  1.26e-2(2.08¢-3)+  7.74e-3(1.49e-3)+  6.37e-3(2.67e-3)+  2.48e-3(5.73e-4)
10 1.60e-1(4.40e-2)+  9.18e-2(2.76e-2)+  8.66e-3(1.96e-3)~  9.58e-2(2.60e-2)+  5.78¢-2(1.81e-2)+  1.59e-2(5.12e-3)+  9.40e-3(1.93¢-3)
20 5.52e-1(1.50e-1)+  591e-1(7.98e-2)+  2.0le-1(5.29e-2)+  4.67e-1(8.41e-2)+  3.49e-1(8.31e-2)+  7.69e-2(3.31e-2)+  3.93e-2(1.41e-2)
DTLZ6 5 247¢2(6.71e3)+  3.89e-1(1.88e-1)+  2.13e-1(1.02e-1)+  7.13e-1(442e-1)+  3.64c-1(2.75¢-1)+  9.09¢-3(9.88¢-3)~  1.17¢-2(1.30e-2)
10 242e-1(1.07e-1)+  3.05e+0(5.23e-1)+  1.82e+0(4.48e-1)+  4.85e+0(6.38e-1)+  4.27e+0(5.48e-1)+  2.35e-1(4.14e-1)+  6.74e-2(1.55e-1)
20 3.49e+0(1.06e+0)~  1.10e+1(7.14e-1)+ 8.71e+0(1.0le+0)~  1.33e+1(8.47e-1)+  1.23e+1(7.85e-1)+  7.04e+0(3.06e+0)~  6.77e+0(5.15e+0)
DTLZ7 5 7.68e-2(1.31e-2)+  4.68e-2(4.64e-3)+  3.52e-2(2.90e-2)~  4.46e-1(2.65e-1)+  1.55e-1(8.32e-2)+  2.04e-1(1.80e-1)+  8.42e-2(I.14e-1)
10 1.10e-1(357e-2)+  7.39e-2(1.52e-2)~  1.54e-1(1.97e-1)—  1.65e+0(6.43e-1)+  1.20e+0(5.73e-1)+  1.79e-1(1.20e-1)+  1.38e-1(1.53e-1)
20  1.38e-1(4.67e-2)~  3.30e-1(1.80e-1)4+  3.60e-1(2.27e-1)+  3.65e+0(9.08e-1)+  2.61e+0(7.28e-1)+  4.15e-1(2.30e-1)4+  2.28e-1(2.10e-1)
+/~ [— 16/312 16/5/0 71816 16/3/2 15/412 12/5/4

Table 14: Statistical results of the HV value obtained by comparison algorithms on 5D, 10D, and
20D DTLZ optimization problems over 30 runs. Symbols ‘+’, ‘~’, ‘=’ denote LORA-MaOO is
statistically significantly superior to, almost equivalent to, and inferior to the compared algorithms
in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last row counts the total

win/tie/loss results.

Problems D ParEGO KRVEA KTAZ CSEA REMO OREA LORA-MaOO
DILZI 5 0.00e+0(0.00e+0)~ 0.00e+0(0.00e+0)~ 0.00e+0(0.00¢+0)~ 0.006+0(0.00c+0)~ 0.00e+0(0.00c+0)~  6.38¢-4(344c-3)~  1.106-2(5.92¢-2)
10 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00¢+0)x  0.00e+0(0.00e+0)~  0.00¢+0(0.00e+0)~  0.00¢+0(0.00e+0)
20 0.00e+0(0.00e+0)~  0.00e+0(0.00¢+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~ 0.00e+0(0.00e+0)~  0.00e+0(0.00¢+0)
DILZZ 5  2.15e-1(1.98¢-2)+  4.00e-1(2.88¢-3)+  426e-1(1.70e-3)—  3.39¢-1(1.61e-2)+  3.78¢-1(1.08¢-2)+  3.83e-1(1.22¢-2)+  4.21e-1(4.35¢-3)
10 453e2222e2)+  2.6le-1(446e-2)+  387e-1(6.5%-3)—  1.55e-1(3.85¢-2)+  249e-1(3.32e-2)+  349-1(1.33e-2)0+  3.77e-1(6.75¢-3)
20 1.02e-3(344e3)+  T4le-5(3.T4e-d)+  831e-2(4.46e-2)+  591e-3(9.22¢-3)+  3.81e-2(247e-2)+  2.38e-1(2.81e-2)+  3.0le-1(2.25¢-2)
DILZ3 5 0.00e+0(0.00e+0)~ 0.00e+0(0.00e+0)~ 0.00e+0(0.00e+0)~ 0.00e+0(0.00e+0)~ _0.00e+0(0.00e+0)~ _0.00e+0(0.00e+0)~ _0.00e+0(0.00e+0)
10 0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00¢+0)~  0.00e+0(0.00¢+0)x  0.00e+0(0.00e+0)~  0.00¢+0(0.00e+0)~  0.00¢+0(0.00e+0)
20 0.00e+0(0.00e+0)x  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)x  0.00e+0(0.00e+0)x  0.00e+0(0.00¢+0)
DILZA 5 228¢2(2.65¢-2)%  293¢-1(7.80e2)~  302e-1(8.32¢-0)~  1.87e-1(5.36e-2)+  3.07e-1(5.76e- D)~  2.65e-1(I.1Te-)~  2.49-1(1.66e-1)
10 420e-42.03e-3)+  642e-2(5.54e-2)+  8.85¢-2(753¢-2)+  653e2(342e2)+  1.99e-1(6.05¢-2)+  2.52e-1(6.75¢-2)+  3.24e-1(9.98¢-2)
20 0.00e+0(0.00e+0)+  0.00e+0(0.00e+0)+  8.09¢-4(2.67e-3)+  1.20e-3(5.76e-3)+  6.38e-3(8.46e-3)+  8.86e-2(6.97e-2)+  1.97e-1(1.08e-1)
DILZ5 5 7.09¢2(285¢-3)+  793¢-2(2.59¢-3)+  9.36e-2(1.60e-4)—  8.00e-2(2.29¢-3)+  8.58¢-2(249¢-3)+  9.14e-2(646e-4)+  9.27¢-2(5.11e-4)
10 7.49¢-3(1.04e2)+  2.60e-2(1.04¢-2)+  8.60e-2(1.99¢-3)x~  2.54e-2(9.46e-3)+  4.66e-2(1.02¢-2)+  8.48¢-2(1.78e-3)~  8.53¢-2(2.03¢-3)
20 4.12e-5222e-4)+  0.00e+0(0.00e+0)+  1.00e-2(1.02e-2)+  0.00e+0(0.00e+0)+  9.09e-4(2.11e-3)+  5.09¢-2(7.32e-3)+  6.15¢-2(7.35¢-3)
DTLZ6 5  652e2(755¢3)+  6.06e-3(1.28e-2)+  3.10e-2(1.98¢-2)+  3.56e-3(1.03¢-2)+  1.93¢-2(2.10e-2)+  8.700-2(8.64¢-3)—  7.63¢-2(1.94¢-2)
10 391e-3(7.22¢-3)+  0.00e+0(0.00e+0)+  0.00e+0(0.00¢+0)+  0.00e+0(0.00¢+0)+  0.00e+0(0.00e+0)+  3.52e-2(2.51e-2)+  4.91e-2(2.38¢-2)
20 0.00e+0(0.00e+0)~  0.00e+0(0.00¢+0)~  0.00e+0(0.00e+0)~  0.00¢+0(0.00e+0)~  0.00e+0(0.00e+0)~  0.00e+0(0.00e+0)~  2.06e-3(7.33¢-3)
DILZT 5 229¢-1(223¢-2)+  282e-1(5.98¢-3)+  3.08¢-1(7.28¢-3)—  1.90e-13.80e-2)+  2.24c-1241e-2)+  249e-1(4.23¢-2)+  2.84e-1(3.96¢-2)
10 18le-1(440e2)+  253¢-19.02e3)~  28le-1(328e-2)—  1.44e-2(2.31e-2)+  2.11e-2(2.95¢-2)+  2.23e-1(3.95¢-2)+  2.47e-1(3.63¢-2)
20 1.5%-1(485¢-2)+  1.56e-1(4.53¢2)+  221e-1(3.02¢-2)x~  0.00e+0(0.00e+0)+  1.56e-6(8.40e-6)+  1.15e-1(4.03e-2)+  2.03e-1(4.17¢-2)
T/ ~]- T47770 12/970 6/10/5 147770 13/8/0 T1/971

e p: the population size for a generation.

The model used in LORA-MaOO is Gaussian Process, the training time complexity is analyzed as

follow

S:

e Time complexity of covariance matrix computation is O(772)

e Time complexity of Cholesky decomposition and computation of likelihood: O(T3)

The prediction time complexity is analyzed as follows:

e Time complexity of computing the covariance between test sample and training samples:
O(Tn * TN)

e Time complexity of predicting the mean: O(T), * Tn)

e Time complexity of predicting the variance: O(T? * Ty)
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In summary, the overall training complexity is O(772), and the overall prediction complexity is

Now we analyze the time complexity of model-based optimization algorithms, for each iteration, the
number of test samples is p* g, so the total number of test samples is approximately Ty = T, xp*g.

For LORA-MaOO with a M -objective optimization problem:

e Time complexity of calculating ordinal values is O(T}, * T},4), where T},4 is the number
of non-dominated solutions in the archive. When calculating artificial ordinal relations, an
additional time complexity for KNN clustering is O(7T;,). As T,, > T4, we have overall
time complexity O(T2).

e Time complexity of training an ordinal model and M — 1 angular models is O(T3 * M).
e Time complexity of prediction in the ordinal model is O(T2 * g * p).
e The time complexity of prediction in M — 1 angular models: O(T2 x p x (M — 1)).
e The overtime time complexity in models for LORA-MaOO:
O(T3 % (M +gxp+p+M—p)+T3) = O(T; x(gp+pxM)) = O(T; xp*(g+ M)).

It can be observed that the time complexity of calculating ordinal value is trivial.
In comparison, for other optimization algorithms with M surrogate models:
e The time complexity of training models: O(T2 x M).
e The time complexity of prediction: O(T3 * g * p x M).
e Time overtime time complexity in models: O(T2 x M x (1 + g+ p)) ~ O(T32 xp* g+ M).

For other optimization algorithms with only one surrogate model:
e Time overtime time complexity: O(Ts * (1 + g x p)) = O(T3 * p * g).

Therefore, increasing the number of objectives M has limited impact on the time cost of LORA-
MaOO (O(T2 « p = (g + M))), but for the comparison algorithms with M surrogate models, their
time cost would increase rapidly (O(T2  p * g x M)).

Although LORA-MOO has M surrogate models in total, its time complexity does not significantly
larger than the time complexity of optimization algorithms with only one surrogate model (O(77 *

P*g)).
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