
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALINGCACHE: EXTREME ACCELERATION OF DITS
THROUGH DIFFERENCE SCALING AND DYNAMIC
INTERVAL CACHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Transformers (DiTs) have emerged as powerful generative models, but
their iterative denoising structure and deep transformer blocks incur substantial
computational overhead, limiting the accessibility and practical deployment of high-
quality video generation. To address this bottleneck, we propose ScalingCache,
a training-free acceleration framework specifically designed for DiTs. Scaling-
Cache exploits the inherent redundancy in model representations by performing
lightweight offline analysis on a small number of samples and dynamically reusing
previously computed activations during inference, thereby avoiding full computa-
tion at certain denoising steps. Experimental results demonstrate that ScalingCache
achieves significant acceleration in both image and video generation tasks while
maintaining near-lossless generation quality. On widely used video generation
models including Wan2.1 and HunyuanVideo, it achieves approximately 2.5×
acceleration with only 0.5% drop in VBench scores; on FLUX, it achieves 3.1×
near-lossless acceleration, with human preference tests showing comparable quality
to original outputs. Moreover, under similar acceleration ratios, ScalingCache out-
performs prior state-of-the-art caching strategies, achieving a 45% reduction in
LPIPS for text-to-image generation and 20−30% reduction for text-to-video gener-
ation, highlighting its superior fidelity preservation.

1 INTRODUCTION

Recent advances in visual generation have established Diffusion Transformers (DiTs) as the domi-
nant paradigm(Peebles & Xie, 2023), achieving state-of-the-art performance in modeling complex
spatiotemporal patterns. However, their iterative denoising process incurs substantial computational
cost, with generating even a few seconds of video often requiring several minutes(Sun et al., 2024;
Wan et al., 2025). This efficiency bottleneck motivates the development of effective lightweight
acceleration strategies.

Acceleration methods for DiTs can be broadly categorized into training-based and non-training-based
approaches. Training-based methods, such as distillation(Zhang et al., 2025b), require large-scale data
and computation, whereas non-training-based methods—including feature caching, sparsification(Xi
et al., 2025; Xia et al., 2025; Yang et al., 2025), and quantization(Shang et al., 2023; Li et al., 2025;
Zhang et al., 2025a)—can accelerate inference without additional training. Among these, feature
caching leverages the temporal similarity between adjacent steps to improve efficiency. While all
feature caching strategies are inherently lossy, the approximation error of existing methods remains
too significant for professional-grade video generation, which demands near-lossless quality and high
fidelity. This necessitates the development of more efficient and less destructive caching mechanisms.

The fundamental challenge of feature caching revolves around two core questions: how to use the
cache and when to use it. For the former, naive approach is to directly reuse cached features, but this
method faces a critical limitation: as temporal distance increases, feature similarity decays rapidly,
leading to significant divergence. For the latter, a common strategy is to recompute features at fixed
intervals, yet this rigid approach lacks the flexibility needed to adapt to the model’s dynamic behavior.

Building on these two fundamental issues, prior studies have proposed various solutions. However,
these approaches either lack flexibility(Chen et al., 2024; Liu et al., 2025b; Zhao et al., 2025) or fail to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fully leverage the output features of each block to reduce prediction errors(Zhou et al., 2025; Liu et al.,
2025a). To address these limitations, we propose two complementary strategies. First, we develop
a more efficient predictive paradigm that mitigates the limitations of relying solely on differential
scaling, while avoiding the exponential growth of activation caches required by higher-order taylor
expansions. Second, we design a dynamic caching strategy that adaptively adjusts computational
intervals during the denoising process.

Although Taylorseer(Liu et al., 2025b) employs higher-order Taylor expansions for block-level
feature prediction within each module, increasing the expansion order provides little improvement in
final performance while significantly increasing the storage and read/write overhead of the caches.
Moreover, relying solely on first-order differences is insufficient to capture dynamic feature variations.
This limitation motivates us to explore more efficient and expressive prediction paradigms.

2 6 10 14 18 22 26 30 34 38 42 46
step

0
3
6
9

12
15
18
21
24
27

bl
oc

k

0.4

0.5

0.6

Figure 1: Lower values of σ
(
∥y(0) −

y∥1 − ∥y(1) − y∥1
)

indicate that the
current feature is more similar to the
zero-order feature.

0 10 20 30 40 50
step

0.0

0.2

0.4

0.6

0.8

1.0

L1
 re

la
tiv

e
er

ro
r

Taylorseer, Sf = 2, N = 2
Taylorseer, Sf = 4, N = 2
Taylorseer, Sf = 6, N = 3
Ours(ScalingCache)

S f= 2, N=2

S f=4, N=2

S f= 6, N=3
Ours

1.50

1.75

2.00

2.25

2.50

2.75

3.00

sp
ee

d
up

 ×

1.92×
1.85×

2.50×
2.63×

Figure 2: ScalingCache consistently achieves a higher
acceleration ratio and lower L1 relative error compared
to Taylorseer when evaluating the hidden state of the
last block at each step under different caching strategies.

We observed that for certain transformer blocks at specific time steps, directly reusing cached pre-
timestep features y(0) yields smaller errors relative to full computation than applying first-order
features y(1) as shown in Figure 1. This finding suggests that combining the y(0) and y(1) is more
effective than relying solely on either, motivating our introduction of differential scaling coefficients
for each block are precomputed offline and applied during inference. During inference stage, we
leverage precomputed differential scaling coefficient α for each time step and transformer block,
enabling substantial improvements in generation quality.

The importance of different denoising steps varies significantly, making fixed cache intervals subopti-
mal. For instance, the initial full-computation steps Sf are particularly critical: when Sf=2 and the
full-computation interval N=2, the overall speedup is lower compared to the case where Sf=6 and
N=3, yet the denoised output deviates more significantly from the original result as shown in Figure
2. Although several studies, including Teacache(Liu et al., 2025a) and Easycache(Zhou et al., 2025),
have proposed dynamic caching strategies, these approaches typically base their policies only on the
input to the first block and the output of the last block, without fully considering the dynamics of
each intermediate block.

To this end, we propose ScalingCache, a caching framework that operates directly on hidden states
of the transformer block to accelerate DiT inference. Our contributions are summarized as follows:

• Cache prediction with differential scaling optimization. We computed differential scaling
coefficients for each time step and transformer block offline using a small set of samples,
enabling accurate cache-based prediction.

• Runtime adaptive dynamic interval caching strategy. We propose an adaptive dynamic cache
prediction approach that leverages both the outputs of each block and the variation of errors
during computation, allowing the interval of full step computations to be adjusted adaptively.

• By synergistically combining the above modules for extreme acceleration, Scaling-
Cache achieves significant speedup while maintaining near-lossless generation quality.
Compared with prior state-of-the-art caching strategies, ScalingCache also demonstrates
superior fidelity, achieving a 45% reduction in LPIPS for image generation tasks and a
20–30% reduction for video generation tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Frame 10 Frame 25 Frame 50

Frame 10 Frame 25 Frame 50

Frame 10 Frame 25 Frame 50

B
as

el
in

e
Ta

yl
or

se
er

O
ur

s

(a) Prompt: The camera orbits around a bustling city
square at dusk. Taylorseer’s scene generation is highly
blurry, with a significant discrepancy compared to the
original video.

Frame 0 Frame 10 Frame 50

Frame 0 Frame 10 Frame 50

Frame 0 Frame 10 Frame 50

B
as

el
in

e
Ta

yl
or

se
er

O
ur

s

(b) Prompt: A sleek motorcycle shreds through neon-lit
alleyways, bullets sparking off dumpsters. Taylorseer’s
character is riding the motorcycle in reverse, and the
motorcycle disappears at the moment it flies off.

Frame 13 Frame 35 Frame 75

Frame 13 Frame 35 Frame 75

Frame 13 Frame 35 Frame 75

B
as

el
in

e
Ta

yl
or

se
er

O
ur

s

(c) Prompt: CG animation digital art, a sleek and ad-
vanced robot standing in the bustling center of Times
Square. Taylorseer exhibited inconsistent lighting ef-
fects on the robot, with variations between the front
and rear.

The skyline of Rio de Janeiro
 with "ICLR 2026" written

 in fireworks in the sky. An elephant under the sea.
Three dogs and one cats

sitting on the grass.

B
as

el
in

e
Ta

yl
or

se
er

O
ur

s

(d) In text-to-image generation task, Taylorseer(1.9×)
failed to generate the ”ICLR 2026” text in the first im-
age, produced only one ivory tusk in the second image,
and omitted the cat in the third image. In contrast, our
method (2.2×) consistently ensured optimal results.

Figure 3: Video and image generation results on Wan2.1-14B and FLUX 1.dev. We highlight
challenging scenarios where previous state-of-the-art methods (e.g., Taylorseer) produce noticeable
artifacts or inconsistencies, while our method achieves nearly identical visual fidelity to the original
videos/images even under a high acceleration factor.

2 RELATED WORK

Although effective in reducing computational cost, existing caching strategies such as DeepCache(Ma
et al., 2024b) and Faster Diffusion(Li et al., 2023) have been developed specifically for the U-Net
architecture, leveraging its unique characteristics for feature reuse. Another approach, Cache-Me-if-
You-Can(Wimbauer et al., 2024), further incorporates teacher-student imitation to minimize caching
artifacts. Given the high computational demands of the prevailing DiTs architecture, researchers
are developing dedicated caching mechanisms for its transformer-based paradigm to address the
challenge of transferring U-Net-oriented optimization methods.

Predictive Hidden-State Caching in Diffusion Transformers. Caching approaches, such as AB
Cache (Yu et al., 2025), PAB (Zhao et al., 2025), and TeaCache (Liu et al., 2025a), focus on directly
reusing previously computed features without explicitly modeling their temporal evolution. While
these methods reduce redundant computation, they often suffer from error accumulation and limited
adaptability across different noise levels or generation conditions. ∆-DiT (Chen et al., 2024) first
introduced delta-based caching by incrementally updating attention and MLP activations across
timesteps. The ToCa series (Zou et al., 2025; 2024) extend this idea by introducing dynamic feature
correction, which alleviates iterative error accumulation during cache reuse. Building on this line,
Taylorseer (Liu et al., 2025b) further enhances predictive caching by constructing cross-timestep
mappings that better preserve information flow in isotropic architectures. By leveraging the smooth
continuity of hidden states across adjacent timesteps, these approaches achieve high efficiency without
runtime scheduling, while offering stronger robustness than naive cache reuse.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Dynamic scheduling caching. Dynamic scheduling techniques adapt caching strategies at runtime
by exploiting input characteristics or timestep patterns. Rule-based methods such as PAB (Zhao et al.,
2025) adopt fixed-frequency attention reuse, gaining efficiency but lacking adaptability. Data-driven
approaches improve flexibility: TeaCache (Liu et al., 2025a) fits polynomial mappings of timestep
embeddings, while AdaCache (Kahatapitiya et al., 2024) performs online similarity checks to reuse
block outputs, though both incur profiling or computation overhead. FORA (Selvaraju et al., 2024)
reduces redundancy by selectively reusing spatio-temporal attention subsets, and later extensions
such as L2C (Ma et al., 2024a) and ABCache (Yu et al., 2025) enable learnable layer selection or
multi-step reuse. While dynamically responsive to runtime states, these methods face a common
trade-off: heuristic rules risk quality degradation, whereas data-driven and adaptive schemes sacrifice
efficiency due to profiling or similarity computation costs.

3 METHOD

3.1 OVERVIEW

Diffusion Transformers (DiTs) follow a hierarchical architecture, denoted asM = B1 ◦B2 ◦· · ·◦BL,
where each block Bl consists of multiple distinct modules. For example, in Wan2.1 (Wan et al., 2025),
each block comprises a cross-attention (CA) module conditioned on the time step and observations, a
self-attention (SA) module, and a feed-forward network (FFN). This can be formally expressed as

Bl = F l
SA ◦ F l

CA ◦ F l
MLP , l ∈ {1, 2, . . . , L}, (1)

where the superscript l denotes the block index. Each module incorporates a residual connection,
defined as yl

t = xl
t + AdaLN ◦ f(xl

t), where AdaLN denotes adaptive layer normalization, and
f(xl

t) represents the function implemented by one of the modules within the block, i.e., f ∈
{F l

SA,F l
CA,F l

MLP }. Given an input xl
t at step t, the output of the l-th block is denoted as yl

t.

3.2 DIFFERENTIAL SCALING FOR PREDICTION

In DiTs, each denoising step requires full computation of intermediate features. Naive feature reuse
often neglects the dynamic evolution of features over time, potentially leading to the accumulation
of approximation errors. To address this, Taylorseer proposes a linear prediction-based caching
strategy. Its core idea is not only to cache feature values but also to record their temporal differences,
enabling the prediction of features for future steps. Specifically, the first-order features at step t can
be predicted using the formula:

y
′l
t = yl

τ +
k

T
(yl

τ − yl
τ−T), (2)

where τ = t − k denote the most recent full-computation step, and the second most recent full-
computation step can be expressed as τ − T and T represents the caching interval. The term
∆yl

τ = (yl
τ − yl

τ−T)/T represents the average rate of change in the feature between these two time
steps. This first-order prediction strategy effectively captures the linear temporal trend of feature
evolution, significantly improving prediction accuracy compared to directly reusing cached features.

We observe that, for different denoising steps t and different blocks Bl
t, the L1 error of first-order and

zero-order features with respect to the full computation exhibits distinct regional patterns in Figure
1. This indicates that, for certain blocks Bl

t, directly reusing features can outperform first-order
linear prediction. Motivated by this observation, we propose the following modified first-order linear
prediction:

ŷl
t = yl

τ + αl
tk∆yl

τ , (3)

where αl
t denotes the first-order differential scaling coefficients. In order to derive αl

t, we conduct an
offline estimation on a collection of prompts. For each block Bl

t, we compute αl
t by minimizing the

discrepancy between the predicted and fully computed outputs via a least-squares formulation:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

min
αl

t

||ŷl
t − yl

t|| = min
αl

t

||yl
τ − yl

t + αl
tk∆yτ ||. (4)

During the practical phase of offline αl
t estimation, we use k=1, T=1, the closed-form solution is

given by:

αl
t =
⟨yl

t−1 − yl
t,−∆yl

t−1⟩
⟨∆yl

t−1,∆yl
t−1⟩

, (5)

where ⟨·⟩ denotes the inner product. To improve stability and generalization, we update αl
t using an

exponential moving average αl
t ← β α′l

t + (1− β)αl
t, where α′l

t is a value obtained previously from
a set of prompts. To better illustrate this mechanism, we provide a schematic overview in Figure 4. In
practice, we precompute αl

k for each block using approximately 50 prompts offline and β=0.97. This
offline computation introduces no additional overhead during online inference.

Δ𝒚!"

𝒚!"…𝒚!#" 𝒚!!$%
" 𝒚!$%" …

Δ𝒚!$%"

×𝛼!$%"

…

⊕

⊚

𝒚&'%"

𝛥𝒚&'%"

𝒚&"

𝛥𝒚&"

×𝛼&"

⊕

𝜏′ 𝜏 𝜏 + 1 𝑡
The time step of the

second-to-last
computation

: obtain by cache
: obtain by computation

: cache required for 𝒚&"

The time step of the
last computation

The current time step

Figure 4: The complete process for obtaining the features at the current time step using differential
scaling for block-level feature prediction.

The complete computation process for predicting the features at the current time step using single-
stage differential scaling is illustrated in Figure 4. Note that each full computation updates ∆yl

τ .
Since the scaling factors between two full computation steps is different, we use the following formula
to obtain an estimate of ∆yl

τ :

∆yl
τ = yl

τ ◦ yl
τ ′ =

(yl
τ − yl

τ ′)
∏τ

i=τ ′+1 αi∑τ
k=τ ′+1

∏k
i=τ ′+1 α

l
i

. (6)

Our caching strategy requires storing two tensors per module: the cached feature yl
t−1 and the

feature difference ∆yl
t−1. In the Appendix G, we analyze the additional memory and computational

overhead introduced by ScalingCache on various mainstream generative models.

3.3 RUNTIME DYNAMIC INTERVAL CACHING

In conventional feature caching strategies, full computation and cache updates are typically performed
at fixed intervals or based on predetermined thresholds. However, our observations reveal a U-shaped
error pattern in cache predictions: when optimized using first-order differences, intermediate timesteps
exhibit relatively low prediction errors, whereas the beginning and end of the diffusion process show
larger deviations. This indicates that static caching interval may incur unnecessary computational
overhead or lead to the accumulation of approximation errors.

To address this issue, we propose a runtime dynamic interval caching strategy, which adaptively
adjusts caching intervals to improve computational efficiency while maintaining prediction accuracy.
For each timestep t, the dynamic error et of step t is defined as:

ēt =
1

L

L∑
l=1

∥∥∥yl
t − yl

t−1

yl
t−1

∥∥∥
1
, (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where yl
t denotes the output of the l-th block at timestep t, and yl

t−1 corresponds to the last fully
computed output. This metric quantifies the relative deviation between the predicted and fully
computed features, providing a principled criterion for cache updates.

We further define the cumulative error from the last full computation to the current timestep as
ϵt =

∑t−1
i=τ ēt. The cache update rule is then formulated as:

yl
t =

{
f(xl

t), f ∈ {F l
SA,F l

CA,F l
MLP }, if ϵt > δs or t ∈ [0, Sf − 1]

yl
t−1 + αl

t∆yl
t−1, otherwise.

(8)

where Sf denotes the initial warm-up steps during which full computation is mandatory to capture
the rapidly changing features of the early diffusion phase, and δs is a dynamic error threshold that
bounds the deviation between predicted and fully computed features. Specifically, if the cumulative
error exceeds δs, a full computation is performed to prevent predictions from diverging significantly
from the true features. Otherwise, the cache and predicted features are fused using an adaptive weight
αl
t to approximate the full computation output.

In practical scenarios, one key objective is to maximize the proportion of videos whose LPIPS falls
below a specified threshold or whose PSNR exceeds a desired level, while maintaining the same
acceleration ratio. We observe that as shown in Figure 5, for high-variation video generation tasks, a
smaller threshold δs is required to achieve desirable results, whereas for slow-variation scenarios,
a larger δs suffices and further yields higher speedup ratios. In practice, δs can be estimated from
the first Sf timesteps, enabling the model to assign appropriate thresholds for different types of
video generation tasks. Under a fixed Sf setting in ScalingCache, the computed δs for high-variation
samples is intentionally lower than that for low-variation ones, thereby mitigating that high-variation
samples require a lower δs to achieve visual quality comparable to that of low-variation samples.

To implement this adaptive caching mechanism, we design the inference procedure outlined in
Algorithm 1. Specifically, the algorithm maintains a cumulative error set E to estimate the dynamic
threshold δs during inference. For each timestep, the model decides whether to perform full computa-
tion or reuse cached features by comparing the current error ϵt against δs. This enables the model to
dynamically balance accuracy and efficiency, with aggressive reuse in stable regions and conservative
updates in rapidly changing regions.

0.1 0.2 0.3 0.4
s

20

25

30

35

40

PS
N

R

0.1 0.2 0.3 0.4
s

0.80
0.84
0.88
0.92
0.96

SS
IM

0.1 0.2 0.3 0.4
s

0.00

0.04

0.08

0.12

0.16

LP
IP

S

6 8 10 12 14 16 18
Sf

0.15

0.30

0.45

0.60

0.75

s

high variation low variation

Figure 5: Employing two distinct sets of prompts—one with descriptive cues such as ”still” (low
variation) and another with ”dramatically changing”(high variation)—we evaluate the generation
quality under various threshold configurations using the Wan2.1 1.3B model.

We acknowledge that the current strategy may not be applicable to all instances—for example, cases
that begin statically but later transition into dynamic states represent a known limitation of the present
approach and warrant further investigation. Nevertheless, the method is effective in distinguishing
the majority of samples and contributes to an overall improvement in performance.

4 EXPERIMENT

4.1 SETUPS

Models. We evaluate our proposed ScalingCache on text-to-video generation and extend the assess-
ment to its generalization capability in text-to-image synthesis, with a focus on inference efficiency as
well as generation quality. The experiments are conducted on three state-of-the-art visual generative

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 ScalingCache inference strategy
Input: DiT modelM, [αl

t]t=2,...,N ;l=1,...,L

Paramter: Sf , initial warm-up steps
Output: {yL

t |t = 1, . . . , N}, the output of the last block for each timestep

1: Initialize ϵt = 0, E = ϕ
2: for t = 1 to N do
3: Calculate δs = 1/|E|

∑
ϵ∈E ϵ

4: if t ∈ [0, Sf − 1] or ϵt > δs then
5: yL

t =M(xt)
6: ϵt = ēt
7: E ← E ∪ ϵt
8: else
9: for l = 1 to L do

10: yl
t = yl

t−1 + αl
t∆yl

t−1, ∆yl
t = αl

t∆yl
t−1

11: end for
12: ϵt = ϵt + ēt, update cumulative error
13: end if
14: end for

models: the text-to-image generation model FLUX.1-dev(Labs, 2024), text-to-video generation
model including Wan2.1-1.3B, Wan2.1-14B (Wan et al., 2025), and HunyuanVideo (Sun et al., 2024),
to rigorously evaluate the acceleration and visual retention of ScalingCache.

Evaluation Metrics. For the primary task of text-to-video generation, we use default prompts
in VBench (Huang et al., 2024) to assess visual retention. Specifically, we measure pixel-level
fidelity, structural similarity, and perceptual consistency using PSNR, SSIM (Wang et al., 2004), and
LPIPS (Zhang et al., 2018) against the original videos and images. We then systematically assess
the generated results based on 16 core evaluation dimensions defined by the VBench framework to
provide a comprehensive evaluation of the model’s performance. For the text-to-image generation
task, we perform inference on 200 DrawBench (Saharia et al.) prompts to generate images with a
resolution of 1360×768. We then evaluate the generated samples using CLIP Score (Hessel et al.,
2021) as key metrics to assess image quality and text alignment.

To capture subtle quality differences, especially in high-quality generated images, automated eval-
uation methods such as CLIP-score may not fully reflect these variations. To provide an objective
assessment of the generated image quality, we employed a human preference-based comparison
evaluation method. Each evaluator, given a specific prompt, was asked to select the image they
considered superior or to judge if both images were of equal quality.

Implementation Details. We determine the alpha values using text prompts and examine the
convergence of alpha with respect to the number of prompts, as illustrated in Figure 6. In the end, we
use 20 prompts, and for each prompt, alpha is computed offline using five different random seeds. For
the ablation studies on video generation, only one video is generated per prompt. For the large-scale
evaluation on VBench, we use an NVIDIA H800 GPU to generate five video samples with different
random seeds for each prompt, resulting in a total of 4,730 videos and 1,000 images are generated on
DrawBench. Our method requires no parameter tuning and only involves specifying the value of Sf .

4.2 MAIN RESULTS

Table1 reports the performance of ScalingCache compared to several representative acceleration
strategies on three text-to-video generation models, evaluated in terms of inference efficiency, visual
retention and human preference evaluation.

Inference efficiency. ScalingCache consistently achieves the highest speedup across all evaluated
models while maintaining low latency. For instance, on the Wan2.1 model, ScalingCache(Sf=10)
attains a 2.5× speedup. A similar trend is observed on HunyuanVideo, where ScalingCache(Sf=12)
achieves a 2.3× speedup, demonstrating its scalability across different model sizes and video lengths.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of ScalingCache with other acceleration methods on text-to-video tasks using
the prompt-enhanced VBench dataset, reporting inference efficiency and visual quality metrics on
representative models. Similar to Taylorseer, we quantify the reduction in computational complexity
(measured by the decrease in FLOPs) to evaluate the theoretical speedup ratio.

Methods
Efficiency Visual Retention

VBench (%) ↑
Latency (s) ↓ Speedup ↑ PSNR ↑ SSIM ↑ LPIPS ↓

Wan2.1 1.3B(Wan et al., 2025) (81 frames, 832×480)

Wan2.1 1.3B (T = 50) 85.0 1× - - - 83.31
+ 40% steps 34.1 2.5× 14.50 0.523 0.437 80.30
+ Teacache0.08 42.6 2.0× 22.57 0.806 0.128 81.04
+ Taylorseer 44.8 1.9× 13.52 0.510 0.447 81.97
+ EasyCache 34.2 2.5× 25.24 0.834 0.095 82.48
+ ScalingCache10(ours) 34.0 2.5× 26.61 0.890 0.071 82.92

Wan2.1 14B(Wan et al., 2025) (81 frames, 832×480), Ulysses×2, RingAttention×2

Wan2.1 14B (T = 50) 137.8 1× - - - 84.05
+ 50% steps 68.9 2.0× 15.82 0.696 0.336 79.36
+ TeaCache0.14 91.9 1.5× 18.60 0.688 0.244 83.95
+ MixCache 81.1 1.8× 23.45 0.814 0.124 83.97
+ ScalingCache10(ours) 55.1 2.5× 25.63 0.861 0.083 83.87

HunyuanVideo (Sun et al., 2024) (129 frames, 960×544), Ulysses×2, RingAttention×2

HunyuanVideo (T = 50) 199.8 1× - - - 81.40
+ 50% steps 100.1 2.0× 17.57 0.734 0.247 78.78
+ TeaCache0.1 133.7 1.5× 23.85 0.819 0.173 80.87
+ MixCache 110.5 1.8× 26.86 0.906 0.060 80.98
+ Taylorseer 72.2 2.8× 26.57 0.860 0.135 80.74
+ EasyCache 91.9 2.2× 29.20 0.904 0.063 80.69
+ ScalingCache12(ours) 88.4 2.3× 30.80 0.930 0.049 81.13

Visual retention. Despite aggressive acceleration, ScalingCache preserves superior visual qual-
ity. Across widely used video generation models including Wan2.1 and HunyuanVideo, Scaling-
Cache achieves approximately 2.3–2.5× acceleration with minimal impact on VBench scores (0.3–
0.5% drop). On FLUX 1.dev, near-lossless 3.1× acceleration is achieved, with all visual retention
metrics significantly surpassing those of Taylorseer at 2.8× acceleration. Under comparable accelera-
tion ratios, ScalingCache consistently outperforms prior state-of-the-art caching methods, achieving
a 45% reduction in LPIPS for image tasks and 20–30% reduction for video tasks, demonstrating its
superior fidelity preservation.

Human preference evaluation. In visual comparison experiments, the accelerated images produced
by our method were selected at a roughly equal rate as the original images, demonstrating that the
accelerated generation preserves visual quality to a level comparable with the originals as shown in
Figure 7.

The results demonstrate that ScalingCache effectively accelerates video and image generation with
minimal quality loss. Its dynamic caching mechanism and predictive feature updates enable a superior
trade-off between speed and fidelity, outperforming existing acceleration strategies across multiple
models and video resolutions.

4.3 ABLATION STUDIES

Our ablation study on Flux1.dev and Wan2.1 1.3B demonstrates that both differential scaling
coefficient(α) and dynamic caching intervals are critical for efficiency and generation quality. In the
ablation setting without α, we fix α=1 and strictly set the static caching interval to the maximum
value smaller than the dynamic caching interval divided by the acceleration factor. Under these
conditions, visual fidelity drops significantly at higher acceleration factors. Introducing α mitigates
feature prediction errors, improving PSNR, SSIM, and LPIPS with minimal overhead. Dynamic
caching alone boosts acceleration while maintaining quality, and combining both strategies yields
the best overall performance—substantially faster inference with negligible loss in visual quality.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of ScalingCache with other acceleration strategies on the FLUX 1.dev model.

Methods
Efficiency Visual Retention

Clip Score (%) ↑
Latency (s) ↓ Speedup ↑ PSNR ↑ SSIM ↑ LPIPS ↓

FLUX 1.dev (T = 50) 15.6 1× - - - 80.17
+ 50% steps 7.8 2.0× 29.36 0.683 0.318 78.88
+ TeaCache0.6 7.8 2.0× 28.08 0.400 0.690 81.79
+ Taylorseer3 5.7 2.8× 30.76 0.780 0.230 80.17
+ ScalingCache10(ours) 5.1 3.0× 32.28 0.819 0.131 80.25

50 100
prompts number

0.6

0.7

0.8

0.9

 m
ea

n

SA
CA
FFN

Figure 6: After performing 100
inference runs on Wan2.1 1.3B,
the mean alpha values converge.
For each number of inferences,
we repeat the procedure five
times and observe that the vari-
ance across runs is small.

ScalingCache

Taylorseer

67.2%

32.2%

ScalingCache
Teacache

66.7%

33.3%

ScalingCache
Original

44.4%
55.2%

Figure 7: For the human preference evaluation, we compared
the FLUX1.dev model’s performance under a 3.1× acceler-
ation factor, evaluating our method, ScalingCache(Sf=10),
against Taylorseer (Sf=4, T=4) and ScalingCache against
Teacache0.6(2.0×).

These results highlight that ScalingCache effectively allocates computational resources and preserves
high-quality generation under high-acceleration settings as shown in Table 3.

ScalingCache only requires adjusting a single parameter, Sf , which can be tuned according to the
desired acceleration. As shown in the Figure 8, for Sf ≤14, all evaluated models achieve over 2.0×
end-to-end inference speedup. In Figure 9, we explore the impact of higher acceleration ratios on the
performance of Vbench by analyzing the changes in its individual sub-metrics.

Table 3: Ablation study on text-to-image and text-to-video task.
We analyze the effect of α and dynamic caching on efficiency
and visual retention.

Model Settings Speedup ↑ Visual Retention

α dyn. PSNR ↑ SSIM ↑ LPIPS ↓

Flux 1.dev

2.9× 29.15 0.652 0.324
✓ 2.9× 29.83 0.701 0.259

✓ 2.6× 31.04 0.772 0.192
✓ ✓ 3.0× 32.28 0.819 0.131

Wan2.1 1.3B

2.4× 24.53 0.857 0.092
✓ 2.4× 25.95 0.876 0.079

✓ 2.5× 22.50 0.809 0.129
✓ ✓ 2.5× 26.61 0.890 0.071

6 8 10 12 14
Sf

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

×

Wan2.1 1.3B
Wan2.1 14B
HunyuanVideo
Flux 1.dev

Figure 8: The speedup achieved
across different models using
various Sf .

4.4 CROSS-TASK ROBUSTNESS ANALYSIS

Based on the VBench2(Zheng et al., 2025) dataset, we selects 5 representative sub-tasks as the evalu-
ation foundation. To enhance the comprehensiveness of the assessment, we additionally construct
two types custom-designed prompt sets—dynamic prompts and static prompts—resulting in a total

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: We analyze the stability of the α both within individual sub-tasks and across different
sub-tasks for Wan2.1-1.3B. Each sub-task contains 10 prompts, and each prompt is generated 5 times
using 5 different random seeds.

Sub-task motion composition human material mechanics dynamic static random

|αi − ᾱ| 0.008 0.007 0.009 0.022 0.015 0.011 0.017 0.006

of 8 distinct evaluation sub-tasks including a ”random” sub-task. Each sub-task includes 10 carefully
crafted text prompts to ensure diversity and representativeness across tasks. For each prompt, the
alpha value is computed using five different random seeds. We further evaluate both the standard
deviation of alpha values within each sub-task and the global standard deviation across all sub-tasks,
so as to systematically analyze the stability of alpha computation.
As illustrated in the Table 4, the overall standard deviation is small and similar across tasks, indicating
good stability of α. As shown in Table 4, the global mean of alpha is 0.58. We observe that the
majority of subtasks yield alpha values within a deviation of 2.5% from the global mean, indicating
that alpha demonstrates good cross-task stability. Since the α calculated from randomly sampled
subsets show smaller deviations from the global ᾱ, we therefore recommend using a diverse set of
prompts for α calculation in practical applications.

Table 5: Evaluation of the Wan2.1
1.3B model yielded two key find-
ings: Firstly, using a custom al-
pha calculated per sample yields
videos with the highest visual fi-
delity. Secondly, even in subtasks
where the custom alpha deviates
significantly from the mean alpha,
using the mean alpha, while subop-
timal, still produces results substan-
tially superior to those generated
without any alpha.

Wan2.1 1.3B Visual Retention

PSNR↑ SSIM↑ LPIPS↓
custom α 27.76 0.939 0.034
mean α 26.92 0.935 0.037
w/o α 26.37 0.933 0.044

2025/11/19 15:54 Awesome-pyecharts

file:///Users/gulihui/Downloads/radar_compare_speed (11).html 1/1

Figure 9: We adjusted the Sf parameter to investigate
the Vbench score and Visual Retention metric at higher
acceleration ratios. It was observed that reducing Sf from 6
to 4 resulted in a noticeable degradation in video generation
quality. Moreover, increasing the acceleration ratio led to
a significant decline in metrics such as dynamic degree
and human action, even though the overall Vbench score
decreased by only 2%.

5 CONCLUSION

In this study, we propose ScalingCache, an efficient inference acceleration framework for Diffusion
Transformers. By introducing first-order differential scaling coefficients, the method significantly
reduces computational overhead while maintaining negligible loss in generation quality. This
optimization leverages temporal feature evolution trends through linear prediction, combined with a
runtime dynamic caching mechanism that adaptively updates cached features based on cumulative
error. Specifically, the differential scaling formulation enables lightweight yet accurate estimation of
intermediate features, substantially decreasing the need for full network evaluations. Experiments
show that it achieves 2.3–3.1× acceleration across text-to-video and text-to-image generation, with
minimal impact on visual fidelity and strong performance in human preference evaluations. Compared
with prior state-of-the-art caching methods, ScalingCache consistently delivers superior visual
retention, highlighting its effectiveness and scalability for high-quality, resource-efficient generative
inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis, Yiren
Zhao, and Tao Chen. δ-dit: A training-free acceleration method tailored for diffusion transformers,
2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. 2021.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
generative models. pp. 21807–21818, 2024.

Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S.
Ryoo, and Tian Xie. Adaptive caching for faster video generation with diffusion transformers,
2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank component for 4-bit
diffusion models. In International Conference on Learning Representations (ICLR), 2025.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
CoRR, 2023.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion model.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7353–7363,
2025a.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to
forecasting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923,
2025b.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 15762–15772, June 2024b.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration, 2024.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1972–1981, 2023.

Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li, Zhen
Yang, Jonny Han, Xiaobo Shu, et al. Hunyuan-large: An open-source moe model with 52 billion
activated parameters by tencent. arXiv preprint arXiv:2411.02265, 2024.

11

https://github.com/black-forest-labs/flux

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. 13(4):600–612, 2004.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6211–6220, 2024.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, and Song Han. Sparse video-
gen: Accelerating video diffusion transformers with spatial-temporal sparsity. In Forty-second
International Conference on Machine Learning, 2025.

Yifei Xia, Suhan Ling, Fangcheng Fu, Yujie Wang, Huixia Li, Xuefeng Xiao, and Bin Cui. Training-
free and adaptive sparse attention for efficient long video generation, 2025.

Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu
Li, Chenfeng Xu, Kelly Peng, Jianfei Chen, Song Han, Kurt Keutzer, and Ion Stoica. Sparse
videogen2: Accelerate video generation with sparse attention via semantic-aware permutation,
2025.

Zichao Yu, Zhen Zou, Guojiang Shao, Chengwei Zhang, Shengze Xu, Jie Huang, Feng Zhao,
Xiaodong Cun, and Wenyi Zhang. Ab-cache: Training-free acceleration of diffusion models via
adams-bashforth cached feature reuse. CoRR, abs/2504.10540, 2025. doi: 10.48550/ARXIV.2504.
10540.

Jintao Zhang, Jia Wei, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention: Accurate 8-bit
attention for plug-and-play inference acceleration. In International Conference on Learning
Representations (ICLR), 2025a.

Peiyuan Zhang, Haofeng Huang, Yongqi Chen, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing,
and Hao Zhang. Vsa: Faster video diffusion with trainable sparse attention. arXiv preprint
arXiv:2505.13389, 2025b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. pp. 586–595, 2018.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast. In International Conference on Learning Representations (ICLR), 2025.

Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang,
Jingwen He, Wei-Shi Zheng, Yu Qiao, and Ziwei Liu. Vbench-2.0: Advancing video generation
benchmark suite for intrinsic faithfulness, 2025.

Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding,
Feiyang Tan, Hengshuang Zhao, and Xiang Bai. Less is enough: Training-free video diffusion
acceleration via runtime-adaptive caching. arXiv preprint arXiv:2507.02860, 2025.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint arXiv:2412.18911,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. In The Thirteenth International Conference on
Learning Representations, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DECLARATION ON THE USE OF LLMS

In compliance with the conference policy on the use of Large Language Models (LLMs), we declare
that LLMs were employed solely as an auxiliary tool for language polishing and for generating
Python scripts dedicated to statistical analysis and visualization. The LLM contributed neither to
research ideation, reasoning, nor any substantive aspect of the content. Therefore, no separate section
has been included to describe LLM usage. The authors assume full responsibility for the entire
manuscript, including all AI-assisted portions.

B DIFFERENTIAL SCALING COEFFICIENTS

The differential scaling coefficients remain consistent between the uncond stream and the cond stream,
with most values falling within the range of 0.8 to 1.0, exceeding 1.2 are rarely observed.

2 6 10 14 18 22 26 30 34 38 42 46

step

0
3

6
9

12
15

18
21

24
27

bl
oc

k

Self-attention Module

2 6 10 14 18 22 26 30 34 38 42 46

step

0
3

6
9

12
15

18
21

24
27

bl
oc

k

Cross-attention Module

2 6 10 14 18 22 26 30 34 38 42 46

step

0
3

6
9

12
15

18
21

24
27

bl
oc

k

Ffn Module

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 10: Wan2.1 1.3B conditional stream

2 6 10 14 18 22 26 30 34 38 42 46

step

0
3

6
9

12
15

18
21

24
27

bl
oc

k

Self-attention Module

2 6 10 14 18 22 26 30 34 38 42 46

step

0
3

6
9

12
15

18
21

24
27

bl
oc

k

Cross-attention Module

2 6 10 14 18 22 26 30 34 38 42 46

step

0
3

6
9

12
15

18
21

24
27

bl
oc

k

Ffn Module

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 11: Wan2.1 1.3B unconditional stream

C IMAGE-TO-VIDEO RESULT

As shown in Table 6, our proposed method is evaluated on the Image-to-Video (i2v) generation
task. The experimental results demonstrate that the Scalingcache technique is equally effective when
applied to this task.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Performance on the i2v task of Vbench2 using the ulyssess × 2 parallel configuration.
Taylorseer uses an interval of 2 and enforces full computation for the first 4 steps and the last 2 steps.

Methods
Efficiency Visual Retention

Latency (s) ↓ Speedup ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Wan2.2 5B (T = 50) 234.0 1× - - -
+ Taylorseer 137.6 1.7× 29.51 0.920 0.047
+ ScalingCache10(ours) 111.4 2.1× 33.29 0.959 0.021

D TEXT-TO-IMAGE CASE STUDY

A comparison between ScalingCache and Taylorseer on text-to-image generation tasks. The results
demonstrate a clear advantage of ScalingCache, although some failure cases remain (e.g., the third
row) in Figure 12. In most scenarios, however, the output is visually indistinguishable from the
original, achieving near-lossless generation performance.

E WEIGHTED DIFFERENCE ACCUMULATION — DETAILED DERIVATION

We aim to estimate the hidden feature at time step τ in layer l based on the previously cached feature
at an earlier step τ ′ (τ ′ < τ). The forward dynamics between these steps can be expressed as a
cumulative sum of residual updates:

yl
τ = yl

τ ′ +

τ∑
k=τ ′+1

∆yl
k, (9)

where yl
k denotes the hidden feature at step k, and ∆yl

k = yl
k − yl

k−1 represents the residual change.

E.1 EXPONENTIAL RESIDUAL DECAY ASSUMPTION

In practice, the magnitude of residuals tends to decrease as the sequence progresses, because earlier
steps capture more global information and later steps mainly refine details. We model this behavior
by assuming the residual norms decay approximately following a multiplicative factor αl

k ∈ (0, 2):

∥∆yl
k+1∥ ≈ αl

k+1∥∆yl
k∥. (10)

This implies that the residuals {∆yl
k}τk=τ ′+1 form a geometric sequence scaled by αl

i.

E.2 RELATION TO THE OBSERVED DIFFERENCE

The difference between the two hidden states is equal to the sum of their intermediate residuals:

yl
τ − yl

τ ′ =

τ∑
k=τ ′+1

∆yl
k. (11)

If we denote ∆yl
τ as the most recent residual and back-propagate its magnitude along the sequence

using the decay factors, each earlier residual can be written as:

∆yl
k ≈

∏τ
i=k+1 α

l
i∏τ

i=τ ′+1 α
l
i

∆yl
τ . (12)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 12: A comparison between ScalingCache and Taylorseer on the Flux1.dev model for the
text-to-image task and by adjusting the scaling factor Sf to 10 and 14, we obtain different speedups
of ×3.0 and ×2.1, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.3 SOLVING FOR THE LAST-STEP RESIDUAL

Plugging this relation into the telescoping sum constraint gives:

yl
τ − yl

τ ′ =

τ∑
k=τ ′+1

∏τ
i=k+1 α

l
i∏τ

i=τ ′+1 α
l
i

∆yl
τ . (13)

Rearranging yields a closed-form estimate of the most recent residual:

∆yl
τ =

(yl
τ − yl

τ ′)
∏τ

i=τ ′+1 α
l
i∑τ

k=τ ′+1

∏k
i=τ ′+1 α

l
i

. (14)

E.4 USAGE IN DYNAMIC CACHE UPDATES

This formulation provides a stable way to approximate the last-step residual from two known hidden
states (yl

τ ′ ,yl
τ) and a set of estimated decay factors {αl

i}. It can be used to refine cached hidden
states during dynamic cache updates without recomputing all intermediate steps, thus reducing
computational overhead.

F DISTRIBUTED AND PARALLEL COMPUTING INTEGRATION

To enable efficient computation under sequence-parallel DiT models (e.g., Ulysses or Ring Attention),
we compute the dynamic error ēt at each timestep t in a distributed manner across all participating
devices. Concretely, for each device d ∈ 1, . . . , D and each transformer layer l ∈ 1, . . . , L within a
stream, we first compute the **local relative change** between consecutive timesteps:

e
(d,l)
t =

∥∥∥y(d,l)
t − y

(d,l)
t−1

y
(d,l)
t−1

∥∥∥
1
. (15)

We then aggregate the maximal local error across all modules on the same device for each layer, and
average over layers to obtain the device-level local error:

ẽ
(d)
t =

1

L

L∑
l=1

max
f∈{Fl

SA,Fl
CA,Fl

MLP }
e
(d,l,f)
t . (16)

Finally, we perform an all-reduce operation over all participating devices to obtain the global dynamic
error ēt:

ēt =
1

D

D∑
d=1

ẽ
(d)
t , (17)

where D denotes the world size. This distributed reduction step ensures that ēt consistently reflects
the average prediction dynamics over all devices in the parallel group, enabling our method to adapt
caching intervals coherently in a sequence-parallel setting.

G OVERHEAD OF SCALINGCACHE ANALYSIS

We provide a detailed analysis of the additional memory requirements and associated overheads
introduced by the feature caching mechanism.

Memory Overhead. The memory footprint for caching intermediate features is substantial. Using
the Wan2.1 14B model as a primary example, the model contains 40 layers (l), and 2 computational

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: A comparative analysis of generation quality and inference speed under different Sf for
HunyuanVideo.

Sf Speedup↑ Visual Retention Vbench(%)
PSNR↑ SSIM↑ LPIPS↓

4 5.8× 18.59 0.684 0.341 75.18
6 4.5× 23.62 0.813 0.172 79.67

12 2.3× 30.80 0.930 0.049 81.13

streams (S=2). For each layer, features of dimension (B,L,D)are stored. Since the algorithm
requires caching both the previous feature and the delta (N=2), the total caching memory can be
calculated as:

B × L×D × l × S ×N × 2Bytes

using the following parameters:

• B=1, L=32760, D=5120
• Data type: BF16 (2 bytes per element)

Applying the same method to other models yields the following additional memory requirements:

• Wan2.1 1.3B: ∼11.7GB
• Wan2.1 14B: ∼50GB
• Hunyuan Video: ∼62.2GB

The substantial memory overhead can be effectively addressed with sequence parallelism methods
like Ring Attention or Ulysses. In these approaches, each attention head processes only a local
sequence segment, meaning only the corresponding feature segments must be cached per device.
This distributes the caching load evenly across the GPU cluster. For example, using 8-way sequence
parallelism with the Wan2.1 14B model reduces the additional memory requirement to under 9 GB
per GPU.

Computational Overhead.The core operations during the cache step are element-wise, making them
memory-bound. Execution time can therefore be estimated based on the GPU’s memory bandwidth.
For an NVIDIA H800 with a memory bandwidth of approximately 3.3 TB/s, the estimated time per
cache step for the Wan2.1 14B model is around 0.05 seconds.

Communication Overhead. The communication overhead is negligible. At the end of each cache
step, synchronization is only required for a small scalar statistic computed per device. With Pdevices,
the aggregated data size for communication is merely about 2 × P bytes per step, resulting in a
minimal communication cost.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2025/11/17 15:28 Awesome-pyecharts

file:///Users/gulihui/Downloads/radar_compare_three (3).html 1/1

Figure 13: HunyuanVideo with ScalingCache demonstrates a marked improvement in the Vbench
”Dynamic Degree” metric over the previous state-of-the-art method, EasyCache. This result signifies
a substantial advancement in the model’s capability for dynamic modeling and temporal consistency
within complex motion scenes.

19

	Introduction
	Related work
	Method
	Overview
	Differential Scaling For Prediction
	Runtime dynamic interval caching

	Experiment
	Setups
	Main Results
	Ablation Studies
	Cross-Task Robustness Analysis

	Conclusion
	Declaration on the Use of LLMs
	Differential Scaling Coefficients
	Image-to-Video Result
	Text-to-Image Case Study
	Weighted Difference Accumulation — Detailed Derivation
	Exponential Residual Decay Assumption
	Relation to the Observed Difference
	Solving for the Last-Step Residual
	Usage in Dynamic Cache Updates

	Distributed and Parallel Computing Integration
	Overhead of Scalingcache Analysis

